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Abstract53

The methylation of plasma cell-free DNA (cfDNA) has emerged as a valuable diagnostic and54

prognostic biomarker in various cancers including colorectal cancer (CRC). Currently, there55

are no biomarkers that serve simultaneously for early diagnosis and prognostic prediction in56

CRC patients. Herein, we developed a plasma panel (27 DMRs, differential methylated57

regions) and validated its superior performance across CRC diagnosis and prognosis58

prediction in an independent cohort. We first conducted a preliminary screening of 119 CRC59

tissue samples to identify CRC-specific methylation features. Subsequently, a CRC-specific60

methylation panel was developed by further filtering 161 plasma samples. Then machine61

learning algorithms were applied to develop diagnosis and prognosis models using cfDNA62

samples from 51 CRC patients and 33 normal controls. The diagnosis model was tested in a63

cohort consisting of 30 CRC, 37 advanced adenoma (AA), and 14 healthy plasma samples,64

independently validated in a cohort consisting of 18 CRC, 91 NAA, 23 AA and 34 healthy65

plasma samples. In the tissue external validation cohort (GSE48684), the cfDNAmethylation66

diagnosis model conducted with the panel, have the area under the curve (AUC) reached67

0.983, and for the plasma cfDNAmodel in the external validation cohort, the sensitivities for68

NAA, AA and CRC 0 -Ⅱ are 48.4%. 52.2% and 66.7% respectively, with a specificity of 88%.69

Additionally, the panel was applied to patient staging and metastasis, performing well in70

predicting CRC distant metastasis (AUC = 0.955) and prognosis (AUC = 0.867). Using71

normal samples as control, the changes in methylation score in both tissue and plasma were72

consistent across different lesions, although the degree of alterations varied with severity. The73

methylation scores vary between paired tissue and blood samples, suggesting distinct74
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mechanisms of migration from tumor tissue to blood for the 27 DMRs. Together, Our cfDNA75

methylation models based on 27 DMRs can identify different stages of CRC and predict76

metastasis and prognosis, ultimately enabling early intervention and risk stratification for77

CRC patients.78

79

Keywords: Colorectal cancer; cell-free DNAMethylation; Diagnosis prediction;80

Prognosis prediction81
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Introduction83

Colorectal cancer (CRC) is the third most prevalent cancer globally and ranks as the fourth84

leading cause of cancer death, accounting for 9.4% of cancer-related mortalities (1). When85

patients were diagnosed with CRC, over half of their family (62.9%) faced financial burdens86

(2, 3). Extensive research underscores that the survival rates of individuals diagnosed with87

advanced CRC (Stage III or IV) witness a significant decrement (4, 5). Early detection and88

removal of precancerous lesions remain the most effective strategy to prevent CRC-associated89

mortality (6). While colonoscopy is regarded as the gold standard for CRC detection, its90

limitations including invasiveness, suboptimal patient compliance and risk of complications91

including intestinal perforation, warrant further consideration (7). Guaiac-based fecal occult92

blood test (gFOBT), fecal immunochemical test (FIT), carcino-embryonic antigen (CEA), and93

multi-target stool DNA (mt-sDNA) testing, are constrained in clinical application due to the94

lower sensitivity(8, 9).95

Recent research demonstrated a profound correlation between CRC and the development of96

genetic and epigenetic alterations. During early stage of CRC development, epigenetic97

modifications surpass the frequency of gene mutations, indicating their potential as diagnostic98

biomarkers in screening for colon polyps and cancer(10). Circulating tumor DNA (ctDNA) in99

cell-free DNA (cfDNA) primarily come from apoptotic and necrotic tumor cells, carrying100

cancer-specific epigenetic alterations (11). Notably, blood cfDNAmethylation emerges as a101

promising cancer screening pathway because of its early appearance in tumorigenesis and102

abundant signal density (12).103

The value of cfDNAmethylation in early diagnosis, detection of recurrence, molecular104
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subtyping and prognostic prediction of CRC has been proven(13). However, there are still105

reported limitations. One study found a diagnostic panel for CRC demonstrated great106

performance, but it was derived from CRC tissue and normal blood leukocyte methylation107

data, potentially introducing bias due to the inconsistent sample types (14). Another study108

addressed the potential of cfDNAmethylation in patient risk stratification, but the109

requirement for blood sampling every three months led to poor patient compliance(15).110

