Caregiver's Decision to Report Adverse Drug Reactions among Children Receiving

Seasonal Malaria Chemoprevention in Ghana

- Abdul Gafaru Mohammed¹, Dora Dadzie¹, George Adu Asumah¹, Isaac Adomako¹, Joel Jeffrey
- Idun-Acquah¹, Paul Boateng¹, Nana Yaw Peprah¹, Keziah L. Malm¹
- ¹National Malaria Elimination Programme, Ghana Health Service, Accra, Ghana

Corresponding author: Abdul Gafaru Mohammed

24 Abstract

Introduction: The antimalarial medicines used in Seasonal Malaria Chemoprevention (SMC) campaigns are generally well-tolerated but adverse drug reactions (ADRs) can occur. Monitoring, reporting, and prompt management of ADRs is essential to build and maintain trust in SMC campaigns in the implementing communities. The caregiver's decision to report ADRs represents a critical issue at the intersection of public health, child welfare, and pharmacovigilance. As SMC campaigns continue to expand, it is imperative to understand and address the factors influencing caregivers' decisions to report ADRs.

Methods: A mixed methods cross-sectional study involving questionnaire administration, focus group discussions, and review of children's health records was employed to collect data from caregivers of children aged 3-59 months in the Northern, North-East, and Savanna regions of Ghana. A systematic random sample of 679 caregivers was recruited for the study across three regions. Data including ADR occurrence, maternal and child characteristics was collected from selected caregivers in their homes. Logistic regression was performed for associations between caregiver's reports of ADRs and caregiver characteristics.

Results: About 49.5% (336/679) of caregivers mentioned the occurrence of ADRs in children after receiving SMC medication. The commonly cited ADR was diarrhea (34.7%, 116/336). Only 16.9% (57/336) of caregivers reported ADRs to the health workers at the time of occurrence. After adjusting for confounders, increasing age of child (aOR=1.04, 95%CI:1.008-1.065), receiving education on ADR reporting (aOR=4.03, 95%CI:4.366-6.119), education on management of mild ADRs (aOR=4.43, 95%CI:2.094-9.808) and having a means of reaching health personnel (aOR=1.56, 95%CI:1.202-2.037) increased the odds of ADR reporting while increasing age of

46	caregivers (aOR=0.92, 95%CI:0.883-0.966) and being married (aOR=0.17, 95%CI:0.149-0.183)
47	decreased the odds of reporting ADRs among the caregivers studied.
48	Conclusion: Less than 20% of caregivers whose children experienced ADRs after receiving SMC
49	medication reported the incident. Caregiver education on ADRs and it's management and means
50	of reaching the health team were modifiable factors that influenced caregiver ADR reporting.
51	

52 Keywords: Malaria, Seasonal Malaria Chemoprevention, Adverse Drug Reaction, Ghana, ADR,
53 SMC

54

55 Introduction

To complement ongoing malaria control efforts, including vector control measures, prompt 56 57 diagnosis of suspected malaria, and treatment of confirmed cases with antimalarial medicines, the 58 WHO in 2012 recommended seasonal malaria chemoprevention (SMC) for the control of malaria among children under age 5 (1-3) in areas where malaria transmission is seasonal. SMC is defined 59 as "the intermittent administration of full treatment of an anti-malarial medicine during the malaria 60 61 season to prevent malarial illness and to maintain therapeutic drug concentrations in the blood throughout the greatest malarial risk (4). Ghana adopted this preventive intervention in 2013 (2) 62 for children aged 3-59 months. SMC began with a pilot from July 2015 to October 2015 in the 63 Lawra district of the Upper West region, followed by a full-scale implementation in the year 2016 64 across all districts of the Upper West and Upper East regions (2). Currently, the intervention has 65 66 been implemented in 69 districts located in Northern, North-East, Savannah, Upper East, Upper West, Bono East, and Oti regions of Ghana. 67

The success of SMC depends on the efficacy and safety of the amodiaquine plus sulfadoxinepyrimethamine (AQ+SP) (5,6). Countries implementing SMC have adopted various pharmacovigilance reporting measures either passive or active for reporting possible adverse drug reactions (7,8). Ghana adopted a passive pharmacovigilance reporting process for SMC-related ADRs whose success largely depends on the caregivers of the children receiving the therapy.

