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Abstract. Epilepsy affects millions globally, with a significant subset of patients

suffering from drug-resistant focal seizures. Understanding the underlying

neurodynamics of seizure initiation and propagation is crucial for advancing treatment

and diagnostics. In this study, we present a novel, inference-based approach for

analyzing the temporal evolution of cortical stability and chaos during focal epileptic

seizures. Utilizing a multi-region neural mass model, we estimate time-varying synaptic

connectivity from intracranial electroencephalography (iEEG) data collected from

individuals with drug-resistant focal epilepsy. Our analysis reveals distinct preictal

and ictal phases characterized by shifts in cortical stability, heightened chaos in the

ictal phase, and highlight the critical role of inter-regional communication in driving

chaotic cortical behaviour. We demonstrate that cortical dynamics are consistently

destabilized prior to seizure onset, with a transient reduction in instability at seizure

onset, followed by a significant increase throughout the seizure. This work provides

new insights into the mechanisms of seizure generation and offers potential biomarkers

for predicting seizure events. Our findings pave the way for innovative therapeutic

strategies targeting cortical stability and chaos to manage epilepsy.
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1. Introduction

Epilepsy, characterized by recurrent unprovoked seizures, affects approximately 50

million people worldwide and remains a significant challenge [1]. Despite advancements

in neuroimaging and pharmacotherapy, a substantial proportion of individuals with

epilepsy continue to experience drug-resistant seizures [2, 3, 4]. Understanding the

neurophysiological mechanisms of epileptic seizures is crucial for developing new

diagnosis methods and effective treatments.

Epileptic seizures are disturbances of the normal electrical activity of the brain [5].

These disturbances are often manifested as sudden, excessive discharges of neuronal

activity [6]. Many studies have recognized the pathology of epileptic seizures as

an interplay between γ-aminobutyric acid (GABA) mediated inhibition, glutamate

mediated excitation, and neuronal synchrony [7, 8, 9, 10]. Crucial findings have

highlighted that an imbalance between excitatory and inhibitory neurotransmitters can

lead to hyperexcitability and hypersynchronous activity in neuronal networks [11, 12].

Neurophysiological mechanisms underlying these seizures involve alterations in ion

channel function, receptor activity, and synaptic plasticity. For instance, mutations in

ion channels, such as sodium and potassium channels, have been implicated in increasing

neuronal excitability [13, 14]. Additionally, changes in GABAergic inhibition, either

through altered receptor function or neurotransmitter availability, contribute to reduced

inhibitory control, exacerbating seizure susceptibility [15]. Furthermore, studies have

shown that network-level synchronization plays a vital role in seizure propagation, where

neurons in epileptogenic regions (regions where focal seizures originate) become highly

synchronized, leading to the spread of epileptic activity across the brain [16, 17].

Model-based studies have significantly advanced our understanding of epileptic

seizures. Network-level models have been used to simulate the electrical activity

of neuronal networks, providing insights into the dynamics of seizure initiation and

propagation [18, 19, 20]. Local models help elucidate the role of various regional

factors, such as synaptic connectivity, neuronal excitability, and membrane potentials,

in generating seizures [21, 22, 23].

Despite these advancements, there is hitherto only a few investigations exploring

seizure dynamics of networked cerebro-cortical brain systems, defined in the context

of dynamical systems theory. This leads to one of the rarely investigated areas

of seizure study: examining how cortical stability and chaos vary during different

phases of seizures. Although some studies have described the progression of chaos

in cortical activity during epileptic seizures by calculating the maximum Lyapunov

exponent from intracranial electroencephalogram (iEEG) time series [24, 25, 26], the

lack of corresponding neurophysiological models has hampered the interpretation of

the relationship between chaos and underlying biological processes. Neurophysiological

models can also help investigate how perturbations alter the stability of brain networks

[27, 28].

The use of neural mass models, which simulate the collective behavior of neuron
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populations [29], has provided insights into the complex interactions within neural

networks during seizures [30, 21, 31, 32, 33] but more so in a local modelling context.