In this study, we aimed to develop plasma biomarkers derived from CRC tissues that exhibit111

superior performance in the diagnosis, metastasis and prognostic prediction for CRC. We112

meticulously screened CRC and normal tissues, and refining our selection within plasma113

samples. More importantly, the substantial proportion of paired tissue and plasma samples114

(from the same patient), effectively minimized potential data bias. The final resulting panel115

comprised 27 differential methylated regions (DMRs), with the area under the curve (AUC)116

reached 0.983 in the tissue validation cohort. Given that DNAmethylation markers in plasma117

primarily stem from tumor tissues, these 27 DMRs exhibit significant potential in CRC118

plasma diagnostics. With a single blood test, we can ascertain the presence of CRC,119

distinguish the specific stages of the lesion (advanced adenoma, CRC 0-II, CRC III-IV), help120

identify distant metastasis, and achieve optimal risk stratification for CRC patients. This test121

is of clinical significance and holds promise in guiding the diagnosis and treatment for CRC.122

123
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Materials and Methods124

Study design and samples125

Specific DNAmethylation markers for CRC were identified through analysis of TCGA public126

database data, alongside collected tissue and plasma samples. Subsequently, diagnosis,127

metastasis, and prognosis models for CRC were established and validated. The 450k chip128

methylation data encompassing colorectal, esophageal, gastric, lung, liver, and breast cancers,129

and CRC transcriptome sequencing data were downloaded from The Cancer Genome Atlas130

(TCGA) database. The methylation data of tissue validation cohort was obtained from131

Fifteen pairs of tissue samples from the Seventh Medical Center of PLAGeneral Hospital132

were sequenced with the Roche Nimble Gen Seq Cap Epi method. The 89 tissue samples and133

77 plasma samples used for marker screening were collected between June and December134

2020 at the Seventh Medical Center of PLAGeneral Hospital and Dongying People's Hospital.135

Participants for model establishment and validation were enrolled from June 2020 to July136

2022 in the Seventh Medical Center of PLAGeneral Hospital, Dongying People's Hospital.137

The paeticipants for external validation cohort were enrolled from June 2021 to December138

2022 at the First Hospital of Longyan, Fujian Medical University. Inclusion and exclusion139

criteria are outlined in the Supplementary Materials. Detailed methods for DNA extraction,140

library construction, targeted bisulfite sequencing, and methylation data processing are141

provided in the Supplementary Materials.142

CRC-specific methylation markers selection143

Combining TCGAmethylation data with our 15 pairs of tissue methylation sequencing results,144

probes were designed for further screening in the 89 samples (13 normal tissues and 38 paired145
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CRC tissues), 404 DMRs were identified. The detailed methods were listed in supplementary146

methods. Then, the methylation levels of 77 plasma samples from 13 Normal, 15 non-147

advanced adenoma (NAA), 12 advanced adenoma (AA) and 37 CRC participants, were148

analyzed. Subsequently, the Least Absolute Shrinkage and Selection Operator (LASSO)149

regression analysis was used to filter markers, and 27 regions that appeared in more than 50150

iterations were chosen as plasma diagnostic markers. The relationship between the151

methylation levels of the 27 DMRs and the transcription levels of their respective genes was152

compared by Spearman correlation coefficients.153

Construction of the CRC diagnosis model154

The methylation data from the training cohort underwent machine learning, culminating in the155

establishment of a five-fold cross-validated model characterized by binary deviance156

minimization standards. The diagnosis model was constructed using logistic regression, and157

its performance was evaluated through Receiver Operating Characteristic (ROC) curve158

analysis. The optimal cutoff value was determined using the maximum Youden index. The159

methylation data of tissue validation cohort (GSE48684) was downloaded from GEO (Gene160

