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Abstract 8 

Background: Handgrip strength (HGS) is a significant biomarker for overall health, offering a simple, 9 

cost-effective method for assessing muscle function. Lower HGS is linked to higher mortality, 10 

functional decline, cognitive impairments, and chronic diseases. Considering the influence of 11 

anthropometrics and demographics on HGS, this study aims to develop a corrected HGS score using 12 

machine learning (ML) models to enhance its utility in understanding brain health and disease. 13 

Methods: Using UK Biobank data, sex-specific ML models were developed to predict HGS based on 14 

three anthropometric variables and age. A novel biomarker, ∆𝐻𝐺𝑆, was introduced as the difference 15 

between true HGS (i.e., directly measured HGS) and bias-free predicted HGS. The neural basis of true 16 

HGS and ∆𝐻𝐺𝑆 was investigated by correlating them to regional gray matter volume (GMV). Statistical 17 

analyses were performed to test their sensitivity to longitudinal changes in stroke and major depressive 18 

disorder (MDD) patients compared to matched healthy controls (HC). 19 

Results: HGS could be accurately predicted using anthropometric and demographic features, with linear 20 

support vector machine (SVM) demonstrating high accuracy. Compared to true HGS, ∆𝐻𝐺𝑆 showed 21 

high reassessment reliability and stronger, widespread associations with GMV, especially in motor-22 

related regions. Longitudinal analysis revealed that neither HGS nor ∆𝐻𝐺𝑆 effectively differentiated 23 

patients from matched HC at post time-point. 24 

Conclusion: The proposed ∆𝐻𝐺𝑆 score exhibited stronger correlations with GMV compared to true 25 

HGS, suggesting it better represents the relationship between muscle strength and brain structure. While 26 

not effective in differentiating patients from HC at post time-point, the increase in ∆𝐻𝐺𝑆 from pre to 27 

post time-points in patient cohorts may indicate improved utility for monitoring disease progression, 28 

treatment efficacy, or rehabilitation effects, warranting further longitudinal validation. 29 

Keywords: machine learning, handgrip strength, stroke, depression, UK Biobank, structural MRI 30 
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 32 

Background 33 

Handgrip strength (HGS) is broadly recognized as a reliable and non-invasive biomarker of overall 34 

health. It is typically measured isometrically using a hydraulic hand dynamometer, an instrument that 35 

shows good reassessment reliability [1,2]. This measurement involves participants squeezing the 36 

dynamometer with maximum effort without any hand or arm movement, thus measuring the isometric 37 

grip force. Direct measured HGS offers several advantages, including low cost, ease of administration, 38 

and a strong predictive value for various health outcomes [1,3–6]. Beyond, HGS is related to the grey 39 

matter volume (GMV) of the brain, which in turn has been used as a marker for neuropathological 40 

changes in neurodegenerative and psychiatric diseases. GMV has also been associated with protective 41 

factors such as muscular strength [1]. Lower GMV is associated with lower HGS [7]. On the other hand, 42 

stronger HGS is associated with higher GMV in a wide array of brain regions like the ventral striatum, 43 

hippocampus, thalamus, pallidum, putamen, brain stem, temporal pole, and parahippocampal gyrus [1]. 44 

Through its associations with physical capabilities and with structural brain integrity, HGS offers 45 

insights into the neurobiological mechanisms related to muscle strength [1]. This relationship, however, 46 
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is influenced by genetics, physical fitness, mental health as well as anthropometrics, and demographic 47 

characteristics, emphasizing the need for a comprehensive examination of these associations [1]. 48 

HGS serves as a marker of overall health because it can be affected through different mechanisms. 49 

Lower HGS in older adults is associated with adverse health outcomes, such as increased mortality risk, 50 

diminished functional mobility, cognitive impairments, and a range of health issues, including 51 

metabolic diseases like diabetes, and neurological conditions including stroke and major depressive 52 

disorder (MDD) [8–10]. Moreover, reduced HGS is not only linked to higher disease recovery times 53 

[11] but also functions as a valuable biomarker for assessing recovery and prognosis in stroke patients, 54 

with evidence linking a decrease in HGS after stroke (post-stroke) compared to before stroke (pre-55 

stroke) levels [12,13]. These attributes have established HGS as an indicator of muscle strength and 56 

general health in clinical settings [1,8,11,14]. While understanding longitudinal changes in HGS in 57 

patients can help risk assessment and improve monitoring, to date it remains understudied due to lack 58 

of longitudinal data. 59 

Anthropometric factors such as height, body mass index (BMI), and waist-to-hip ratio (WHR) are 60 

directly linked to HGS [15–20]. For instance, BMI and height correlate positively with greater strength 61 

[17,19]. Conversely, WHR, which reflects the proportion of abdominal fat relative to hip circumference, 62 

often exhibits an inverse relationship with HGS. Greater abdominal fat relative to hip size is frequently 63 

associated with lower HGS [18]. Age is another critical factor affecting HGS. Generally, HGS increases 64 

during childhood and adolescence, peaks in early adulthood, and then declines with higher age, 65 

particularly after 40. This decline is often more pronounced in older adults, especially those over 75, 66 

where the rate of decrease accelerates [16]. The aging process results in progressive muscle loss, further 67 

impacting HGS [16], [21]. Sex differences also contribute significantly to variations in HGS [22,23], 68 

influencing both baseline strength levels and decline patterns. Males and females exhibit distinct 69 

patterns in disease progression and anthropometric measurements, necessitating sex-specific 70 

considerations in clinical and research settings [24]. The interpretation of HGS is thus most meaningful 71 

when normalized to anthropometric and demographic factors, rather than relying on raw measured 72 

values. Relative HGS, which accounts for these variables, may offer a more precise assessment of an 73 

individual’s neuromuscular deficit and its relationship with brain structure and diseases, potentially 74 

improving its utility as a health indicator [8,11,12,25]. In particular, a refined HGS interpretation can 75 

open up new possibilities for early disease detection, monitoring treatment efficacy, guiding recovery 76 

processes, and predicting long-term health outcomes across various conditions. 77 

Machine learning (ML) based predictive modelling offers individual-level predictions, establishing 78 

ML as a transformative tool in modern clinical practice [20,26]. ML can be used to predict HGS using 79 

anthropometric and demographic features. This predicted HGS captures the variance explained by the 80 

features and thus can be used to develop a relative HGS score. In this study, we tested the hypothesis 81 

that the difference between true HGS and predicted HGS can serve as a biomarker for muscular strength 82 

relating to the structural integrity of the brain and disease-related changes. Using data from the UK 83 

Biobank (UKB), we developed sex-specific ML models to predict HGS using anthropometrics and 84 

demographic variables in healthy individuals. We applied statistical bias-correction techniques to 85 

enhance prediction accuracy and introduced a novel score called ∆𝐻𝐺𝑆, defined as the difference 86 

between the true HGS and bias-free predicted HGS. We then investigated the brain basis ∆𝐻𝐺𝑆 based 87 

on correlation with regional GMV followed by the investigation of its sensitivity to longitudinal changes 88 

in patient cohorts from two diseases known to influence HGS: stroke and MDD. The key innovation 89 

lies in our longitudinal design, capturing HGS scores at two time points: before (pre) and after (post) 90 

disease onset. This approach enabled us to examine how ∆𝐻𝐺𝑆 and true HGS change over time in 91 

patients compared to healthy controls (HC) groups. 92 

 93 
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All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted November 29, 2024. ; https://doi.org/10.1101/2024.11.27.24318057doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.27.24318057


 3 

Methods 95 

Participants and data 96 

We used data from the UK Biobank database with more than half a million adult participants recruited 97 

from a total of 22 assessment centers across the United Kingdom (UK) with baseline assessment 98 

between 2006 and 2010. The baseline assessment included a wide range of demographic data, physical 99 

measurements, clinical and health-related information, and the completion of a touchscreen 100 

questionnaire [27,28]. A subset of participants was invited back in 2012-2013 for the first repeat 101 

assessment. During this repeat visit, additional data were collected, although no brain imaging data were 102 

collected at either the baseline or the first repeat assessment. Starting in 2014, a subsample was invited 103 

to assessment centers for brain imaging, with follow-up imaging assessments beginning in 2019. In this 104 

study, participants were categorized into three groups: healthy controls (HC) and two patient cohorts: 105 

stroke and MDD. Group definitions were established using inclusion and exclusion criteria based on 106 

the International Classification of Diseases, 10th revision (ICD-10) coding system. We required that all 107 

anthropometrics, demographics, and HGS be complete for each participant in the final study sample to 108 

ensure no missing values (Fig. 1). 109 

 110 

 111 

 112 

Fig. 1 The ML analysis pipeline used to predict HGS and analyze its associations with neurobiological markers and disease-related 113 

impairments in this study. For data preparation anthropometric (BMI, height, and waist-to-hip ratio) and demographic (age) variables were 114 

obtained from the UK Biobank database. These variables (predictors) were used to train sex-specific ML models, specifically linear SVM 115 

and random forest (RF), to predict HGS. The pipeline includes steps for preprocessing, model training, performance evaluation through 116 

cross-validation, and the application of statistical bias-correction techniques to enhance prediction accuracy. The true HGS and ∆𝐻𝐺𝑆 117 