SMC administration has been reported to be associated with various adverse reactions among children receiving the therapy (9–11). The most commonly reported side effects are diarrhea, abdominal pain, body weakness and vomiting (8). These ADRs have been reported by caregivers to mostly occur within the second or third day after administering the therapy. ADR reporting rate has been reported to be low among health workers and caregivers of children receiving the therapy (12–14). In a study conducted in northern Nigeria, out of seven states implementing SMC, only two states reported ADRs from the exercise (11).

Reporting adverse drug reactions by caregivers of children receiving SMC has been reported to be
influenced by various factors. These factors include poor knowledge, not being aware of the term
ADR, single marital status, lower education level, and difficulty accessing public clinics for
medical services (15).

There is currently a paucity of data on the reporting of ADRs among caregivers of children receiving SMC and the factors that influence their decision to report. Studies conducted on ADRs among children receiving SMC in the West African sub-region focus on the healthcare staff providing the service with none exploring the problem among caregivers (11). With the passive pharmacovigilance reporting approach adopted for SMC ADRs in Ghana, it is important to assess the rate of ADR reporting among caregivers of children under the therapy and also the factors that influence their decision to report ADRs. This study was therefore conducted to assess the factors

that influence the decision of caregivers to report ADRs when they occur among children receiving

92 SMC in Ghana.

93

94 Methods

95 Study design

This was a mixed methods cross-sectional study among caregivers of children between 6 – 59
months in Ghana. A semi-structured questionnaire, data abstraction tool and FGD guide were used
to collect data on the characteristics of children and their caregivers, the uptake of SMC, the
occurrences of ADRs, and its reporting.

100 Study setting

101 The study was conducted in Ghana. Ghana is located in West Africa with an estimated 31 million people, 16 administrative regions, and 261 districts. The country shares boundaries with Togo, 102 Burkina Faso, Ivory Coast, and the Gulf of Guinea. Following the WHO recommendation of SMC 103 as an intervention, Ghana adopted it in 2013 and included it in the NSP for implementation to 104 ensure that malaria morbidity and mortality among children under five years are reduced to zero. 105 Malaria cases among children under five have seen a drastic decline in the implementing regions 106 since the intervention was rolled out. The intervention is usually given during the transmission 107 period (rainy season). In 2021 and 2022, Ghana Health Service (GHS) through the National 108 109 Malaria Elimination Programme supported 7 regions (Northern, North-East, Savannah, Upper East, Upper West, Bono East, and Oti) to implement the SMC in 72 districts. The study was 110 conducted in three of the seven regions. These regions included Savanna, Northern, and North East 111 112 Regions. In 2022 and 2023, each of these regions received four cycles of seasonal malaria chemoprevention within the rainy season. The rainy season ranged from May – September. 113

114 Study population

The study included all caregivers of children aged 3 - 59 months in the Northern, Savanna, and North East Region. in Ghana. Caregivers of children between 3 - 59 months of age, who have lived in the selected districts for at least one year were included in the study. Caregivers of children aged 3 - 59 months in whom the use of SMC is contraindicated were excluded from the study. Also, caregivers of children who missed the 2023 SMC dosing campaign were excluded from the

120 study.

121 Sample size estimation

Using Z = indicator for a confidence level (1.96 for 95% confidence level), n = minimum sample size, De is the design effect, the ratio between the variance from the cluster design to the variance that would be obtained from a simple random sampling, Z (1.96), P (66.5%) (16) and e (5%) is the margin of error allowed. We estimated a minimum sample size using the formula n = $[De \times Z^2 \times p$ (1-p)]/e². n = $[2 \times (1.96)^2 \times 0.67 \times 0.33]/(0.05)^2 = 679$.