Expression Omnibus) dataset. Using the methylation scores derived from the diagnosis model,161

the CRC staging (AA, CRC 0-Ⅱ, CRC Ⅲ-Ⅳ) was predicted.162

Construction of the CRC metastasis and prognosis models163

Utilizing the methylation scores derived from the diagnosis model, in conjunction with patient164

pathological parameters (metastasis), the plasma CRC metastasis model was constructed. The165

performance of this model underwent evaluation through ROC analysis, with the optimal166

cutoff value determined via the maximum Youden index. Furthermore, employing the same167
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methodology, the plasma prognosis model was established and validated, based on the168

methylation scores derived from the CRC diagnosis model and survival information from the169

patients.170

Statistical analysis171

All statistical analyses were conducted using SPSS 26.0 or R 4.1.3. Two-sided tests were used172

for p-values, with differences deemed statistically significant at P < 0.05. Model performance173

was assessed through ROC analysis using the "roc" function from the R package pROC,174

generating AUC and a 95% confidence interval (CI). Kaplan-Meier (KM) curves were used175

for survival curve estimation, with comparisons made through the log-rank test and hazard176

ratios determined by Cox regression.177

178
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Results179

Patient characteristics180

To delineate DNAmethylation biomarkers specific to CRC, 119 tissues and 77 plasma181

samples (originating from the same patients with tissues) were collected for methylation182

sequencing analysis, narrowing down to 142 DMRs. Then the 27 DMRs were selected with183

the sequencing data of 84 plasma samples. Following this, CRC diagnosis, metastasis, and184

prognosis models were constructed using plasma samples from 84 individuals (51 CRC, 33185

Normal). Validation was then carried out in an independent cohort (30 CRC, 37 AA, 14186

Normal). The CRC diagnosis model was further tested in an external validation cohort (18187

CRC 0-II, 91 NAA, 23 AA, 34 Normal). Detailed information about the study design is188

illustrated in Figure 1, and comprehensive patient characteristics are summarized in Table s2-189

4.190

Methylation markers selection191

Analyzing the 450k chip methylation data from TCGA, the differential methylated sites192

(DMCs) in CRC were identified (Figure s1A). Combining with additional CRC-related193

methylation sites reported in the literature, 1438 DMCs were selected for validation. The heat194

map depicted the methylation levels of 1438 DMCs, revealing distinct methylation patterns195

between Normal and Tumor. (Figure s1B). The top 1400 DMCs were carefully selected based196

on the results of DNAmethylation sequencing of 15 paired tissue samples (Figure s2A-C).197

The distribution of the DMCs was predominantly observed in introns and promoters,198

signifying substantial implications for gene expression and cellular functions (Figure s2D).199

Merging the 1438 DMCs with the 1400 DMCs for probe design, 404 DMRs were discerned200
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across 89 tissues (Figure s3A). The different methylation patterns between Normal and Tumor201

were also quite evident (Figure s3B-C). These DMRs correspond to genes that play pivotal202

roles in biological processes such as cell-cell adhesion, digestive system development, and203

cAMP and cGMP pathways (Figure s3D). Subsequently, 142 regions remained after204

sequencing 77 plasma samples (Figure s3E-F). The final 27 DMRs were selected after205

analyzing methylation data of the training cohort samples. Detailed information of the 27206

DMRs is provided in Table s5. Correlation analysis revealed the methylation levels of the207

majority of the 27 DMRs are correlated with the transcription levels of their respective genes208

(Figure s4).209

Development and validation of the CRC diagnosis model210

Using methylation data from 27 DMRs in tissues, we applied machine learning to construct a211

diagnosis model for CRC and the AUC reached a high value of 0.994 (Figure 2A). In the212

external tissue independent validation cohort (GSE48684), the AUC for CRC is 0.983 and for213

AA is 0.966. (Figure 2B-C). The sensitivities for AA and CRC were 95% and 94%,214

respectively (Figure 2D-E). Besides, the plasma-based diagnosis model for CRC was215

constructed with training cohort and validated in an external independent validation cohort,216

the 27 DMRs exhibited distinctive methylation patterns between CRC and normal individuals217

(Figure 3A-B). The methylation scores of the model were significantly elevated in the CRC218

group compared to the normal and AA groups (P< 0.001), and they increased with advance219

tumor staging (Figure 3H). In the training cohort, the ROC curve analysis showed an AUC220

value of 0.928 [95% confidence interval (CI): 0.874–0.981] (Figure 3C). The sensitivities of221

the CRC diagnosis model in the training cohort for stages 0-II, III-IV, and all CRC stages222
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were 80%, 92%, and 86%, respectively, with a specificity of 85% (Figure 3I). ROC curve223

analysis in the validation cohort showed AUC values for AA, stages 0-II, III-IV, and all CRC224

stages as 0.714 (0.550–0.878), 0.890 (0.749–1.000), 0.967 (0.899–1.000), and 0.929 (0.827–225

