
 

1 

Epigenetic Age Monitoring in Professional Soccer Players for Tracking Recovery 
and the Effects of Strenuous Exercise 

 

Robert T Brooke 1†, Thomas Kocher 2,3†, Roland Zauner 2, Juozas Gordevicius 1, Milda Milčiūtė1, Marc 

Nowakowski 3, Christian Haser 5, Thomas Blobel 5, Johanna Sieland 5, Daniel Langhoff 6, Winfried Banzer 
5,7, Steve Horvath 1,8‡ and Florian Pfab 3,4,5,9,10‡    

1 Epigenetic Clock Development Foundation, Torrance, CA, USA. 
2 EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of       
Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 
Salzburg, Austria. 
3 DNAthlete Austria GmbH, 5020 Salzburg, Austria. 
4 DNAthlete AG, 9494 Schaan, Lichtenstein. 
5 Eintracht Frankfurt Fußball AG, 60528 Frankfurt am Main, Germany. 
6 Eurofins Genomics Europe, Brendstrupgaardsvej 23, DK-8200 Aarhus N 
7 Division of Preventive and Sports Medicine, Institute of Occupational, Social and Environmental 
Medicine, Goethe University Frankfurt, Frankfurt/Main, Germany. 
8 Altos Labs, Cambridge, UK. 
9 Technische Universitaet Munich, Munich, Germany. 
10 Brighton & Hove Albion Football Club, Brigthon, UK. 
 
*Correspondence: Thomas Kocher, DNAthlete Austria GmbH, 5020 Salzburg, Austria, 
thomas.kocher@dnathlete.li. 

† These authors contributed equally to this work.  
‡ Authors with joint senior authorship. 

 

Keywords: FitAge, GrimAge, Soccer, Sports Injury, Exercise, C-Reactive Protein 

 

Character-Count (excluding count): 70,159 

 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 8, 2024. ; https://doi.org/10.1101/2024.11.28.24317877doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:florian.pfab@dnathlete.li
https://doi.org/10.1101/2024.11.28.24317877
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

2 

Abstract

 
Elite sports have become increasingly professionalized and personalized, with soccer players facing a high 

number of games per season. This trend presents significant challenges in optimizing training for peak 

performance and requires rigorous monitoring of athletes to prevent overload and reduce injury risks. 

The emerging field of epigenetic clocks offers promising new pathways for developing useful biomarkers 

that enhance training management. This study investigates the effects of intense physical activity on 

epigenetic age markers in professional soccer players. We analyzed DNA methylation data from saliva 

samples collected before and after physical activity. Vigorous physical activity was found to rejuvenate 

epigenetic clocks, with significant decreases in DNAmGrimAge2 and DNAmFitAge observed immediately 

after games. Among player subgroups, midfielders exhibited the most substantial epigenetic rejuvenation 

effect following games. Additionally, the study suggests a potential link between DNA methylation 

patterns and injury occurrence. Overall, our study suggests that DNA methylation based biomarkers may 

have applications in monitoring athlete performance and managing physical stress. 

1 Introduction 
Elite sports have experienced an enormous surge in professionalization and personalization of 

competition, training, prevention and recovery management. The demands on athletes have increased 

owing to the evolving nature of sports and tight competition schedules, with elite soccer players playing 

up to 75 games per season. Beside tight time schedules and extensive travel, soccer has undergone a 

significant evolution in terms of the dynamic nature of the game, with increased running distances, 

number of runs, number of sprints and high-speed actions (Barnes et al. 2014, Wallace et al. 2014, Haller 

et al. 2023). In recent decades, a variety of performance parameters have been established and 

considered to support the decision-making processes for coaches and physicians, with regard to acute 

load and recovery management. External load can be expressed and monitored through time-motion 

analysis, tracking devices, or power parameters, like covered distance or peak power output. In addition, 

team physicians often rely on practical, scientifically well-researched, and rapidly measurable biomarkers 

such as creatine kinase (CK) or lactate (Haller et al. 2023). High levels of CK and/or high-sensitivity 

interleukin (IL)-6 levels can result from inflammatory processes due to excessive exercise load (Romagnoli 

et al. 2016, Thorpe et al. 2012). These biomarkers can be used to assess the acute internal load by 

assessing tissue- or organ-specific fatigue, stress, damage and/or recovery processes (Haller et al. 2023).  

Effectively monitoring and managing training load is essential not only for optimizing athletic performance 

but also for preventing overtraining and reducing the risk of injuries. Sports-related injuries represent a 

significant healthcare burden and can lead to considerable psychological and motivational setbacks for 

athletes. Additionally, in professional sports, injuries have substantial economic repercussions (Ryan et al. 

2019; Trentacosta et al. 2020). The predominant etiology of sports-related injuries is overuse injuries, 

resulting from repetitive stress and micro-traumas, sometimes culminating in severe traumatic injuries 

(Tarnowski et al. 2022). Genetic information has been shown to be associated with performance-related 

effects of sports training and predisposition to injuries (Guilherme et al. 2014, Varillas-Delgado et al. 2022, 

Ginevicien et al. 2022, Pfab et al. 2023).  

This study examines whether epigenetic markers, specifically DNA methylation levels, can be used to 

develop indicators related to injury risk. Experimental evidence suggests that exercise acts as a significant 

stressor, driving various physiological adaptations in the body, including changes in epigenetic 
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mechanisms. For example, research by Denham et al. demonstrated alterations in DNA methylation 

patterns in skeletal muscle following acute exercise, indicating a dynamic epigenetic response to exercise-

induced stress (Denham et al. 2014). A study by Rönn et al revealed exercise-induced changes in DNA 

methylation in adipose tissue, particularly in genes related to metabolism and inflammation (Rönn et al. 

2013). Changes in methylation patterns can be interpreted biologically, for example, by using epigenetic 

clocks. Epigenetic clocks are DNAm-based prediction methods for estimating age or mortality risk 

(Horvath et al. 2013, Horvath et al. 2018, Lu et al. 2019). Second generation epigenetic clocks such as 

DNAm-based GrimAge (DNAmGrimAge) and GrimAge2 (DNAmGrimAge2) predict future morbidity and 

mortality risk (Lu et al. 2019, Li et al. 2020). While DNAmGrimAge was trained on blood samples and an 

older population, DNAmGrimAge2 is also applicable to younger individuals and saliva samples (Lu et al. 

