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Abstract 
 
Background & Aims 
Accurate data resources are essential for impactful medical research. To date, most large-scale 
studies have relied on structured sources, such as International Classification of Diseases codes, 
to determine patient diagnoses and outcomes. However, these structured datasets are often 
incomplete or inaccurate. Recent advances in natural language processing, specifically the 
introduction of open-weight large language models (LLMs), enable more accurate data extraction 
from unstructured text in electronic health records (EHRs). 
Methods 
We created an approach using LLMs for identifying histopathologic diagnoses, including presence 
of dysplasia and cancer, in pathology reports from the Department of Veterans Affairs Healthcare 
System, including those patients with genotype data within the Million Veteran Program (MVP) 
biobank. Our approach requires no additional training and utilizes a simple ‘yes/no’ question 
prompt to obtain an answer. We validated the method on 3 diagnostic tasks by applying the same 
prompts to reports from patients with vs without diagnoses of inflammatory bowel disease (IBD) 
and calculating F-1 scores as a balanced accuracy measure. 
Results 
In patients without IBD in MVP, we achieved F1-scores of 99.3% for identifying any dysplasia, 
98.2% for identifying high-grade dysplasia and/or colorectal adenocarcinoma (HGD/CRC), and 
96.2% for identifying CRC using LLM Gemma-2. In IBD patients in MVP, we achieved F1-scores 
of 97.1% for identifying dysplasia, 96.4% for identifying HGD/CRC, and 97.1% for identifying 
CRC. 
Conclusion 
LLMs provide excellent accuracy in extracting diagnoses from EHRs and can be applied to a 
variety of tasks with no additional human-led development required. Our validated methods 
generalized to unstructured pathology notes, even withstanding challenges of resource-limited 
computing environments. 
 
Keywords: artificial intelligence, large language models, natural language processing, 
biomedical informatics, colorectal cancer, inflammatory bowel disease 
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Introduction 
 
The expected breakthroughs in personalized treatments and improved medical outcomes have 
yet to fully materialize despite the exponential increase in volume of healthcare data available for 
research. One obstacle impeding these advances is the quality and accessibility of the vast data 
generated and stored as part of usual healthcare.  
 
As an example use case, tailoring colonoscopy screening ages and surveillance intervals based 
on accurate risk stratification informed by large, high-quality datasets has real potential to reduce 
both the incidence of colorectal cancer, as well as the number of unnecessary colonoscopies that 
add burden to both patients and the healthcare system1. Current risk stratification approaches in 
both the general population and those with inflammatory bowel disease (IBD) are based on few 
clinical variables, which are often associated with widely varied published estimates of risk2,3. For 
example, when low-grade dysplastic lesions are diagnosed, current guidelines for all-comers 
recommend surveillance colonoscopy every 1-10 years (or 1-5 years in patients with IBD) based 
on clinical risk stratification3,4. As such, screening guidelines essentially serve as heuristics, 
representing the best approach in a climate of such limited data5. Our overall goal is to improve 
the quality of available large-scale data resources—an essential prerequisite for accurate 
downstream analyses to improve personalized medicine—by leveraging artificial intelligence to 
extract clinical information, with a focus on histopathologic diagnoses in the present study.  
 
Traditionally, “rules-based” natural language processing (NLP) algorithms have dominated 
structured data extraction in this area. Briefly, NLP translates natural language into data formats 
that are easier for computers to process and analyze. Performance of these algorithms is 
excellent, with F1-scores frequently above 99% for identifying adenomas in data from the general 
population6–13. Alternatively, published deep-learning or embedding-based models are less 
common for classifying pathology findings, though work by Syed et al. reported an F1-score of 
95% for identifying neoplastic (dysplastic) polyps14. However, there are many drawbacks to 
current approaches. Development requires extensive human effort to refine algorithms: creating 
concepts (e.g., enumerating all possible ways that each diagnosis could be written), identifying 
negation (ensuring that expressions of the absence or uncertainty of a diagnosis are captured 
and related to the correct concept), associating terms with their respective anatomical locations, 
and modifying the algorithm to address “edge” cases. Adapting these algorithms to new use cases 
or different databases presents similar challenges, as development is often tailored to the 
formatting and style of a specific hospital system, patient cohort, and/or time period15. For 
example, pathology reports from patients with IBD are often slightly different from reports from 
the non-IBD population. In the IBD patient cohort, historical terminology may be present (e.g., 
“DALMs”), non-targeted biopsies make up a large fraction of the biopsy specimens4, and there 
are more instances of negation where pathologists explicitly rule out dysplasia and carcinoma 
than in patients without IBD. To our knowledge, previous NLP approaches have only been tested 
in the general population, where patients with IBD diagnoses represent a small fraction of the 
cohort or are removed from the cohort. Additionally, few of these approaches have been 
rigorously tested in identifying varying severities of dysplasia (e.g., low-grade, high-grade) and 
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adenocarcinoma. Where they have been tested rigorously, performance for adenocarcinoma is 
lower (F1 score < 90%) compared to performance for adenoma or dysplasia8.  
 