1.000). (Figure 3D-G). The CRC diagnosis model demonstrated a specificity of 93% in the226

validation cohort, with sensitivities for AA, stages 0-II, III-IV, and all CRC stages of 43%,227

67%, 100%, and 83%, respectively (Figure 3I). We further tested the early diagnostic228

performance of the model in an external validation cohort, and the results showed that the229

model achieved a sensitivity of 52% for AA and 48% for NAA (Figure 4A-E),230

The plasma diagnosis model also serves to discern the specific staging of CRC patients. ROC231

curve analysis on the validation cohort revealed an AUC of 0.813 (0.656–0.970) for232

discriminating between CRC 0-II and CRC III-IV, and an AUC of 0.799 (0.693–0.905) for233

distinguishing between AA and CRC (Figure s5A-C). Kaplan-Meier survival curves revealed234

a significant reduction in overall survival (OS) for CRC III-IV patients compared to CRC 0-II235

patients identified by this diagnosis model (Figure s5D-E).236

Development and validation of the CRC metastasis and prognosis models237

Through an analysis of the relationship between the methylation scores in the diagnosis model238

of CRC patients' plasma samples and clinical-pathological parameters, we observed that239

methylation scores are associated with metastasis and staging (P< 0.001, Figure 5A-B), but240

not with age, gender, and lesion location (P>0.05, Figure s6A-C). This suggests the possible241

role of 27 DMRs in metastasis and prognosis prediction. Therefore, we developed plasma-242

based CRC metastasis and prognosis models based on the 27 CRC-specific DMRs. In the243

training and validation cohorts, the metastasis model demonstrated high AUCs of 0.969 (95%244
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CI: 0.926-1) and 0.955 (95% CI: 0.878-1), respectively (Figure 5C). Methylation scores of245

M1-CRC individuals identified from the metastasis model were significantly higher than M0-246

CRC individuals (Figure s6D). Additionally, the M1-CRC patients exhibited shorter OS than247

M0-CRC patients. (Figure s6E-F). For the prognosis model, ROC curves demonstrated248

excellent performance in the training cohort (AUC = 0.883, 95% CI: 0.778-0.988) and249

validation cohort (AUC = 0.867, 95% CI = 0.728-1). (Figure 5D). Furthermore, Kaplan-Meier250

survival curves revealed a significant reduction in OS for the high-risk group of CRC patients251

identified by this prognosis model (Figure 5E). Based on the cutoff value determined by the252

algorithm, we divided CRC patients into high-risk and low-risk groups. Notably, almost all253

patients who developed distant metastases and those who had died belonged to the high-risk254

group (Figure 5F, H). We further characterized the survival status distribution and metastasis255

status between the two groups. As expected, the high-risk group had a higher proportion of256

deceased individuals, while non-metastatic patients were more prominent in the low-risk257

group (Figure 5G, I). These results indicate that the metastasis and prognosis models258

successfully identified patients who require further treatment. Multivariate regression analysis259

revealed a substantial correlation between the methylation score of the 27 DMRs and OS,260

indicating methylation score as an independent prognostic factor for CRC (Table s6). These261

findings underscore the considerable potential of the prognosis model based on the 27 DMRs262

specific to CRC in predicting the prognosis and conducting risk stratification for CRC263

patients.264

Changes in methylation scores of tissue and plasma samples across different populations265

Collectively, the CRC diagnosis model, established based on the methylation levels in these266

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 5, 2024. ; https://doi.org/10.1101/2024.11.28.24317652doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.28.24317652
http://creativecommons.org/licenses/by-nc-nd/4.0/


14

27 DMRs within tissues, exhibits robust performance. However, the plasma-based diagnosis267

model exhibited reduced performance in AA and CRC 0-II compared to CRC III-IV.268

Therefore, we analyzed the methylation scores of the 27 DMRs generated from diagnosis269

models in paired tissue and plasma samples. Notably, in tissues, the methylation scores are270

ranked as AA > CRC > Normal (Figure 6A), suggesting significant alterations in the271

methylation of the 27 DMRs at the onset of precancerous lesions. In plasma, methylation272

scores gradually increase with CRC progression (CRC III-IV > CRC 0-II > AA > Normal,273

