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Abstract 

Background 

Timely and accurate detection of pericardial effusion and assessment cardiac tamponade remain 

challenging and highly operator dependent.  

Objectives 

Artificial intelligence has advanced many echocardiographic assessments, and we aimed to 

develop and validate a deep learning model to automate the assessment of pericardial effusion 

severity and cardiac tamponade from echocardiogram videos. 

Methods 

We developed a deep learning model (EchoNet-Pericardium) using temporal-spatial 

convolutional neural networks to automate pericardial effusion severity grading and tamponade 

detection from echocardiography videos. The model was trained using a retrospective dataset of 

1,427,660 videos from 85,380 echocardiograms at Cedars-Sinai Medical Center (CSMC) to 

predict PE severity and cardiac tamponade across individual echocardiographic views and an 

ensemble approach combining predictions from five standard views. External validation was 

performed on 33,310 videos from 1,806 echocardiograms from Stanford Healthcare (SHC).  

Results 

In the held out CSMC test set, EchoNet-Pericardium achieved an AUC of 0.900 (95% CI: 0.884–

0.916) for detecting moderate or larger pericardial effusion, 0.942 (95% CI: 0.917–0.964) for 

large pericardial effusion, and 0.955 (95% CI: 0.939–0.968) for cardiac tamponade. In the SHC 

external validation cohort, the model achieved AUCs of 0.869 (95% CI: 0.794–0.933) for 

moderate or larger pericardial effusion, 0.959 (95% CI: 0.945–0.972) for large pericardial 

effusion, and 0.966 (95% CI: 0.906–0.995) for cardiac tamponade. Subgroup analysis 

demonstrated consistent performance across ages, sexes, left ventricular ejection fraction, and 

atrial fibrillation statuses. 

Conclusions 
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Our deep learning-based framework accurately grades pericardial effusion severity and detects 

cardiac tamponade from echocardiograms, demonstrating consistent performance and 

generalizability across different cohorts. This automated tool has the potential to enhance clinical 

decision-making by reducing operator dependence and expediting diagnosis.   
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Introduction 

Cardiac tamponade, a life-threatening condition, occurs when excess fluid accumulates in the 

pericardial space, resulting in increased intrapericardial pressure, impairs cardiac filling, and 

reduces cardiac output. Without prompt recognition and intervention, this can lead to shock and 

circulatory collapse. Echocardiography is the gold standard for pericardial effusion detection due 

to its accessibility, portability, and comprehensive assessment of both anatomy and function1–3. 

However, despite increasing availability of ultrasound technology, the accurate assessment of 

pericardial effusion and cardiac tamponade still depends on expert image acquisition and 

interpretation. Distinguishing the severity of pericardial effusion and presence of tamponade can 

be challenging, with mild effusions sometimes mistaken for pericardial fat, and more critically, 

the severity of effusion does not necessarily correlate with the risk of tamponade4.  

These challenges highlight the need for a reliable, automated method for detecting and assessing 

pericardial effusions that minimizes operator dependence and effectively assesses the risk of 

tamponade. Artificial intelligence (AI) has shown significant success in evaluating 

echocardiography tasks, including the assessment of left ventricular function, wall motion 

abnormalities, right ventricular function, and valvular disease5–9. AI presents a promising 

approach to automating complex image interpretation, improving the precision of measurements, 

and identify subtle cardiac phenotypes. While previous studies assessing pericardial effusions 

with deep learning have been limited by small training datasets and lack of eternal validation10,11, 

such that further work is warranted to apply AI to assessing pericardial effusion severity and 

predicting progression to cardiac tamponade.  

In this study, we developed and evaluated performance of a deep learning pipeline in automating 

identification of PE and cardiac tamponade from standard transthoracic echocardiogram studies. 