In this study, we leveraged a multi-region neural mass model to investigate the chaos

and stability of focal epileptic seizures in a inference-based time-resolved way across

numerous cortical sites. Model parameters and states were estimated from intracranial

electroencephalography (iEEG) data of individuals with drug-resistant focal epilepsy

using the NeuroProcImager tool [34]. The dynamic stability and chaotic behavior were

subsequently calculated based on these parameter estimates. Across a vast number

of 3008 seizures, our findings reveal that the preictal phase is marked by a gradual

increase in instability, whereas the onset of the ictal phase is characterized by a sharp

decrease in instability, followed by a substantial rise. The temporal evolution of cortical

stability shows minimal within-subject variability, in contrast to the significant within-

subject variability observed in cortical chaos. Furthermore, our results indicate that

inter-regional communication acts as the chaotic behaviour driver in the epileptogenic

zones during focal epileptic seizures.

2. Methods

2.1. Dataset

This study analyzed focal epileptic seizures in the NeuroVista dataset [35], which

includes long-term iEEG data from 15 subjects. The patient cohort and the methodology

for collecting their chronic iEEG data have been comprehensively detailed in the

prior publication [35]. To summarize, all participants were diagnosed with refractory

focal epilepsy, experiencing 2–12 seizures monthly. For data acquisition, each subject

underwent implantation with 16 surface iEEG electrodes strategically positioned over

the brain quadrant identified as the probable epileptogenic zone. The data used in

this paper was approved by Human Research Ethics Committee, St Vincent’s Hospital

Melbourne, approval LRR145/13.

Seizures from 12 NeuroVista subjects were examined to assess seizure pathways and

cortical dynamics across extended timescales in individuals with focal epilepsy. Subjects

5, 12, and 14 were excluded due to an insufficient number of seizures. Additional patient

details are provided in Appendix B1.

2.2. Single population model

To derive a population model, we begin by defining the mean membrane potential of a

neural population, vn, as the sum of contributing mean post-synaptic potentials, vmn,

where the post-synaptic and pre-synaptic neural populations are indexed by n and m,

respectively. Each post-synaptic potential arises from the convolution of the input firing

rate, ϕm(t), with the post-synaptic response kernel,

vmn(t) = αmn

∫ t

0

hmn(t− t′)ϕm(t
′)dt′, (1)
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where αmn is a lumped connectivity parameter that incorporates the average synaptic

gain, the number of connections and the average maximum firing rate of the presynaptic

populations. All lumped connectivity parameters are assumed to be unknown, so must

be inferred from data. The post-synaptic response kernels, denoted by hmn(t), describe

the profile of the post-synaptic membrane potential of population n that is induced by an

infinitesimally short pulse from the inputs (like an action potential). The post-synaptic

response kernels are parameterized by the time constant τmn and are given by

hmn(t) = η(t)
t

τmn

exp(
−t

τmn

), (2)

where η(t) is the Heaviside step function. Typically, αmn and τmn are assumed

to be constants (particularly for current-based synapses) that define the presynaptic

population type. For the model that we are considering, the indexm and n can represent

either pyramidal (p), excitatory interneuron (spiny stellate) (e) or inhibitory interneuron

(i) populations.

The inputs to the population, ϕm, may come from external regions, µ, or from other

populations within the model, g(vm), where

ϕm =

{
µ if m represents external inputs

g(vm) if m represents internal inputs,
(3)

where internal inputs refer to the synaptic inputs that a population of neurons receives

from other populations within the same model, while external inputs refer to synaptic

inputs from regions outside the model. The various populations within the model are

linked via the activation function g(·) that describes a mean firing rate as a function

of the pre-synaptic population’s mean membrane potential. The activation function

exploits a sigmoidal relationship between the mean membrane potential and firing rate

of each of the populations. This sigmoidal nonlinearity may take different forms, but

for this study, the error function form is used [21],

g(vm) =
1

2

(
erf(

vm − v0√
2ς

) + 1

)
. (4)

The quantity ς describes the slope of the sigmoid or, equivalently, the variance of firing

thresholds of the presynaptic population (assuming a Gaussian distribution of firing

thresholds). The mean firing threshold relative to the mean resting membrane potential

is denoted by v0. The parameters of the sigmoidal activation functions, ς and v0, are

usually assumed to be constants.