Figure 6B). Further analysis of individual DMR methylation levels in the blood revealed274

discernible distinctions in certain DMRs during both AA and CRC 0-II stages, while275

variances in another subset of DMRs became detectable exclusively during CRC III-IV stages276

(Figure 6C). We then conducted a gene analysis of DMRs identifiable in early-stage CRC277

blood on the Metascope website. Our findings revealed their association with processes such278

as "secretion by cell" and "cell-cell adhesion." (Figure s6G) Consequently, we hypothesize279

that although alterations of 26 DMRs were observed in AA tissues, only a selected few are280

actively released into the bloodstream through cell secretion by tumor cells. The majority of281

these alterations are likely to be identified in the blood only after the occurrence of apoptosis282

or necrosis in tumor cells. These results elucidate the inconsistency in the performance of283

tissue and plasma diagnosis models and the differences in diagnostic efficacy for different284

CRC stages using the same model.285

286
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Discussion287

Liquid biopsy of cfDNA has become an ideal clinical detection method because it is288

minimally invasive and easily sampled. However, due to the low concentration of ctDNA in289

bodily fluids and the heterogeneity of tumor cells, many DNAmarkers for CRC currently lack290

certainty whether they originate from CRC tissues. In this study, we integrated TCGA tissue291

data with self-collected tissue methylation data to identify CRC-related methylation sites.292

Probes were designed and applied in paired tissue and plasma samples to further screen the293

methylation sites. We successfully determined 27 DMRs originating from CRC tissues, which294

were subsequently used to construct diagnostic model. In the validation cohorts of tissue and295

plasma samples, the diagnosis models based on the 27 DMRs we established could effectively296

differentiate samples between CRC and normal participants, in addition, the plasma diagnosis297

model could distinguish the different stages of CRC. Furthermore, the transfer prognosis298

model, established based on diagnosis model scores, could effectively demonstrate whether299

the CRC had metastasized, separating CRC patients into high-risk and low-risk groups.300

Several blood-based methylation biomarker candidates have been proposed for early301

detection of CRC. For instance, the FDA-approved circulating methylated SEPT9 DNA302

(mSEPT9) demonstrates sensitivities of 11.2%, 35.0%, 63.0%, 46.0%, and 77.4% for AA and303

CRC stages I-IV, respectively, with a specificity of 91.5% (16). In a recent study, a cfDNA304

methylation-based CRC screening model has a sensitivity of 86.4% and a specificity of 90.7%,305

utilizing 149 markers derived from blood samples (17). In our study, 27 markers were selected306

through a layered screening process from tissue and plasma, undergoing marker selection,307

model development, and validation to ensure model robustness. Then the superior308
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performance of our plasma diagnosis model was validated, with a sensitivity of 83.3% and309

specificity of 92.9%. Notably, the sensitivity for AA and NAA reached 52.2% and 48.4%310

respectively, far surpassing the 11.2% sensitivity of mSEPT9 and the 33.3% reported in311

another blood screening study.(16, 17). In summary, our diagnostic model performs well in312

detecting precancerous lesions of CRC and has the potential to become a screening method313

for high-risk populations of CRC.314

In plasma, we observed the methylation scores of 27 DMRs gradually increase with CRC315

progression. It is possibly due to less vascular infiltration in early CRC (18, 19). On the other316

hand, the ctDNA detected in the blood of early-stage CRC is largely derived from tumor cells317

actively secreting into the bloodstream, making it challenging to be precisely captured with318

current detection technologies due to the limited quantity. Conversely, ctDNA in the blood of319

late-stage CRC primarily emanated from apoptotic and necrotic tumor cells, resulting in a320

larger quantity that facilitates easier detection. However, in reality, the methylation scores of321

the 27 DMRs have indeed exhibited noticeable changes in AA and early cancerous tissues.322

Additionally, in the tissue diagnosis model using the 27 DMRs, the sensitivity was 94% and323

the specificity was 100%. Therefore, we have grounds to believe that the 27 DMRs detected324

in plasma originate from CRC tumor tissues. With the implementation of more sensitive325

detection methods, the performance of these 27 DMRs in early CRC plasma diagnosis is326

likely to be further enhanced.327

Additionally, cfDNA contributes to risk stratification and early recurrence detection in328

