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Abstract 

The intricate interplay between circulating metabolites and immune responses, though crucial to disease 

pathophysiology, remains poorly understood and underexplored in systematic research. Here, we 

performed a comprehensive analysis of the immune response and circulating metabolome in two 

Western European cohorts (534 and 324 healthy individuals) and one from sub-Saharan Africa (323 

healthy donors). At metabolic level, our analysis uncovered sex differences in the correlation between 

phosphatidylcholine and cytokine responses upon ex-vivo stimulations. Notably, sphingomyelin 

showed a significant negative correlation with the monocyte-derived cytokine production in response 

to Staphylococcus aureus stimulation, a finding validated through functional experiments. Subsequently, 

employing Mendelian randomization analysis, we established a link between sphingomyelin and 

COVID-19 severity, providing compelling evidence for a modulatory effect of sphingomyelin on 

immune responses during human infection. Collectively, our results represent a unique resource 

(https://lab-li.ciim-hannover.de/apps/imetabomap/) for exploring metabolic signatures associated with 

immune function in different populations, highlighting sphingomyelin metabolism as a potential target 

in treating inflammatory and infectious diseases. 
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Introduction 

Human metabolism and immune response are closely linked, playing an important role in maintaining 

human health (1). While the immune system protect body against pathogens and maintains tissue 

homeostasis, these functions come at a significant bioenergetic cost, requiring precise control of cellular 

metabolic pathways (2). In turn, various metabolites serve not only as energy sources or building blocks 

of cellular function, but also as modulators of immune responses (3). An abnormal interaction between 

cellular metabolism and immune responses contributes to autoimmune, metabolic, and infectious 

diseases (4, 5). Pro-inflammatory cytokines are involved in promoting inflammation and modulating 

adaptive immune responses, which are fundamental components of the immune response. In addition, 

many studies have shown that pro-inflammatory cytokines, such as tumor necrosis factor (TNF) (6), 

interleukin 6 (IL-6) (7, 8), IL-1β (9), and interferon-gamma (IFN-γ) (10), can influence insulin 

resistance, adipose tissue inflammation and regulate obesity-related metabolism. On the other hand, 

metabolite reprogramming can modulate inflammatory states. As just a few examples, uric acid 

promotes IL-1β production in peripheral blood mononuclear cells (11), palmitate induces the secretion 

of IL-1β and IL-18 by macrophages (12), while TCA cycle metabolites such as fumarate, mevalonate 

and itaconate modulate trained immunity responses (13). 

Since immunity and metabolism play crucial roles and interact in health and disease, research in the 

field of immunometabolism has been steadily increasing in recent years (14-16). However, a systematic 

assessment of the interplay between circulating metabolites and cytokine responses is missing, due to 

the difficulty to measure both immune response and metabolomic data from the same biological sources, 

such as identical samples and cell systems, across multiple cohorts. Furthermore, metabolic and 

immune interactions can vary considerably across diverse ethnic and geographical backgrounds due to 

genetic, environmental, dietary and lifestyle factors (17-20). 

In this study, we analyzed plasma metabolite concentrations and cytokine responses in three distinct 

cohorts, totaling 1,181 individuals, including two from Western Europe and one from Sub-Saharan 

Africa. In total, we investigated the relationships between 4,361 metabolite features and immune 

cytokine responses, including 172 different cytokine production responses to stimuli. Our study aimed 

to understand the interaction between cytokine responses and metabolic interactions across different 

populations, in both men and women. To achieve this, we first analyzed the correlations between 

metabolite features and immune cytokine responses in each cohort. Subsequently, we conducted 

enrichment analyses to identify metabolites significantly associated with specific cytokine responses. 

We experimentally validated the relationships between specific metabolites and cytokine responses in 

in-vitro models of cytokine production stimulation assays. Subsequently, we employed Mendelian 

randomization (MR) analysis to explore the causal relationships between the metabolites and infectious 

diseases such as COVID-19, to demonstrate the importance of these interactions in actual human 

infections. Finally, we integrated all metabolite-cytokine association results into a publicly available 
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database, offering insights into immunity and metabolism interactions, and supporting new treatment 

development. 

Results 

Circulating metabolome and innate/adaptive immune response profiling across cohorts 

To comprehensively understand the relationship between metabolites and immune cytokine responses, 

we integrated data from two different European healthy populations: Cohort_EU1 and Cohort_EU2 

from Western Europe (Netherlands) with 534 and 324 participants respectively, and one African cohort: 

Cohort_AF from sub-Saharan Africa (Tanzania) with 323 participants.We quantified plasma metabolite 

features across these cohorts using flow-injection TOF-M, identifying 1377 metabolites features in 

Cohort_EU1, 1373 features in Cohort_EU2, and 1611 features in Cohort_AF. In parallel, we assessed 

innate and adaptive immune response by measuring cytokine production in response to various stimuli: 

Cohort_EU1 was assessed for 6 cytokines across 18 stimulations, Cohort_EU2 for 4 cytokines across 

2 stimulations, and Cohort_AF for 5 cytokines across 10 stimulations (Fig. 1A). Fig. 1B provides an 

overview of the study design, selecting Cohort_EU1 and Cohort_AF as discovery cohorts and 

Cohort_EU2 as the replication cohort. 

Robust plasma metabolic pathways for immune functions across European and African populations 

We initiated our analysis by examining metabolic networks through Weighted Gene Co-expression 

Network Analysis (WGCNA) to reveal interactions between metabolism and immune responses. 