Large language models (LLMs) are capable of many tasks “out of the box” without additional 
tedious human-led development. Because of this, LLMs should be less susceptible to differences 
in formatting and style, working better across settings. For example, applying LLMs to determine 
colonoscopy follow-up time recommendations that are in line with established guidelines has been 
shown to be feasible without task-specific training16. Recently, there have also been remarkable 
advances in the quality of open-weight LLMs released under permissive licenses. Open-weight 
models avoid critical legal and regulatory issues, allowing researchers to conduct inference 
without significant privacy risks. Specifically, these models can be uploaded to the same 
computing environment where the data is stored, enabling researchers to structure data without 
it leaving this secured space. Because these models do not undergo training or fine-tuning within 
the computing environment, there is no risk of them 'remembering' patient information or 
accidental data breaches. Moreover, using these models does not involve sending data to third 
parties like OpenAI, avoiding the associated bureaucratic and privacy challenges. While current 
LLMs require significant computational bandwidth, they are rapidly becoming viable alternatives 
for large-scale applications as their efficiency improves and computational costs decline. 
 
Here, we test and compare the performance of LLMs, without any task-specific training, on their 
ability to extract and characterize the presence vs. absence of dysplasia and adenocarcinoma 
from unstructured colonoscopy-associated pathology reports. We show that LLMs, even in 
resource-limited environments, are accurate at identifying features from pathology reports in a 
way that is easily reproducible.  
 
Materials and Methods 
 
Patient databases 
 
We applied our methods to data from the Veterans Health Administration (VHA), one of the largest 
integrated health systems in the US. The Corporate Data Warehouse (CDW) in the Veterans 
Affairs (VA) contains all electronic health record (EHR) data from Veteran healthcare encounters, 
including notes, International Classification of Diseases (ICD) codes, and other registries such as 
the National Death Index (NDI) that can all be used and is intended for research purposes. In 
total, our provisioned CDW database contains the EHRs from 15.2 million current and former 
patients cared for through the VHA. This consists of roughly 6.2 billion notes, with a mean of more 
than 400 notes per patient. The earliest notes and other data relevant for our purposes, such as 
ICD codes, date back to around the year 2000, when records began to be consistently stored 
digitally. 
 
The Million Veteran Program (MVP) is a research initiative where Veterans volunteer to have 
additional health, survey, and complete genetic data collected and made available for research in 
an anonymized way. To date, over one million Veterans have volunteered to become a part of 
this initiative. Our provisioned dataset contains 913,318 patients (v22 data used in Results). 
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Veteran volunteers in MVP are demographically similar to patients in CDW and are a 
representative subsample17, though re-identification or any linking of clinical data is strictly 
disallowed to protect the privacy of MVP participants. Therefore, cohort building must be done in 
each dataset separately. Further, any overlap of patients and/or notes between MVP and CDW 
datasets is due to random chance and is not known to researchers. 
 
VINCI workspaces 
 
The VA Informatics and Computing Infrastructure (VINCI) is a platform where researchers can 
access clinical data from both CDW and MVP. VINCI allows researchers to analyze these data 
sources using various computational resources in a secured environment. Within VINCI, 
structured and unstructured free text data are organized in SQL tables. R and Rstudio were used 
to process text from SQL tables into “.txt” files for reading into compiled C++ software, which was 
a fork we created of the open source llama.cpp GitHub project18. Without access to a Graphics 
Processing Unit (GPU) for accelerated LLM inference, we used the standard 4-core CPUs 
available on VINCI development workspaces. 
 