2022). DNAmGrimAge is a composite biomarker (weighted linear combination) of seven DNAm surrogates 

of plasma proteins, a DNAm-based estimator of smoking pack-years, age, and sex. The seven DNAm-based 

proteins comprise adrenomedullin (ADM), beta-2-microglobulin (B2M), cystatin C (Cystatin C), GDF-15, 

leptin (Leptin), plasminogen activator inhibitor 1 (PAI-1), and tissue inhibitor metalloproteinases 1 (TIMP-

1). Version 2 of GrimAge leverages two additional DNAm-based estimators of plasma proteins: CRP and 

hemoglobin A1C (logA1C) (Lu et al. 2022). Both versions of DNAmGrimAge perform well on predicting 

functional decline and onset of major age-related conditions reliably across large diverse populations, 

including heart disease, cancer onset, multi-modal measures of brain health, kidney disease, fatty liver, 

respiratory function, and more (Lu et al. 2019, Hillary et al. 2018, Hillary et al. 2020, McCrory et al. 2020). 

Another epigenetic clock, which potentially has relevance to athlete performance, integrates fitness 

parameters into DNAmGrimAge2, to construct DNAm-based FitAge (DNAmFitAge), a physical fitness age 

predictor. DNAmFitAge includes blood-based DNAm biomarkers for fitness parameters like gait speed, 

maximum handgrip strength, forced expiratory volume in one second, and maximal oxygen uptake 

(McGreevy et al. 2023). Studies have revealed a correlation between physical fitness and biological age, 

as measured by DNA methylation age (DNAmFitAge) (Jokai et al. 2023). 

Physically fit individuals tend to have a younger DNAmFitAge, which is associated with improved age-

related health outcomes. These individuals have a lower risk of mortality, coronary heart disease, and 

experience increased periods of disease-free status, indicating better overall health maintenance as they 

age (McGreevy et al. 2023). 

To the best of our knowledge no studies have been conducted to investigate the short-term dynamics of 

epigenetic clocks in professional soccer players. Furthermore, no data is available to evaluate possible 

relationships between epigenetic stress markers and injury events. In this explorative study we aimed to 

investigate the potential of newly developed epigenetic clocks such as DNAmGrimAge2 and DNAmFitAge 

as biomarker to monitor and help to manage athlete performance and to prevent unwanted side effects, 

like musculoskeletal damages or injuries.  

Here we generated DNA methylation levels from saliva samples collected from professional soccer team 

members during a season, including time points with high and low physical stress. Widely used epigenetic 

clocks were compared to established injury/inflammation markers like CK, IL-6 and C-reactive protein 

(CRP), and tested whether DNAm-based predictions thereof can be associated with injury occurrence. 
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2 Results 

2.1 Vigorous physical activity leads to a rejuvenating effect on epigenetic age 

predictions 

Saliva samples (n=201) were collected from 24 members of a first league soccer club at nine different time 

points over a period of 6 months during the professional soccer seasons of 2021/22 and 2022/23 (Table 

1).  

 

Table 1: Overview of study participants. Age refers to the actual chronological age of participants at the 

beginning of the season.  

 N 
mean age ± sd 

(years) 
 samples subjects 

all 156 19 26.23 ± 4.41  

forwarder 30 5 26.75 ± 2.40 

midfielder 54 6 26.42 ± 5.89 

defender 45 5 24.49 ± 2.11 

goalkeeper 27 3 29.51 ± 5.79 

supporting staff 45 5 42.61 ± 3.80 

 

Time points for sample collection were chosen to cover different physical stress states of athletes, so that 

samples can be grouped according to medium (before match) and high activity (immediately after game) 

phases. The state “rested” represents the training & recovery phase after match days (Figure 1). Using the 

HumanMethylationEPIC v1.0 BeadChip (Illumina, San Diego, CA) over 800,000 CpG sites within genomic 

DNA isolated from saliva were analyzed for their methylation status (DNAm). Various recently developed 

epigenetic markers of aging, known as epigenetic clocks, were calculated from the obtained methylation 

data. These include DNAmGrimAge2, DNAmFitAge, and Skin & Blood Clock (Lu et al. 2022, McGreevy et 

al. 2023, Horvath et al. 2018). To investigate the influence of strenuous physical activity on epigenetic age, 

we compared age predictions derived from samples (n=156) obtained from athletes (n=19, mean age ± 

standard deviation (sd): 26.23 ± 4.41) divided into three groups representing different physical stress 

states based on the timing of collection (Figure 1). A control group was established using samples (n=45) 

from 5 supporting staff members ( mean age ± sd: 42.61 ± 3.80). Compared to active players, the 

supporting staff members experienced the same environmental factors such as traveling, logistical 

challenges and emotional distress, but lower levels of acute physical stress. GrimAge2 and FitAge 

predictions were calibrated (cal.) to the actual age range of players, referred to as GrimAge2 cal. and 

FitAge cal., respectively. 
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Figure 1: Sampling scheme and group assignment. Timeline indicates the individual measurement timepoints with 

respect to events and their intervals to each other. Events that involved strenuous physical exertion were denoted 

with a ball icon. Two different types of samples were collected from athletes as well as from supporting staff 

members serving as control group: saliva (indicated by saliva collection tube symbol) and blood samples for CK 

measurement (indicated by hand with blood drop symbol). DNA methylation data generated from saliva samples as 

well as CK measurement data was assigned to three groups: A - rested, B - straight or one day after match and C - 

one day before match. Sample 9 was split into a and b, as it was taken after the summer break and the players 

involved returned from the break at two different times. In addition to examining short-term effects after an intense 

game event (sample 3, 4 and 5; highlighted with a gray rectangle as “Single Match Dynamics”), data from sample 9 

(end of season) was compared to data from sample 2 (start of season) to assess changes over a longer time frame 

(depicted with a dashed box as “Long Term Dynamics”). 