Specifically, we assessed metabolite co-expression networks associated with immune phenotypes (IL-

1β, IL-6, TNF, and IFN-γ) following S. aureus stimulation, as these measurements were shared across 

the three cohorts. Of note, the peripheral blood mononuclear cells (PBMCs) in Cohort_EU2, the whole 

blood (WB) in Cohort_AF, and both WB and PBMCs in Cohort_EU1 were examined. We identified 11, 

11, 10, and 10 modules of highly correlated metabolites in Cohort_EU1 (PBMCs), Cohort_EU1 (WB), 

Cohort_AF, and Cohort_EU2, respectively (as shown in fig. S1A-D, and tables S1-3). Subsequently, 

we correlated the metabolites modules with the both monocyte-derived cytokines (IL-1β, IL-6, and 

TNF) and T cell-derived cytokine (IFN-γ) profiles following S. aureus stimulation. We identified 7, 7, 

8, and 7 metabolite modules that were found to be nominally significant in association with cytokine 

responses induced by S. aureus in Cohort_EU1 (PBMCs), Cohort_EU1 (WB), Cohort_AF, and 

Cohort_EU2, respectively, as shown in Fig. 2A-D (p < 0.05). 

In total, four metabolite modules were associated with monocyte-derived cytokines (IL-1β, IL-6, TNF) 

in the PBMCs of Cohort_EU1 stimulated by S. aureus. The brown and blue modules exhibited negative 

correlations with these cytokine productions, while the pink and red modules showed positive 

correlations (Fig. 2A). The metabolites of the brown module were enriched in the glycerophospholipid 

metabolism (p = 0.00028) and sphingolipid metabolism pathways (p = 0.00088) (Fig. 2E and table S4); 

whereas the metabolites of the blue module were enriched in the primary bile acid biosynthesis and 
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steroid biosynthesis pathways (fig. S2C and table S4). On the other hand, the metabolites of the pink 

and red modules were enriched in the pathways of nicotinate and nicotinamide metabolism, alanine, 

aspartate and glutamate metabolism and aminoacyl-tRNA biosynthesis, as well as vitamin B6 

metabolism, tyrosine metabolism pathways (fig. S2A-B and table S4). 

We also identified a grey module correlated with cytokine production (IL-1β, TNF, and IFN-γ) in the 

WB of Cohort_EU1 stimulated to S. aureus (Fig. 2B). Metabolites of this module were enriched in 

histidine metabolism (p = 0.00846), purine metabolism (p = 0.01840) and glycerophospholipid 

metabolism (p = 0.04006, Fig. 2F and table S4). In Cohort_AF, we observed two metabolite modules 

(magenta and red) negatively correlated with both monocyte-derived cytokines (IL-1β, IL-6, TNF) and 

T cell-derived cytokine (IFN-γ) production after S. aureus stimulation (Fig. 2C). Metabolites of the 

magenta module was enriched in glycerophospholipid metabolism (p = 0.00502) and purine metabolism 

(p = 0.01596, Fig. 2G and table S5), while metabolites of the red module was enriched in pyrimidine 

metabolism, nicotinate and nicotinamide metabolism, and lysine degradation (fig. S2D and table S5). 

It is worth noting that the glycerophospholipid metabolism pathway was consistently identified in both 

Cohort_EU1 (PBMCs and WB) and Cohort_AF, underscoring its robustness (as shown in Fig. 2E-G). 

This result was further validated in the replication cohort (Corhort_EU2). The magenta module, 

negatively correlated with IL-6, showed enrichment in the glycerophospholipid metabolism pathway 

(Fig. 2D, 2H, S3 and table S6). This finding aligns with the known role of glycerophospholipid 

metabolism is known to play an important role in regulating immune responses (21, 22).  

In summary, our study identified a common link between metabolic pathways and immune responses 

across different cohorts. Notably, glycerophospholipid metabolism emerged as a consistent pathway 

linked to immune regulation, underscoring its importance in the context of infection-induced immune 

responses. 

Sex-specific metabolic markers for immune functions 

Since sex impacts both cytokine productions (23) and metabolic regulation (24), we investigated its 

impact on the relationship between metabolome and S. aureus-induced cytokine responses (IL-1β, IL-

6, TNF, and IFN-γ).  We had a balanced sex distribution among participants, with 50.77%, 56.33%, and 

56.70% females, in Cohort_AF, Cohort_EU1, and Cohort_EU2, respectively (fig. S2A-C). In 

Cohort_EU1 (PBMCs), we found 95 metabolites in males and 302 metabolites in females that were 

significantly correlated with at least one cytokine response, after adjusting for the effects of age and 

body mass index (BMI); In Cohort_EU1 (WB), 7 metabolites in males and 52 metabolites in females 

showed significantly correlations with at least one cytokine response. However, no metabolites in 

Cohort_EU2 exhibited such correlations, possibly due to the sample size and large variability within 

the metabolite and cytokine data, limiting the statistical power to detect such correlations. In Cohort_AF, 
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there were 59 metabolites in males and 10 in females with significant correlations (Spearman correlation, 

FDR < 0.05, fig. S4D and tables S7-9). 

Interestingly, metabolites associated with cytokine response in males were prominently linked to 

glycerophospholipid metabolism and sphingolipid metabolism (Fig. 3A-B). In contrast, metabolites 

associated with cytokine response in females (Fig. 3C-D) were involved in a diverse range of metabolic 

pathways including cysteine and methionine metabolism, linoleic acid metabolism and aminoacyl-

tRNA biosynthesis, with arachidonic acid metabolism having particularly notable effects. Pathway 

analysis is constrained by the limited number of significant associations. Despite these limitations, sex 

differences in the major metabolic pathways were observed, with some shared pathways such as 

sphingolipid metabolism associated with cytokine response in both male and female subjects. 