The convolution in Eq (1) can be written as two coupled, first-order ordinary

differential equations, which is a second-order state-space model [21]. This gives the

system,

dvmn

dt
= zmn

dzmn

dt
= αmng(vm)−

2

τmn

zmn −
1

τ 2mn

vmn.
(5)
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In summary, this single neural population model maps from a mean pre-synaptic firing

rate to a post-synaptic potential. The terms that are usually considered parameters

of the model are the synaptic time constants τmn, the connectivity constants αmn, the

mean firing thresholds v0, and firing threshold variances ς. These parameters can be set

to describe connections between specific neural populations, such as pyramidal neurons,

spiny stellate cells and fast and slow inhibitory interneurons.

2.3. Multiple populations for a single region model

Multiple populations in the form of Eq (5) can be configured and interconnected to

represent the circuitry of a cortical region, such as a cortical column. Each synaptic

connection in the model is described by the set of coupled first-order ODEs of Eq (5);

however, the parameters are connection-specific. An illustration of the neural mass

model used in this study is shown in Figure 1b. The formulation of the model is derived

from the model introduced by Jansen and Rit [36], and has also been outlined in previous

works [34, 37, 21, 38]. The neural mass model is suitable to model iEEG measured at

this scale (electrodes approximately 5 mm in diameter with spacing on the order of cm),

in line with similar neural models used to describe EEG/MEG activity [39, 29, 40].

The model comprises three neural populations, namely excitatory, inhibitory, and

pyramidal populations (Figure 1b). The pyramidal population (in infragranular layers)

driven by the external input µ, excites the spiny stellate excitatory population (in

granular layer IV) and inhibitory interneurons (in supragranular layers) and is excited

by the spiny stellate excitatory population and inhibited by the inhibitory interneurons.

The model state vector is a concatenation of discrete time values of the post-

synaptic membrane potentials and the derivatives of the potentials (see explanations of

model variables in Table 1),

x = [vip zip vpi zpi vpe zpe vep zep]
⊤. (6)

The model parameter vector contains the external input and all connectivity strengths,

θθθ = [µ αip αpi αpe αep]
⊤. (7)

The dynamics for the parameter are modeled as a random walk,

θ̇θθ = 0. (8)

The state vector x and the parameter vector θ are concatenated to form the augmented

state vector,

ξξξ = [x⊤ θθθ⊤]⊤. (9)

The augmented state space model is given by

ξ̇ξξ = Aξξξ +Bξξξ ◦ g(Cξξξ), (10)

where ◦ denotes element-wise multiplication. The matrices A, B, and C are defined in

Appendix A.1.
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It is necessary to discretize the model for estimation purposes. The Euler method

was used for discretizing the model. For the Bayesian inference scheme, it is also

necessary to model uncertainty in our model by an additive noise term. With the

inclusion of the additive noise term wt the discrete time augmented state space model

is denoted by

ξξξt+1 = Aδξξξt +Bδξξξt ◦ g(Cδξξξt) +wt. (11)

The model uncertainty is defined by a zero mean, temporally white Gaussian with

known covariance matrix Q. In forward models, wt is used as a driving term to simulate

unknown input to the system from afferent connections or from other cortical regions.

However, for model inversion purposes, this additional term also facilitates estimation

and tracking of parameters via Kalman filtering or other Bayesian inference schemes.

For the Kalman filter, the covariance ofwt quantifies the error in the predictions through

the model. If we believe our model is accurate, then we set all of the elements of Q

to a small value. On the other hand, a high degree of model-to-brain mismatch can be

quantified by setting the elements of Q to larger values.

It is well accepted that the field potentials that are measured with iEEG are

predominately generated by synaptic currents arising from inputs to the pyramidal

neurons [41]. In our model, these currents are linearly proportional to the mean

membrane potential of the pyramidal population. Therefore, the measurement is

modeled as the mean membrane potential of the pyramidal population, which is the

sum of the incoming post-synaptic membrane potentials. The measurement model is of

the form,

yt = Hξξξt + vt, (12)

where H ∈ Rnx×ny is the observation matrix, vt ∼ N (0,R). As our measurement

function is linear, H is simply an index vector of zeros and ones that defines the average

pyramidal membrane potential given by

vp = vip + vep + µ. (13)
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Table 1. List of variables used in the multiple regions model.