VA Pathology Domain 
 
The VINCI team has created a dataset domain called the Pathology Domain, which takes full 
pathology reports and extracts certain sections based on their appropriate section headers. The 
resulting table contains columns representing each section header, with the associated text for 
each note. Our method uses the columns “Specimen”, to determine if the report described tissue 
from the colon or rectum, and “Microscopic Exam”, to extract the diagnosis. 
 
The Pathology domain is available in CDW to approved VINCI researchers. In MVP, the 
Pathology Domain data must be requested. We requested all Microscopic Exam and Specimen 
sections where Specimen had one of the following terms: "rectum", "colorectal", "rectal", "cecum", 
"colon", "hepatic flexure", "ileocecal valve", "rectosigmoid", "splenic flexure", or “colonic flexure”. 
This term search was not case-sensitive and used word boundaries to identify terms. 
 
Large Language Models 
 
The main model used is Gemma-2-9B-It-SPPO19,20, referred to herein as Gemma-2 (9 billion 
parameters). We also applied Llama-3-8B-Instruct21, referred to herein as Llama-3 (8 billion 
parameters), to all tasks/cohorts. All models used have licenses that allow commercial and 
research use, as required by VA policy. All models were run as “.gguf” files, the all-in-one file 
format used by llama.cpp18. For details, see Supplementary Information section “Large Language 
Model (LLM) selection”. 
 
Identifying colonoscopy pathology reports in the Pathology Domain and full pathology notes 
As mentioned in VA Pathology Domain, the partitioned data in the MVP pathology domain was 
filtered to only include those where the Specimen matches colon or rectum terms. In CDW, we 
apply the same terms matching: "rectum", "colorectal", "rectal", "cecum", "colon", "hepatic 
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flexure", "ileocecal valve", "rectosigmoid", or "splenic flexure". As in MVP, this term search is not 
case-sensitive. Differing slightly from MVP, we did not use word boundaries, instead using 
wildcards before and after each term. This led to a corpus of relevant notes for our study totaling 
n=2,899,321 reports from 1,834,930 unique patients in CDW and n=279,964 reports from 170,806 
unique patients in MVP. For identifying the full pathology reports, we linked the Pathology Domain 
table entry to the TIU (Text Integration Utilities) note containing the full text of the corresponding 
pathology report, where available. 
 
Tasks 
 
Our approach identified the presence or absence of the following three concepts (clinical 
conditions) on colonoscopy-associated pathology reports: any dysplasia, high-grade dysplasia 
and/or any adenocarcinoma (HGD/CRC), and invasive adenocarcinoma (CRC). Our definitions 
for each of these three concepts is as follows: 
Any dysplasia: Presence of any dysplasia in the colon or rectum explicitly stated in the report 
(e.g., low-grade, mild, moderate, high-grade etc.). Presence of any adenoma or adenomatous 
lesions in the colon or rectum, excluding sessile serrated adenoma unless there is an explicit 
statement of sessile serrated adenoma with dysplasia. The current application excludes “indefinite 
for dysplasia” and other uncertain phrases. Adenomas were counted in definition of any dysplasia 
because all adenomas contain at least low-grade dysplasia. 
HGD/CRC: Presence of HGD or any adenocarcinoma in the colon or rectum. Includes 
adenocarcinoma in-situ and intramucosal adenocarcinoma. Excludes uncertain phrases such as 
“bordering on high-grade dysplasia”. 
CRC: Presence of invasive adenocarcinoma of the colon or rectum. Invasive is defined as T stage 
of 1 or greater, or equivalent language (e.g., “invades into submucosa”). Excludes metastatic 
adenocarcinoma suspected or known to be from a different primary location (i.e. primary is not 
colon or rectum). Excludes uncertain phrases such as “cannot rule out invasive adenocarcinoma” 
and “suspicious for invasion”. 
 
CRC plausible set 
 
We then used simple search terms to reduce the number of colonoscopy pathology reports to 
only include those potentially diagnostic of CRC, where the Microscopic Exam section text 
matches “%carcinoma%”, “%tumor%”, or “%invasi%”, where “%” represents a wildcard. The 
search is not case-sensitive. The pathology reports matching this search are considered a part of 
the “plausible set” for CRC identification. The plausible set for dysplasia and HGD/CRC was 
expanded to include more search terms identifying those diagnoses. See Supplementary sections 
“HGD/CRC ascertainment” and “Dysplasia ascertainment” for details. Supplementary Table S1 
contains the numbers of reports considered for all patient cohorts and filtering steps across tasks. 
 