(true HGS – 𝐻𝐺�̂�𝑐; see the “Model training and performance evaluation” section) scores are then assessed for their correlation with 118 

neurobiological markers, such as gray matter volume (GMV), and their effectiveness in distinguishing between HC and patients with 119 

stroke and MDD. 120 

 121 
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Table 1 Definition of the study populations based on ICD-10 criteria for HC, stroke, and MDD 123 

Populations Excluded ICD-10 criteria Included ICD-10 criteria 

Healthy controls (HC) Mental and behavioural disorders: F - 

Diseases of the nervous system: G 
 

Cerebrovascular diseases: I60-I69 
 

Diseases of the musculoskeletal system and connective tissue: M 
 

Injury, poisoning, and certain other consequences of external causes: S 
 

Stroke Mental and behavioural disorders: F Ischemic: I63 

Diseases of the nervous system: G00-G14, G20-G26, G30-G32, 

                                                    G35-G37, G54-G59, G60- G61,  

                                                    G70-G73, G80-G83, G91-G99 

Intracerebral haemorrhage: I61 

Diseases of the musculoskeletal system and connective tissue: M 
 

Injury, poisoning, and certain other consequences of external causes: S 
 

Major depressive disorder (MDD) Mental and behavioural disorders: F00-F31, F34-F48, F50-F99 Depressive episode: F32 

Diseases of the nervous system: G Recurrent depressive disorder: F33 

Cerebrovascular diseases: I60-I69 
 

Diseases of the musculoskeletal system and connective tissue: M 

Injury, poisoning, and certain other consequences of external causes: S 
 

 124 

 125 

Healthy controls 126 

The HC population was obtained by excluding participants with a known history or current diagnosis 127 

of mental and behavioral, psychiatric, nervous system, neurological, cardiovascular, cerebrovascular, 128 

musculoskeletal system, connective tissue conditions, injuries or poisoning diseases as outlined in the 129 

ICD-10 codes (Table 1). The HC participants were divided into two groups: 1) participants who did not 130 

undergo brain imaging assessments (non-imaging data, 𝑁 = 201,133) and 2) participants who 131 

participated in at least one brain imaging assessment out of the two available imaging assessments (HC 132 

with imaging data, 𝑁 = 32,125). Individuals with non-imaging data were used to train and evaluate ML 133 

models. The HC individuals with imaging data were employed both in assessing the association between  134 

HGS and GMV as well as for matched HC comparisons with patient cohorts (Additional file 1: Figure 135 

S1). 136 

 137 

 138 

Patient cohorts 139 

First, participants with conditions of the musculoskeletal system, connective tissue, or injury were 140 

excluded from all patient sample groups (Table 1). The outcomes of incident stroke were defined 141 

according to the “algorithmically-defined outcomes (ADOs)” (UKB Resource 460) developed by the 142 

UKB team [29]. The algorithm integrated information from UKB’s baseline assessment data collection 143 

along with linkage data, including hospital admissions, diagnoses and procedures, death register 144 

records, and self-reported medical condition codes reported at the baseline assessment visit. The 145 

incident MDD outcome was obtained from “the first occurrence of health outcomes defined by 3-146 

character ICD-10 code” algorithm (UKB Resource 593) [30,31]. The UK Biobank indicated the first 147 

occurrence of a set of diagnostic codes for a wide range of health outcomes across self-report, primary 148 

care, hospital inpatient data, and death data, mapped to a 3-digit ICD-10 code. To establish patient 149 

cohorts, we included stroke endpoints comprised of ischemic stroke (I63) or intracerebral hemorrhagic 150 

stroke (I61), and MDD depressive episode (F32) or recurrent depressive disorder (F33). The onset dates 151 

for the diagnoses of two diseases were identified using the first occurrence fields: stroke (Data-Field 152 

42006), and MDD (Data-Fields 130894 and 130896). To ensure diagnostic accuracy, cases based solely 153 

on self-reported data were excluded from the analysis. Patients with a history of diseases prior to their 154 

baseline assessment visit were excluded to ensure that the analysis focuses on incident cases. Additional 155 

exclusion criteria were applied to each patient group, including missing dates of disease onset, missing 156 

data, and relevant HGS conditions (see the “Handgrip strength assessment” section). After applying 157 

exclusion criteria, we identified disease cohorts consisting of patients with longitudinal data who 158 
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completed assessments at two time-points: (1) an initial assessment visit prior to the onset of the disease 159 

(pre time-point), and (2) the first follow-up assessment visit after disease onset (post time-point). The 160 

final patient cohorts comprised: 40 males and 16 females in the stroke group (1 female patient 161 

hemorrhagic and all others ischemic), and 37 males and 60 females in the MDD group. These cohorts 162 

provided longitudinal data for analysis of HGS changes concerning disease onset. 163 

 164 

 165 

Handgrip strength assessment 166 

HGS was measured isometrically using a calibrated Jamar J00105 hydraulic hand dynamometer 167 

(Lafayette Instrument Company, USA), which was monitored by a research assistant. During the HGS 168 

measurement, participants were told to sit upright in a chair with their forearms resting on armrests 169 

pointing forward and their elbows bent and locked at a 90° angle. The maximum HGS value was 170 

obtained from each hand while participants were instructed to squeeze the handle as hard as possible 171 

for approximately 3 seconds. Both hands were measured consecutively (Data-Field 46 for the left and 172 

Data-Field 47 for the right hand). Participants whose dominant HGS < 4 kg or lower than their non-173 

dominant HGS were eliminated from further analysis [1,32]. Hand dominance was based on self-174 

report. If information on handedness was not available or if the individual reported using both hands 175 

(ambidextrous) we based dominance on the highest HGS score obtained from either right or left hand. 176 

In this study, our target of interest was combined HGS (which we refer to simply as HGS), calculated 177 

as the sum of the grip strength measurements from the right and left hands. While measuring HGS in 178 

each hand separately can reveal unilateral deficiencies, assessing combined HGS provides a 179 

comprehensive measure of overall hand strength. In clinical settings, assessing the strength of both 180 

hands offers a robust measure of overall strength and helps identify unilateral weaknesses or conditions 181 

affecting one side of the body that may be overlooked with single-hand testing, especially for conditions 182 

like stroke or localized musculoskeletal disorders [33]. This approach is particularly relevant when 183 

considering the 10% rule, which states that the dominant hand typically has a 10% greater grip strength 184 

than the non-dominant hand, primarily applies to right-handed individuals, who make up more than 185 

90% of both male and female participants in this study. In contrast, for left-handed individuals, grip 186 

strength tends to be more balanced between both hands [34]. Therefore, combined HGS offers a more 187 

equitable assessment for left-handed individuals, as it eliminates the need for adjustments based on hand 188 

dominance. Note that for lateralized motor deficits as encountered in stroke, the combined HGS score 189 

will also be reduced. 190 

 191 

 192 

Demographic and Anthropometric assessments 193 

Participants’ sex was determined from self-reported information (Data-Field 31). Age was calculated 194 

based on the date of the baseline assessment attendance and the participant’s birth date. Anthropometric 195 

data were obtained during the physical measures phase of each assessment visit. Height (Data-Field 50) 196 

was directly measured, while BMI (Data-Field 21001) was calculated using weight and height data 197 

(kg/m²). WHR was determined by dividing waist circumference (Data-Field 48) by hip circumference 198 

(Data-Field 49). 199 

 200 

 201 

ML analysis 202 

Data preparation 203 

Data from non-imaging HC participants who only attended the baseline assessment was used to train 204 

and evaluate ML models. Age and anthropometric (i.e., BMI, height, and WHR) characteristics were 205 

considered as predictors in our models. To avoid overfitting and base decisions on the most promising 206 

models, we split the HC data into training (90%), and test datasets (10%). The splits were stratified 207 

based on binned age (into 5 bins), HGS (into 5 bins), and sex to keep splits representative of the whole 208 
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 6 

population. After excluding cases with missing data and relevant HGS conditions (see the “Handgrip 209 

strength assessment” section) from each dataset, the final HC data included 61,816 males (43.32%) and 210 

80,886 females (56.68%) in the training set, and 6,938 males (43.62%) and 8,969 females (56.38%) in 211 

the test set (Table 2, Fig. 1, and Additional file 1: Figure S1). 212 

 213 

 214 

Table 2 Summary of the HC non-imaging population characteristics 215 

 HC non-brain-imaging at baseline assessment visit 

Dataset Train dataset  Test dataset 

Sex Both sex Female Male  Both sex Female Male 

Number 142,702 80,886 61,816  15,907 8,969 6,938 

Age, mean (SD) 55.46 (8.12) 55.24 (7.99) 55.75 (8.27)  55.54 (8.13) 55.28 (8.01) 55.87 (8.26) 