In addition, the metabolites from the glycerophospholipid metabolism pathway were associated with 

cytokine response in both males and females across different cohorts (Fig. 3A-C and fig. S5A-D). 

Within the glycerophospholipid metabolism pathway, phosphatidate metabolites were generally 

negatively correlated with monocyte-derived cytokines responses, while phosphatidylcholine 

metabolites displayed variable correlations with cytokines responses across different populations (Fig. 

3E).  

Among phosphatidate metabolites, lysophosphatidic acid (LPA)(0:0/18:0) showed a significant 

negative correlation with TNF response in males of the Cohort_AF, whereas both phosphatidic acid 

(PA)(16:0/18:1(11Z)) and PA(18:0/18:2(9Z,12Z)) displayed significant negative correlations with IL-6 

response in both males and females of Cohort_EU1 (PBMCs). Furthermore, PA(16:0/18:1(11Z)) and 

PA(18:0/18:2(9Z,12Z)) also exhibited significant negative correlations with IL-1β and TNF response 

in females of the Cohort_EU1(PBMCs) and Cohort_EU1(WB).  

In the phosphatidylcholine group of the glycerophospholipid metabolism pathway, a positive 

correlation trend with TNF and IFN-γ response was observed solely in males of the Cohort_AF. By 

contrast, this phosphatidylcholine group showed negative correlations with cytokine response for both 

males and females in the European cohorts. For instance, phosphatidylcholine (PC)(14:0/20:1(11Z)) 

displayed a significant negative correlation with IL-6 in both males and females in Cohort_EU1 

(PBMCs). Additionally, this metabolite showed negative correlations with IL-1β and TNF response in 

females in cohort_EU1 (PBMCs) and a negative correlation trend with IL-1β in females in Cohort_EU1 

(WB).  

In summary, metabolites such as phosphatidylcholine can serve as sex-specific metabolic markers for 

innate immune responses, aligning with previous studies highlighting sex disparities in these 

metabolites (25). This underscores the importance of considering sex disparities in the contribution of 

the glycerophospholipid metabolites to immune function, essential for both research and therapeutic 

interventions. 
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In addition to identifying the glycerophospholipid metabolism pathway, we also discovered the 

regulatory role of the sphingomyelin metabolism pathway on immune responses in both males and 

females of cohort_EU1 (PBMC) (Fig. 3B-C), a pathway known for its key role in immune regulation 

(26). Moreover, in females, metabolites associated with cytokine response were significantly enriched 

in arachidonic acid metabolism (Fig. 3D). Previous studies have highlighted the relevance of 

arachidonic acid metabolism to the presence of sex differences (27, 28). 

Altogether, these findings underscore the intricate interplay between metabolite and cytokine response 

across sex and various ethnicities. 

Sphingolipid metabolism consistently correlates with the capacity of monocyte-derived cytokine 

production 

Next, we investigated the relationship between individual metabolic features and immune responses to 

S. aureus. In total, we identified 255, 423, and 167 metabolites in Cohort_AF, Cohort_EU1 (PBMCs), 

and Cohort_EU1 (WB), respectively, significantly correlated with at least one cytokine response, as 

shown in fig. S6A and tables S10-12 (FDR < 0.05). No metabolites in Cohort_EU2 showed such 

correlations, possibly due to insufficient sample size reducing statistical power, leading to an inability 

to detect smaller but potentially meaningful biological effects after FDR correction for multiple 

comparisons. Based on pathway analysis, the citrate cycle (TCA cycle) and sphingolipid metabolism 

stood out as the most statistically significant pathways within the Cohort_AF (Fig. 4A). While there 

was a more diverse set of pathways in Cohort_EU1 using PBMC samples (Fig. 4C) compared to WB 

samples (Fig. 4B), sphingolipid metabolism was also among the top significant pathways in both two 

cohorts. Thus, sphingolipid metabolism emerges as a common signature across all cohorts, suggesting 

its universal importance in the context of metabolite-cytokine correlations. This finding aligns with the 

known role of sphingolipid metabolism and its derived metabolites in immune responses (26, 29, 30). 

Specifically, in Cohort_AF, monocyte-derived cytokines, such as IL-6 and TNF exhibited a negative 

correlation with SM, whereas IFN-γ and IL-1β showed minimal correlation (fig. S7). In Cohort_EU1 

(WB), a significant negative correlation between the monocyte cytokine IL-1β and SM (p = 2.6e-05) 

was found, but not for IFN-γ response (fig. S7-8). Similarly, in Cohort_EU1 (PBMCs) SM displayed a 

consistent negative correlation with monocyte-derived cytokines like IL-6, IL-1β, TNF, but not with 

IFN-γ response (fig. S7-8). In Cohort_EU2, IL-6 was negatively correlated with SM (fig. S7). 

