Abstract
Epidemiological models that aim for a high degree of biological realism by simulating every individual in a population are unavoidably complex, with many free parameters, which makes systematic explorations of their dynamics computationally challenging. This study investigates the potential of Gaussian Process emulation to overcome this obstacle. To simulate disease dynamics, we developed an individual-based model of dengue transmission that includes factors such as social structure, seasonality, and variation in human movement. We trained three Gaussian Process surrogate models on three outcomes: outbreak probability, maximum incidence, and epidemic duration. These models enable the rapid prediction of outcomes at any point in the eight-dimensional parameter space of the original model. Our analysis revealed that average infectivity and average human mobility are key drivers of these epidemiological metrics, while the seasonal timing of the first infection can influence the course of the epidemic outbreak. We use a dataset comprising more than 1,000 dengue epidemics observed over 12 years in Colombia to calibrate our Gaussian Process model and evaluate its predictive power. The calibrated Gaussian Process model identifies a subset of municipalities with consistently higher average infectivity estimates, highlighting them as promising areas for targeted public health interventions. Overall, this work underscores the potential of Gaussian Process emulation to enable the use of more complex individual-based models in epidemiology, allowing a higher degree of realism and accuracy that should increase our ability to control important diseases such as dengue.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This project has received funding from the European Unions Horizon2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 101025586. PWM was supported by the National Institutes of Health under award R35GM152242.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Glossary
- GP
- Gaussian Process
- IBM
- Individual-based model
- RMSE
- Root mean square error
- LHS
- Latin hypercube sample
- imax
- Maximum incidence
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.