BMI, mean (SD) 26.76 (4.42) 26.35 (4.74) 27.29 (3.91)  26.74 (4.35)  26.29 (4.63) 27.33 (3.89) 

Height, mean (SD) 168.46 (9.21) 162.76 (6.27) 175.93 (6.79)  168.47 (9.24) 162.69 (6.24) 175.95 (6.8) 

WHR, mean (SD) 0.86 (0.09) 0.81 (0.07) 0.93 (0.06)  0.86 (0.09) 0.81 (0.07) 0.93 (0.06) 
Combined HGS, mean (SD) 62.50 (21.27) 48.65 (11.68) 80.62 (16.92)  62.56 (21.25) 48.69 (11.69) 80.48 (16.99) 

Right dominant hand 90.34% 91.93% 88.26%  90.16% 91.6% 88.3% 

 216 

 217 

Model training and performance evaluation 218 

We utilized the non-imaging HC training dataset (61,816 males and 80,886 females) to train sex-specific 219 

ML models for HGS prediction using the anthropometrics and age features. To prevent sex bias and 220 

given known sex differences in HGS, and anthropometric features, models were trained separately for 221 

males and females. We employed linear support vector machine (SVM) and random forest (RF) 222 

regression models. Our motivation for including a nonlinear predictive model (RF) besides the linear 223 

SVM in our analysis was based on the fact that a non-linear relationship between age and HGS has been 224 

already documented [11,20]. Specifically, HGS generally increases until approximately ages 30 to 40, 225 

after which it begins to decline, and non-linear models are needed to capture such association [35]. 226 

Pearson’s correlation coefficient (𝑟), the coefficient of determination (𝑅2) and mean absolute error 227 

(𝑀𝐴𝐸) were used to compare model performance. To obtain generalization estimates, we performed 10 228 

times repeated 10-fold (10×10-fold) cross-validation (CV) using the Julearn machine learning library 229 

version 0.2.7 (https://juaml.github.io/julearn/) [36], building on top of the scikit-learn library [37]. The 230 

hyperparameter 𝐶 for the linear SVM was calculated using a heuristic as 𝐶 = 1
1

𝑛
∑ √∑ 𝑥𝑖𝑗

2
𝑗𝑖  ⁄  where 𝑛 231 

is the number of subjects [38]. As an alternative, we also trained a RF regression model using the Scikit-232 

Learn (sklearn) Python package version 1.2.1, with 100 trees, a minimum of 2 samples per split, the 233 

square root (sqrt) of the total number of features as the maximum number of features considered for the 234 

best split, and bootstrapping of the training samples (true) as the hyperparameters (defaults in this 235 

version of sklearn).  236 

In the first step, we performed a scaling study by comparing the prediction performances of both the 237 

linear SVM and RF models across six levels of sample sizes (10, 20, 40, 60, 80, and 100%) generated 238 

by randomly selecting the required number of sampling data from the training dataset to perform the 239 

CV procedure. Comparing model performances across different sample sizes help evaluate model 240 

stability and reliability by revealing how performance changes with increasing amounts of data. The 241 

model with higher performance was selected for further analysis. Feature importance (FI) scores for 242 

each model were derived to quantify the influence of individual feature variables on model outputs. For 243 

the linear SVM model, we used the coefficient parameter (.coef_) as the FI scores. 244 

In the second step, we validated the models trained using the whole training data (90% of HC), by 245 

comparing the true HGS and predicted HGS (𝐻𝐺�̂�) values on the 10% hold-out test set. This step is 246 

crucial for determining how well the trained models perform and identifying any inherent biases or 247 

errors in the prediction process. To this end, we calculated the difference between the true HGS and the 248 

𝐻𝐺�̂� (i.e., 𝛥𝐻𝐺�̂� = 𝑡𝑟𝑢𝑒 𝐻𝐺𝑆 − 𝐻𝐺�̂�). A positive 𝛥𝐻𝐺�̂� indicates that the individual is stronger than 249 

expected, while a negative value suggests weaker than expected strength. However, assessing an 250 
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individual’s strength using this difference is highly dependent on the accuracy of the HGS prediction 251 

model. Prediction frameworks often encounter bias, characterized by overestimation of low values and 252 

underestimation of high values in the target variable. Such a bias can compromise model accuracy and 253 

impair the interpretability of predictions on new data [39]. To address this issue and enhance model 254 

performance, we implemented a statistical bias-correction technique, adjusting HGS predictions to align 255 

more closely with the true HGS distribution. We applied the bias-correction method developed by 256 

Beheshti et al. for brain age prediction, given its demonstrated effectiveness in reducing variance [40]. 257 

The correction is employed by means of a linear regression model between true HGS and the 𝛥𝐻𝐺�̂�. 258 

We fitted this model using the predictions from out-of-sample validation sets generated through a 10-259 

fold CV on the training set and calculated the slope (α) and intercept (β) which are used to correct the 260 

predictions to achieve a bias-free HGS value of predicted HGS (𝐻𝐺�̂�𝑐). 261 

𝐻𝐺�̂�𝑐 =  𝐻𝐺�̂�  + (∝ ×  𝑡𝑟𝑢𝑒 𝐻𝐺𝑆 +  𝛽) (1) 

Like the prediction models, the bias correction models were trained separately for females and males. 262 

Finally, this 𝐻𝐺�̂�𝑐 was subtracted from true HGS: 263 

∆𝐻𝐺𝑆 =  𝑡𝑟𝑢𝑒 𝐻𝐺𝑆 − 𝐻𝐺�̂�𝑐 (2) 

  264 

 265 

Reassessment reliability 266 

We then assessed the agreement between ∆𝐻𝐺𝑆 values by using the reassessment reliability process in 267 

the subset of HC test dataset. To evaluate the reliability of the selected sex-specific trained models, we 268 

selected participants from the test dataset for which two non-imaging UKB assessment visit sessions 269 

were available: (1) baseline assessment visit as the initial measurement, and (2) first repeat assessment 270 

visit (after 2-7 years) as the reassessment, resulting in 134 males and 162 females for this analysis 271 

(Additional file 1: Table S2). The concordance correlation coefficient (CCC) [41] between ∆𝐻𝐺𝑆 from 272 

the two assessment visit sessions was calculated. This reassessment reliability analysis was designed to 273 

assess potential changes in relative HGS over time, considering their new age and possible health 274 

changes. The analysis reflects both the stability of scores and their sensitivity to genuine changes in 275 

participant conditions over time, which are crucial factors for interpreting the reliability of outcomes. 276 

 277 

 278 

Association between brain structure and HGS scores 279 

Imaging data and preprocessing 280 

We investigated the neurobiological basis of the HGS scores and their association with GMV. For this, 281 

we utilized MRI data from the UKB’s first imaging assessment visit [42], acquired using 3T scanners 282 

following the protocol and acquisition parameters detailed in Miller et al. [43]. The structural 283 

preprocessing of these images was conducted using pipelines developed and executed by the UKB [44]. 284 

Specifically, we analyzed the extracted parcel-wise GMV features from T1-weighted (T1w) 285 

preprocessed images. The initial preprocessing of the MRI data involved retrieving T1-weighted 286 

preprocessed images from the UK Biobank, which were then converted into a DataLad dataset for 287 

provenance tracking [45]. Subsequently, voxel-based morphometry was computed using the 288 

Computational Anatomy Toolbox (CAT) version 12.7 resulting in images normalized to the MNI152 289 

space with a 1.5 mm isotropic resolution [46]. The parcel-wise GMV was extracted as the winsorized 290 

mean (with limits set at 10%) of the voxel-wise values per parcel, combining three different brain 291 

atlases: the Schaefer et al. cortical atlas (1000-parcel) [47], the S4 3T version of Tian et al. Melbourne 292 

subcortical atlas (54-parcel) [48], and the cerebellum SUIT Diedrichsen et al. atlas (34-parcel) [49]. The 293 

result was a feature vector containing the parcellated GMV of 1,088 brain regions of interest (ROI) for 294 

each participant. To accommodate for individual differences in total intracranial volume (TIV), we 295 

linearly regressed it out from each brain region. For this analysis, we used a subset of HC participants 296 

who completed the initial imaging visit with 11,077 males and 12,849 females (Additional file 1: Table 297 
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S1). The final samples were reduced to 7,726 males and 9,292 females based on the availability of all 298 

1,088 GMV features.  299 

 300 

 301 

Correlation analysis 302 

We investigated the correlation between the GMV of 1,088 regions separately for true HGS and ∆𝐻𝐺𝑆. 303 

The ∆𝐻𝐺𝑆 values were obtained using the best-performing separate linear SVM models for males and 304 

females (see the “Model training and performance evaluation” section). Pearson’s 𝑟 and corresponding 305 

p-values were computed. To focus on robust associations, we applied a correlation threshold of |𝑟| > 306 