We hypothesized that a deep learning approach can identify and assess PE severity on 

combinations of standard echocardiogram view videos with high-throughput automation.  
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Methods 

Study Populations and Data Collection 

In this study, we analyzed previously collected transthoracic echocardiogram studies from 

Cedars-Sinai Medical Center (CSMC) between September 12, 2011, and June 4, 2022. 

Echocardiogram videos were originally stored as DICOM videos from GE or Philips ultrasound 

machines. We pre-processed these videos to remove non-ultrasound sector information, extracted 

metadata, and converted them to AVI format12. Videos were stored as 112�×�112-pixel video 

files and view classified into five standard echocardiographic views (apical-4-chamber, apical-2-

chamber, parasternal long axis, parasternal short axis, and subcostal views). The view classifier 

model13 used in this study was trained on 77,426 echocardiogram videos to classify 58 specific 

view categories. Pericardial effusion severity and presence of cardiac tamponade for was 

extracted from the clinical report determined in a high-volume echocardiography laboratory in 

accordance with American Society of Echocardiography guidelines14. The model was trained on 

4 classes of pericardial effusion sizes (none, mild, moderate, and large), with intermediate 

categories were assigned to the more severe category.  

EchoNet-Pericardium - a full end-to-end approach including video processing, view 

classification, pericardial effusion size assessment, and identification of cardiac tamponade - was 

externally validated using data from an independent and geographically distinct high-volume 

echocardiography lab. The model was evaluated on 1,806 studies (containing a total of 33,310 

videos) from the Stanford Healthcare (SHC). The ensemble prediction utilized predictions from 

five standard echocardiographic views for evaluating pericardial effusion size and tamponade 

model validation. Model output was compared with clinical grading determined by expert 

cardiologists from the clinical reports. This study was approved by the institutional review 

boards at CSMC and SHC.  

 

AI Model 

Echocardiogram videos were divided into training, validation, and test datasets in an 8:1:1 ratio 

by patient, ensuring no patient overlap across the sets to prevent data leakage. If a patient had 

multiple echocardiogram studies or videos, each video was treated as an independent example 
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during model training. Deep learning models were trained using the PyTorch Lightning deep 

learning framework. Video-based convolutional neural networks (R2+1D) were used for PE 

severity assessment and cardiac tamponade prediction15. This model architecture was previously 

used for other echocardiography tasks and shown to be effective6,9. The models were initialized 

with random weights and trained using a binary cross entropy loss function for up to 50 epochs, 

using an ADAM optimizer, an initial learning rate of 1e-2, and a batch size of 64 on NVIDIA 

RTX A6000 GPU. Early stopping was performed based on the validation loss if no improvement 

after 5 epochs. For model training, we selected random clips of 32 frames, sampled every other 

frame to obtain 16 frames per clip, and input these into the model. For pericardial effusion size 

assessment, models were trained for each individual view, with input videos of each individual 

view, and an ensemble model was constructed by logistical regression with inputs of the 

inference prediction from models of each view. For tamponade prediction, we trained the model 

using all apical-4-chamber videos for binary prediction (Central Illustration). 

 

Statistical Analysis 

Continuous variables are expressed as mean�±�standard deviation, while nominal variables are 

presented as proportions. All analyses were performed on the held-out test dataset and external 

test set, which was never seen during model training. Model performance was evaluated using 

area under the receiver operating characteristic curve and confusion matrices. Confidence 

intervals were computed using 1,000 bootstrapped samples of the test datasets. Statistical 

analysis was performed in Python (version 3.8.0). Subgroup analysis was conducted to assess 

model performance in patients with different age, sex, race, and other clinical characteristics. 

Clinical characteristics were obtained from the electronic health record or associated 

echocardiography report. 
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Results 

Primary cohort characteristics 

A total of 85,380 transthoracic echocardiograms from 49,598 patients at CSMC, collected 

between September 12, 2011, and June 4, 2022, were used to train and evaluate the deep learning 

models. The mean (SD) age of the patients was 68.7 (19.4) years, with 49.7% being male. 