127 Sampling process

A multistage cluster sampling approach was used to sample caregivers for the study. The first stage 128 involved the simple random sampling of three (3) regions out of the 7 regions implementing SMC. 129 Followed by sampling of 4 districts from each of the three (3) selected regions. A stratified random 130 sampling approach was then used to sample two communities from each of the districts. Two strata 131 132 were formed for each district, stratum A (list of rural communities in the district) and stratum B (list of urban communities in the district). One community was randomly selected from each of 133 these strata making up two communities from each district. A probability proportionate to size 134 sampling approach using the number of children registered for the 2022 SMC in each of the 135 selected communities was used to determine the total number of caregivers to interview in each of 136

the communities. Finally, a systematic random sampling approach was used to recruit caregiversfor interviews on each day of data collection by trained research assistants.

Data collection

140 Data was collected from caregivers of children between 3 – 59 months using a pre-tested semi-141 structured questionnaire, a focus group discussion guide, and a data abstraction tool adapted from previous studies (17-19). Data was collected between October - December 2023. The 142 questionnaire was prepared and deployed on Kobo collect for data collection. The questionnaire 143 144 was prepared in English and interpreted into Dagare, Kasena, Frafra, Twi, Asante, Dagbani, 145 Konkomba, and Nanumba during administration. The semi-structured questionnaire elicited data on children's characteristics (age, sex, education), characteristics of their caregivers (age, sex, 146 147 marital status, region, residence, educational status, employment status), awareness and knowledge of ADRs, and occurrence of ADRs and its reporting. The data abstraction tool was 148 used to extract data on the update of SMC and the number of doses received from the maternal 149 and child health records book. 150

Fifteen community health nurses were recruited and trained as research assistants to collect data from the study participants. The research assistants were trained in the general overview of the study, the sampling approach, the eligibility procedure, all sections of the questionnaire, questionnaire administration, the use of data abstraction tool, participant privacy and confidentiality, and their safety. The data collection tools were pre-tested among 30 caregivers in Ahafo Region prior to the actual data collection. All issues observed during the pre-test were rectified before the actual data collection.

158 Data analysis

The data collected was extracted from Kobo-Collect as Microsoft Excel files, cleaned, and 159 imported into R-studio for statistical analysis. The data was descriptively analyzed, and categorical 160 variables were summarized into frequencies and percentages with accompanying 95% Confidence 161 Intervals. Parametric continuous variables such as age were summarized into means and standard 162 deviations. A crude binary logistic regression analysis was performed to determine the association 163 between participants' characteristics and the decision to report ADRs. Variables with p< 0.25 were 164 considered statistically significant and selected for an adjusted binary logistic regression analysis. 165 166 At the adjusted level, the level of significance was set at 5%.

167

168 Results

169 Background characteristics of caregivers and children

Out of the 679 caregivers studied, majority (57.6%; 391) were rural dwellers. The median age of caregivers was 29 (IQR= 25 - 33) years with most (63.5%; 431) being between 25 - 34 years old. Almost half (45.8%; 311) of the caregivers were housewives or unemployed. The average age of the children under the care of selected caregivers was 28 (IQR=20 - 34) months with majority (52.4%; 356) of them being male (**Table 1**).

175 Table 1: Background characteristics of caregivers and children

Characteristics	Frequency (n = 679)	Proportion (%)
Place of residence		
Rural	391	57.58
Urban	288	42.42
Age of caregiver, median (IQR) years	29 (25 - 33)	

18 – 24	132	19.44
25 - 34	431	63.48
35+	116	17.08
Educational level		
No formal education	256	37.70
Primary	166	24.45
Secondary	172	25.33
Tertiary	85	12.52
Occupation		
Government employed	100	14.73
Unemployed or housewife	311	45.80
Trader	268	39.47
Marital status		
Married	617	90.87
Unmarried	62	9.13
Age of child [median (IQR) months]	28 (20 – 34)	
Sex of child		
Female	323	47.57
Male	356	52.43

176

177 Individual-level characteristics of the caregivers studied

178 More than two-thirds (70.1%; 476) of the caregivers had a health facility in their community of

residence. Also, almost half (47.9%; 325) of the caregivers had no means of contacting the medical

180 team in case of a severe adverse event (**Table 2**).