 

Players' DNAm patterns showed significant changes when comparing samples collected before and after 

the game throughout the season (Figure 2A,B). These changes led to a considerable decrease in biological 

age predictors: DNAmGrimAge2 calibrated (cal.) decreasing by 32% (p = 6.13e-05), and DNAmFitAge 

calibrated (cal.) by 18% (p = 0.00016).  
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Figure 2: Intense physical activity causes rapid changes in biological age predictors. (A-C) Epigenetic profiles (DNAm) of saliva samples collected 

from athletes during medium to low physical stress states (yellow: before game, blue: rested) or immediately after intensive physical activity 

(red: after game) were used to estimate biological/chronological age in years (yrs), including (A) GrimAge2 cal. (before vs. after game p = 6.13e-

05; after game vs. rested p = 0.00281),  (B) FitAge cal. (before vs. after game p = 0.00016; after game to rested p = 0.000476) and (C) chronological 

age predictor Skin & Blood Clock (before vs. after game p = 0.000307; after game vs. rested p = 3.19e-07). (A-C) Each dot represents predicted 

age in years (yrs) for a specific time point and player. Significance levels are indicated by * (p <= 0.05), ** (p <= 0.01,  *** (p <= 0.001)) and NS. (p 

> 0.05). Statistical significance in predicted age differences was evaluated using a linear mixed effect model with chronological age, timepoint 

(before, after game or rested) and batch (sample processing batches) as fixed and player ID as random effect. Plots show median (bold line) with 

interquartile range (box) and 1.5 fold interquartile range (whiskers). Cal.: GrimAge2 and FitAge predictions were calibrated to the actual age range 

of players. 

 

Conversely, the biological ages of the supporting staff who were not exposed to the same intensity of 

physical stress remained constant before and after the game (Supplementary Figure 1,2). Both biological 

age predictors, DNAmGrimAge2 and DNAmFitAge, showed a transient change in athletes during 

competition, as their biological age returned to comparable values after the rest phase. Of note, also 

significant changes in DNAm-based Skin & Blood Clock, a well-established predictor for chronological age, 

were observed (Figure 2C). 
 

A more detailed investigation of player subgroups based on their assigned positions during games 

revealed that midfielders experienced the most significant rejuvenation effect (Supplementary Figure 

2A,C). The median DNAmGrimAge2 cal. of midfielders decreased by approximately 17.8 years (p = 

0.00414) from before to after the game. This change was more pronounced compared to the moderate 

reductions observed in athletes playing forward (-11.3 years, p = 0.00791) and defenders (-5.3 years, p = 

0.0744) (Supplementary Figure 2A). Among the supporting staff members, physicians and 

physiotherapists exhibited a similar trend to athletes in terms of biological age, despite no significant 

overall change.  

 

 

 

2.2 Exercise-induced epigenetic changes reflect immunological events 

Next, we aimed to investigate the epigenetic events underlying the substantial changes in 

DNAmGrimAge2 cal. following intense athletic workload. To this end, the influence of various plasma 
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protein surrogate markers on changes in epigenetic age predictions induced by physical activity were 

examined (Figure 3). DNAmGrimAge2 consists of a group of nine DNAm-based surrogates, which were 

trained to predict plasma protein levels. Among the six DNAmGrimAge2 covariates significantly associated 

with physical activity (p = 6.13e-05), four correspond to proteins involved in inflammatory processes. 

Notably, a significant decrease (p = 6.78e-07) in DNAm-derived estimates of C-reactive protein (CRP) 

levels, but an increase in interleukin-6 (IL-6) (p = 4.81e-06) was observed post-competition among 

athletes, followed by a return to baseline levels after a period of rest (Figure 3A,B). In contrast, among 

supporting staff members, no significant alterations were observed in CRP or IL-6 levels (Supplementary 

Figure 1D,E). These findings suggest that activity-induced modifications in epigenetic age predictions may 

mirror immunologic events associated with physical exertion. The elevation of inflammatory markers in 

athletes post-competition could be attributed to the physiological stress and immune response triggered 

by high-intensity exercise. This is also corroborated by changes on cellular level. DNAm-based estimation 

of immune cell composition in saliva samples indicates a significant decrease in CD4 T-cells (-68%, p = 

9.74e-06), whereas granulocytes increased (+44%, p = 6.78e-06) comparing before to after game samples 

collected from athletes (Figure 3C,D).  

  

Our data suggest that epigenetic age predictions based on DNA methylation events can capture 

immunologic changes associated with physical activity and may have implications for comprehending the 

effects of strenuous exercise. 

 
Figure 3: Activity-induced changes in epigenetic age predictions reflect immunologic events. (A-D) Boxplots illustrate changes of DNAm-derived 

surrogate estimates for blood protein levels and relative immune cell abundance before and after physical activity (before/after game) and after 

recovery (rested) for inflammation markers (A) CRP (before vs. after game p = 6.78e-07; after game vs. rested p = 0.00042) and (B) IL-6 (before 

vs. after game p = 4.81e-06; after game vs. rested p = 0.00162) as well as immune cell activity for (C) active CD4 T-Cells (before vs. after game p 

= 9.74e-06; after game vs. rested p = 0.00116) and (D) Granulocytes (before vs. after game p = 6.78e-06; after game vs. rested p = 0.000648), in 

either athletes.  Each dot represents one sample from one proband, samples from the same proband are connected by line across physical activity 

groups, significant changes (p-values) were tested using  a linear mixed effect model with chronological age, timepoint (before, after game or 

rested) and batch number as fixed and player ID as random effect. (A-D) Significance levels are indicated by * (p <= 0.05), ** (p <= 0.01) and NS. 

(p > 0.05). (E-G) Importance analysis of various clock components including DNAm-based plasma protein surrogate factor and blood immune cell 

composition estimates on determination of (E) DNAmGrimAge2, (F) DNAmFitAge and (G) DNAm based Immune Cell Composition in athletes after 
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high intensity exercise (before vs after game). Barplot shows standardized effect estimates of various clock components (fixed effects): fixed-

effect coefficients (ß) divided by their respective standard errors (std.E) from a linear regression model fitting of the marker at before against 

after game timepoints. DNAm-based predictor for blood levels of ADM:  for adrenomedullin (ADM) (corr: -15.51, std.E: 5.84, p = 0.00924); B2M: 

DNAm of the beta-2 microglobulin (B2M) gene (corr: -88973.44, std.E: 41988.41, p = 0.0365); CystatinC: DNAm of the cystatin C gene (corr: -

54129.71, std.E: 12900.31, p = 5.79E-05); GDF15: DNAm of the growth differentiation factor 15 (GDF15) gene (corr: -53.36, std.E: 68.41, p = 