Given the above indications that SM may be more closely related to monocyte-derived cytokines rather 

than IFN-γ, we then performed the meta-analysis of the correlation coefficients between SM and S. 

aureus-induced cytokine production in three cohorts. Here, we have used both the fixed-effect model 

and random-effect model for computation. The results (Fig. 4D) all showed that circulating SM is 

significantly negatively correlated with monocyte-derived cytokines (IL-6, TNF, and IL-1β) (Fixed-

effect model: pooled r = -0.1740, 95% CI -0.1913 — -0.1567, p < 0.0001; random-effect model: pooled 
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r = -0.1694, 95% CI -0.2151 — -0.1236, p < 0.0001). Additionally, there is no correlation between 

circulating SM and T cell-derived cytokine (IFN-γ) response (Fixed-effect model: pooled r = -0.0159, 

95% CI -0.0459 — 0.0140, p = 0.2969; random-effect model: pooled r = -0.0160, 95% CI -0.0467 — 

0.0146, p = 0.3052) (Fig. 4E).  

In summary, SM showed consistent negative correlations with monocyte-derived cytokine responses in 

the multiple cohorts, suggesting a potential inhibitory effect of SM on the innate immune function. To 

validate this funding, we stimulated peripheral blood mononuclear cells (PBMCs) with either S. aureus 

or lipopolysaccharide (LPS) for 24h, followed by measurement of proinflammatory cytokines in the 

supernatant of the stimulated cells (Fig. 5). Two different sources of sphingomyelin (chicken yolk and 

porcine brain) were used, and both showed 30% to 50% inhibition of TNF and IL-1β production in a 

dose-dependent manner (Fig. 5A-B). In contrast, the induction of IL-6 by the two microbial stimuli was 

less strongly inhibited by sphingomyelin (Fig. 5C). 

Genetic analysis shows the causal role of Sphingomyelins in COVID-19 

The results described above suggests an inhibitory role of SM metabolite on innate immune function. 

We next examined whether SM could be a potential modulator for cytokine responses and may hold 

potential therapeutic significance in diseases, such as managing the cytokine overproduction in COVID-

19 patients that can lead to intense inflammation, organ damage, and even death (31). Firstly, we used 

a public metabolomics dataset comprising 198 individuals with COVID-19 of varying severities (32) 

to examine the association between all sphingomyelin metabolites and the disease severity. The 

concentrations of sphingomyelins varied among healthy donors and different severity groups of 

COVID-19 patients: mild, moderate, and severe (fig. S9). In general, the concentration of the majority 

of SM metabolites (fig. S9) was significantly higher in the healthy donors compared to the COVID-19 

patients, and negatively associated with COVID-19 severity. For several SM metabolites, such as SM 

(d18:0/18:0, d19:0/17:0), SM (d18:1/20:2, d18:2/20:1, d16:1/22:2), SM (d18:1/22:2, d18:1/22:1, 

d16:1/24:2), and SM (d18:2/24:2) (fig. S9 I, L, Q and U, respectively), patients with moderate 

symptoms showed a significant higher in SM concentrations compared to the healthy control group. 

We next examined the causal relationship between sphingomyelin metabolites and COVID-19 using 

the previously reported SM associated variants (mQTLs, or metabolic quantitative trait loci) (33) and 

the public GWAS summary statistics of COVID-19 (34), using Mendelian randomization (35) (MR) 

method. Using 10 independent SNPs (p < 5.0 × 10−7 and clumping variants with linkage disequilibrium 

r2 < 0.001) as instruments, the results of two commonly used MR methods, i.e. weighted median 

estimator and inverse-variance weighted (36, 37), consistently showed that a decrease in circulating 

sphingomyelin concentration had a causal effect on COVID-19 severity (p = 4.79 × 10−2, and 7.92 × 

10−3, respectively; effect sizes = −0.12, and −0.13, respectively; Fig. 6A-B, table S13).  A forest plot of 

the 10 plasma SM SNPs associated with the risk of COVID-19 is shown in Fig. 6C. The plot shows 
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each SNP’s effect size and 95% Confidence Interval (CI) with points and lines; the negative estimates 

suggest that higher SM concentrations decrease the risk of developing severe COVID-19 symptom. 

Considering the heterogeneity of SNP effects, we went further to apply an aggregated approach, the 

Inverse Variance Weighted (IVW) method.  As the red line indicates, there is a collective trend where 

higher SM levels correspond to a lower risk of developing severe COVID-19, providing a more reliable 

overall estimate. To validate the adherence of our data to MR assumptions, we conducted a series of 

sensitivity analyses. These included tests for horizontal pleiotropy, as indicated by a non-significant 

MR-Egger intercept (p > 0.05, detailed in table S14), assessments of heterogeneity via Cochran’s Q 

test (p > 0.05, shown in table S15), and a leave-one-out analysis (illustrated in Fig. 6D). We refrained 

from using causal estimates obtained through the MR-Egger method as a filtering criterion due to its 

relatively low power in detecting causality (38). To sum up, the robustness of the MR causal estimates 

was further substantiated by these sensitivity analyses. 

In line with our observation of the negative correlation between SM and COVID-19 severity, previous 

research indicated a significant decrease in sphingomyelin (SM) concentrations and a notable increase 

in ceramide (Cer) concentrations in severe COVID-19 patients (39). Previous studies have also reported 

that the SARS-CoV-2 virus can activate acid sphingomyelinase (ASM) and the Sphingomyelinase-

Ceramide pathway (40), and Cer can promote increased cytokine secretion (41-43). We therefore 

propose that the interactions between sphingomyelin (SM), enzymes of the Sphingomyelinase-

Ceramide pathway, and Cer, modulate cytokine secretion and disease severity in COVID-19 patients 

(Fig. 6E). This regulatory framework connects genomic variations to COVID-19 diseases by 

modulating gene expression, metabolite profiles, and immune responses. This framework is constructed 

using multi-omics data sourced from various cohorts, public repositories, and existing literature. 