0.1 (the absolute values of correlation coefficients exceeding 0.1) together with correcting 𝑝-values 307 

using the Bonferroni correction with significance determined at 𝑝𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 < 0.05. Separate analyses 308 

were conducted for female and male participants to identify regions significantly associated with each 309 

HGS score. The correlation coefficients for these significant regions were visualized on brain maps for 310 

each sex individually. Additionally, the intersection of the regions showing significance for both sexes 311 

were visualized using averaged correlation coefficients.  312 

 313 

 314 

Evaluation of pre-to-post disease longitudinal HGS changes 315 

Data preparation 316 

We identified patient cohorts with longitudinal data from pre (prior to the disease onset) and post 317 

(follow-up the disease onset) time-points. The ∆𝐻𝐺𝑆 score could provide insights into disease-specific 318 

variation in HGS between pre and post time-points on longitudinal cases. To investigate this, patients 319 

with diseases were compared with matched HC samples using a 1:10 (case:control) ratio, ensuring 320 

robust comparative analyses. The matching process entailed selecting HC individuals whose assessment 321 

visit sessions at both pre and post time points coincided with those of the patients, thereby maintaining 322 

temporal consistency.  323 

The final patient cohorts consisted of 40 males and 16 females with stroke, and 37 males and 60 324 

females with MDD (see the “Patient cohorts” section). Matched HCs were selected from the pool of 325 

HC participants who had undergone brain imaging assessment visits and were not used in model training 326 

(15,516 males and 16,609 females). Further refinement of subsamples involved excluding data with 327 

missing values and additional HGS conditions (see the “Handgrip strength assessment” section). The 328 

final number of HC participants included in the matching process for each assessment was as follows: 329 

baseline (11,918 male and 13,714 female), first repeat (1,884 male and 2,013 female), imaging visit 330 

(11,077 male and 12,849 female), and first repeat imaging (1,153 males and 1,359 females). These 331 

refined HC cohorts enabled comprehensive comparisons with patient cohorts across multiple 332 

assessment time points. The HC subsample used in the matched control-case study, categorized by 333 

assessment visit, is detailed in Additional file 1: Table S1. Propensity score matching (PSM) was applied 334 

using a 1:10 nearest-neighbor approach to select HC samples for each patient within each disease cohort 335 

[50]. This method involved matching each patient with 10 HC participants who had similar propensity 336 

scores, taking into account age, anthropometric features at the pre time-point, and the time interval 337 

between pre- and post- assessment visits (days). Finally, post time-point data were identified for each 338 

HC participant to maintain subject consistency between pre and post time-points. This approach ensured 339 

the availability of longitudinal data in the matched HC group, enabling a robust temporal comparison 340 

with the patient cohorts. The matching process was conducted without replacement, ensuring that each 341 

HC individual could be selected as a match only once per patient group (an overlap was allowed of HC 342 

for the different patient samples, i.e., overlaps of HC for stroke and HC for MDD). The characteristics 343 

of the matched HC samples and patients summarized in Table 3. 344 

 345 

 346 
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Table 3 Characteristics of matched healthy controls (HC) and patients 347 

Sex Male  Female 

Group Patient  Matched HC  Patient  Matched HC 

Time-point Pre Post  Pre Post  Pre Post  Pre Post 

Stroke            

Number 40 40 400 400  16 16  160 160 

Age, mean (SD) 59.65 (6.79) 68.91 (7.95) 59.31 (6.86) 68.24 (7.34)  61.72 (5.08) 71.21 (6.91)  61.29 (5.84) 71.01 (7.34) 

BMI, mean (SD) 26.7 (3.23) 25.85 (3.32) 26.68 (3.79) 26.53 (4.02)  26.37 (5.26) 26.7 (5.36)  26.68 (4.71) 26.36 (4.79) 

Height, mean (SD) 177.22 (7.23) 176.44 (7.19) 177.34 (6.35) 176.71 (6.51)  162.39 (7.43) 161.3 (7.02)  162.32 (5.89) 161.34 (6.05) 

WHR, mean (SD) 0.94 (0.06) 0.94 (0.06) 0.94 (0.06) 0.94 (0.06)  0.82 (0.1) 0.84 (0.1)  0.82 (0.07) 0.84 (0.07) 

Combined HGS, mean (SD) 77.55 (16.45) 70.75 (12.9) 80.79 (15.83) 68.84 (16.57)  44.31 (13.03) 44.12 (12.85)  47.08 (11.08) 42.34 (11.4) 

Right dominant hand (%) 37 (92.5%) 37 (92.5 %) 359 (89.75%) 359 (89.75%)  16 (100%) 16 (100%)  154 (96.25 %) 154 (96.25 %) 

Time to/from disease onset, mean (SD) -5.14 (2.87) 4.12 (3.28)    -5.71 (3.57) 3.79 (3.13)    

Time elapsed pre- to post- (years) 9.26 8.93  9.5  9.72 

MDD            

Number 37 37  370 370  60 60  600 600 

Age, mean (SD) 54.9 (6.89) 64.36 (6.82) 55.76 (7.84) 65 (7.77)  52.72 (7.55) 62.02 (7.91)  52.8 (7.53) 62.02 (7.9) 

BMI, mean (SD) 27.38 (4.14) 28.21 (4.55) 27.58 (4.05) 27.37 (4.18)  26.01 (3.83) 26.8 (5.03)  26.04 (4.8) 26 (5.07) 

Height, mean (SD) 176.02 (6.14) 175.49 (6.16) 176.13 (6.44) 175.7 (6.57)  163.01 (5.09) 162.45 (4.99)  163.28 (6.27) 162.8 (6.3) 

WHR, mean (SD) 0.93 (0.05) 0.97 (0.05) 0.93 (0.06) 0.94 (0.07)  0.79 (0.06) 0.82 (0.07)  0.79 (0.06) 0.81 (0.07) 

Combined HGS, mean (SD) 78.89 (14.48) 72.59 (14.06) 82.44 (16.04) 70.77 (17.06)  49.98 (12.01) 45.48 (12.2)  53.16 (11.41) 43.73 (11.91) 

Right dominant hand (%) 34 (91.89%) 34 (91.89%) 328 (88.65%) 328 (88.65%)  56 (93.33%) 56 (93.33%)  573 (95.5%) 573 (95.5%) 

Time to/from disease onset, mean (SD) -5.78 (3.35) 3.69 (2.6)    -5.26 (3.38) 4.04 (3.13)    

Time elapsed pre- to post- (years) 9.46 9.24  9.3  9.22 

 348 

 349 

Statistical analysis 350 

The study employed ANOVAs (Analysis of Variance) to compare each of the HGS scores, true HGS 351 

and ∆𝐻𝐺𝑆, between each patient group (i.e., stroke and MDD) and their corresponding matched HC 352 

samples. The ∆𝐻𝐺𝑆 values were obtained using the best-performing linear SVM models separate for 353 

males and females, detailed in the “Model training and performance evaluation” section. The 354 

assumptions of the ANOVAs were evaluated using Kolmogorov-Smirnov (KS) normality test and 355 

Levene’s test (testing variance homogeneity). The assumption of normality was not met for all patient 356 

groups. However, extensive literature supports that ANOVA is generally robust to violations of this 357 

assumption, particularly with larger sample sizes. For samples larger than 12, non-normality has 358 

minimal impact on Type I error rates. Furthermore, with samples >50 per group, the central limit 359 

theorem enhances the robustness of the analysis [51–54]. Consequently, the violation of normality in 360 

our analysis is unlikely to significantly affect the validity of the ANOVA results. While homogeneity 361 

of variance was met for the factor diagnosis for all patient groups, for the factor sex the assumption was 362 

mostly violated. Consequently, two-way ANOVA was conducted separately for each sex, with two main 363 

factors: time-point (pre- and post-) as a “within-subject” factor for repeated scores, and the health 364 

condition considered as a “between-subject” factor. For significant interactions, Tukey-Kramer post-365 

hoc analysis was used to compare groups separately for each time-point and within each group. 366 

 367 

 368 

Results 369 

HGS predictive modelling 370 

We found that HGS can be predicted using both machine learning models, i.e., linear SVM and RF. 371 

However, the linear SVM outperformed RF across all sample sizes, achieving higher performance 372 

metrics measured as Pearson’s correlation coefficient (𝑟), 𝑅2, and MAE for both male and female 373 

cohorts (Fig. 2, Table 4). Both models showed a decrease in variance with increasing sample size, as 374 

expected. The average performance stabilized after using 40% of the data indicating that the sample 375 

size used is large enough to capture the predictive signal adequately.  376 

 377 
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 378 

Fig. 2 Pearson correlation coefficient (r) from CV analysis at different sample sizes. A) linear SVM and B) RF models built on the training 379 

dataset with increasing sample sizes (10% to 100 %). The sample size indicates the percentage of data used for performing CV. In males, 380 

SVM achieved a maximum median 𝑟 of 0.405 and 𝑅2 of 0.163 compared to the RF’s 0.347 and 0.096 at 20% of the sample size (𝑁 = 381 