Among them, 3.5% had atrial fibrillation, 12.2% had heart failure, 44.9% had hypertension, and 

19.4% had diabetes mellitus. Across all echocardiograms, 14.0% showed small pericardial 

effusion, 4.2% had moderate pericardial effusion , 1.1% had large pericardial effusion, and 0.7% 

presented with cardiac tamponade (Table 1). Echocardiograms were divided into training, 

validation, and test datasets in an 8:1:1 ratio by patient, resulting in 68,110 echocardiograms in 

the training set, 8,508 in the validation set, and 8,762 in the test set. A total of 1,427,660 videos 

were included through the view classifier process, with 363,817 from A4C, 179,361 from A2C, 

355,330 from PLAX, 294,950 from PSAX, and 234,202 from Subcostal view (Supplemental 

Table 1).  

 

Model performance in the primary cohort 

We trained five view-specific deep learning models and ensembled them to obtain the final 

pericardial effusion size assessment (Table 2). Our ensemble model effectively distinguished PE 

severity, achieving an AUC of 0.900 (0.884-0.916) for detecting moderate or above PE and 0.942 

(0.917-0.964) for large PE in the primary cohort (Figure 1A). For cardiac tamponade, the model, 

trained using A4C views, achieved an AUC of 0.955 (0.939 - 0.968). When evaluated on 

echocardiogram studies with pericardial effusion, the model distinguished cases of tamponade 

with an AUC of 0.904 (0.881 - 0.924) (Figure 2A). 

As shown in the confusion matrix, the model's performance in the test set of the primary cohort 

for detecting moderate or larger pericardial effusion demonstrated a sensitivity of 0.72 (0.698 – 

0.741), a specificity of 0.931 (0.913 – 0.949), and a negative predictive value (NPV) of 0.984 

(0.969 – 0.999). For detecting large pericardial effusions, the model achieved a sensitivity of 

0.654 (0.622 – 0.686), a specificity of 0.976 (0.958 – 0.994), and an NPV of 0.997 (0.981 – 1.0). 
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These metrics indicate the model's accuracy in identifying and excluding cases of moderate or 

severe PE and large PE. 

 

Subgroup Analysis 

In the subgroup analysis, the model demonstrated consistent performance in predicting moderate 

or larger pericardial effusion and cardiac tamponade across various subgroups within the test set 

(Table 3). For patients over 65 years, the AUC for moderate or larger pericardial effusion was 

0.901 (95% CI, 0.882–0.921), and for tamponade, it was 0.953 (95% CI, 0.934–0.970). 

Performance across gender was similar, with an AUC of 0.896 (95% CI, 0.872–0.918) in males 

and 0.902 (95% CI, 0.881–0.923) in females for moderate or larger pericardial effusion, and 

0.974 (95% CI, 0.960–0.984) in males and 0.944 (95% CI, 0.921–0.964) in females for 

tamponade. 

The model's performance was further evaluated across different ranges of left ventricular ejection 

fraction (LVEF). In patients with LVEF below 50, the model achieved AUCs of 0.898 (95% CI, 

0.855–0.930) for moderate or larger pericardial effusion and 0.899 (95% CI, 0.848–0.942) for 

tamponade. Among patients with atrial fibrillation during examination, the model achieved an 

AUC of 0.901 (95% CI, 0.831–0.951) for moderate or larger pericardial effusion and 0.979 (95% 

CI, 0.969–0.988) for tamponade, while in patients without atrial fibrillation, the AUCs were 

0.900 (95% CI, 0.882–0.915) and 0.955 (95% CI, 0.939–0.970) for moderate or larger pericardial 

effusion and tamponade, respectively. 