0.437); Leptin: DNAm of the leptin gene (corr: -4484.99, std.E: 1598.36, p = 0.006); PackYrs: DNAm-based estimate of smoked cigarette packs per 

year (corr: -0.081, std.E: 0.14, p = 0.956); PAI1: DNAm of the plasminogen activator inhibitor-1 gene (corr: -1464.13, std.E: 760.98, p = 0.0671); 

TIMP1: DNAm of the tissue inhibitor of metalloproteinases 1 gene (corr: -1238.74, std.E: 250.35, p = 2.96E-06); COX: A composite clinical marker 

(corr: -1.07, std.E: 0.24, p = 2.13E-05); A1C: DNAm-based logarithmic transformation of glycated hemoglobin (HbA1c) (corr: 0.041, std.E: 0.011, p 

= 0.000345); CRP: DNAm-based logarithmic transformation of C-reactive protein (corr: -1.24, std.E: 0.26, p = 4.81E-06); GA2Cal: Calibrated DNAm 

GrimAge, version 2, a predictor of biological age (corr: -7.07, std.E: 1.69, p = 6.13E-05); VO2max: DNAm-based estimate of maximal oxygen uptake 

(corr: 1.18, std.E: 0.57, p = 0.0413); Gait_noAge: DNAm-based estimate of gait, excluding age as a factor (corr: -0.085, std.E: 0.030, p = 0.00593); 

Grip_noAge: DNAm-based estimate of grip strength, excluding age as a factor (corr: 3.07, std.E: 0.95, p = 0.00167); FEV1_noAge: DNAm-based 

estimate of forced expiratory volume in one second (FEV1), excluding age as a factor (corr: 0.35, std.E: 0.095, p = 0.000307); Gait_wAge: DNAm-

based estimate of gait, including age effects (corr: -0.087, std.E: 0.023, p = 0.000317); Grip_wAge: DNAm-based estimate of grip strength, 

including age effects (corr: 0.41, std.E: 0.30, p = 0.18); FEV1_wAge: DNAm-based estimate of FEV1, including age effects (corr: -0.051, std.E: 0.046, 

p = 0.268); Bcell: DNAm-based proportion estimate of B cells (corr: -0.043, std.E: 0.0083, p = 1.24E-06); CD4.naive: DNAm-based estimate 

proportion of naive CD4+ T cells (corr: -94.36, std.E: 30.69, p = 0.00268); CD4T: DNAm-based proportion of CD4+ T cells (corr: -0.11, std.E: 0.024, 

p = 9.74E-06); CD8.naive: DNAm-based proportion estimate of naive CD8+ T cells (corr: 25.43, std.E: 11.73, p = 0.0325); CD8T: DNAm-based 

proportion estimate of CD8+ T cells (corr: -9.51E-18, std.E: 1.68E-18, p = 1); Gran: DNAm-based proportion estimate of granulocytes (corr: 0.23, 

std.E: 0.049, p = 6.78E-06); Mono: DNAm-based proportion of monocytes (corr: -0.084, std.E: 0.016, p = 6.25E-07); NK: DNAm-based proportion 

estimate of natural killer cells (corr: -0.0070, std.E: 0.0025, p = 0.00613); PlasmaBlast: DNAm-based proportion estimate of plasmablasts (corr: 

0.50, std.E: 0.11, p = 1.98E-05). Significance levels are indicated by dark blue (p <= 0.05) and light blue (p > 0.05). 

2.3 Dynamics of short-term effects of physical exertion on epigenetic age  

The reported effects of strenuous physical activity on DNA methylation-based age predictors and immune-

related factors among athletes were derived from pooled samples collected throughout the season at 

varying intervals between high-intensity matches, training sessions, and rest phases (Figure 1,2). For a 

detailed examination of the short-term dynamics of epigenetic changes, we subsequently analyzed 

samples obtained during a 48-hour period encompassing a mid-season game, which reflected a short 

sequence involving low (sample 3) to high load (sample 4) and a return to resting state (sample 5) (Figure 

1). Understanding the temporal dynamic of effects can contribute to developing personalized strategies 

for optimizing athletic performance and mitigating potential health risks associated with intensive 

exercise. Our data demonstrate marked changes in epigenetic age predictors DNAmGrimAge2 cal. (-31%, 

p = 0.0027) and DNAmFitAge cal. (-18%, p = 0.0018) immediately following intensive physical activity (i.e., 

straight after the game) compared with 24 hours before the game. This observation highlights the 

immediate impact of physical exertion on biological aging predictors (Figure 4A,B). Plasma protein 

surrogate factors also showed significant variation in inflammatory responses after strenuous exercise 

(DNAmCRP: -50%, p = 0.0018 and DNAmIL-6: +684%, p = 1.06e-05) within 24 hours (Figure 4D,E). DNAm-

based immune cell type estimates exhibit comparable transient alterations in response to physical 

exercise (Figure 4F,G). The observed changes were of a temporary nature, with values returning to 

baseline levels 24 hours after the match. These values were similar to those measured 24 hours before 

the game. 
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Figure 4: Instantaneous effects of high physical load on DNAm-based age predictors and DNAm-derived estimators of immunological factors. 

(A-B) Epigenetic profiles (DNAm) of saliva samples from athletes, collected during mid-season game (samples 3,4 and 5) 24 hrs before (24 hrs 

before game) or immediately after intensive physical activity (straight after game), were analyzed in addition to samples taken 24 hrs post high 

physical strain (24 hrs after game). The data was used to estimate DNAm-based biological age (A) GrimAge2 (24hrs before vs. straight after game 

p = 0.0027; straight after vs. 24 hrs after game p = 0.0166 ) and (B) FitAge (24hrs before vs. straight after game p = 0.00177; straight after vs. 24 

hrs after game p = 0.0327). Analysis of DNAm-based endurance estimator (C) VO2max (24hrs before vs. straight after game p = 0.480; straight 

after vs. 24 hrs after game p = 0.274), plasma protein surrogate factors (D) CRP (24hrs before vs. straight after game p = 0.00177; straight after 

vs. 24 hrs after game p = 0.0327) and (E) IL-6 (24hrs before vs. straight after game p = 1.06e-05; straight after vs. 24 hrs after game p = 0.0120) 

and immune cell type estimates for (F) CD4+T-Cells (24hrs before vs. straight after game p = 0.00071; straight after vs. 24 hrs after game p = 

0.0160) and (G) Granulocytes (24hrs before vs. straight after game p = 0.00068; straight after vs. 24 hrs after game p = 0.0118). Each dot represents 

one sample from one proband, samples from the same proband are connected by line across physical activity groups, significant changes (p-

values) were tested using a linear mixed effect model with chronological age, timepoint (24 hrs before, straight after or 24 hrs after game) and 

batch number as fixed and player id as random effect. Significance levels are indicated by * (p <= 0.05), ** (p <= 0.01) and NS. (p > 0.05). 