Variable Description

vi Membrane potential of inhibitory neuronal population in neural mass model

ve Membrane potential of excitatory neuronal population in neural mass model

vp Membrane potential of pyramidal neuronal population in neural mass model

µ Post-synaptic membrane potential induced by firings from other regions

u Time derivative of µ

vip Post-synaptic membrane potential from inhibitory to pyramidal population

zip Time derivative of vip
vep Post-synaptic membrane potential from excitatory to pyramidal population

zep Time derivative of vep
vpi Post-synaptic membrane potential from pyramidal to inhibitory population

zpi Time derivative of vpi
vpe Post-synaptic membrane potential from pyramidal to excitatory population

zpe Time derivative of vpe
zpe Time derivative of vpe
zpe Time derivative of vpe
zpe Time derivative of vpe
αip connectivity strength from inhibitory to pyramidal population

αpi connectivity strength from pyramidal to inhibitory population

αpe connectivity strength from pyramidal to excitatory population

αep connectivity strength from excitatory to pyramidal population

W inter-regional connectivity matrix

Wab inter-regional connectivity strength from region a to b
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2.4. Semi-analytical Kalman filter

The aim of the Kalman filter is to estimate the most likely sequences of states ξ̂ξξ
+

t and

the corresponding error covariances P̂+
t , given knowledge of the biophysics and anatomy

of the brain regions of interest combined with the noisy measurements y,

ξ̂ξξ
+

t = E[ξξξt | y1, y2, . . . , yt]

P̂
+

t = E[(ξξξt − ξ̂ξξ
+

t )(ξξξt − ξ̂ξξ
+

t )
⊤].

(14)

The Kalman filter proceeds in two steps: prediction and update. In prediction, the

prior distribution is propagated through the neural mass model. This step provides the

so-called a priori state estimate distribution,

ξ̂ξξ
−
t = E[ξξξt-1 | y1, y2, . . . , yt-1]

P̂
−
t = E[(ξξξt-1 − ξ̂ξξ

+

t-1)(ξξξt-1 − ξ̂ξξ
+

t-1)
⊤].

(15)

In the second step, a Bayesian update is performed to correct the a priori state estimate

based on the actual measurement, giving the posterior distribution,

ξ̂ξξ
+

t = ξ̂ξξ
−
t +Kt(yt −Hξ̂ξξ

−
t )

P̂
+

t = (I−KtH)P̂
−
t ,

(16)

where Kt is the Kalman gain [42], a weighting to correct the a priori state estimate.

The Kalman gain is calculated using the available information about the confidence in

the prediction of the augmented states through the model and the observation model

that includes noise by

Kt =
P−

t H
⊤

HP̂
−
t H

⊤ +R
. (17)

After each time step, the a posteriori estimate becomes the prior distribution for the

next time step and the filter proceeds. See previous papers [34, 21, 38] for details about

how to handle the nonlinearity of the model with the Kalman filter.

The Kalman filter requires ξ̂ξξ
+

0 and P̂
+

0 to be initialized to provide the a posteriori

state estimate and state estimate covariance at time t = 0. The other parameters that

must be initialized are the model and measurement noise Q and R, respectively. Further

details of filter initialization are given in Appendix A.2.

2.5. Multiple regions model

Coupling of cortical region b to region a is achieved by connecting the output firing

rate of the pyramidal population in region b to the input of the pyramidal population

in region a via a post-synaptic response kernel of the same form in Eq (1). The inputs

from the firing rates are modeled for every pyramidal population using the same form

of second-order model defined in Eq (5). All interconnections between regions were

assumed to have the same kernel, which was parameterized by a time constant, τd [43].
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The firing rates form standard inputs to the pyramidal cells in all other cortical regions

and induce post-synaptic potentials via a convolution kernel as described by Eq (1).