 

External validation  

The external validation cohort from SHC consisted of 1,806 patients with a mean (SD) age of 

60.4 (17.3) years, and 53.0% of them were male. Regarding race, 50.2% of the patients were 

Caucasian, 4.2% were Black, and 16.8% were Asian. Clinical history data revealed that 30.0% of 

the patients had atrial fibrillation, 41.6% had heart failure, 16.5% had CAD, 59.9% had 

hypertension, and 9.3% had diabetes mellitus. The dataset included 1,806 echocardiograms, 

corresponding to 33,310 videos. Among these, 4.6% showed small pericardial effusion, 1.1% had 
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moderate pericardial effusion, 0.6% had large pericardial effusion, and 0.9% of cases presented 

with cardiac tamponade. A total of 33,310 videos were included through the view classifier 

process, with 9,462 from A4C, 4,040 from A2C, 7,982 from PLAX, 6,601 from PSAX, and 

5,225 from Subcostal view (Supplemental Table 2). 

The EchoNet-Pericardium showed consistent performance in distinguishing pericardial effusion 

size and tamponade (Figure 1B) in the external validation cohort. The model demonstrated an 

AUC of 0.869 (0.794 - 0.933) in detecting at least moderate pericardial effusion and an AUC of 

0.959 (0.945 - 0.972) for large pericardial effusion. For cardiac tamponade, the model achieved 

an AUC of 0.966 (0.906 - 0.995). When evaluated on echocardiograms with at least a small 

pericardial effusion, the model distinguished cases of tamponade with an AUC of 0.880 (0.790 - 

0.954) (Figure 2B). As shown in the confusion matrix, the model's performance in the external 

validation cohort for detecting moderate or larger pericardial effusion demonstrated a sensitivity 

of 0.737 (0.539 – 0.935), a specificity of 0.976 (0.968 - 0.983), and an NPV of 0.997 (0.994 - 

1.0). For detecting large pericardial effusions, the model achieved a sensitivity of 0.636 (0.352 - 

0.921), a specificity of 0.943 (0.932 - 0.954), and an NPV of 0.997 (0.995 - 1.0).  
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Discussion 

This study presents a validated deep learning framework capable of accurately assessing PE 

severity and detecting cardiac tamponade using echocardiography. From a full transthoracic 

echocardiogram, EchoNet-Pericardium effectively identified pericardial effusion size from five 

standard echocardiographic views, achieving an AUC of 0.900 for moderate or larger pericardial 

effusion and 0.942 for large PE in primary cohorts. Our model also demonstrated high accuracy 

in detecting cardiac tamponade with an AUC of 0.955. EchoNet-Pericardium demonstrated 

consistent performance across a geographically distinct external validation cohort without 

preselection, showcasing its robustness and generalizability in real-world settings. Implementing 

this automated tool could expedite diagnosis, reduce operator dependence, and potentially 

improve patient outcomes by enabling timely interventions. 

For a comprehensive clinical evaluation of pericardial effusions and cardiac tamponade, 

clinicians utilize a variety of echocardiographic views are assessed together. In EchoNet-

Pericardium, the use of video-based convolutional neural networks (R2+1D) trained for each 

view and then ensembled captures temporal dynamics crucial for identifying pericardial effusion 

size and distinguishing cases with tamponade. For classifying tamponade, we chose the A4C 

view to focus on given the appearance of all four chambers that allows the model to assess 

intraventricular dependence and associations between the left and right heart. Our study builds 

on the intersection of AI and echocardiography, advancing previous achievements in 

cardiovascular imaging applications. Significant progress has been made in automating view 

classification16,17, identifying structural abnormalities like left ventricular hypertrophy8,18, 

evaluating left ventricular systolic function6, and assessing valvular function and vascular 

emergency9,19,20. By integrating our model with existing AI-driven innovations, we aim to 

support less experienced operators in obtaining high-quality imaging21,22, thereby improving 

diagnostic accuracy for pericardial effusion and enabling early detection of tamponade. Future 

research could focus on refining automated quantification, validating model performance across 

varied clinical settings, and expanding access to diagnostic tools in primary care and resource-

limited regions. 