An online tool for exploring metabolic features for immune functions in human 

To aid in exploring the intricate connections between metabolite features and immune function, we 

established the IMetaboMap online tool (https://lab-li.ciim-hannover.de/apps/imetabomap/), a 

pioneering resource that catalogs interactions between plasma metabolites and cytokine responses to 

various stimuli in humans. This tool will prove instrumental in examining how these interactions differ 

among various populations, between sexes, and across different tissue types. Our analysis showed that 

Cohort_EU1 had 125,307 metabolite-cytokine connections, while Cohort_EU2 and Cohort_AF yielded 

28,833 and 80,550 connections, respectively, totaling 234,690 unique connections recorded in 

IMetaboMap. This tool stands as a testament to our comprehensive approach, enabling detailed 

exploration of the dynamic relationships between metabolites and cytokines, and shedding light on 

specific associations that may vary by sex and population. This extensive mapping effort is visualized 

in Fig. 7, which serves as a foundational reference for ongoing and future research into the mechanisms 

and functions of immunometabolism, advancing our understanding of immune-metabolic interplay and 

paving the way for effective therapeutic interventions. 
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Discussion 

In this study, we conducted an in-depth analysis of the interplay between plasma metabolite features 

and cytokine response to various stimuli across multiple cohorts with diverse ethnicities including two 

Western European cohorts and one East-African cohort from Tanzania. An online tool, IMetaboMap, 

has been developed to offer insights into the interrelationships between metabolites and cytokine 

responses across different populations and sexes. Furthermore, we particularly highlighted the pivotal 

role of baseline metabolites in immune modulation and COVID-19. 

Benefiting from the uniqueness of the data from multiple cohorts with different populations, we 

systematically explored the relationship between metabolites and immune phenotypes. First, we 

identified glycerophospholipid metabolism, a common key metabolic pathway, across different 

populations, to play an important role in regulating immune responses and cytokines production by 

human circulating immune cells (44, 45). Further, in the analysis of sex differences, we found that 

phosphatidylcholine, an important component of the glycerophospholipid metabolic pathway, can serve 

as a sex-specific metabolic marker, which is consistent with previous studies on sex differences in these 

metabolites (25). These findings not only provide valuable evidence for the study of the 

glycerophospholipid metabolic pathway, but also indicate potential targets for the study of immune 

related diseases. 

An important finding highlights the importance of the sphingolipid metabolism pathway in the 

regulation of immune responses, as well as the potential of sphingolipids in modulating various immune 

responses and their therapeutic implications. In particular, the concentration of sphingomyelins 

significantly correlates with monocyte-derived cytokines response (TNF, IL-1β, IL-6), but not with T 

cell-derived cytokines response (IFN-γ) to S. aureus stimulation (Fig. 4D-E). This implies a stronger 

role for sphingomyelins in the modulation of innate immune responses rather than in the adaptive 

responses. The mechanism by which sphingomyelin influences immune responses are likely complex, 

involving cellular processes such as the cell signaling (46), membrane fluidity (47), and intercellular 

interactions (48). The role of sphingomyelin in the modulation of innate immunity, as observed in our 

study, might be due to its localization within cell membranes and its participation in the immediate 

cellular response upon recognition of pathogen- and danger-associated molecular patterns. It also 

suggests that sphingomyelin predominantly participates in immediate and ubiquitous defense 

mechanisms, such as inflammation or rapid responses to pathogens, rather than specialized, long-term 

defense strategies involving memory lymphocytes and antibodies. The sphingomyelin – cytokines 

response interaction described here supports previous studies which suggested that cytokines released 

by innate immune cells are more strongly influenced by circulating metabolites (16, 49). Thus, 

sphingomyelin metabolites could be potential targets for therapy in inflammation-mediated diseases. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 1, 2024. ; https://doi.org/10.1101/2024.11.29.24318195doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.29.24318195
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

Our study has several important strengths. First, the complementary, but independent, identification of 

metabolite-immune interaction in omics studies, functional experiments, and genetic Mendelian 

randomization provides very strong arguments for the validity of our conclusions. Second, our study 

proved the relevance of these findings by the identification of an association between sphingomyelin 

concentrations and COVID-19 severity. Whereas the significant mortality associated with COVID-19 

is closely linked to the “cytokine storm” (31), our findings indicate an inverse relationship between 

elevated SM concentrations and the severity of COVID-19 infection. This suggests that modulating SM 

levels might regulate cytokine production, attenuate inflammatory responses, and potentially reduce 

mortality. In line with our findings, the presence of sphingolipids in the milk fat globule membrane has 

demonstrated anti-bacterial properties against several microorganisms (50), while milk sphingomyelin 

could mitigate LPS-induced inflammation in RAW264.7 macrophages (51). Finally, our findings have 

been validated in cohorts of individuals with both European and African ancestry. The vast majority of 

studies to date investigate solely individuals of European ancestry, while knowledge in non-European 

populations is very limited. Our study aimed to improve to knowledge on immune response regulation 

in both European and African populations. To achieve this aim, we have also built an online tool that 

can be used to explore efficiently our findings as an important research and development resource. 