12,364). In females, SVM had a maximum median 𝑟 of 0.423 and 𝑅2 of 0.179 compared to the RF’s 0.359 and 0.107 at 80% of the sample 382 

size (𝑁 = 64,712). 383 

 384 

 385 

Table 4 Comparison of linear SVM and RF models by increasing sample size on the training dataset 386 

    Sample sizes 

Sex Models Scores 

(median

) 

 10% 20% 40% 60% 80% 100% 

Female    𝑁 = 8,089 𝑁 = 16,178 𝑁 = 32,356 𝑁 = 48,534 𝑁 = 64,712 𝑁 = 80,886 

 SVM Pearson 

®’s r 

 0.415 0.416 0.423 0.420 0.423 0.423 
 R2   0.171 0.173 0.178 0.176 0.179 0.178 
 MAE  8.441 8.423 8.388 8.384 8.387 8.391 

 RF Pearson

’s r 

 0.346 0.352 0.361 0.360 0.359 0.358 

 R2  0.090 0.101 0.108 0.108 0.107 0.107 
 MAE  8.827 8.757 8.730 8.716 8.730 8.759 

Male    𝑁 = 6,182 𝑁 = 12,364 𝑁 = 24,728 𝑁 = 37,092 𝑁 = 49,456 𝑁 = 61,816 

 SVM Pearson

’s r 

 0.392 0.405 0.398 0.402 0.401 0.403 
 R2   0.151 0.163 0.158 0.161 0.161 0.162 
 MAE  12.176 12.147 12.235 12.203 12.185 12.214 

 RF Pearson

’s r 

 0.335 0.347 0.344 0.353 0.359 0.359 

 R2  0.082 0.096 0.093 0.102 0.107 0.108 
 MAE  12.644 12.613 12.704 12.645 12.603 12.620 

 387 

 388 

Model Validation 389 

To validate the selected linear SVM models, which were separately trained on the whole training dataset 390 

for males and females. Then we applied them to the independent 10% HC test dataset, comprising 6,938 391 

males and 8,969 females. After applying bias-correction to the predictions (𝐻𝐺�̂�𝑐) on the test dataset, 392 

prediction accuracy significantly improved compared to the uncorrected predictions (Additional file 1: 393 

Figure S2). For males, the Pearson’s correlation coefficients increased from 𝑟 = 0.40 (without bias-394 

correction) to 𝑟 = 0.94 (with bias-correction, 𝑝 < 0.0001), and for females, it improved from 𝑟 = 0.42 395 

(without bias-correction) to 𝑟 = 0.93 (with bias-correction, 𝑝 < 0.0001), demonstrating enhanced 396 

performance (Fig. 3A). The bias-correction was performed using the method proposed by Beheshti et 397 
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al. [40], involving the calculation of slope (α) and intercept (β) by fitting a linear regression model 398 

between true HGS and the residuals (𝛥𝐻𝐺�̂� = 𝑡𝑟𝑢𝑒 𝐻𝐺𝑆 − 𝐻𝐺�̂�). Bias-correction parameters were 399 

estimated separately for males (α  =  0.839, β = −67.631) and females (α = 0.822, β = −39.971) using 400 

predictions from out-of-sample validation sets generated via 10-fold CV on the HC training dataset. We 401 

then assessed the models’ unbiasedness by examining the correlation between 𝛥𝐻𝐺𝑆 (𝑡𝑟𝑢𝑒 HGS −402 

 𝐻𝐺�̂�𝑐) and true HGS (Fig. 3B). The analysis revealed no significant correlation between ∆𝐻𝐺𝑆 and 403 

true HGS for either males (𝑟 = 0.01) or females (𝑟 = 0.00), indicating an absence of bias in the corrected 404 

predictions. Before bias-correction, correlations were 𝑟 = 0.92 for males and 𝑟 = 0.91 for females, 405 

indicating some initial bias. This finding supports the conclusion that the model is unbiased across both 406 

sexes. 407 

 408 

 409 

 410 
Fig. 3 Relationship between HGŜ c (A) and ∆HGS (B) scores versus true HGS, respectively, after applying bias-correction method on the 411 

independent non-brain-imaging HC test dataset, for males (N = 6,938) and females (N = 8,969). A) Scatter plot of HGŜ c and true HGS: 412 

for males (r = 0.94, R2 = 0.87, MAE = 4.94) and for females (r = 0.93, R2 = 0.85, MAE = 3.6). B) Scatter plot of ∆HGS and true HGS: for 413 

males (r = 0.01, p = 0.41) and for females (r = 0.00, p = 0.73). The dashed grey line in the A indicates the identity line (y = x), while the 414 

dashed grey line in the B indicates the reference line (y = 0). 415 

 416 

We then investigated the FI scores from the final models trained on the training dataset (90% of HC). 417 

The models showed similarities and differences between males and females. Although the direction of 418 

the contribution was the same for both sexes, the strength of contributing factors differed. For males, 419 

the linear SVM model identified height and BMI as having positive contributions to HGS (FIheight = 420 

4.94 and FIBMI = 3.00), while WHR (FIWHR = -2.57) and age (FIage = -2.83) showed negative coefficients. 421 

In females, height (FIheight = 3.27) and BMI (FIBMI = 0.67) remained positive contributors, and WHR 422 

(FIWHR = -0.53) and age (FIage = -3.07) showed negative effects. 423 

 424 

Reassessment reliability of ∆𝑯𝑮𝑺 425 

The reassessment reliability was evaluated using the concordance correlation coefficient (CCC) 426 

between ∆𝐻𝐺𝑆 values for two sessions: the baseline assessment visit as the initial session (session 0), 427 

and the first repeat assessment visit (after 2-7 years) as reassessment (session 1) on the same participants 428 

from the non-brain-imaging HC test dataset (𝑁 = 296, 54.73% female) without and with bias-correction. 429 

The results demonstrated high reassessment reliability for ∆𝐻𝐺𝑆 after applying bias-correction, with 430 

males showing a CCC of 0.90 and females a CCC  of 0.89. These values were notably higher compared 431 

to the ∆𝐻𝐺𝑆 without bias-correction (Table 5). The high reassessment reliability indicates that ∆𝐻𝐺𝑆 432 

scores remain stable despite physiological changes in participants’ conditions over 2-7 years. This 433 

reliability is crucial for application in the elderly population, where age and health-related changes 434 
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considerably affect HGS. The strong agreement between sessions, shown by high CCC values, confirms 435 

the reliability of the sex-specific models. 436 

 437 

Table 5 CCC between baseline and follow-up delta values, and MAE with and without bias correction 438 

  Without bias-correction  With bias-correction 

Sex N MAE (Session 0) MAE (Session 1) CCC  MAE (Session 0) MAE (Session 1) CCC 

Female 162 8.129 12.059 0.32  3.294 3.496 0.89 

Male 134 12.934 16.434 0.47  4.534 4.475 0.90 

 439 

 440 

Association between HGS scores and brain structure 441 

We investigated Pearson’s 𝑟 between regional GMV and two HGS scores, true HGS and ∆𝐻𝐺𝑆 in a 442 

large cohort of HC (7,726 males and 9,292 females). Each participant’s data included 1,088 regional 443 

GMV features covering the whole brain (see the “Imaging data and preprocessing” section). Significant 444 

correlations were identified for both true HGS and ∆𝐻𝐺𝑆 after applying Bonferroni correction 445 

(𝑝corrected < 0.05). Fig. 4 demonstrates the distribution of associations between regional GMV and 446 

HGS. The cortical region labeling was derived from the Schaefer 1000-parcel 7-network brain atlas. 447 

For true HGS, significant correlations were found in 878 regions for males and 660 for females. All 448 

correlations were positive. When applying a correlation threshold of |𝑟| > 0.1, 364 regions remained in 449 

males and 24 in females. The intersection of significant regions between sexes included 24 regions, 450 

none of which were located in cerebellar areas. These results indicate a broader association between 451 

true HGS and GMV in males compared to females, suggesting potential sex differences. The average 452 

correlations between true HGS and regional GMV of the intersecting significant regions for both sexes 453 

showed values ranging from 0.113 to 0.15 (Fig. 4A). The strongest correlations were observed in the 454 

cortical right hemisphere somatomotor regions, parcels 22 (RH_SomMot_22, 𝑟 = 0.15), 16 455 

(RH_SomMot_16, 𝑟 = 0.143), and 19 (RH_SomMot_19, 𝑟 = 0.142). Subcortical associations differed 456 

across sexes (Additional file 1: Table S3), with the highest subcortical association found in the left 457 

hemisphere inferior ventral anterior division of the thalamus (THA-VAia-lh, 𝑟 = 0.12). The results 458 

showed that a higher HGS is linked with increased GMV in the cortical areas, which are crucial for 459 

motor control.  460 

In contrast, ∆𝐻𝐺𝑆 demonstrated significant correlations in 968 regions for males and 993 regions for 461 

females. After applying the threshold of |𝑟| > 0.1, 698 regions in males and 755 regions in females 462 

remained. The intersection of significant regions between sexes retained 667 regions, highlighting the 463 

consistency and robustness of the association between the ∆𝐻𝐺𝑆 score and GMV. The average 464 

correlations for these intersecting significant regions ranged from -0.298 to -0.101 (Fig. 4B). The only 465 

positive correlations were observed in females within subcortical regions, specifically in the anterior 466 

globus pallidus of the left hemisphere (aGP_lh, 𝑟 = 0.157) and the right hemisphere (aGP_rh, 𝑟 = 0.145). 467 