This study has certain limitations that should be considered when interpreting the results. First, 

although the model was trained on a large-scale dataset, the retrospective nature of our data 
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collection may limit its performance in real-time clinical settings. Second, while we included 

diverse echocardiographic views to improve the accuracy of pericardial effusion grading, this 

model has yet to be tested in point-of-care ultrasonography performed by noncardiologists. 

Further research is needed to assess the model's performance with videos of varying quality and 

levels of operator expertise. Although our analyses across different health systems indicate that 

the deep learning algorithm is robust to variations in practice patterns across regions, additional 

work and prospective validation are necessary to better understand the impact of AI-guided 

screening workflows on clinical care. 

In conclusion, our study presents a novel, automated approach for detecting and grading 

pericardial effusion severity and identifying cardiac tamponade using deep learning models 

applied to echocardiography. EchoNet-Pericardium’s consistent performance across multiple 

datasets highlights its potential to improve clinical decision-making and streamline 

echocardiographic assessment of PE and cardiac tamponade. Prospective studies and integration 

into clinical practice will be essential to fully realize the benefits of this technology. 

 

Data availability  

The dataset of videos and reports used to train EchoNet-Pericardium is not publicly available due 
to its potentially identifiable nature.  

 

Code Availability  

The code for EchoNet-Pericardium will be made publicly available following the publication of 
the paper. 
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Figure Legends 

Central Illustration. EchoNet-Pericardium: A temporal-spatial convolutional neural network 

designed to automate pericardial effusion severity grading and tamponade detection using 

echocardiography videos. The model integrates predictions from five standard echocardiographic 

views through an ensemble approach, achieving an AUC of 0.900 for detecting moderate or 

larger pericardial effusion, 0.942 for large pericardial effusion, and 0.955 for cardiac tamponade. 

Figure 1. Confusion matrices for pericardial effusion severity classification in the primary cohort 

(A) and the external validation cohort (B). The EchoNet-Pericardium model utilizes an ensemble 

of predictions from five standard echocardiographic views to classify pericardial effusion as 

none, small, moderate, or large. Figure 1A demonstrates performance in the primary test cohort, 

while 1B depicts results in the external validation cohort. The diagonal values indicate correct 

predictions, with the model showing consistent accuracy across different levels of effusion 

severity. 

Figure 2. Receiver operating characteristic curves for cardiac tamponade prediction in the 

primary cohort (A) and the external validation cohort (B). The EchoNet-Pericardium model 

distinguishes cardiac tamponade cases using apical-4-chamber (A4C) views. The blue curves 

represent model performance on all echocardiograms, while the orange curves show performance 

specifically for studies with pericardial effusion. Figure 2A corresponds to the primary test 

cohort, achieving an AUC of 0.955 for all echocardiograms and 0.904 for cases with effusion. 

Figure 2B represents the external validation cohort, with an AUC of 0.966 for all 

echocardiograms and 0.880 for cases with effusion. 
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Table 1. Patient Characteristics 