While our study provides extensive data on the cohorts and offers valuable insights, it still has some 

potential limitations. Firstly, confounding factors such as age, lifestyle, and genetic background, dietary 

habits (52, 53) can influence individual blood metabolite profiles. However, the consistent negative 

association between the sphingolipid metabolism pathway and cytokine responses across different 

cohorts and populations emphasizes its role in immune function and reassures on the validity of our 

conclusions. Secondly, while we employed the same mass spectrometry platform (flow-injection TOF-

M) to measure metabolites across cohorts, this technique cannot precisely identify the isomers of 

metabolites. Since very long-chain SM and long-chain SM in plasma can play different roles in 

modulating inflammation (54), we also observed that the concentration of some SMs did not show a 

similar declining trend with the severity of COVID-19 as the majority of SMs (fig. S9). Thus, future 

research might delve deeper into the roles of different SM isomers in infectious diseases. In summary, 

this study provides valuable perspectives on the interplay between sphingolipid metabolism and 

immune responses in infectious diseases, further studies are needed to validate and expand upon these 

findings. 

Conclusion 

Our study describes the interplay between metabolic signatures and immune functions across different 

cohorts and ethnic backgrounds, highlighting the potential of using metabolites as immunological 

modulators. The associations between metabolite-cytokine production revealed in this study are 

accessible for future research through an online tool known as IMetaboMap. Particularly, we identified 

that sphingolipid metabolism was associated with cytokine responses and disease risk in a severe 
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infection (COVID-19). Sphingomyelins can mitigate inflammatory responses, providing tantalizing 

suggestions that diets rich in sphingomyelin may be useful for modulation of inflammation in immune-

based diseases. 

Materials and Methods 

Cohorts’ descriptions 

The first cohort, designated as Cohort_EU1, is part of the Human Functional Genomics Project as 

500FG cohort and comprises 534 healthy Caucasian individuals of Western European ancestry, with 

ages spanning from 18 to 75 years. This cohort was carefully selected to exclude individuals with mixed 

genetic backgrounds or chronic diseases. Key measurements within Cohort_EU1 included cytokine 

production in response to various stimulations and comprehensive metabolomic profiling. More 

detailed information can be found in previous publications (55). The second cohort from Western 

Europe, Cohort_EU2, included 324 healthy volunteers of Western European descent, aged between 18 

to 71 years. These participants were enrolled in the 300BCG cohort from April 2017 to June 2018, with 

further details documented in previous publication (56). The third cohort, Cohort_AF, encompasses 323 

healthy Tanzanians between 18 to 65 years old from the Kilimanjaro region, who were recruited through 

the Kilimanjaro Christian Medical Center and Lucy Lameck Research Center from March to December 

2017, as previously described (20). 

Plasma metabolome measurement and analysis 

Untargeted metabolomics measurements from plasma were performed by high-throughput flow 

injection-time-of-flight mass spectrometry (57). The platform employed an Agilent 6520 Series 

Quadrupole Time-of-flight mass spectrometer and Agilent Series 1100 LC pump coupled to a Gerstel 

MPS2 autosampler. The metabolites were matched and annotated with HMDB (www.hmdb.ca), KEGG 

(www.genome.jp/kegg/) and ChEBI (www.ebi.ac.uk/chebi/) identifiers. 

The NOREVA platform (http://idrblab.cn/noreva/) was employed to perform comprehensive data 

analysis using the peak intensity table of annotated metabolites (58, 59). Log transformation and Pareto 

scaling were applied before data analysis. Pathway enrichment analysis of identified metabolite lists 

was performed using the pathway analysis (Hypergeometric test) function of MetaboAnalyst V5.0 

(https://www.metaboanalyst.ca/) (60). KEGG library was selected as the reference pathway library. 

Whole blood (WB) or peripheral blood mononuclear cells (PBMCs) stimulations 

For WB stimulations, 100μl of heparin blood was diluted 1/5 with culture medium containing stimuli 

in 48-well plates and incubated for 48 hours with 100 ng/ml E. coli-derived LPS, 50 µg/mL Poly(I:C), 

106/mL C. albicans, 106/mL S. aureus, 5 µg/mL M. tuberculosis (MTB), 106/mL E. coli, 107/ml C. 

burnetii, 107/ml S. pneumonia, 106/mL S. typhimurium or 106/mL S. enteritidis. 
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5×105 PBMCs per well were stimulated in round-bottom 96-well plates with 5 µg/mL M. tuberculosis 

(MTB) or 106/mL S. aureus for 24 hours or 7 days. RPMI 1640 Medium (Dutch modification, Gibco) 

supplemented with 1 mM sodium pyruvate (Gibco), 2 mM GlutaMAX (Gibco), and 5 µg/ml gentamicin 

(Centraform) was used in all cell culture experiments. Supernatants were collected and stored at −20°C 

until cytokine quantification by ELISA. Cytokines were quantified using DuoSet ELISA Development 

Systems (R&D), except for the IFN-γ ELISA (Sanquin), according to the manufacturer’s instructions. 

Measurement of circulating cytokines concentrations 

In the African cohort, cytokine concentrations in plasma were measured with the Ella platform (Protein 

Simple) using Simple Plex cartridges following the manufacturer’s protocols. In the European cohort, 

measurement of biomarker concentrations was performed using the Olink Inflammation Panel 

consisting of 92 markers (Olink Biosciences). This method employs proximity extension assay and 

provides relative protein quantification expressed as normalized protein expression (NPX) values (61). 

Statistical analyses 

To elucidate the metabolic networks underlying immune phenotypes, we assessed the metabolite co-

expression networks of immune responses (IL-1β, IL-6, TNF, IFN-γ) following S. aureus stimulation. 