 

The control group of supporting staff had no significant changes in DNAmGrimAge2 cal., DNAmFitAge cal., 

DNAm-based immune cell type alterations and plasma protein surrogate factors (Supplementary Figure 

3,4B-D). Furthermore, we conducted a comparative analysis of samples collected at the conclusion of the 

season against those obtained at the beginning of the season (Supplementary Figure 5). Following a 12-

month period, athletes exhibited a modest trend in reduced DNAmGrimAge2 cal. (+8.8%, p=0.61), 

DNAmFitAge cal. (+2.7%, p=0.75) and CRP level (+16%, p=0.32) (Supplementary Figure 5A-C). 
 

2.4 Co-occurrence of changes in DNA methylation and injury incidents in athletes 

The analysis of closely consecutive load changes during a midseason game (samples 3-5, Figure 1) 
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suggested an interplay between physical activity, epigenetic alterations, and immune reactions, implying 

a dynamic relationship among these factors. During the investigation of the changes in DNA methylation 

age predictors, specifically DNAmGrimAge2 cal. and DNAmFitAge cal., it was noted that the dynamic 

alterations typically followed a reduction from pre-game (baseline) levels to post-game levels, succeeded 

by a recovery back to baseline levels within the rest phase. Nonetheless, when comparing 

DNAmGrimAge2 cal. in players before the game (24 hrs prior, sample 3) to their rested state (24 hrs post-

game, sample 5), a variable trend was observed for certain players (Supplementary Figure 6). Most players 

exhibited a moderate decrease in DNAmGrimAge2 cal., while a few players showed the opposite trend. 

Based on the fact that changes in DNAmGrimAge2 cal. were shown to correlate with immunologic events 

(Figure 3), which can be induced by major but also microtraumas (Gebhard et al. 2000, Schild et al. 2016), 

we took episodes of injuries affecting players close in time to the midseason match (Table 2) into 

consideration to delineate a possible source of the observed variation.  

 

Table 2: Players with episodes of injury. Player column shows 

anonymized participant IDs; Type of injury column shows injuries 

sustained during professional soccer season 2021/22 and 2022/23 

matches or training sessions; Timepoint column shows timepoints 

of injury. 

Player Type of injury Timepoint 

2 Musculoskeletal Trauma Sample 1, 7, 8 

27 Musculoskeletal Trauma Samples 1-3 

31 Musculoskeletal Trauma Sample 4 

33 Musculoskeletal Trauma Samples 6-7 

 

To this end, blood samples collected during a midseason match (Figure 1, samples 3-5) were analyzed. In 

specific levels of creatine kinase (CK), a marker of inflammation and tissue damage (Romagnoli et al. 

2016), were measured. Additionally, DNA methylation status of saliva samples was assessed 24 hours 

before and after the game to evaluate changes induced by physical activity. Based on their injury history 

(Table 2), players were divided into two groups: those affected by musculoskeletal trauma injuries and 

those without. In the injury group, CK levels significantly (p = 0.013) increased on average 1.9-fold in all 

athletes (Figure 5A). In contrast, the non-injury group exhibited no discernible pattern in CK changes 

(Figure 5A). Biological age predictor DNAmFitAge cal. showed a trend of overall increase in the injury 

group (p =  0.257) and a decrease in the non-injury group (p = 0.174) (see Figure 5B). The only player (ID: 

27) with a history of injury who didn’t show an increase in DNAmFitAge (Figure 5B, injury group panel) 

had suffered his injury at the beginning of the season (samples 1-3) and had already fully recovered at the 

time point of interest (midseason match, samples 3-5, Table 2). Comparing ratios of athletes with 
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increasing or decreasing CK values and increasing or decreasing DNAmFitAge cal. within injury and non-

injury groups 24h before and after the game, we found no statistical significant difference (Figure 5C,D, 

Supplementary Table 1). Interestingly, although the injury group included only 4 injured players, and only 

3 players injured at the time point of analysis, we saw a trend towards a statistical significance comparing 

athlete ratios within the respective groups (p=0.238) (Figure 5D). Excluding player 27 with an injury event 

earlier in the season (samples 1-3), who fully recovered at the time point of interest (midseason match, 

samples 3-5, Table 2) decreased the p-value down to p=0.071, making it borderline significant (data not 

shown). This obvious trend could not be seen looking at athlete ratios with increasing or decreasing CK 

values in the injury and non-injury group (p=0.508) (Figure 5C, Supplementary Table 1).  

 

 

DNAm-based plasma protein surrogate factors (Figure 5E, Supplementary Figure 7) as well as immune cell 

composition type estimates (Figure 5F,G) resemble injury-related trends in DNAmFitAge cal. and 

DNAmGrimAge2 cal. patterns. This demonstrates the ability of epigenetic clocks as ensemble biomarkers 

to integrate the various single DNAm predictors in reflecting immunologic events related to injury.    

 

 

Figure 5: Differential patterns of biological age predictor FitAge in athletes are associated with events of injuries. In the course of a midseason 

match (sample 4 and 6) blood levels of inflammatory and tissue damage marker CK were determined and DNAm status of saliva samples assessed 

24 hrs before and after the game. Individual players indicated by number labels in plots  were split into two groups depending on injury events 

(red lines: players with history of injury during or after midseason match, black lines: players without injury or injury before midseason match) 

with temporal proximity to the match day (see Table 2). Boxplots show (A) CK levels (Injury Group: 24 hrs before vs. 24 hrs after game p = 0.013; 

Non-Injury Group: Injury Group: 24 hrs before vs. 24 hrs after game p = 0.374) and (B) DNAm-based FitAge cal. prediction in athletes (Injury 

Group: 24 hrs before vs. 24 hrs after game p = 0.257; Non-Injury Group: Injury Group: 24 hrs before vs. 24 hrs after game p = 0.174). (C-D) Mosaic 

plots illustrate ratios of athletes in injury and non-injury groups as well as the physical activity induced trend in (C) CK and (D) FitAge calibrated. 