 CSMC 
SHC 

Characteristic Train Validation Test 
Number of patients 39,654 4,934 5,010 1,806 
Sex (% Male) 19,711 (49.7) 2,438 (49.4) 24,90 (49.7) 957 (53.0) 
Age, mean (std), y 68.7 (19.4) 68.5 (19.3) 68.6 (19.3) 60.4 (17.3) 
Race     
    Caucasian, n (%) 26,944 (67.9%) 3,393 (68.8%) 3,419 (68.2%) 907 (50.2) 
    Black, n (%) 5,774 (14.6%) 717 (14.5%) 734 (14.7%) 76 (4.2) 
    Asian, n (%) 2,981 (7.5%) 343 (7.0%) 364 (7.3%) 303 (16.8) 
    Others, n (%) 3,955 (10.0%) 481 (9.7%) 493 (9.8%) 163 (9.0) 
Clinical History      
    Atrial Fibrillation 1,375 (3.5%) 179 (3.6%) 190 (3.8%) 542 (30.0) 
    Heart Failure 4,828 (12.2%) 616 (12.5%) 602 (12.0%) 751 (41.6) 
    CAD 8,796 (22.2%) 1,138 (23.1%) 1,094 (21.8%) 298 (16.5) 
    Hypertension 17,811 (44.9%) 2,221 (45.0%) 22,62 (45.1%) 1,082 (59.9) 
    Diabetes Mellitus 7,679 (19.4%) 994 (20.1%) 954 (19.0%) 168 (9.3) 
Number of Study 68,110 8,508 8,762 1,806 
Number of Video 1,139,533 142,341 145,786 33,310 
Pericardial Effusion     
    Small 9,512 (14.0%) 1,193 (13.6%) 1,242 (14.2%) 83 (4.6%) 
    Moderate 2,831 (4.2%) 336 (3.9%) 383 (4.4%) 19 (1.1%) 
    Large 796 (1.2%) 77 (0.9%) 78 (0.9%) 11 (0.6%) 
Cardiac Tamponade 482 (0.7%) 64 (0.8%) 39 (0.4%) 17 (0.9%) 
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Table 2. EchoNet-Pericardium Model Performance 

Characteristic Small PE Moderate PE Large PE 
CSMC    
    Apical 4 Chamber 0.779 (0.766 - 0.792) 0.890 (0.875 - 0.904) 0.944 (0.918 - 0.965) 
    Apical 2 Chamber 0.734 (0.720 - 0.747) 0.841 (0.818 - 0.862) 0.872 (0.815 - 0.926) 
    Parasternal long axis 0.645 (0.633 - 0.658) 0.745 (0.721 - 0.770) 0.837 (0.785 - 0.880) 
    Parasternal short axis 0.710 (0.697 - 0.723) 0.810 (0.788 - 0.832) 0.887 (0.842 - 0.924) 
    Subcostal 0.630 (0.617 - 0.643) 0.722 (0.696 - 0.747) 0.761 (0.701 - 0.819) 
    Ensemble of all views 0.805 (0.792-0.816) 0.900 (0.884-0.916) 0.942 (0.917-0.964) 
SHC    
    Ensemble of all views 0.746 (0.697 - 0.790) 0.869 (0.794 - 0.933) 0.959 (0.945 - 0.972) 
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Table 3. Subgroup Analysis 

Characteristic Case Moderate PE or worse Tamponade 
All 8762 0.900 (0.884-0.916)  0.955 (0.939 - 0.969) 
Age > 65 years old 5319 0.901 (0.882 - 0.921) 0.953 (0.934 - 0.970) 
Age < 65 years old 3443 0.897 (0.868 - 0.922) 0.955 (0.925 - 0.977) 
Male 4388 0.896 (0.872 - 0.918) 0.974 (0.960 - 0.984) 
Female 4374 0.902 (0.881 - 0.923) 0.944 (0.921 - 0.964) 
Caucasian 5955 0.891 (0.870 - 0.911) 0.959 (0.942 - 0.972) 
Black 1323 0.899 (0.864 - 0.931) 0.936 (0.892 - 0.975) 
Asian 668 0.951 (0.925 - 0.972) -- 
LVEF > 50 6875 0.908 (0.891 - 0.925) 0.970 (0.956 - 0.982) 
LVEF < 50 1688 0.898 (0.855 - 0.930) 0.900 (0.848 - 0.942) 
Atrial fibrillation during 
examination 

378 0.901 (0.831 - 0.951) 0.979 (0.969 - 0.988) 

Without Atrial fibrillation 
during examination 

8384 0.900 (0.882 - 0.915) 0.955 (0.939 - 0.970) 
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Central Illustration. 
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Figure 1. 
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Figure 2. 
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