Utilizing Weighted Correlation Network Analysis (WGCNA) (62), we identified modules of 

metabolites exhibiting highly correlations (fig. S1). We proceeded to examine the relationship between 

the summary profile (eigengene) of each module and various different immune responses (IL-1β, IL-6, 

TNF, and IFN-γ), as depicted in Fig. 2. Upon discovering any modules with significant correlations to 

immune responses, we isolated the metabolites within these modules for further exploration. Pathway 

analyses were conducted using MetaboAnalyst 5.0. We reported metabolic pathways achieving a 

threshold of p < 0.05, which are presented. 

We computed the correlation between individual metabolite features and the immune responses to S. 

aureus across multiple cohorts. Among 3 cohorts, a high proportion of metabolites was significantly 

correlated with sex (Cohort_AF: 38.4%, Cohort_EU1 (PBMCs and WB): 50.5%, Cohort_EU2: 38.9%), 

age (Cohort_AF: 45.2%, Cohort_EU1 (PBMCs and WB): 36.8%, Cohort_EU2: 15.4%), and BMI 

(Cohort_AF: 16.9%, Cohort_EU1 (PBMCs and WB): 15.7%, Cohort_EU2: 0.51%). After accounting 

for age and sex, a smaller proportion of metabolites maintained their significant association with BMI 

(Cohort_AF: 6.02%, Cohort_EU1 (PBMCs and WB): 9.73%, Cohort_EU2: 0.07%, FDR <0.05,). 

Therefore, in the correlation analysis described below, we adjusted for the confounding effects of age 

and sex. To calculate the relationship between metabolites and immune cytokines, we first filtered 

features based on their Spearman correlation p-values, retaining only those features that passed specific 

thresholds (0.05 for metabolites) for further analysis. Details of the method can be found in a previous 

paper (16). 
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Apart from the MetaboAnalyst v.5.0 platform, statistical analyses were performed using R 4.1.0 

(www.R-project.org). Correlation analysis was computed by the R packages ‘corrplot’ or ‘gplots’ upon 

Spearman’s rank correlation and Benjamini-Hochberg correction using the ‘corr.test’ function. We 

adjusted the effect of age, sex, and BMI on metabolite levels using a linear regression model, and 

calculated false discovery rate (FDR < 0.05). 

Meta-analysis 

To prepare for the meta-analysis, we first converted Spearman's correlation coefficients into Fisher's Z 

values. This transformation is a crucial step that stabilizes the variances and normalizes the distribution 

of the coefficients, which is essential for the subsequent pooling of data across different studies. For 

each Fisher's Z value, we calculated its standard error (SE) using the formula  

𝑆𝛦(𝑍) =
1

√𝛮 − 3
 

, where N represents the sample size from the respective study. 

Our meta-analytical approach consisted of both fixed-effect and random-effect models, allowing us to 

explore the consistency of the effect sizes across studies and account for any between-study 

heterogeneity. The fixed-effects model was implemented under the assumption that the effect sizes are 

homogenous, while the random-effects model, incorporating the REML method, was employed when 

heterogeneity was present. This approach acknowledges that individual studies might estimate different, 

yet related, effects and thus incorporates both within-study and between-study variation into the analysis. 

The ‘metafor’ package (63) facilitated the computation of pooled effect sizes and their corresponding 

95% confidence intervals. We further generated forest plots to visually represent the individual study 

effects, their confidence intervals, and the pooled estimate, providing a clear and concise graphical 

summary of the meta-analysis results. 

Mendelian randomization 

MR analysis was done using the TwoSampleMR (version 0.5.6) R package. The main two-sample MR 

methods used in this study include IVW (37) and weighted median (64). Therefore, MR estimates were 

calculated using Wald ratios and these Wald ratios were meta-analyzed using the IVW method (37). To 

ensure the validity of the results, several sensitivity analyses were performed. We excluded MR 

estimates potentially driven by horizontal pleiotropy (removing results with MR-Egger (38) intercept 

P < 0.05) and heterogeneity (removing results with Cohran’s Q test P < 0.05). In addition, we carried 

out leave-one-out analysis (65) to check whether the MR estimates were possibly driven by a single 

SNP. Multiple testing correction was performed using the Benjamini–Hochberg approach based on 

IVW P values. To avoid complex causality relationships, we excluded the results that showed a 

nominally significant MR estimate in the other direction (P < 0.05). For this analysis, metabolite-

associated SNPs at a P value cut-off of 5 × 10−7 used as genetic instruments in IVW-based MR. Due to 
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the limited number of participants in the study and our aim to identify a broader range of potentially 

significant SNPs for subsequent MR analysis, we have chosen a more relaxed yet still conservative 

significance threshold of 5 × 10−7. This approach is informed by similar strategies in genetic research, 

where such a threshold has been employed to balance the trade-off between sensitivity and specificity, 

particularly in contexts where maximizing the discovery of candidate SNPs is crucial(66-68). 

In vitro validation experiments 

Venous blood was sampled in sterile 10mL ethylenediaminetetraacetic acid (EDTA) tubes (Vacutainer 

system, Becton Dickinson) from six healthy volunteers (ethical approval NL84281.091.23 of the 

Arnhem-Nijmegen Ethical Committee). Peripheral blood was processed within 1-4 hours after 

collection. Human PBMCs were isolated by differential centrifugation by Ficol-Paque, as previously 

described (69). PBMCs were stimulated with either lipopolysaccharide (LPS from E. coli 055:B5, 

Sigma) or heat-killed Staphylococcus aureus for 24 hours, in the absence or presence of different 

concentrations of chicken yolk or porcine brain sphingomyelin (10 ng/ml to 10 ug/ml). Culture 

supernatants were collected at the end of incubation period and stored at −20°C until cytokines were 

measured using enzyme-linked immunosorbent assay. The production of proinflammatory cytokines 

was measured using commercial ELISA kits (R&D Duoset ELISA Systems) according to the 

manufacturer’s instructions. 