CRC(20). However, current methods rely on continuous blood cfDNA testing by patients (15, 21).329

This study discovered that the preoperative cfDNAmethylation level of 27 DMRs is linked to330
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distant metastasis and is valuable for predicting the prognosis of CRC, consistent with certain331

prior research. (22, 23). Our model predicted AUCs of 0.955 and 0.867 for distant metastasis and332

prognosis in CRC, respectively. This underscores the potential utility of the preoperative333

application of this cfDNAmethylation model for risk stratification, serving as an effective334

tool to improve the perioperative management of CRC patients.335

The treatment strategies for CRC differ significantly across various stages. Molecular336

stratification approaches for CRC patients are on the rise, and concurrently, the clinical337

application of biomarkers to determine treatment decisions is gradually gaining traction (24).338

Studies have demonstrated the precise identification of T1 CRC patients at risk of lymph node339

metastasis using a specific set of miRNAs, thereby potentially mitigating unnecessary340

overtreatment (25, 26). Our CRC diagnosis model, with an AUC of 0.813 for distinguishing341

CRC 0-Ⅱ from CRC Ⅲ-Ⅳ, could also serve as a potent, straightforward, and cost-effective342

preoperative screening/detection method, guiding patients to select more appropriate343

treatment plans.344

DNAmethylation regulates gene transcription, guiding the progression from normal mucosa345

to AA and ultimately CRC. This process involves silencing tumor suppressor genes and346

activating oncogene transcription (27). Gene transcription levels correlate notably with347

methylation levels at specific sites, consistent with our research findings. Additionally, several348

genes housing the identified 27 DMRs have been partially explored in CRC. Some genes349

contribute to tumor growth. For instance, high methylation and diminished expression of350

transmembrane protein 240 (TMEM240) regulate CRC cell proliferation, predicting poor351

prognosis (28). The transcription factor homeobox A3 (HOXA3) activates aerobic glycolysis,352
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promoting tumor growth (29). KIFC3 controls mitotic spindle assembly initiation (30). Moreover,353

several genes are implicated in tumor metastasis, such as NOVA alternative splicing regulator354

1 (NOVA1), which promotes CRC migration by activating the Notch pathway (31). Protein355

tyrosine phosphatase receptor type T (PTPRT) contributes to early CRC dissemination (32).356

SPARC-related modular calcium binding 2 (SMOC2) serves as the distinctive signature of357

cancer stem cells (CSCs) in CRC and promotes epithelial-to-mesenchymal transition (EMT)358

(33, 34). Increased methylation and expression of pancreatic and duodenal homeobox 1 (PDX1)359

facilitate CRC invasion and migration(35). However, the mechanisms by which alterations in360

specific DNAmethylation impact gene expression are intricate. Certain transcription factors361

selectively recognize sequences with methylated CpG (mCpG) and influence the expression362

of multiple genes(36). Further exploration of the potential functional mechanisms of these363

DNAmethylation markers may deepen our understanding of the molecular processes364

underlying CRC development, offering promising therapeutic targets.365

This study has certain limitations. Firstly, although obtained from multiple institutions, the366

small sample size was insufficient. Therefore, the cfDNAmethylation model should be367

further validated in large-sample trials in the future. Secondly, a prospective study is368

necessary to compare or combine the cfDNAmethylation model with clinically commonly369

used markers such as CEA and CA19-9.370

In conclusion, our cfDNAmethylation model based on 27 DMRs can identify different stages371

of CRC, predict metastasis and prognosis, and ultimately achieve early intervention and risk372

stratification for CRC patients. The preoperative application of our DNAmethylation373

biomarker as a robust, convenient, and cost-effective detection method can contribute to374
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making more informed clinical decisions and improving the perioperative management of375

CRC patients.376

377
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Figure Legends566

Figure 1. Flow diagram of the study.567

568

Figure 2. Development and validation of tissue diagnosis model based on the 27 CRC-569

specific DMRs. (A) The use of ROC curve analysis to assess the performance of the tissue570

diagnostic model in differentiating CRC patients from normal individuals of the training571

cohort (51 tissues we collected). (B-C) The use of ROC curve analysis to assess the572

performance of the tissue diagnostic model in differentiating CRC patients from normal573

individuals(B) and distinguish AA from Normal subjects (C) in tissue validation cohort574