LLM prompt development 
 
LLMs require a ‘prompt’ to perform a given task. A ‘prompt’ is defined as the input text given to 
the model. The model then evaluates the prompt and generates additional text. The prompt we 
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provide to the model consists of some text that defines the task and the question to be answered. 
Additionally, the prompt includes the text from the pathology report or section to be evaluated. 
We developed the prompt using 48 pathology report Microscopic Exam sections where the 
Specimen section matched colon or rectum terms. These were drawn without consideration for 
the IBD diagnosis status of the patient. All 48 of these Microscopic Exam sections contained the 
term ‘carcinoma’. From manual chart review, 16 had invasive colorectal adenocarcinoma, 16 had 
high-grade dysplasia or adenocarcinoma in the colon or rectum, and 16 had neither. Some of the 
48 also had dysplasia that was not high-grade in the colon or rectum. Prompt iteration and model 
selection occurred mainly in these 48, which were excluded from all future validation sets. Minor 
changes were made iteratively to the prompts to correct any obvious errors related to the prompt 
(e.g., missing tubular adenomas before dysplasia prompt included 'any adenoma') using 
additional development sets for each task, which consisted of 818 reports for CRC, 200 reports 
for HGD/CRC, and 572 reports for any dysplasia. For details on the evolution of the prompts, see 
Supplementary Methods section “Lessons learned from applying LLMs in structured and 
unstructured pathology report data”. No a priori performance targets were applied after this 
iteration. Then for each task, the final validation sets to evaluate the LLMs excluded all reports 
previously chart reviewed that were considered part of the development sets for a given task. 
 
CRC identification using LLM 
 
For each report in the plausible set of CRC pathology reports, we feed either the Microscopic 
Exam section (or the full text pathology note) to an LLM which determines if an individual has a 
pathological diagnosis of invasive adenocarcinoma. The input text is integrated into the prompt 
as shown below: 
 
“The text provided is a pathology report, with samples originating from the colon or rectum unless 
specified otherwise. We are interested in identifying whether invasive adenocarcinoma (stage 
greater than or equal to 1) is present in *any* colon or rectal sample. Without definite invasion 
identified, conditions such as 'high-grade dysplasia', 'in-situ [adeno]carcinoma', or 'intramucosal 
[adeno]carcinoma' are not typically classified as invasive adenocarcinoma. If the sample is 
classified as having adenocarcinoma without further specification, this typically implies invasive 
adenocarcinoma. Answer yes or no to the following question, matching the format 'Answer: Yes' 
or 'Answer: No'. Then, explain your reasoning. Does the pathology report indicate that the patient 
has an invasive adenocarcinoma in any colon or rectal sample? 
<<<  
Pathology report:  
{Insert Microscopic Exam text or full-text pathology note} 
>>>  
Does the pathology report indicate that the patient has an invasive adenocarcinoma in any colon 
or rectal sample? 
Answer:” 
 
The model then responds “Yes” or “No”. This response is recorded as an output “.txt” file with the 
corresponding ID of the pathology domain entry. Llama.cpp18 is used for model inference. The 
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prompt is changed accordingly for the tasks of any dysplasia and HGD/CRC (see Supplementary 
Methods sections “HGD/CRC ascertainment” and “Dysplasia ascertainment” for details). 
 
IBD colitis and non-IBD colitis cohorts 
 
To split the cohort between patients with versus without IBD colitis, we use a modified version of 
a previously validated IBD ascertainment algorithm in VHA data22. Here we focused on identifying 
patients with IBD colitis specifically, who are at risk of colitis-associated dysplasia and colorectal 
cancer: ulcerative colitis, IBD-unclassified, and Crohn’s colitis. Our ascertainment algorithm thus 
required at least 2 ICD codes matching to ones in the following list: ICD-10 codes K51.x (excluding 
K51.4x), K50.1x, K50.8x, K52.3, ICD-9 codes 555.1x, 555.2x, 556.x. These codes must be 
present on at least 2 encounters (dates) with at least one in an outpatient setting.  
 