181 Table 2: Individual-level characteristics of the caregivers studied

Characteristics	Frequency (n = 679)	Proportion (%)
Availability of HF		
No	203	29.90

Yes	476	70.10
Received education on ADR reporting		
No	327	48.16
Yes	352	51.84
Received education on management of mild ADRs		
No	262	38.59
Yes	417	61.41
Means of contacting health workers		
No	325	47.86
Yes	354	52.14

182

183 Occurrence of Adverse drug reactions and reporting

Out of 679 caregivers studied, almost half (49.5%; 336) mentioned the occurrence of adverse drug reactions in their children following the uptake of SMC medications in the most recent SMC cycle. The most common ADRs experienced were fever (44.2%; 148) and diarrhea (34.6%; 116). Majority (48.4%; 162) of these ADRs occurred after 2 hours of receiving medications with (41.1%; 138) managing their children at home. Less than a fifth (16.9%; 57) of the caregivers reported the ADRs to the nearest health facility or a medical practitioner (**Table 3**).

190 Table 3: Occurrence of Adverse drug reactions and reporting

Variable	Frequency (n = 679)	Proportion (%)
Adverse drug reaction (n = 679)		
Did not occur	343	50.52
Occurred	336	49.48
Type of ADR $(n = 336)$		
Diarrhea	116	34.63
Vomiting	96	28.57

Headache	28	8.33
Rashes	22	6.55
Fever	74	22.02
Time of occurrence (n = 335)		
Within 1	84	25.07
1-2 hours	89	26.57
After 2 hours	162	48.36
Action taken (n = 336)		
Visited drug store	93	27.68
Managed child at home	138	41.07
Did nothing	73	21.73
Take child to health facility	32	9.52
Reporting (n = 336)		
No	279	83.04
Yes	57	16.96

191

192 Stratification of ADR Reporting by place of residence

193 Overall, out of 336 children who experienced ADRs after receiving SMC medication, only 16.9

194 (95%CI: 0.132 - 0.214) reported the occurrence. Reporting of ADRs was higher among caregivers

residing in urban settings compared to their counterparts in rural settings (Table 4).

Table 4: Stratification of ADR Reporting by place of residence

Residence	Proportion of ADR reporting	95% CI
Rural	1.6	0.003 0.046
Urban	36.0	0.283 0.442
Overall	16.9	0.132 0.214

197

198 Factors associated with associated with ADRs Reporting among caregivers

After adjusting for the effect of confounders, age of caregivers (aOR = 0.92, 95%CI: 0.883 - 0.966) 199 marital status (aOR = 0.17, 95%CI: 0.149 - 0.183), age of child (aOR = 1.04, 95%CI: 1.008 -200 1.065), education on ADR reporting (aOR = 4.03, 95%CI: 4.366 - 6.119) and management of mild 201 ADRs (aOR = 4.43, 95%CI: 2.094 - 9.808), and means of reaching health personnel (aOR = 1.56, 202 95%CI: 1.202 - 2.037) were factors found to be significantly associated with the reporting of ADRs 203 204 among the caregivers studied. Caregivers who were educated on ADR reporting had 4 times increased odds of reporting adverse events when they occurred compared to those who were not 205 educated on ADR reporting (aOR = 4.03, 95%CI: 4.366 - 6.119). Also, A unit increase in the age 206 207 of caregivers was associated with an 8% decrease in the odds of reporting adverse events following SMC in their children (aOR = 0.92, 95%CI: 0.883 - 0.966) (Table 5). 208

209

210 Occurrence of ADRs and its reportage among caregivers

- 211 *"The health worker told us the medicines will protect our children against malaria. I give the*
- 212 drugs to both my children; I wasn't informed my children may have any reactions after taking
- 213 the medicines". Caregiver 4

214 "I noticed that my child's appetite decreased after taking the medication on the first day. He even

refused his favorite food which I prepared for him. I thought this was because he had started

216 growing teeth, I didn't know the drugs could affect his appetite I would have reported to the

217 *health facility if I knew*". Caregiver 6

218 *"My child started running diarrhea, the same day the health workers came to the house to give*

219 him the drugs, the diarrhea increased after I gave him the other one on the second day so I