For both sexes, the strong associations included the right hemisphere somatomotor cortical region from 468 

the somatosensory network, parcel 19 (RH_SomMot_19, 𝑟 = -0.298), followed by parcel 22 469 

(RH_SomMot_22, 𝑟 = -0.291), and parcel 16 (RH_SomMot_16, 𝑟 = -0.275). This pattern persisted in 470 

sex-specific analyses, with males showing strong correlations in RH_SomMot_19 (𝑟 = -0.28) and 471 

RH_SomMot_22 (𝑟 = -0.274), while females demonstrated even stronger correlations in these regions 472 

(RH_SomMot_19: 𝑟 = -0.315; RH_SomMot_22: 𝑟 = -0.307). Subcortical associations differed across 473 

sexes (Additional file 1: Table S4), with the highest subcortical association in both sexes was found in 474 

the left hemisphere hippocampal body (HIP-body-lh, 𝑟 = -0.235). The most significant cerebellar 475 

association was observed in the left lobule VI (Left_VI) for both sexes (𝑟 = -0.214). The higher number 476 

of significant and stronger correlations observed across a broader range of brain areas suggest that 477 

∆𝐻𝐺𝑆 can be a more sensitive score for detecting brain structure relationships. Furthermore, the 478 

significant increase in overlapping regions suggested a common neurobiological basis beyond sex 479 

differences. 480 
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 481 
Fig. 4 Regional distribution of associations between GMV and HGS, after applying Bonferroni correction (𝑝_𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 < 0.05) and 482 

focusing on significant regions with |𝑟| > 0.1. A) True HGS and GMV correlation: Both sexes (24 regions): The average correlation 483 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted November 29, 2024. ; https://doi.org/10.1101/2024.11.27.24318057doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.27.24318057


 14 

between intersecting of significant regions in both sexes ranged (0.113≤ 𝑟 ≤0.15). The strongest cortical correlation (𝑟 = 0.15) was 484 

observed in “RH_SomMot_22”, the strongest subcortical correlation (𝑟 = 0.12) in “THA-VAia-lh”. No cerebellar regions were identified 485 

among these 24 regions. The scatter plot represents the correlation of these 24 significant regions. Males (364 regions): Correlations 486 

ranged (0.1≤ 𝑟 ≤0.177), with the strongest cortical correlation (𝑟 = 0.177) in “RH_Limbic_OFC_4”, the strongest subcortical correlation 487 

(𝑟 = 0.176) in “HIP-body-rh”,  and the highest cerebellar correlation (𝑟 = 0.133) in “Left_VI”. Females (24 regions): Correlations ranged 488 

(0.1≤ 𝑟 ≤0.126), with the strongest cortical correlation (𝑟 = 0.126) in “RH_SomMot_22”, the strongest subcortical correlation (𝑟 = 0.113) 489 

in “THA-VAia-lh”, and no cerebellar regions were significant. B) ∆𝑯𝑮𝑺 and GMV correlation: Both sexes (667 regions): The average 490 

correlations between the intersecting of significant regions in both sexes ranged (-0.298≤ 𝑟 ≤-0.101), with the strongest cortical 491 

correlation (𝑟 = -0.298) in “RH_SomMot_19”, the strongest subcortical correlation (𝑟 = -0.235) in “HIP-body-lh”, and the highest 492 

cerebellar correlation (𝑟 = -0.214) in “Left_VI”. The scatter plot represents the 50 top significant regions. Males (698 regions): Correlations 493 

ranged (-0.28≤ 𝑟 ≤-0.1), with the strongest cortical correlation (𝑟 = -0.28) in “RH_SomMot_19”, the highest subcortical association (𝑟 = 494 

-0.256) in the “HIP-body-rh”, and the highest cerebellar correlation (𝑟 = -0.222) in the “Left_VI”. Females (755 regions): Correlations 495 

ranged (-0.315≤ 𝑟 ≤0.157), with the strongest cortical correlation (𝑟 = -0.315) in “RH_somMot_19”, the strongest subcortical correlation 496 

(𝑟 = -0.231) in “THA-DP-rh”, the highest cerebellar correlation (𝑟 = -0.205) in “Left_VI”. Two subcortical regions, “aGP_lh” (𝑟 = 0.157) 497 

and “aGP_rh” (𝑟 = 0.145), showed positive correlations. 498 

 499 

 500 

Evaluation of pre-to-post disease longitudinal HGS changes 501 

The innovative aspect of this study is the implementation of a longitudinal design, which captures HGS 502 

scores at two critical time points: before (pre) and after (post) disease onset. Capturing longitudinal 503 

changes in HGS can improve our understanding of the dynamic relationship between HGS and disease 504 

onset and progression, providing valuable insights into how disease impacts physical function over time. 505 

Such changes can provide insights into an individual’s health status, the effectiveness of training or 506 

rehabilitation programs, and the progression of various health conditions. To analyze this longitudinal 507 

data, we employed a two-way ANOVA, separately for each sex. The analyses included group 508 

(patient/control) as the between-subject factor and time-point (pre/post) as the within-subject factor, 509 

with either true HGS or ∆𝐻𝐺𝑆 as the dependent scores.  We analyzed the stroke and MDD cohorts 510 

separately with 10 matched HC for each patient (Table 3). 511 

A significant main effect of time-point was observed for both patient cohorts, indicating time-512 

dependent changes in HGS and ∆𝐻𝐺𝑆 across patients and healthy controls (Table 6). In stroke patients, 513 

a significant interaction was observed in males for both true HGS (𝐹1,438 = 4.434, 𝑝 = 0.036) and ∆𝐻𝐺𝑆 514 

(𝐹1,438 = 9.91, 𝑝 = 0.002). Post-hoc analysis revealed the significant differences in matched HC between 515 

pre and post time-points for both scores (𝑝 < 0.0000), and in patients between pre and post time-points 516 

for ∆𝐻𝐺𝑆 score (𝑝 = 0.0332). No significant group differences were found at any time point, and no 517 

significant interactions were observed in female stroke patients (Fig. 5). 518 

In MDD patients, significant interactions were observed in both females and males for ∆𝐻𝐺𝑆 (males: 519 

𝐹1,405 = 5.404, 𝑝 = 0.021; females: 𝐹1,658 = 8.844, 𝑝 = 0.003) and true HGS (males: 𝐹1,405 = 4.362, 𝑝 = 520 

0.037; females: 𝐹1,658 = 9.928, 𝑝 = 0.002). Post-hoc analysis showed significant differences between 521 

pre and post time-points in matched HC for both scores and sexes (all 𝑝 < 0.0000) as well as in female 522 

patients for the ∆𝐻𝐺𝑆 score only (𝑝 = 0.0005). No significant group differences were observed at any 523 

time point. (Fig. 5). 524 

The interaction plots provide valuable insights into the trajectory of true HGS and ∆𝐻𝐺𝑆 among patients 525 

with stroke and MDD in comparison to matched HC for both males and females from pre to post time-526 

points (Fig. 5). For both sexes, true HGS showed a less strong decline from pre to post time-points in 527 

patients compared to their matched HC groups. ∆𝐻𝐺𝑆, in contrast, demonstrated a significant increase 528 

from pre- to post- time-points in all groups, indicating an improvement in HGS relative to the expected 529 

HGS predicted based on anthropometrics and age. This increase seems to be stronger in patients 530 

compared to controls. 531 

To assess whether the change between pre and post time-points differed significantly between groups, 532 

we calculated the difference scores for both true HGS and ∆𝐻𝐺𝑆 by subtracting the pre time-point 533 

values from the post time-point values for each group, separately for males and females. Independent t-534 

tests were then conducted to compare these difference scores between patients and matched HC groups. 535 

This approach allows for a direct comparison of the magnitude and direction of change across groups. 536 
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In stroke, significant differences were observed only in males who exhibited smaller declines in true 537 

HGS compared to matched HC (stroke: -6.80 kg vs matched HC: -11.95 kg, 𝑝 = 0.035) and larger 538 

increases in ∆𝐻𝐺𝑆 (stroke: 3.59 kg vs matched HC: 1.94 kg, 𝑝 = 0.001). MDD patients of both sexes 539 

showed significant differences. For true HGS, patients demonstrated smaller decline than matched HC 540 

(males: MDD: -6.30 kg vs matched HC: -11.66 kg, 𝑝 = 0.037; females: MDD: -4.50 kg vs matched HC: 541 