In the multiple regions model, each region is modeled by a neural mass model and

the state vector has two extra states for the post-synaptic membrane potentials induced

by firing rates from other regions. The state vector for region a is given by

xa = [vaip zaip vapi z
a
pi v

a
pe z

a
pe v

a
ep zaep µa ua]⊤. (18)

The dynamics for region a are described by

dvaip
dt

= zaip
dzaip
dt

= αa
ipg(v

a
pi)−

2

τip
zaip −

1

τ 2ip
vaip

dvapi
dt

= zapi
dzapi
dt

= αa
pig(v

a
ip + vaep + µa)− 2

τpi
zapi −

1

τ 2pi
vapi

dvape
dt

= zape
dzape
dt

= αa
peg(v

a
ip + vaep + µa)− 2

τpe
zape −

1

τ 2pe
vape

dvaep
dt

= zaep
dzaep
dt

= αa
epg(v

a
pe)−

2

τep
zaep −

1

τ 2ep
vaep

dµa

dt
= ua dua

dt
=

N∑
b=1

wbag(v
b
ip + vbep + µb)− 2

τd
ua − 1

τ 2d
µa,

(19)

where the superscript b indexes the model in region b, and wba denotes the inter-regional

connectivity strength from b to a. The state variable µ represents the post-synaptic

membrane potential induced by inter-regional firing rates, and u is the time derivative

of µ. Let X include all state variables of ny regions X = [x1,x2, . . . ,xny ]⊤, the multiple

regions model is of the differential equation,

Ẋ = f(X), (20)

where f is a map from Rny×10 to Rny×10 based on Eq (19).

The model parameter vector contains inter-population connectivity Θ for every

region,

Θ = [θθθ1 . . . θθθny ]⊤, (21)

and inter-regional connectivity W,

W = [w1,1 w2,1 . . . wny−1,ny wny ,ny ], (22)

and they form a parameter vector,

βββ = [Θ W]⊤. (23)

The augmented state vector for the model is of the form,

Ξ = [X βββ]⊤. (24)
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The augmented state space model is given by

Ξ̇ = DΞ+ EΞ ◦ g(FΞ) +Gg(OΞ). (25)

The matrices D, E, F, G and O are defined in Appendix A.3.

Similar to the single region model, the Euler method was used for discretizing the

model. A noise w ∼ N (0, Q) was added to the discrete time version of the model and

is given by

Ξt+1 = DδΞt + EδΞt ◦ g(FδΞt) +Gδg(OδΞt) +wt. (26)

The measurement model is given as

yt = HΞt + vt, (27)

where y = [y1 y2 . . . yny ] consists of measurements of ny channels, H ∈ Rnx×ny is the

observation matrix, and vt ∼ N (0,R) is a zero mean, spatially and temporally white

Gaussian noise. The matrix H defines a summation of the relevant membrane potentials

(corresponding to excitatory and inhibitory postsynaptic responses of pyramidal

populations) that contribute to each iEEG channel.

2.6. Multivariate linear regression

To estimate inter-regional connectivity strengths of the multiple regions model, we first

treat each region in the model independently and apply the Kalman filter described

in Section 2.4. The Kalman filter takes a single channel iEEG and estimates the

sequences of the a posteriori augmented state distribution (including both model states

and parameters) for the corresponding single region model. The external input µ in the

single region model represents the summation of the post-synaptic membrane potential

induced by inter-regional firing rates and is given by

µa(t) =
N∑
b=1

wba

∫ t

0

hba(t− t′)g(vbp(t
′))dt′, (28)

where the post-synaptic kernel hba is defined by Eq (2) with time constant τd and vbp is

the pyramidal membrane potential in region b. The inter-regional connection strength

wba is estimated by the multivariate linear regression with the estimates of µ for all

regions and the convolution between the kernel and the firing rates induced by the

estimates of vp for all regions. The reason we do not use Kalman filters to estimate the

inter-regional connectivity is to keep the method computationally feasible.

The multivariate regression model relates more than one predictor and more than

one response. Let Z be an n×N matrix, where each column is a µ estimate time series,

and let F be an n×N matrix, where each column is a time series of the convolution of

the post-synaptic kernel with vp estimates. Let B be an N × N matrix of coefficients

wba and let E be an n×N Gaussian white noise. The multivariate regression model is

defined by

Z = FB+ E, (29)
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where the maximum likelihood estimation and unbiased estimator for B is given as

B̂ = (F⊤F)−1F⊤Z. (30)

2.7. Local stability near the fixed points for the multiple regions model

We determine the fixed points, X∗, by setting Eq (20) to zero (Ẋ = 0) and solving for

X. To identify a fixed point closest to our real-time parameter estimates, we initialize

the solver using our parameter estimates as a starting point. To study the behaviour of

the model near the fixed points, we linearize the multiple regions model and calculate its

Jacobian matrix at the fixed point X∗. The model comprises N regions and each region

corresponds to one neural mass model with 10 dimensions. Therefore, the Jacobian

J ∈ R10N×10N is given by

J = diag(M1 . . .MN) +



09,10N

Ω1,1 . . . ΩN,1

09,10N

Ω1,2 . . . ΩN,2

...
. . .