Visualization 

R package ggplot2 was used to perform most visualizations, including correlation plots, bar charts, and 

boxplots. 

Online tool implementation details 

IMetaboMap was developed by R v 4.3.2 and Shiny v 0.13.1 running on Shiny-server v1.7.5. Various 

R packages were utilized in the background processes. IMetaboMap can be readily accessed by all users 

with no login requirement, and by diverse and popular web browsers including Google Chrome, Mozilla 

Firefox, Safari and Internet Explorer 10 (or later). 
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Fig. 1. Study Overview. (a) The study includes three cohorts from the Human functional genomics 

project: two originating from Western Europe (Cohort_EU1 and Cohort_EU2) and one from Sub-

Saharan Africa (Cohort_AF). Blood samples were collected from these cohorts for untargeted 

metabolomic measurement and stimulation experiments, measuring cytokine production after various 

human pathogens stimulation. (b) The study design initiates with the selection of cohorts for discovery 

(Cohort_EU1 and Cohort_AF) and replication (Cohort_EU2). To investigate the interplay between 

metabolic signatures and cytokine response, we conducted the correlation analysis to identify the 

relationships between metabolites and cytokine response. Subsequently, we performed ex vivo 

functional validation using PBMCs to evaluate the influence of metabolic changes on cytokine 

production following microbial stimulation. 
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Fig. 2. Metabolite modules associated with cytokine responses induced by S. aureus in African 

and European population. The specific metabolites within each module delineated by WGCNA are 

detailed in the Supplementary Table 1 (a, b, c and d). In three cohorts (Cohort_EU1, Cohort_AF and 

Cohort_EU2), 11, 11, 10 and 10 modules respectively were found to correlate with cytokine responses 

(IL-1β, IL-6, TNF, and IFN-γ) induced by S. aureus (*p<0.05, **p<0.01, ***p<0. 001). (e, f, g and h) 

Pathway analysis results for metabolites within the MEbrown (a), MEgrey (b), MEmagenta (c), and 

MEmagenta (d) modules. The darker color and larger size of the bubble dots indicate a larger -

log(Pvalue), suggesting higher significance. 
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Fig. 3. Impact of sex differences on the correlation between metabolites and cytokine responses. 

Scatter plots illustrate pathway analysis results for significant correlations (FDR < 0.05) between 

metabolites and cytokine responses, with distinctions based on gender in varied cohorts: (a) Cohort_AF, 

male; (b) Cohort_EU1 (PBMCs), male; (c) Cohort_EU1 (PBMCs), female; (d) Cohort_EU1 (WB), 

female. The darker the bubble color, the larger the -log(Pvalue), indicating higher significance. (e, f) 

Differences in the Glycerphospholipid and Linoleic acid metabolism between males and females. Red 

signifies a significant positive correlation between the metabolite and cytokine response, while green 

indicates a significant negative correlation. Cells shaded in light red and light green represent 0.05 < 

FDR < 0.10, with light red suggesting a trend towards positive correlation and light green pointing to a 

trend toward negative correlation. Asterisk *(FDR < 0.05) and hash # (0.05 < FDR < 0.10). 
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Fig. 4. Immune response-related metabolites across multiple cohorts. Bubble plots showing the 

results of pathway analysis of metabolites significantly correlated (FDR < 0.05) with S. aureus-induced 

cytokine responses (IL-1β, IL-6, TNF, and IFN-γ) in Cohort_AF (a), Cohort_EU1 (b), and Cohort_EU1 

(PBMCs) (c). (d and e) A 'forest' plot displaying different mean values (center of symbols), confidence 

limits (95% confidence intervals), and precision levels (denoted by the size or 'weight' of the symbols, 

where larger symbols signify higher precision). These are shown for the effect sizes derived from 

individual studies (in black), as well as the aggregate mean values (center of symbols) and 95% 

confidence intervals (width of symbols) calculated through meta-analysis using both a fixed-effect 

model and a random-effects model (both in blue). 
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Fig. 5. Human PBMCs were stimulated with LPS or heat-killed S. aureus in the absence of 

presence of chicken yolk or porcine brain sphingomyelin. TNF (a), IL-1β (b) and IL-6 (c) were 

measured in the supernatants of the stimulated PBMCs by ELISA. Experiments were performed in two 

independent experiments with a total of six volunteers. 
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Fig. 6. Causal relationships between sphingomyelin and COVID-19 as assessed by MR analysis. 

(a) The regression lines for the inverse variance weighted (IVW), weighted median (WM) method is 

shown. (b) Forest plot of the effects of SM on COVID-19. It shows the MR effect size (center dot) and 

95% CI, estimated with the IVW MR approach. (c) Forest plot of the 10 plasma SM SNPs associated 

with risk of COVID-19. (d) Forest plots of MR leave-one-out sensitivity results. (e) A graphic summary 

of the regulation network of sphingomyelin, cytokines responses, and COVID-19. 
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Fig. 7. IMetaboMap is a web-based platform designed for users to explore correlations 
between metabolites and cytokine responses interactions. This pioneering tool offers insights 
into the interplay between plasma metabolites and cytokine responses to various stimuli in 
humans, with the capability to analyze variations across population, sex, and cell system. 
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