220 didn't even give him the last one, I was scared". Caregiver 1

"The man who came to our house to give the medicine to my son told me he might vomit or have
a hot temperature or run diarrhea so I should go to the hospital if it happened. Nothing happened
on the first day but my son had a hot temperature the third day after I gave him the drugs. I gave
him paracetamol syrup I got the last time he was sick". Caregiver 5

- 225 *"My husband is a nurse, so when my daughter had diarrhea after taking the drugs on the second*
- 226 *day, I informed him, and he said maybe the diarrhea is caused by the drug so I should take her to*
- 227 the health center in our area. I took her there and the health workers gave us some drugs, they

228 *didn't even charge us money that day"*. Caregiver 10

229

230 Discussion

Seasonal administration of antimalaria drug, sulphadoxine/pyrimethamine plus amodiaquine 231 (SPAO) to children 3–59 months is a tool in the reduction of childhood malaria morbidity and 232 mortality in areas with highly seasonal malaria transmission like Northern Ghana (20). In 2023, 233 1,492,779 children in the Northern, North East, Upper West, Upper East, Bono East, and Oti 234 regions received SPAQ during the fourth round of the seasonal malaria chemoprevention 235 236 campaign in Ghana. Using a mixed methods approach, our study assessed the factors that influence the decision of caregivers to report ADRs when they occur among children receiving SMC in 237 Ghana. Less than 17% of caregivers were found to report adverse drug reactions when they 238 occurred in this study. The reporting rate found in this study is consistent with the findings of 239 similar studies conducted in Northern Nigeria and Senegal where ADR reporting was found to be 240 abysmally low (21,22). Also, in a study assessing parental reporting of adverse drug reactions in 241 South Africa, majority (66.5%) of participants did report an ADR to a healthcare professional (23). 242

The occurrence of ADRs during SMC that go unreported or unresolved tends to affect the trust caregivers have on SMC medications thereby affecting the willingness of caregivers to allow their children to receive SMC medications. The ready availability of health workers or volunteers to caregivers tends to increase ADR reporting. To achieve this, the National Malaria Elimination Programme through the various regional and district health directorates needs to implement and strengthen follow-up visits to the homes of children receiving SPAQ during SMC campaigns.

The commonly reported ADRs were fever, diarrhea, and vomiting. This is corroborated by the 249 findings of a similar study among young children in Northern Sahelian Ghana where diarrhea, 250 251 vomiting, and fever were the most experienced adverse events during the four rounds of SMC administration (24). Also, in Community-Based Safety Monitoring during Seasonal Malaria 252 253 Chemoprevention Campaigns in Senegal, the most commonly reported symptoms were vomiting, 254 fever, and abdominal pain (21). These reported ADRs have the tendency of putting a child in a dire situation if not managed properly and timely. During SMC campaigns, caregivers need to be 255 educated on the reporting of these adverse events and also first aid management of these events 256 prior to the arrival of the medical team. 257

Our study found a significant association between marital status and ADR reporting among the 258 259 caregivers studied. Caregivers who were unmarried had increased odds of reporting ADRs compared to married caregivers. The decision-making power in Northern Ghana mostly lies with 260 husbands in marriage. Caregivers who are married mostly need to seek advice from their partners 261 262 before taking any health-seeking decision, this may delay or possibly impede the reporting of adverse events. Unlike married caregivers, unmarried caregivers mostly have the decision-making 263 power lying with them and they can easily report ADRs when they occur without consulting 264 265 another person.

14

266 The ease of access to health personnel and healthcare facilities can influence parental reporting of ADRs. Caregivers who have convenient means of reaching healthcare providers, such as through 267 telephone hotlines, online portals, or direct visits to healthcare facilities, may be more likely to 268 report adverse events. Accessibility to health personnel can facilitate timely reporting of adverse 269 270 events and increase the likelihood of receiving appropriate guidance on managing these events. 271 Our study found increased odds of reporting adverse events among caregivers with means of reaching the health team compared to caregivers without any means of reaching the health 272 authority. To increase ADR reporting, district health directorates need to adopt a strategy where 273 274 volunteers share the call lines of health facilities located in the community during SMC campaigns in those communities. This will facilitate ease of reporting ADRs when they occur. 275