1(GSE 48684 dataset). (D-E) The sensitivity and specificity of the diagnosis model in the575

tissue training(D) and validation cohort 1(E).576

577

Figure 3. Development and validation of a plasma diagnosis model based on the 27 CRC-578

specific DMRs. (A-B) Heatmap illustrating the DMRs between CRC and advanced adenoma579

and healthy controls in the training (A) and validation cohort (B). (C) The use of ROC curve580

analysis to assess the performance of the diagnosis model in differentiating CRC patients581

from normal individuals of the training cohort. (D) The use of ROC curve analysis to evaluate582

the performance of the diagnosis model in differentiating CRC patients from normal583

individuals of the validation cohort. (E-G) In the validation cohort, the performance of the584

diagnosis model in differentiating early-stage CRC (0-Ⅱ) from normal individuals (E); in585

differentiating advanced-stage CRC (Ⅲ-Ⅳ) from normal individuals (F); in differentiating586

AA from normal individuals (G). (H) Methylation scores of Normal 、 AA and CRC587
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individuals generated from the diagnosis model in the training and validation cohort (The588

dashed line represents the cutoff value). (I) The sensitivity and specificity of the diagnosis589

model stratified by stages in the training and validation cohort. Abbreviations: DMRs,590

differential methylated regions; ROC, receiver operating characteristic; AA, advanced591

adenoma; CRC, colorectal cancer.592

593

Figure 4. External validation of plasma diagnosis model. (A-C) In the external validation594

cohort, the performance of the diagnosis model in differentiating early-stage CRC (0-Ⅱ) from595

normal individuals (A); in differentiating AA from normal individuals (B); in differentiating596

NAA from normal individuals (C). (D) Methylation scores of Normal、NAA、AA and CRC597

(0-Ⅱ) individuals generated from the diagnosis model in the external validation cohort (The598

dashed line represents the cutoff value). (E) The sensitivity and specificity of the diagnostic599

model for NAA, AA, and CRC in the external validation cohort.600

601

Figure 5. Development and validation of a plasma-based metastasis model and a plasma-602

based prognosis model. (A-B) The methylation scores generated by the diagnosis model for603

CRC patients across various M stages (A) and different disease stages (B). (C) ROC curve604

analysis was performed to assess the performance of 27 DMRs methylation scores generated605

by the diagnosis model in distinguishing M1-CRC patients from M0-CRC patients in the606

training (AUC = 0.969) and validation (AUC = 0.955) cohorts. (D) ROC analysis evaluates607

the performance of 27 DMRs methylation scores generated by the diagnosis model in608

predicting the prognosis of CRC patients. (E) Kaplan-Meier survival curves comparing OS609
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between the high-risk CRC group and low-risk CRC group of prognosis model in the training610

cohort and validation cohort. (F, H) Metastasis and prognosis prediction of the training and611

validation patitients(n = 88). The black dotted line at the cutoff value divides the patients into612

high-risk and low-risk groups. Yellow circles and gray circles represent patients without613

distant metastasis and with distant metastasis, respectively (F). Yellow circles and gray circles614

represent patients survived and deceased, respectively (H). (G, I) The proportion of615

metastasis and deceased is higher in the high-risk group. The p-value was calculated using a616

two-sided Fisher's exact test. Abbreviations: DMRs, differential methylated regions; ROC,617

receiver operating characteristic; M1-CRC, colorectal cancer with distant metastasis; M0-618

CRC, colorectal cancer without distant metastasis; AUC, the area under the curve.619

620

Figure 6. Methylation scores of paired tissue and plasma samples. (A) The methylation scores621

of tissues from Normal, AA, CRC 0-Ⅱ, CRC Ⅲ-Ⅳ individuals. (B) The methylation scores of622

blood samples from Normal, AA, CRC 0-Ⅱ, CRC Ⅲ-Ⅳ individuals. (C) The mechanism623

diagram interpreting the methylation scores changes of tissue and plasma across different624

populations.625

626
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Figure 1627
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Figure 2630
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Figure 3633
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Figure 4636
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Figure 5639
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Figure 6642
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