...

09,10N

Ω1,N . . . ΩN,N


. (31)

where Ωa,b =
[
wbaσ1 0 0 wbaσ1 wbaσ1 0 0 0 0 0

]
, σ1 = g′(vbip + vbep + µb), and

0k,l denotes the k-by-l all-zero matrix. diag(M1, . . . ,MN) denotes the diagonal matrix

with block components Ma ∈ R10×10 defined as

05,5 I5,5
− 1

τ2ip
αa
ipg

′(vapi) 0 0 0 −2
τip

0 0 0 0

αa
piσ2

−1
τ2pi

0 αa
piσ2 αa

piσ2 0 −1
τpi

0 0 0

αa
peσ2 0 −1

τ2pe
αa
peσ2 αa

peσ2 0 0 −2
τpe

0 0

0 0 αa
epg

′(vape)
−1
τ2ep

0 0 0 0 −2
τep

0

0 0 0 0 −1
τ2d

0 0 0 0 −2
τd


, (32)

where σ2 = g′(vaip + vaep + µa).

The Jacobian is decided by the inter-population connectivity αmn and the inter-

regional connectivity wba. We calculate the eigenvalues λk of J at the equilibrium

point X∗ to see if the system is stable around X∗. Formally, we perform the eigenvalue

decomposition J = UΛU⊤, where U is orthonormal, Λ is the diagonal eigenvalue matrix,

and ⊤ means the transpose conjugate. We call the real part of λk the criticality index.

For a linearized system, if the criticality index is less than 0, the corresponding mode is

stable; a small perturbation along the eigenvector will decay and the system will return

to the equilibrium point. Conversely, if the criticality index is greater than 0, even a

trivial perturbation along the eigenvector will diverge the system from the equilibrium
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point. When the criticality index equals 0, the system is at the neutral point along

the corresponding eigenvector. In short, the system is unstable if there is at least one

unstable eigenmode, and is stable when all eigenmodes are stable.

The evaluation of the number of unstable eigenmodes is also crucial, as a

higher count signifies increased instability, implying multiple independent directions for

perturbation growth. The eigenvalues associated with unstable eigenmodes also reflect

the degree of instability, as the real part of eigenvalues represents the growth or decay

rate of perturbations.

In summary, linear stability refers to the tendency of a system to return to its

equilibrium or steady state after a small perturbation, and it is often analyzed using

linear stability analysis. Studying cortical stability in epilepsy is crucial for predicting

seizure onset and understanding how small perturbations in brain activity can lead to

large-scale disruptions.

2.8. Lyapunov spectrum of multiple regions model

Lyapunov exponents measure how two trajectories that start infinitesimally close in the

phase space diverge or converge as time progresses [44]. If they diverge exponentially

over time, it indicates the presence of chaos in the system. The Lyapunov exponent

gives a quantitative measure of this rate of divergence or convergence.

To determine the Lyapunov exponent for the multiple regions model defined in Eq

(20), consider a perturbation δX(t) to the trajectory X(t). The rate of change of this

perturbation is governed by the Jacobian J(X(t)) of the vector field evaluated at the

trajectory,
˙δX(t) = J(X(t))δX(t). (33)

In a multidimensional system, the Lyapunov exponents are represented as a vector,

λ = (λ1, λ2, . . . , λn), where each λi characterizes the exponential rate of divergence

or convergence along a particular direction in phase space. The maximal Lyapunov

exponent, denoted as Lmax, is often used as a measure of the system’s predictability;

it quantifies the largest average exponential rate of growth of a perturbation over time

and is mathematically defined as

Lmax = lim
t→∞

1

t
ln|δX(t)|, (34)

given an initial perturbation δX(0).

Specifically, for a d-dimensional phase space, there are d Lyapunov exponents.