The non-IBD cohort comprised patients without any of the above listed ICD codes. Therefore, 
patients with only one of the above-listed ICD codes (MVP: n = 13,158; 1.44%) were excluded 
from both cohorts due to their uncertain history of IBD colitis based on ICD codes. 
 
Model validation 
 
Validation was performed independently in IBD and non-IBD populations using the same models 
and prompts. For each validation set, either N=100 (CDW) or N=150 (MVP) randomly selected 
putative positive cases and the same number of putative negative cases were selected for review. 
Putative positive (negative) cases were defined as cases where Llama-3 responded “Yes” (“No”). 
Validation was performed by a blinded single reviewer (BJ). Difficult cases were discussed at 
meetings with gastroenterologists Drs. S Shah and S Gupta. Validation was done at the level of 
the pathology report, consistent with the LLM prompt asking if the given features are present in 
any colon or rectal sample. Validation was performed independently for each of the three tasks, 
even if notes overlapped by chance in validation sets across tasks. 
 
We performed validation only in the “plausible set” of notes that passed our search term filters 
(Supplementary Table S1) and recorded run-times with CPUs (Supplementary Table S2). 
Considering the very low expected prevalence (potentially zero) outside of these filters, this 
approach provides a more informative assessment of the LLMs’ performance, as we are 
considerably more likely to include some false negative cases in our validation (see 
Supplementary methods for additional details on model validation). For testing generalizability, 
we also evaluated performance using full pathology reports as LLM prompt input, as described 
above. Note, full-text pathology reports were considered in validation analyses only and were not 
used in prompt development. 
 
Performance metrics 
 
We provide numbers of true positive, true negative, false positive and false negatives for all tasks. 
Because we use stratified sampling, selecting N model positive cases and N model negative 
cases for validation, the prevalence of model positive cases in the plausible set is required to 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 28, 2024. ; https://doi.org/10.1101/2024.11.27.24318083doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.27.24318083
http://creativecommons.org/licenses/by-nc/4.0/


calculate downstream metrics. We provide an estimate of the prevalence of cases in the reports 
from the plausible set. We calculate the sensitivity (recall), specificity, F1-score, and Matthew’s 
Correlation Coefficient (MCC) which are functions of the confusion matrix and the prevalence.  
 
Where 𝑤 = prevalence of model positives in the plausible set, we calculated 
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦	 = 	𝑃𝑃𝑉 ∗ 𝑤/(𝑃𝑃𝑉 ∗ 𝑤	 +	(1 − 𝑁𝑃𝑉) ∗ (1 − 𝑤)) 
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦	 = 	𝑁𝑃𝑉 ∗ (1 − 𝑤)/(𝑁𝑃𝑉 ∗ (1 − 𝑤) + (1 − 𝑃𝑃𝑉) ∗ 𝑤) 
𝐹1	 = 	2 ∗ 𝑃𝑃𝑉 ∗ 	𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦/(𝑃𝑃𝑉	 + 	𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) 
𝑀𝐶𝐶	 = 	%𝑃𝑃𝑉 ∗ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 ∗ 𝑁𝑃𝑉 −
%(1 − 𝑃𝑃𝑉) ∗ (1 − 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) ∗ (1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦) ∗ (1 − 𝑁𝑃𝑉)  
 
This approach helps minimize the number of cases needed for validation, especially when 
prevalence is imbalanced, and has been implemented previously23. 
 
Results 
 
We applied LLMs to extract pathologic diagnoses from text in the VA Pathology Domain (Fig. 1) 
and free-text pathology reports. We tested two LLMs (Gemma-2 and Llama-3) for each 
classification task. After prompt development, we validated our methods by comparing model 
predictions to chart review of randomly chosen sets of reports for each task (dysplasia, HGD/CRC 
and CRC) in each patient cohort (IBD and non-IBD) and dataset (MVP and CDW). 
 
Large language models extract pathologic diagnoses with high accuracy in patients with IBD 
 
In model validation using strictly distinct reports from those used for prompt development (see 
Materials and Methods), all tasks achieved excellent performance (ranges for 3 tasks: PPV = 
0.928 - 0.987, NPV = 0.961-1.00) using LLM Gemma-2 (Table 1). The F1 score, which combines 
precision and recall, was >91% in all cases. We found slightly lower performance when using 
LLM Llama-3 (Supplementary Table S3). As expected, smaller LLMs with fewer parameters were 
less accurate in the 3 tasks (Supplementary Table S4). 
 