-9.43 kg, 𝑝 = 0.002). Conversely, for ∆𝐻𝐺𝑆, patients exhibited greater increases (males: 3.41 kg vs 2.09 542 

kg, 𝑝 = 0.02; females: 3.17 kg vs 2.26 kg, 𝑝 = 0.003). 543 

 544 

Table 6 Sex-specific ANOVA and post-hoc results for Group (matched HC vs. patient) and Time-point (pre, post) 545 

Disease Sex  Source  True HGS  ∆HGS 

     𝐹 𝑝  𝐹 𝑝 

Stroke Female 

Patients (𝑁 = 16) 

Matched HC (𝑁 = 160) 

 Group  0.036 0.85  0.001 0.977 

 Time-point  25.086 0.000  376.401 0.000 

 Interaction (Group:Time-point)  2.296 0.132  1.287 0.258 

Male 

Patients (𝑁 = 40) 

Matched HC (𝑁 = 400) 

 Group  0.078 0.78  0.365 0.546 

 Time-point  266.505 0.000  193.944 0.000 

 Interaction (Group:Time-point)  4.434 0.036  9.91 0.002 

 Post-Hoc Test:  meandiff 𝒑  meandiff 𝒑 

  patients post time-point vs matched HC post time-point  1.9125 0.8904  1.3916 0.4841 

  patients pre time-point vs matched HC pre time-point   -3.24 0.6177  -0.2537 0.9939 

  patient pre time-point vs patient post time-point  6.8 0.2328  -3.5882 0.0332 

  matched HC pre time-point vs matched HC post time-point  11.9525 0.0000  -1.9429 0.0000 

MDD Female 

Patients (𝑁 = 60) 

Matched HC (𝑁 = 600) 

 Group  0.266 0.606  0.001 0.976 

 Time-point  398.997 0.000  696.981 0.000 

 Interaction (Group:Time-point)  9.928 0.002  8.844 0.003 

  Post-Hoc Test:  meandiff 𝒑  meandiff 𝒑 

  patients post time-point vs matched HC post time-point  1.7517 0.6865  0.4755 0.8571 

  patients pre time-point vs matched HC pre time-point   -3.175 0.1873  -0.4411 0.8822 

  patient pre time-point vs patient post time-point  4.5 0.1519  -3.1726 0.0005 

  matched HC pre time-point vs matched HC post time-point  9.4267 0.0000  -2.256 0.0000 

Male 

Patients (𝑁 = 37) 

Matched HC (𝑁 = 370) 

 Group  0.117 0.732  0.001 0.969 

 Time-point  228.97 0.000  182.535 0.000 

 Interaction (Group:Time-point)  4.362 0.037  5.404 0.021 

  Post-Hoc Test:  meandiff 𝒑  meandiff 𝒑 

  patients post time-point vs matched HC post time-point  1.8216 0.9171  0.7005 0.9077 

  patients pre time-point vs matched HC pre time-point   -3.5432 0.5916  -0.6229 0.9329 

  patient pre time-point vs patient post time-point  6.2973 0.3485  -3.4141 0.0727 

  matched HC pre time-point vs matched HC post time-point  11.6622 0.0000  -2.0907 0.0000 

 546 

 547 

Fig. 5 Changes in HGS among patients with stroke and MDD compared to matched HC across two time-points: pre and post time-points. 548 

The dashed lines represent the matched control group, while the solid lines depict the patient groups. These findings underscore the 549 

importance of considering both absolute and relative scores of muscle strength in understanding the physical capabilities of individuals 550 

with neurological and psychiatric diseases. The increased ∆𝐻𝐺𝑆 suggests that despite the decline in true HGS, patients and matched HC 551 

may perform better than expected when accounting for baseline physical attributes. 552 
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Discussion 553 

In this study, we explored whether HGS can be predicted based on anthropometric and demographic 554 

measurements and sought to uncover biological insights by analyzing the predicted HGS values. We 555 

developed a new individual-level score ∆𝐻𝐺𝑆 that captures how HGS deviates from the expected value 556 

based on an individual’s characteristics. To this end, we used data from the UK Biobank.  557 

First, we performed ML analysis to predict combined HGS using anthropometric factors (i.e., BMI, 558 

height, and WHR) and demographic parameters age and sex. The use of combined HGS, the sum of the 559 

grip strengths of both hands, as the target was particularly used as a comprehensive measure of overall 560 

strength [33], mitigating the potential biases introduced by handedness or unilateral strength differences 561 

[34]. We developed sex-specific models to account for known differences in HGS between males and 562 

females, specifically HGS values are consistently higher in males compared to females across all age 563 

ranges [15,22–24]. We employed linear SVM and RF regression models for HGS prediction across 564 

different sample sizes within a CV scheme. The inclusion of a nonlinear model (RF) alongside the linear 565 

SVM was based on the documented nonlinear relationship between age and HGS (Chandrasekaran et 566 

al. [20]). In our analysis, linear SVM outperformed RF in predicting combined HGS, achieving higher 567 

performance for both sexes. The prediction accuracy improved with larger sample sizes, but smaller 568 

samples exhibited higher variance, highlighting the significance of using enough data to adequately 569 

capture the variability in demographic and anthropometric factors and their relationship with HGS (Fig. 570 

2, Table 4).   571 

The linear SVM model identified that height and BMI positively contributed to HGS prediction in 572 

both sexes, while WHR and age contributed negatively. The magnitude of contributions differed by sex: 573 

height and BMI showed a stronger positive contribution in males compared to females (males: FIheight = 574 

4.94, FIBMI = 3.00; females: FIheight = 3.27, FIBMI = 0.67). WHR had lower contributions in females than 575 

males (males: FIWHR = -2.57; females: FIWHR = -0.53). Age contributed negatively for both sexes, 576 

reflecting the expected decline of HGS with age (males: -2.83; females: -3.07). These findings align 577 

with known associations between these variables and HGS (see the “Model Validation” section). The 578 

varying feature importance between sexes taken together with the higher prediction accuracy for males 579 

highlight the complex interplay of anthropometric and demographic factors and their association with 580 

HGS. The differential contribution of weight-related factors to HGS in females compared to males may 581 

be due to sex-specific differences in body composition. Females generally have higher body fat and 582 

lower muscle mass than males which could explain why weight-related variables are less predictive of 583 

HGS in females [55]. Additionally, hormonal factors, particularly estrogen levels, play a significant role 584 

in muscle strength and function in females, potentially overshadowing the influence of weight-related 585 

variables on HGS [56].  586 

Our results are in line with the well-established positive relationship between HGS and both BMI and 587 

height across various populations and age groups (e.g., M. A. Agtuahene et al. [19] and Yong-Hao Pua 588 

et al. [17]). B. Bhattacharjee et al. [18] have reported an inverse relationship between HGS and WHR, 589 

which reflects the proportion of abdominal fat relative to hip circumference. Age shows variations in 590 

HGS across different age groups. HGS generally declines with age, but the relationship is complex and 591 

influenced by sex [16,21]. HGS typically increases during childhood and adolescence, peaks in early 592 

adulthood, and then declines with age, particularly after 40 [16]. Vianna et al. [21] found that the onset 593 

of HGS decline differs between sexes, beginning earlier in men (around age 30) compared to women 594 

(around age 50). The aging process results in progressive muscle loss, impacting HGS. De Araújo et al. 595 

[16], identified various factors associated with low HGS in older adults, including age-related 596 

differences, emphasizing the multifaceted nature of HGS decline across the lifespan. Given this 597 

nonlinear relationship between age and HGS, it is intriguing to consider that our result showed the linear 598 

SVM model to be more accurate than the nonlinear RF model. This may be explained by the high mean 599 

age in the UKB data. De Araújo et al. [16] also revealed that factors such as socioeconomic status, 600 

physical activity levels, and chronic health conditions can influence HGS in older populations, 601 

indicating that HGS is also determined by environmental and lifestyle factors. A previous ML study 602 
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also demonstrated a high prediction accuracy using posture, anthropometric, and demographic variables 603 

[57]. This suggests that adding further variables with more detailed body measurements, environmental 604 

and lifestyle can help in increasing accuracy. However, large datasets with those variables are currently 605 

not available. 606 

The predictions obtained by our models exhibited a bias (Additional file 1: Figure S2), with residuals 607 

correlating with the target. To address this, we applied a bias-correction method [40], resulting in bias-608 

free predictions resulting in enhanced accuracy (Fig. 3). The difference between the true HGS and bias-609 

free predicted HGS (∆𝐻𝐺𝑆 = 𝑡𝑟𝑢𝑒 𝐻𝐺𝑆 − 𝐻𝐺�̂�𝑐) was then calculated as a novel score which was then 610 

used for further analysis together with the measured or true HGS. 611 

We explored the neurobiological underpinnings of muscular strength by analyzing the relationship 612 

between GMV and two HGS scores. We found that higher HGS is associated with higher GMV in key 613 

brain regions involved in motor but also regions playing a role in other functions (Fig. 4). These findings 614 

suggest that HGS as a measure of physical capability is reflected in structural brain integrity. However, 615 

it is crucial to consider potential confounding effects in these associations, particularly the influence of 616 

age. Age has a strong effect on both HGS and GMV and as individuals age, both muscle strength and 617 

brain volume typically decrease. Other potential confounders, such as physical activity levels, body 618 

composition (e.g., muscle mass, body fat percentage), nutritional status, hormonal factors, genetic 619 

predisposition, and socioeconomic status, should also be considered. These factors may independently 620 

influence both HGS and GMV, potentially complicating the interpretation of their relationship. Existing 621 

literature has shown that HGS is linked to brain structures in frontal, temporal, subcortical, and 622 

cerebellar regions. Our findings also revealed associations between HGS and these areas. For instance, 623 