These are ordered as λ1 ≥ λ2 ≥ · · · ≥ λd, and their collective set constitutes

the spectrum of Lyapunov exponents. The spectrum depends on the starting point

X(0). In our implementation, we calculated the Lyapunov spectrum at the equilibrium

point, which is close to the model state estimate, and 1000 samples drawn from an

isotropic Gaussian around the equilibrium point. An exponent with a positive value

(λi > 0) indicates trajectories in the corresponding direction in phase space are diverging
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exponentially with time. An exponent valued at zero (λi = 0) points to neutral stability

in that direction. A negative valued exponent (λi < 0) suggests trajectories in its

corresponding direction are converging. Particularly, the largest Lyapunov exponent

is of utmost importance. A positive value for this exponent implies the system’s

sensitive dependence on initial conditions, a defining trait of chaos. In most cases, the

computation of Lyapunov exponents cannot be carried out analytically so numerical

calculation is performed.

In short, studying cortical chaos in epilepsy is important for understanding the

complex, unpredictable dynamics of seizure activity and how small changes in brain

state can lead to significant, erratic disruptions.

3. Results

We analyzed a total of 3008 seizures, recorded using 16-channel iEEG, from 12 patients

with focal epilepsy who underwent chronic recordings as part of the NeuroVista seizure

prediction study (average 251 seizures/patient) [35]. The dataset is available at https:

//www.epilepsyecosystem.org/neurovista-trial-1 [45]. Each seizure recordings

started 1 min before seizure onset and ended 10 s after seizure offset. Figure 1a shows

an example iEEG recordings of a focal epileptic seizure.
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Figure 1. Conceptualization of the analysis framework. a Example of an iEEG

recording of an epileptic seizure. b Schematic of the neural mass model. c Schematic

of the multiple regions models consisting of 16 fully connected neural mass models.

d Example estimation time series of local model states and connectivity parameters

for one neural mass model in the multiple regions model. e Example estimation time

series of effective connectivity strengths between local neural mass models. f Top: the

time-varying eigenvalue spectrum of the multiple regions model’s Jacobian matrix for

the example iEEG. Bottom: the time course of the number of unstable eigenmode.

g Top: the time-varying Lyapunov spectrum of the multiple regions model for the

example iEEG. Bottom: the time course of the maximal Lyapunov exponent.
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3.1. Conceptualization of analysis framework

We created a multiple regions model comprising 16 neural mass models (NMMs)

fully connected to each other, as illustrated in Figure 1c. The mean (spatial not

temporal) membrane potential of the pyramidal population in each NMM is considered

proportional to the voltage of one iEEG channel. As shown in Figure 1b, the NMM

consists of three neuronal populations within a region—excitatory pyramidal neurons,

excitatory spiny stellate neurons, and inhibitory interneurons—interacting locally and

across regions through long-range inter-regional connections. We estimated the temporal

evolution of regional NMM neurophysiological variables for each region (Figure 1d) and

long-range inter-regional synaptic connection strengths based on iEEG signals (Figure

1e).

We describe the dynamics of epileptic seizures from two perspectives. First, the

time-evolved eigenvalue spectrum of the model’s Jacobian matrix around the fixed point

(Figure 1f) provides insights into the linear stability of the system in each one-second

time window, with eigenvalues indicating how perturbations from the fixed point evolve

over time. To compute the eigenvalue spectrum of the model, we identified the fixed

point given the parameter estimates in each time window, linearized the model around

the fixed point, and computed the eigenvalues of the Jacobian matrix. Stable fixed points

have eigenvalues with negative real parts only, while unstable points have positive real

parts[46].

Second, the time-evolved Lyapunov spectrum of the model (Figure 1g) provides

information about the system’s chaos over time. The Lyapunov spectrum of a dynamical

system constitutes a set of exponents, each corresponding to distinct directions within

the system’s phase space. A high chaos system is highly sensitive to initial conditions,

leading to unpredictable and complex behavior, while a low chaos system is more stable

and predictable [47].

The analysis framework employed herein is an inference-based time-resolved

analysis of cortical dynamics based on multiple region models. Notably, our

methodology involves semi-analytical calculation of cortical dynamics, specifically the

model Jacobian eigenvalue spectrum and Lyapunov spectrum-using model parameter

estimates derived from real clinical data. Generally, this analysis framework presents

two principal advantages:

(i) The assessment of the time-evolving spectra of Jacobian eigenvalues and Lyapunov

exponents facilitates the identification of temporal variations in cortical stability

and chaos during seizures. These identified variations hold the potential to serve

as biomarkers if collective analyses yield statistically significant outcomes.