Pearson residuals compare observed vs expected number of players in subgroups and highlight significant increases (blue) and decreases (red) 

thereof. (E-G) Saliva sample derived DNAm-based estimators of (E) inflammatory marker CRP (Injury Group: 24 hrs before vs. 24 hrs after game 
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p = 0.657; Non-Injury Group: Injury Group: 24 hrs before vs. 24 hrs after game p = 0.020), (F) CD4+T-cells (Injury Group: 24 hrs before vs. 24 hrs 

after game p = 0.142; Non-Injury Group: Injury Group: 24 hrs before vs. 24 hrs after game p = 0.013) and (G) Granulocytes (Injury Group: 24 hrs 

before vs. 24 hrs after game p = 0.175; Non-Injury Group: Injury Group: 24 hrs before vs. 24 hrs after game p = 0.010). Each dot represents one 

sample from one proband, samples from the same proband are connected by line across physical activity groups, significant changes (p-values) 

were tested using a linear mixed effect model with chronological age, timepoint (24 hrs before or 24 hrs after game) and batch number as fixed 

and player id as random effect and injury status instead of timepoints for intergroup comparison. Significance levels are indicated by * (p <= 0.05), 

** (p <= 0.01) and NS. (p > 0.05). 

 

In summary, the results highlight the potential of using DNAm-based biological age and inflammatory 

markers in predicting injury risk in athletes when exposed to high intensity physical load, which could lead 

to the development of fatigue monitoring and personalized injury prevention strategies. 

 

 
 

3 Discussion 
Our explorative study aimed at investigating the influence of physical and environmental stressors on 

athletes' epigenetic aging determined by assessing DNAm of saliva samples collected from professional 

soccer players throughout a season. Instead of analyzing individual markers, we used the methylome to 

determine epigenetic clocks, which are determined from a combination of several factors. Indeed, our 

study shows that both, DNAmGrimAge2 and DNAmFitAge were able to capture transient short-term 

changes in athletes within 48 hours of a midseason competition as well as long-term effects throughout 

the entire season.  

Epigenetic modifiers can affect responses to exercise training and might influence the predisposition to 

injury or disease (Tarnowski et al. 2022). Especially epigenetic regulation of genes highly involved in sports 

performances and exercise physiology, such as myocyte enhancer factor 2 (Potthoff et al. 2007) or slow-

twitching type I myosin heavy chain (Pandorf et al. 2009, Barres et al. 2012) came into the focus of sports-

related research. Epigenetic factors, like DNA methylation, are specific regulators of gene expression that 

constitute key links between the genotype, phenotypic plasticity, and environment.  In the context of 

athlete performances, a broad spectrum of environmental factors—the physical activity itself, nutrition, 

emotional challenges, and pre-existing epigenetic signatures—can determine how an individual reacts to 

certain stressors (Ecker et al. 2018).  

Furthermore, physical exercise induces adaptations in the immune system and metabolic changes, with 

upregulation of certain enzymatic and protein factors. If physical exercise is intense or extreme, the 

immune response is similar to that caused by other stressors, which might be not beneficial for the 

athlete. Blood levels of proteins among other biomarkers that are part of the acute inflammatory 

response, including myoglobin, troponin, creatine kinase, lactate dehydrogenase, and C-reactive protein, 

are considerably increased after endurance or highly demanding sport (Bernat-Adell et al. 2021). 

DNAmGrimAge2 and DNAmFitAge consist of a group of nine DNAm-based surrogates, which were trained 

to predict plasma protein levels. Among the six DNAmGrimAge2 covariates significantly associated with 

physical activity, four, including DNAmCRP correspond to proteins involved in inflammatory processes. A 

multivariate linear regression analysis reported by Lu and colleagues revealed significant associations 

between saliva based AgeAccelGrim2 and clinically relevant measures, like high sensitivity C-reactive 

protein, with lower values of DNAm logCRP and AccelGrim2 representing higher levels of physical 

functioning (Lu et al. 2022). CRP is a hepatic acute-phase protein in tissue damage, and a marker of 
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systemic inflammation and is associated with cardiovascular risk. Moreover, its levels have been 

correlated with frailty, morbidity, and mortality (Allen et al, 2015), which is also predicted and correlated 

with GrimAge and GrimAge2. It was found that in trained athletes, when a single exercise protocol was 

applied, CRP temporarily increased as the acute phase response after exercise (Kasapis et al. 2005). 

Interestingly our results showed an opposite overall trend analyzing short-term effects of physical 

intermittent strenuous bouts, leading to immediate decreased DNAm-based estimation of CRP levels, 

which normalize or even increase within a few hours after the game. Lower levels of CRP had been shown 

in longitudinal studies, in individuals exposed to higher levels of physical activity. In this context, although 

physical activity has been found to raise the CRP level acutely, it has been found that chronically physical 

activity reduces CRP levels (Kasapis et al. 2005). We could confirm the beneficial effect of long-term 

physical activity looking at sample 2 and 9, representing time points before and after season respectively. 

Following this 12-month period, athletes exhibited a modest but insignificant decrease in the median 

DNAmGrimAge2, FitAge and CRP level. This indicates that acute short- and intermittent long-term physical 

activity improves general fitness and biological age in soccer players. 

Anaerobic training is typically used in a variety of sports settings and has been shown to have a significant 

impact on the composition of saliva (Ntovas et al. 2022). Because of the complexity of attributes required 

in sports such as soccer, they are considered randomized intermittent, dynamic, and skilled movement 

type sports. Research has consistently reported that acute bouts of endurance and resistance exercise 

can influence the migration of immune cells in the peripheral blood and saliva. Studies in saliva showed 

lymphocytosis immediately post exercise and a lymphopenia into the recovery period (Carlson et al. 2008, 

Carlson et al. 2017, Kraemer et al. 1996, Niemann et al. 1995, Simonson et al. 2004). It seems that among 

both the young and elderly, an active lifestyle is generally linked to lower numbers and proportions of 

memory T cells and higher numbers and proportions of naïve T cells. This is partly supported by a recent 

systematic review, concluding that regular structured exercise increases the number of naïve T cells in 

peripheral blood at rest (Campbell et al. 2018, Chao et al. 2017). Brown et al. characterized the T cell pool 

in young male and female adults classified as being very active well-trained soccer players and compared 

to young adults classified as being untrained. Untrained individuals showed the highest proportions of 