Validation of large language model approach in non-IBD colorectal dysplasia and cancer  
 
We then applied the same approach with no changes to prompts to records from patients without 
IBD (no IBD colitis ICD code found in patient clinical history) and again achieved highly accurate 
ascertainment in all 3 tasks, as shown in Table 2. Specifically, we found that the F1 score for 
identifying dysplasia in patients without IBD was above 99% using both Gemma-2 and Llama-3 
(Table 2, Supplementary Table S3). F1 scores were slightly lower but still excellent (>98%) for 
HGD/CRC using Gemma-2. 
 
Accuracy of applying LLM methods to full text pathology report 
 
To evaluate the generalizability of our model to environments that do not contain semi-structured 
resources such as the VA Pathology Domain, we applied our LLM approach to the full pathology 
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report to evaluate performance and found excellent measures using Gemma-2 (Table 3). While 
both Gemma-2 and Llama-3 were trained with context lengths up to 8,192 tokens, and the full 
notes never exceeded these thresholds, performance decreases slightly when using Llama-3 
(Supplementary Table S3). We also found similar performance results to Gemma-2 alone when 
requiring either or both models to answer ‘Yes’ for a report to be deemed a positive case 
(Supplementary Table S5). 
 
LLM approach for general population in the context of previous NLP approaches 
 
While previous NLP approaches show excellent performance in identifying common features like 
adenoma9,10,13, few have maintained excellent performance with thorough testing of their 
approaches to identify rarer advanced features such as HGD, carcinoma in situ, and invasive 
adenocarcinoma. Additionally, few have tested approaches in differing contexts, such as differing 
geographical locations, practice types (e.g., academic vs. private practice), and compensation 
structures (e.g., salary vs. fee-for-service)15. When attempted across 4 practice sites, Carrell et 
al. report an F1-score of 95% for identifying adenoma and highlight the considerable time-
consuming challenges they encountered in adapting the NLP system15. The most comparable 
analysis in our study to previously published algorithms was the task of identifying any dysplasia 
in the non-IBD colitis cohort, where Gemma-2 had an average F1-score of 99.4% and Llama-3 
had an average F1-score of 99.6%. Published analyses in similar cohorts have similarly high F1-
scores, such as Bae et al., who report an F1 score of 99% for identifying the presence of 
“conventional adenoma”13, and Nayor et al., who report a perfect F1 score of 100% for identifying 
“adenoma”10. Supplementary Table S7 shows a comparison of performance across comparable 
tasks. 
 
Discussion 
 
We have shown that LLMs are powerful, generalizable tools for accurately extracting important 
information from clinical semi-structured and unstructured text. With validated performance also 
shown in the Million Veteran Program (MVP), we expect this approach will enable large-scale 
health research studies that can incorporate patient genomics in disease risk assessment and 
prediction. Another strength of this work is that the methods are relatively simple. While not 
explicitly tested, we expect our findings to adapt relatively easily to other pathological diagnoses, 
healthcare systems, patient populations, and time periods. No aspect of the prompt or models 
used were specific to the VA or our cohorts, and no additional model fine-tuning was performed. 
The barriers to implementation are minimal; any researcher can clone the llama.cpp18 GitHub, 
add their desired prompt, compile, and begin development. Our forked repository is available on 
GitHub for the community. Due to the ease of model implementation, with results as accurate as 
more complicated rule-based approaches, we suggest an LLM approach for many free-text 
classification tasks in biomedical research going forward.  
 
While LLMs remain computationally expensive, the size and associated compute cost of proficient 
models has reduced drastically, with the best small (9 billion parameter), open-weight model of 
today (Gemma-2-9b-it19, released June 27, 2024) generally performing better than the largest 
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proprietary models from a year prior (GPT-4-061324, released June 13, 2023)25. If such 
improvements in efficiency continue, boosted by potential advancements in the underlying 
transformer architecture26, LLMs will become more attractive in domains where the current 
computational expense makes their use unfeasible. Even without further improvements in the 
models themselves, the increasing availability of GPU and the throughput of new chip 
architectures27–29 may make current models a viable alternative to data structuring at scale. 
 