276 Furthermore, education on ADR reporting was also found to increase the reporting of ADRs 277 among caregivers. This is consistent with the findings of a study among pharmacists in Egypt where those who received education on adverse events reporting had an increased chance of 278 reporting events compared to those who were not educated on the reporting process (19). Similarly, 279 education on adverse events reporting was reported to increase adverse event identification and 280 reporting among nursing health professionals in a tertiary health facility in India (25). This implies 281 282 that increasing caregiver awareness of adverse events and its reporting process will increase the number of caregivers who would report adverse events when they occur in their children during 283 284 SMC. Also, education on the management of mild adverse events was another factor found to be 285 significantly associated with adverse events reporting by caregivers in this study. Caregivers who received education on how to manage mild or minor adverse events had increased odds of reporting 286 adverse events compared to those not educated. Health volunteers visiting homes during SMC 287 should be strengthened to provide education on ADR, management, and reporting during dosing. 288

289	A limitation of this study was recall bias, caregivers recalled ADRs in their children who received
290	medication in the past, and this could have led to underestimation or overestimation of ADR
291	occurrence and its reporting.
292	
293	Conclusion
294	Less than 20% of caregivers whose children experienced ADRs after receiving SMC medication
295	reported the incident. Caregiver education on ADRs and it's management and means of reaching
296	the health team were modifiable factors that influenced the caregiver's ADR reporting.
297	
298	Acknowledgments
299	We wish to acknowledge the research assistants and the various regional and district health
300	directorates that supported the exercise.
301	
302	Authors' contributions
303	AGM & DD conceptualized the study and conducted data. AGM and PB analyzed the collected
304	data. GAA, IA, JJIA, NYP and KLM, drafted the initial manuscript. All authors read and approved
305	the manuscript for publication.
306	
307	Funding

308 No funding received

309

310 Availability of data and materials

311 The data for this study is available in this publication.

312

313 **Declarations**

314 Ethical clearance for the study was obtained from the Ghana Health Service Ethical Review

Committee. Permission was sought from the various regional and district health directorates in the

- region before the study. Written informed consent was obtained from the caregivers of children
- recruited for the study. The data collected was devoid of personal identifiers and was used solely

318 for this study.

319

320 **Consent for publication**

321 Not applicable.

322

323 Competing interests

324 The authors declared no competing interests.

325

326 **References**

327 I. Aujei MK, Kubio C, Buailian W, Salio A, Suuli I, Ibrahim S, et al. Effectivene

- 328 seasonal malaria chemoprevention in reducing under-five malaria morbidity and mortality
- in the Savannah Region, Ghana. Ghana Med J [Internet]. 2022 May 31 [cited 2022 Dec
- 330 19];56(2):64–70. Available from:
- 331 https://www.ajol.info/index.php/gmj/article/view/229630
- 332 2. Nonvignon J, Aryeetey GC, Issah S, Ansah P, Malm KL, Ofosu W, et al. Cost-
- effectiveness of seasonal malaria chemoprevention in upper west region of Ghana. Malar J
- 334 [Internet]. 2016 Jul 16 [cited 2022 Dec 19];15(1):1–13. Available from:
- https://malariajournal.biomedcentral.com/articles/10.1186/s12936-016-1418-z
- 336 3. Tagbor H, Antwi GD, Acheampong PR, Bart Plange C, Chandramohan D, Cairns M.
- 337 Seasonal malaria chemoprevention in an area of extended seasonal transmission in
- Ashanti, Ghana: an individually randomised clinical trial. Tropical Medicine &
- International Health [Internet]. 2016 Feb 1 [cited 2022 Dec 19];21(2):224–35. Available
- 340 from: https://onlinelibrary.wiley.com/doi/full/10.1111/tmi.12642
- 4. Adjei MR, Kubio C, Buamah M, Sarfo A, Suuri T, Ibrahim S, et al. Effectiveness of
- seasonal malaria chemoprevention in reducing under-five malaria morbidity and mortality
 in the Savannah Region, Ghana. Ghana Med J. 2022 May 31;56(2):64–70.
- Kirakoya-Samadoulougou F, De Brouwere V, Fokam AF, Ouédraogo M, Yé Y. Assessing
 the effect of seasonal malaria chemoprevention on malaria burden among children under
 5 years in Burkina Faso. Malar J. 2022;21(1):1–10.
- 6. Cairns ME, Sagara I, Zongo I, Kuepfer I, Thera I, Nikiema F, et al. Evaluation of seasonal
 malaria chemoprevention in two areas of intense seasonal malaria transmission:

349		Secondary analysis of a household-randomised, placebo-controlled trial in Houndé
350		District, Burkina Faso and Bougouni District, Mali. PLoS Med. 2020;17(8):1-23.
351	7.	NDiaye JL, Cissé B, Ba EH, Gomis JF, Ndour CT, Molez JF, et al. Safety of seasonal
352		malaria chemoprevention (SMC) with sulfadoxine-pyrimethamine plus amodiaquine when
353		delivered to children under 10 years of age by district health services in Senegal: Results
354		from a stepped-wedge cluster randomized trial. PLoS One. 2016;11(10):1-15.
355	8.	Koko DC, Maazou A, Jackou H, Eddis C. Analysis of attitudes and practices influencing
356		adherence to seasonal malaria chemoprevention in children under 5 years of age in the
357		Dosso Region of Niger. Malar J. 2022;21(1):1–10.
358	9.	Chatio S, Ansah NA, Awuni DA, Oduro A, Ansah PO. Community acceptability of
359		Seasonal Malaria Chemoprevention of morbidity and mortality in young children: A
360		qualitative study in the Upper West Region of Ghana. PLoS One. 2019;14(5):1–12.
361	10.	Thera MA, Kone AK, Tangara B, Diarra E, Niare S, Dembele A, et al. School-aged
362		children based seasonal malaria chemoprevention using artesunate-amodiaquine in Mali.
363		Parasite Epidemiol Control. 2018;3(2):96–105.
364	11.	Rotimi K, Aiden J, Dabes C, Maduka K, Oguche D, Itiola AJ, et al. Pharmacovigilance
365		reporting during seasonal malaria chemoprevention campaign: Findings from northern
366		Nigeria. Sci Afr. 2022;17:e01283.
367	12.	Rotimi K, Aiden J, Dabes C, Maduka K, Oguche D, Itiola AJ, et al. Pharmacovigilance
368		reporting during seasonal malaria chemoprevention campaign: Findings from northern
369		Nigeria. Sci Afr. 2022;17:e01283.

370	13.	Diawara SI, Konaté D, Kayentao K, Mihigo J, Shaffer JG, Sangare M, et al. Effect of
371		seasonal malaria chemoprevention in children between 5 and 9 years old in Kita and
372		Bafoulabe districts, Mali. Parasite Epidemiol Control. 2022;18(April).
373	14.	Tagbor H, Antwi GD, Acheampong PR, Bart Plange C, Chandramohan D, Cairns M.
374		Seasonal malaria chemoprevention in an area of extended seasonal transmission in
375		Ashanti, Ghana: an individually randomised clinical trial. Tropical Medicine &
376		International Health. 2016 Feb 1;21(2):224–35.
377	15.	Pillay S, Mulubwa M, Viljoen M. Parental reporting of adverse drug reactions in South
378		Africa: An online survey. Afr J Prim Health Care Fam Med. 2021;13(1):1–8.
379	16.	Pillay S, Mulubwa M, Viljoen M. Parental reporting of adverse drug reactions in South
380		Africa: An online survey. Afr J Prim Health Care Fam Med. 2021;13(1):1–8.
381	17.	Gurmesa LT, Dedefo MG. Factors affecting adverse drug reaction reporting of healthcare
382		professionals and their knowledge, attitude, and practice towards ADR reporting in
383		Nekemte Town, West Ethiopia. Biomed Res Int. 2016;2016:5-8.
384	18.	Al Dweik R, Stacey D, Kohen D, Yaya S. Factors affecting patient reporting of adverse
385		drug reactions: a systematic review. Br J Clin Pharmacol. 2017 Apr;83(4):875-83.
386	19.	Bahlol M, Bushell M, Khojah HMJ, Dewey RS. Spontaneous adverse drug reaction
387		reporting by community pharmacists: preparedness and barriers. Saudi Pharmaceutical
388		Journal. 2022 Jul 1;30(7):1052–9.
389	20.	NMCP. 1 Page. 2021.