CD4+ and CD8+ memory T cells, and the lowest proportions of CD8+ naïve T cells, defined on the basis of 

CD57 and CD28 expression (Brown et al. 2014, Brown et al. 2015). In the present study DNAm-based 

estimation of immune cell composition in saliva samples indicates a significant increase in Granulocytes, 

whereas CD4 T-cells decreased comparing before to after game samples collected from athletes (Figure 

3C,D). These results could be confirmed and were even more pronounced looking at short-term dynamics, 

comparing samples 3, 4 and 5. Long-term effects (sample 2 vs. 9) showed the same tendencies with lower 

estimated CD4 T-cells. It has to be mentioned that increase and/or reduction in the frequency and function 

of lymphocytes and other immune cells in peripheral blood and saliva in the hours following vigorous and 

prolonged exercise does not necessarily reflect immune activation nor suppression. Instead, increasing 

numbers of granulocytes together with lymphopenia of CD4+ T-cells and decreasing numbers of 

monocytes can represent a heightened state of immune surveillance and immune regulation driven by a 

preferential mobilization of cells to peripheral tissues. Furthermore, there is growing evidence from 

several studies in humans and rodents, indicating that exercise enhances, or at least does not suppress 

immune responses to in vivo challenge in younger and older individuals, supporting the contention that 

an acute bout of exercise has no detrimental immune consequences for health (Campbell et al. 2018). 

Therefore blood and/or saliva-based biomarkers can provide an objective individualized measure and 

monitoring of training load, recovery, health and immune status.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 8, 2024. ; https://doi.org/10.1101/2024.11.28.24317877doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.28.24317877
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

14 

To illustrate the usefulness of epigenetic clocks, we analyzed the relationship between injury risk of 

individual athletes and changes in their DNAm-based clock predictions within a season. For this purpose, 

we considered samples collected during a midseason game. With one exception, injury events occurred 

within the following 1-2 weeks of training and competition after the midseason game. The only player (ID: 

27) with a history of injury which did not show an increase in DNAmGrimAge2 and DNAmFitage had 

suffered his injury already at the beginning of the season (samples 1-3) and might have already fully 

recovered at the time point of measurement. Measurable parameters affected by exercise comprised 

changes in salivary cell numbers and cytokines and protein levels as an estimate using methylation data 

and protein levels in plasma. Our results show that the injury group followed an opposite trend compared 

to the overall trend of all analyzed samples within the season. After the game, within the early resting 

phase, the injury group showed increasing CRP and decreasing IL-6 levels estimated using methylation 

data. The non-injury group showed decreasing CRP and increasing IL-6 levels. These results point to a 

decreased fitness and health state within the early recovery phase of the injury group, whereas decreasing 

DNAmGrimAge2 and DNAmFitage within the non-injury group might indicate better and faster recovery 

of athletes after a game. Several proteins are affected in response to inflammatory processes, the majority 

showing increased levels shortly after an inflammatory reaction (Fedewa et al, 2016). IL-6 concentration 

increases more than other cytokines during exercise which might indicate muscle damage (Allen et al. 

2015; Lightfoot and Cooper 2016). IL-6 plasma concentrations are reportedly affected by factors other 

than intensity, such as type and time of exercise (Gleeson et al. 2011; Baumert et al. 2016). IL-6 itself 

triggers the synthesis of hepatic acute-phase protein CRP in tissue damage (Velissaris et al. 2017).  

CK, a protein involved in muscle metabolism, is frequently used in sports medicine as an indirect marker 

of muscle damage, and its concentration is generally considered a physical stress marker (Moghadam-Kia 

et al. 2016, Mougios et al. 2007, Marqués-Jiménez et al. 2016). CK levels have a significant variation with 

sex and ethnicity and also with exercise type: eccentric exercise causing more muscle damage than 

concentric contractions of the same vigor (Baumert et al. 2016, Moghadam-Kia et al. 2016). Analyzing CK 

blood serum levels of athletes within the injury and non-injury group of the early recovery phase we see 

elevated CK levels in both groups. Although a consistent pattern of elevated CK levels was observed in the 

injured group, the equivocal pattern of CK changes in the uninjured group suggests that CK was not 

sufficient to discriminate between injured and uninjured athletes.  

4 Conclusion 
The results of our study indicate that epigenetic changes analyzed by biological clock estimators like 

DNAmGrimAge2 and DNAmFitAge have potential to be utilized in prediction tools for injury predisposition 

in elite level soccer players or other intermittent strenuous sports. In the current study, we collected saliva 

samples, which are easily accessible within an athlete’s daily schedule and therefore well accepted. This 

is a major advantage compared to more invasive blood sampling which poses higher logistical challenges 

and a higher burden on athletes.  

Despite numerous observational studies (changes in biomarkers in response to exercise), to the best of 

our knowledge, there are no large cohort studies of athletes in which exercise was controlled/adjusted by 

changes in biomarker levels or in which biomarkers reliably predicted an outcome such as injury. 

Therefore such studies are warranted to confirm our and others' results. As a single biomarker for training 

management and injury prevention is rather unrealistic with regard to the complex pattern of 

physiological responses in different sport areas, development of a panel that includes aspects of 
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inflammation, muscle status, and injury risk might allow for a more comprehensive picture of athletes and 

promote personalized training management within professional sports.  

5 Methodology 
As shown in figure 1, 10 measurements were taken over a total period of 187 days at irregular intervals, 

depending on the respective match days. The match events were two regular league games and one game 

in the international cup. The samples were taken depending on the respective match event. These were 

taken before the matchday, on the matchday straight within one hour after the match or one day after 

the matchday. These were combined into three groups. In group A (Rested), all data from the 

measurement times that were taken in a rested state were grouped. In group B (After Game), all data 

from the measurement time points corresponding to a loaded state were grouped, which took place 

immediately after the match or on the following day. Group C (Before Game) before a game, where there 

is a certain baseline load, but the players should be sufficiently rested for the match day. 

Data was collected in different ways due to practicability. For group B (After Game) for the measurement 

times, ck measurement data were taken by samples of capillary blood only one day after the match  and 

saliva samples (2ml) were taken after the match using a saliva tube (Genefix, Isohelix). Group A (Rested) 

for the measurement time points , ck measurement data were collected before training  and saliva 

samples (2ml) were taken before training. The exceptions were the two samples 9a and 9b, which were 

taken after the summer break and for which only one saliva sample (2ml) was taken. 