Our work has some limitations. First, we had a single reviewer validating the pathology report 
sections, although difficult cases with any questions were reviewed with two experienced 
gastroenterologists (SG, SCS). Without access to Graphical Processing Units (GPUs), we could 
not feasibly test larger models which may overcome some of the shortcomings seen in smaller 
models; this addition can be expected to increase performance above what we find herein. Finally, 
we could not rule out overlap between MVP and CDW reports, though our results in either cohort 
considered alone are sufficient validation compared to previously published work. 
 
Ongoing work includes adapting our approach to detect stage and location of cancers, identifying 
features of dysplasia (size, shape, type, location, inflammation level, etc.), and determining the 
impact of the quality of colonoscopy exams. Some tasks, such as identifying IBD sub-types and 
dates of diagnosis, may require larger models that are more capable of handling longer input text. 
Nonetheless, the general framework lends itself to many applications beyond the use cases 
analyzed here, including the potential for real-time data integration in models used to aid in shared 
decision-making (so-called medical digital twins)30.  
 
Accurate clinical data is essential for understanding trends in patient disease risk and for 
predictive models to be clinically useful. In an era of increasing opportunities for personalized 
medicine, we show that large language models offer a very useful tool for quickly and accurately 
obtaining relevant patient data to potentially inform medical decisions in real time. 
 
Code availability 
 
Llama.cpp fork will be made available at https://github.com/bdj34/llama.cpp_data_extraction, 
which includes the main inference code from llama.cpp. Our specific implementation can be 
found at https://github.com/bdj34/llama.cpp_data_extraction/tree/brian-features/examples/data-
extraction which includes all prompts and custom parameters required to reproduce our work. 
Large language models, in gguf format, used in this work are stored at 
https://huggingface.co/briandj97/models_used. 
 
Data availability 
 
A CSV (all_results.csv) with results from all validated runs, including additional details such as 
prevalence of model positives, exact numbers validated, and the full confusion matrix, will be 
available in the supplementary information. This CSV is the source for all three main text tables 
and Supplementary Tables S3-S5. Raw data access is reserved for VA investigators with 
appropriate research approvals.  
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Figure 1. Workflow for extracting diagnoses from electronic health data. A: The Pathology 
Domain sections were used for simple term filtering designed to reduce the total number of reports 
fed to the LLM, while still capturing all pathology reports with possible diagnoses. Then the 
Microscopic Exam section of the report (or the full pathology report) is integrated into a prompt 
fed to the LLMs. A partial prompt is shown in the figure for illustrative purposes, and the full 
prompts are available in Materials and Methods and Supplementary Information. The LLM 
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answers (“Yes” or “No”) are converted to structured data, which can be used for downstream 
applications, such as estimating a stratified risk of CRC based on colonoscopy findings. B: 
Diagnoses to be obtained by 3 prompts utilized in this study. By applying each of the three 
prompts, the most advanced diagnosis can be stratified into each of the following four buckets: 
no dysplasia or adenocarcinoma, low-grade dysplasia, high-grade dysplasia OR intramucosal 
adenocarcinoma OR carcinoma in-situ, and invasive adenocarcinoma. HGD/CRC = High-grade 
dysplasia or adenocarcinoma; CRC = Colorectal cancer (invasive colorectal adenocarcinoma); 
Path = Pathology. 
 
Tables 
 

 
 
Table 1:  Validation results for IBD patients in MVP and CDW using Gemma-2. Performance 
in the validation set for IBD cohort. 95% confidence intervals for PPV and NPV are calculated 
using a binomial distribution. Green shading progression with lower value = 0.9 and upper value 
= 1. CRC = Colorectal cancer (invasive colorectal adenocarcinoma); HGD/CRC = High-grade 
dysplasia or adenocarcinoma; IBD = Inflammatory bowel disease; PPV = Positive predictive 
value; NPV = Negative predictive value; LB = Lower bound; UB = Upper bound; MCC = Matthew’s 
correlation coefficient. 
 