390	21.	Ndiaye JLA, Diallo I, NDiaye Y, Kouevidjin E, Aw I, Tairou F, et al. Evaluation of Two
391		Strategies for Community-Based Safety Monitoring during Seasonal Malaria
392		Chemoprevention Campaigns in Senegal, Compared with the National Spontaneous
393		Reporting System. Pharmaceut Med. 2018 Jun 1;32(3):189–200.
394	22.	Rotimi K, Aiden J, Dabes C, Maduka K, Oguche D, Itiola AJ, et al. Pharmacovigilance
395		reporting during seasonal malaria chemoprevention campaign: Findings from northern
396		Nigeria. Sci Afr. 2022 Sep 1;17.
397	23.	Pillay S, Mulubwa M, Viljoen M. Parental reporting of adverse drug reactions in South
398		Africa: An online survey. Afr J Prim Health Care Fam Med. 2021;13(1):1–8.
399	24.	Chatio S, Ansah NA, Awuni DA, Oduro A, Ansah PO. Community acceptability of
400		Seasonal Malaria Chemoprevention of morbidity and mortality in young children: A
401		qualitative study in the Upper West Region of Ghana. PLoS One. 2019;14(5):1-12.
402	25.	SONOWAL S, K DESAI C, R PANCHAL J. IMPACT OF CERTAIN EDUCATIONAL
403		INTERVENTIONS ON ADVERSE DRUG REACTION REPORTING BY NURSING
404		HEALTH PROFESSIONALS AT A TERTIARY CARE HOSPITAL. Asian Journal of
405		Pharmaceutical and Clinical Research. 2020 Apr 20;175-80.
406		
407		
408		
409		
410		
411		

Table 5: Factors associated with associated with ADRs Reporting among Caregivers

Variables	ADR Reporting		cOR (95%CI)	aOR (95%CI)
	Unreported	Reported		
	n (%)	n (%)		
Age of caregiver, median (IQR) years			0.93 (0.898 0.971)	0.92 (0.883 0.966)
Educational level				
No formal education	17 (84.52)	13 (15.48)	1.00	1.00
Primary	75 (83.33)	15 (16.67)	1.09 (0.748 1.594)	1.03 (0.779 1.369)
Secondary	98 (83.05)	20 (16.95)	1.11 (0.388 3.195)	1.11 (0.478 2.587)
Tertiary	35 (79.55)	9 (20.45)	1.40 (0.788 2.501)	1.51 (0.843 2.738)
Occupation				
Government employed	29 (50.88)	28 (49.12)	1.00	1.00
Unemployed or housewife	107 (88.43)	14 (11.57)	0.14 (0.043 0.421)	0.10 (0.043 0.236)
Private employed/Trader	143 (90.51)	15 (9.49)	0.11 (0.047 0.250)	0.06 (0.022 0.143)
Marital status				
Married	254 (87.59)	36 (12.41)	0.17 (0.147 0.193)	0.17 (0.149 0.183)
Unmarried	25 (54.35)	21 (45.65)	1.00	1.00
Age of child median (IQR) months			1.03 (1.015 1.052)	1.04 (1.008 1.065)
Availability of HF				
No	127 (88.81)	16 (11.19)	1.00	1.00
Yes	152 (78.76)	41 (21.24)	2.14 (0.589 7.774)	0.83 (0.632 1.105)

Education on ADRs reporting				
No	187 (92.57)	15 (7.43)	1.00	1.00
Yes	92 (68.66)	42 (31.34)	5.69 (3.368 9.616)	4.03 (4.366 6.119)
Education on management of mild ADRs				
No	132 (93.62)	9 (6.38)	1.00	1.00
Yes	147 (75.38)	48 (24.62)	4.78 (0.736 31.171)	4.43 (2.094 9.808)
Means of reaching health workers				
No	125 (83.89)	24 (16.11)	1.00	1.00
Yes	154 (82.35)	33 (17.65)	1.12 (1.035 1.202)	1.56 (1.202 2.037)