Study & Statistical Design 

Controlled longitudinal study with 10 measurements, comparing players vs. control staff.  We set 

epigenetic clocks as the primary endpoint, before and after each stressor and over the season as a whole.  

This will primarily be performed using the GrimAge (Lu 2019) and Skin & Blood Age clocks (Horvath 2018). 

As a secondary outcome, using available metadata, we will assess the correlation of all other key 

outcomes with GrimAge, including creatine kinase levels, training load within the prior 48 hours, and self-

reported measures of sleep and stress.   

We will use multiple epigenetic biomarkers to assess epigenetic age before and after each stressor, and 

the season as a whole, including GrimAge and its component risk factors, as well as DNA methylation 

based predictors of immune cell subsets.  In order to adjust for the longitudinal nature of the data we 

used two approaches: a) a linear mixed model analysis where the random intercept term corresponds to 

trial participant and b) a linear model where the dependent variable (epigenetic age at the completion of 

the trial) is regressed on epigenetic age at baseline and treatment status. Bonferroni correction was used 

to adjust for multiple comparisons. 

Sample Collection 

Fifteen players and five staff members of a professional men's soccer team participated in the study, 

providing informed written consent approved by the team's board of directors. Genetic and epigenetic 

analysis involved collecting mouth saliva samples at up to 10 different time points. These time points 

included periods after games and during rest, such as directly after game three within a week and before 

vacation, after one week of Christmas vacation 2021, during an extensive preseason training period, 

directly before a Euroleague game, directly after a Euroleague away game, the morning after that 

Euroleague away game, directly after a Euroleague game following a two-week antioxidant regimen, and 
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directly after the last league game in May 2022. For saliva sample collection, participants were instructed 

to refrain from eating, drinking, smoking, brushing their teeth, or chewing gum for 30 minutes prior to 

collection. The collection involved spitting into a collection funnel attached to a saliva collection tube until 

the required volume was reached, excluding bubbles. The tube was then tightly capped, and the saliva 

was mixed with a stabilization solution by shaking the tube several times before storing at room 

temperature. 

DNA Methylation  

DNA methylation data was generated using the Infinium MethylationEPIC BeadChip arrays (llumina, San 

Diego, CA), with processing of methylation arrays by Eurofins Genomics. This enables the quantitative 

interrogation of more than 850,000 CpG methylation loci per sample, covering all designable RefSeq 

genes, with CpG Island shores, non-island CpGs, CpG islands outside of coding regions and miRNA 

promoter regions represented. The DNA methylation array assays involved bisulfite conversion of 

extracted DNA using a Zymo EZ DNA methylation kit, followed by DNA amplification, labeling, and array 

using MethylationEPIC BeadChip array kits, and scanning of the completed Beadchip arrays for final DNA 

methylation readout.  The technology and methods described enable ready calculation of the most 

informative epigenetic aging clocks developed in the Horvath lab, including GrimAge (Lu 2019), PhenoAge 

(Levine 2018), the original pan-tissue clock (Horvath 2013), newer measures such as the Skin & Blood Age 

clock (Horvath 2018).  Data analysis through the Clock Foundation enables many additional quality control 

measures to be performed as well as calculation of DNA methylation based surrogate measures, e.g. 

predicting status of the immune system. 

Additional Study Monitoring 

In addition to the genetic and epigenetic analyses, a range of supplementary tests and assessments were 

conducted to enhance the comprehensive evaluation of the participants. Capillary blood testing was 

performed to measure Creatine Kinase (CK), which serves as a reliable measure of muscle strain, 

comparable to lactate measurements obtained from spiroergometry testing. CK levels were assessed daily 

to enable effective monitoring of muscle stress and provide valuable insights into the participants' training 

status. Daily recordings of creatine kinase levels were stored in SAP SportsOne or Excel for subsequent 

analysis. 

DNA Methylation  

Raw methylation signal intensities were obtained using the function read.metharray.exp from the minfi 

v1.40.0 R package, followed by linear dye bias correction and noob background correction to address 

technical variation in background fluorescence signal (Aryee et al., 2014). Specifically, the β-value was 

computed from the intensity of methylated and unmethylated sites as the ratio of fluorescent signals. β-

values were utilized in all analyses. Subsequently, we computed several human epigenetic biomarkers of 

aging (epigenetic clocks) and estimated cell compositions based on blood methylation data: the pan-tissue 

epigenetic age (referred to as DNAmHorvath) (Horvath, 2013); Hannum’s blood-based DNAm age 

(DNAmHannum) (Hannum et al., 2013); skin and blood clock (DNAmAgeSkinClock) (Horvath et al., 2018); 

DNAm of surrogate markers of telomere length (DNAmTL) (Lu, Seeboth, et al., 2019); DNAmPhenoAge 

(Levine et al., 2018); the mortality risk estimator DNAmGrimAge and its components (Lu, Quach, et al., 

2019); DNAmGrimAge2 (Lu et al., 2022); DNAmFitAge (McGreevy et al., 2023). Data analysis conducted 

through the Clock Foundation enables many additional quality control measures to be performed, as well 
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as the calculation of DNA methylation-based surrogate measures, such as predicting the status of the 

immune system. 

 

As DNAmFitAge and DNAmGrimAge2 were trained using blood samples, they tend to overestimate 

epigenetic age when applied to saliva samples. These two clocks were calibrated using The Clock 

Development Foundation trained model on a reference database consisting of 1154 healthy untreated 

samples with known sex and age (age varies from 18 to 91) from different sample sources (blood, saliva, 

buccal). The trained model estimates the sample source, age, and sex of an individual to correct the 

overestimation trend of the original clocks. 

 

We employed a linear mixed-effects model, utilizing Satterthwaite's degrees of freedom method to 

estimate the p-values for each coefficient. Individual ID was treated as a random effect. The response 

variable varied depending on the analysis, encompassing epigenetic age, components of DNAmGrimAge2, 

or cellular estimates. Age, sample collection group (categorized as rested, straight/one day after match, 

and one day before match), and plate numbers served as batch effect estimators. Notably, 

DNAmGrimAge2 components and cellular estimates were scaled.  
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