 

 
 
Table 2: Validation results for non-IBD colitis patients in MVP and CDW using Gemma-2. 
Performance in the validation set for non-IBD cohort. 95% confidence intervals for PPV and NPV 
are calculated using a binomial distribution. Green shading done in Excel with lower value = 0.9 
and upper value = 1. CRC = Colorectal cancer (invasive colorectal adenocarcinoma); HGD/CRC 

Task Source PPV (LB - UB) NPV (LB - UB)
Recall 

(Sensitivity) Specificity F1 MCC
CRC MVP 0.962  (0.92-0.99) 0.993  (0.96-1.00) 0.980 0.987 0.971 0.961
CRC CDW 0.928  (0.86-0.97) 0.961  (0.90-0.99) 0.896 0.974 0.912 0.879

HGD/CRC MVP 0.961  (0.92-0.99) 0.993  (0.96-1.00) 0.968 0.992 0.964 0.957
HGD/CRC CDW 0.960  (0.90-0.99) 1.000  (0.96-1.00) 1.000 0.989 0.980 0.975

Dysplasia MVP 0.987  (0.95-1.00) 0.987  (0.95-1.00) 0.956 0.996 0.971 0.963
Dysplasia CDW 0.980  (0.93-1.00) 1.000  (0.96-1.00) 1.000 0.991 0.990 0.985

Task Source PPV (LB - UB) NPV (LB - UB)
Recall 

(Sensitivity) Specificity F1 MCC
CRC MVP 0.968  (0.93-0.99) 0.952  (0.90-0.98) 0.957 0.964 0.962 0.920
CRC CDW 0.941  (0.88-0.98) 0.959  (0.90-0.99) 0.962 0.937 0.952 0.900

HGD/CRC MVP 0.981  (0.95-1.00) 0.993  (0.96-1.00) 0.984 0.992 0.982 0.975
HGD/CRC CDW 0.990  (0.95-1.00) 0.990  (0.94-1.00) 0.985 0.993 0.988 0.979

Dysplasia MVP 0.987  (0.95-1.00) 0.993  (0.96-1.00) 0.999 0.899 0.993 0.938
Dysplasia CDW 0.990  (0.95-1.00) 0.990  (0.94-1.00) 0.998 0.938 0.994 0.958



= High grade dysplasia or adenocarcinoma; IBD = Inflammatory bowel disease; PPV = Positive 
predictive value; NPV = Negative predictive value; LB = Lower bound; UB = Upper bound; MCC 
= Matthew’s correlation coefficient. 
 
 

 
 
Table 3: Validation results using full pathology report in IBD population in MVP. Comparison 
of Microscopic Exam section (these rows are repeated from Table 1) and full pathology report as 
input to LLM. Full pathology reports evaluated by LLMs in all cases where the Pathology Domain 
entry had a matching full note. There were many instances where the full note was not available, 
for reasons we do not know. As such, the number validated for the full pathology report is less 
than the number validated for “Microscopic exam”. All analyses still had > 100 model positive and 
model negative cases validated. See Supplementary Table S6 for details on pathology report 
numbers. Green shading done in Excel with lower value = 0.9 and upper value = 1. CRC = 
Colorectal cancer (invasive colorectal adenocarcinoma); HGD/CRC = High grade dysplasia or 
adenocarcinoma; PPV = Positive predictive value; NPV = Negative predictive value; LB = Lower 
bound; UB = Upper bound; MCC = Matthew’s correlation coefficient. 
 
 
 
 
 
 
 
 
 
 
 

Task Input type PPV (LB - UB) NPV (LB - UB)
Recall 

(Sensitivity) Specificity F1 MCC
CRC Microscopic exam 0.962  (0.92-0.99) 0.993  (0.96-1.00) 0.980 0.987 0.971 0.961
CRC Full pathology report 0.903  (0.84-0.95) 1.000  (0.96-1.00) 1.000 0.968 0.949 0.935

HGD/CRC Microscopic exam 0.961  (0.92-0.99) 0.993  (0.96-1.00) 0.968 0.992 0.964 0.957
HGD/CRC Full pathology report 0.917  (0.85-0.96) 0.991  (0.95-1.00) 0.958 0.983 0.937 0.924

Dysplasia Microscopic exam 0.987  (0.95-1.00) 0.987  (0.95-1.00) 0.956 0.996 0.971 0.963
Dysplasia Full pathology report 0.992  (0.95-1.00) 0.992  (0.95-1.00) 0.973 0.997 0.982 0.977