Jiang et al. [1] reported widespread positive associations, especially in subcortical regions and temporal 624 

cortices, even after controlling for various confounders including age, sex, education level, 625 

socioeconomic status, BMI, height, and WHR. Similarly, Meysami et al. [58] reported that greater HGS 626 

is associated with larger hippocampal volume, and also stronger dominant HGS was related to larger 627 

frontal lobe volumes in older adults. In our results, we found that the hippocampal as well as thalamus 628 

regions were associated with HGS in both males and females, along with specific associations in the 629 

frontal regions (see Additional file 1: Table S3). 630 

The ∆𝐻𝐺𝑆 score demonstrated stronger and more widely distributed correlations with GMV compared 631 

to true HGS, particularly in motor-related brain regions (Fig. 4). These correlations were significant 632 

across various cortical, subcortical, and cerebellar brain regions in both males and females (Fig. 4). The 633 

intersection of significant regions between the sexes revealed 667 regions (only 24 for true HGS), while 634 

698 and 755 significant regions were identified in males and females, respectively. Overall, our results 635 

suggest that ∆𝐻𝐺𝑆 is better at capturing the neurobiological basis of muscular strength in both sexes 636 

compared to true HGS, suggesting that ∆𝐻𝐺𝑆 may reflect unique aspects of brain structure beyond what 637 

true HGS alone reveals. In contrast to the GMV-true HGS relationships which were all positive, the 638 

associations to ∆𝐻𝐺𝑆 were all negative. The negative GMV-∆𝐻𝐺𝑆 correlations suggest that individuals 639 

with lower true HGS compared to their predicted HGS tend to have larger GMV. This suggests better 640 

preserved brain volume despite lower strength than expected. This relationship becomes more intriguing 641 

when considering factors influencing the difference in HGS. Negative ∆𝐻𝐺𝑆 values might signal an 642 

accelerated decline in strength, in which the person is experiencing a more rapid loss of strength than 643 

expected for their age or possibly reflecting age-related health concerns that disproportionately affect 644 

muscle strength, as muscle strength is a reliable indicator of overall health status in aging populations 645 

[7]. Speculatively, a high negative ∆𝐻𝐺𝑆 could suggest unfavorable body composition or sarcopenic 646 

obesity, a condition where muscle loss is combined with excess fat [59]. 647 

We then investigated whether changes over time in true HGS and ∆𝐻𝐺𝑆 differed between patients 648 

with either stroke or MDD and their corresponding matched HC in a longitudinal design. We observed 649 

a significant reduction in change HGS scores (difference between pre and post disease onset) in both 650 

stroke and MDD patients compared to their corresponding matched HC (Table 3), with HC showing a 651 

significant decrease in HGS but patients no or less change. Among stroke patients, the decrease in HGS 652 
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is likely to happen due to damage of the upper motor neuron in the precentral gyrus or of its descending 653 

output, i.e., the corticospinal tract, leading to motor impairment, especially of the contralateral hand. 654 

Stroke patients typically have lower HGS compared to HC, especially in the early stages post-stroke 655 

[60]. ANOVA results revealed sex-specific patterns, with male stroke patients showing significant 656 

interactions in both true HGS (𝑝 = 0.036) and ∆𝐻𝐺𝑆 (𝑝 = 0.002), while no significant interactions were 657 

observed in female stroke patients. These sex differences align with previous research suggesting 658 

different recovery patterns between males and females post-stroke [61]. Importantly, this cannot be 659 

because of differing recovery times as the time between disease onset and post assessment was not 660 

significantly different between males and females (𝑝 = 0.59). 661 

Interestingly, despite these longitudinal differences, both HGS and ∆𝐻𝐺𝑆 were not effective in 662 

differentiating between patients and matched HC at the post time-point. This lack of distinction may be 663 

attributed to several factors, including the limited number of stroke patients with motor area lesions, 664 

potentially masking the effects of these impairments on HGS scores. Importantly, ischemic lesions 665 

outside key motor regions or the corticospinal tract do not usually lead to reductions in grip force. In 666 

our cohort of 56 stroke patients (1 female patient hemorrhagic), identified using ICD-10 codes without 667 

including self-reported cases, post-stroke neuroimaging data were available for 25 patients (44.64%). 668 

Among these, 14 patients (56%) presented lesions in motor-related regions, with 9 of them exhibiting 669 

lesions affecting the contralateral hand. Additional factors include the substantial time elapsed between 670 

pre and post assessments in both disease cohorts which may reflect the effects of treatment and 671 

rehabilitation efforts over time. Specifically, in stroke patients, the average interval between pre and 672 

post assessments was approximately 9.26 years for males and 9.5 years for females, with post-stroke 673 

assessments occurring between 0.18-11.14 years for males and 0.04-9.78 years for females after stroke 674 

onset. 675 

In MDD patients, the reduction in HGS may be due to the multifactorial impact of MDD on physical 676 

health [62], which is attributed to the complex interplay between depression and physical health. 677 

Ganipineni et al. [10] found that individuals with depressive symptoms tend to have lower HGS 678 

compared to those without. Trivedi [62] showed that MDD not only affects mental health but also has 679 

wide-ranging effects on physical health through various mechanisms. These include decreased physical 680 

activity, changes in appetite and nutrition, sleep disturbances, hormonal and inflammatory alterations, 681 

and potential medication side effects, all of which can contribute to reduced grip strength. ANOVA 682 

results showed significant interactions in true HGS (males: 𝑝 = 0.037; females: 𝑝 = 0.002) and ∆𝐻𝐺𝑆 683 

(males: 𝑝 = 0.021; females: 𝑝 = 0.003) for both sexes, in contrast to the sex-specific patterns observed 684 

in stroke patients. However, despite these longitudinal differences, both HGS and ∆𝐻𝐺𝑆 were 685 

ineffective in distinguishing MDD patients from matched HC at the post time-point. This finding may 686 

reflect the prolonged time elapsed between pre and post assessments, with the mean time intervals of 687 

9.46 years for males and 9.3 years for females. Post-MDD assessments occurred within 0.02-9.63 years 688 

for males and 0.02-11.98 years for females, highlighting the influence of ongoing treatment and 689 

rehabilitation. Further research could provide deeper insights into the relationship between muscle 690 

function and diseases, supporting early detection, targeted prevention, and monitoring of disease 691 

progression in neurological and psychiatric conditions. 692 

Our study faced several limitations that should be addressed in future research. Firstly, the 693 

demographic (age and sex) and anthropometric variables (BMI, height, and WHR) may not capture all 694 

relevant factors influencing muscle strength, potentially overlooking other predictors like more detailed 695 

body measurements, genetics, and lifestyle factors. Secondly, the study sample was drawn from the 696 

UKB, which may not be representative of other populations, potentially limiting the generalizability of 697 

the findings to more diverse demographic groups. Thirdly, the study used a limited number of ML 698 

models, focusing on linear SVM and RF, which may not fully capture the complexity of the data. 699 

Although we covered linear and non-linear models, exploring other models could potentially improve 700 

prediction accuracy. Lastly, the longitudinal study was constrained by small sample sizes for stroke and 701 

MDD patients, which could affect the statistical power and reliability of the results. Here, we relied on 702 
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incidental data from the UKB, which comes with limitations such as low sample sizes, the small number 703 

of stroke patients with motor area related lesions, and lack of detailed information regarding medication 704 

and rehabilitation.  705 

 706 

 707 

Conclusion 708 

This study demonstrates that HGS can be predicted using demographic and anthropometric variables at 709 

moderate accuracy through machine learning models, particularly linear SVM. The novel ∆𝐻𝐺𝑆 score, 710 

representing the difference between true and bias-free predicted HGS, showed stronger and widely 711 

distributed correlations with GMV compared to true HGS, especially in motor-related brain regions. 712 

This suggests ∆𝐻𝐺𝑆 maybe a more sensitive biomarker for brain health assessment. Both true HGS and 713 

∆𝐻𝐺𝑆 did not capture longitudinal differences between patients and matched HC. Further research is 714 

needed to validate these results in more diverse populations and explore the mechanisms linking HGS 715 

changes to specific diseases. Overall, this study provides a foundation for enhancing the utility of HGS 716 

as a biomarker in neurological and psychiatric research and clinical practice. 717 
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