(ii) The Lyapunov spectrum can pinpoint the chaotic drivers, denoting states

consistently associated with the largest Lyapunov exponent [47]. In the context

of epilepsy models, a chaotic driver signifies specific model states consistently

contributing to chaotic dynamics, playing a pivotal role in generating intricate and

unpredictable patterns inherent in epileptic seizures. Identifying chaotic drivers
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is imperative for elucidating and potentially intervening in the chaotic nature of

epileptic occurrences.

3.2. Seizure trajectories

Figure 2 presents the parameter estimation results for the five local connectivity

strengths and long-range effective connectivity. Overall, seizures across multiple events

for each individual followed a relatively consistent trajectory through the parameter

space of the multiple regions model, suggesting that seizure transitions adhere to a

stereotypical pathway. Importantly, these transitions are synchronized with the time of

seizure onset.

Across all patients, the most pronounced ictal changes in connectivity strength

were observed in the in-going connections to the pyramidal population (i.e., αip, αep),

as well as in the effective connectivity. Specifically, αip displayed a significant reduction

following a brief increase shortly after seizure onset for most subjects. Effective

connectivity, on the other hand, exhibited a marked increase post-onset in certain

subjects, including S1, S6, S10, and S15. In contrast, the outgoing connections from the

pyramidal population (i.e., αpi, αpe) remained relatively stable throughout the seizures.

However, gradual and substantial increases were observed post-onset in subjects S2, S4,

S6, and S13, indicating a delayed but notable change in these connections.

The subsequent sections leverage these parameter estimates to perform stability

and chaos analyses.
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Figure 2. Estimated changes in parameter trajectories during every seizure.

The figure illustrates the estimated local and effective connectivity parameters derived

from seizure recordings across 12 subjects. Each row represents data from one subject,

and the subpanels within each row display the parameter estimates across seizures,

with the specific number of seizures indicated by the numbers on the left. The onset

of each seizure is marked by a black triangle, and the data extends up to 10 seconds

after the seizure offset. Averaged estimates across 16 channels are shown for local

connectivity parameters, and averaged strength is shown for effective connectivity.

3.3. Cortical instability first decreases then increases during seizures

Figure 3a illustrates the results of the stability analysis performed on the multiple regions

model using an example iEEG data from subject 2. The top panel illustrates how the

distribution of the Jacobian eigenvalues evolves, with a pronounced increase in density

of unstable eigenvalues (indicated by warmer colors) coinciding with the seizure onset.

This shift reflects a significant destabilization of the system. As the seizure progressed,

the density of unstable eigenvalues fluctuated but generally remained elevated until the

seizure offset, at which point the distribution shifted back toward greater stability. The

bottom panel quantifies this instability, showing a marked rise in the number of unstable

eigenmodes at seizure onset, indicating the system’s transition into a hyperexcitable

state. This heightened instability persisted throughout the ictal phase and diminished
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rapidly upon seizure termination, aligning with the restoration of neural homeostasis.

These findings underscore the utility of stability analysis in capturing the nonlinear

dynamics of seizure evolution and highlight how sudden transitions to instability may

underpin the emergence and termination of epileptic events.

Figure 3. Stability and chaos analysis with an example iEEG recording. a

Top: evolution of the distribution of the Jacobian’s eigenvalues as a function of time

from 60 seconds before seizure onset to 10 seconds after seizure offset. Yellow denotes

high density, while blue denotes low density. Bottom: The corresponding number of

unstable eigenmodes as a function of time. b Top: evolution of Lyapunov spectrum

as a function of time from 60 seconds before seizure onset to 10 seconds after seizure

offset. For each time window, the magnitude of exponents are shown by color. Yellow

means large exponent, while blue means low exponent. Bottom: The corresponding

maximal Lyapunov exponent in each time window.

We extended our analysis to a group level by examining 12 subjects with multiple

recordings, using the same methods to uncover shared or unique stability patterns.

Figure 4a shows the temporal evolution of the number of unstable eigenmodes during

each seizure event for each subject. The temporal variation pattern of dynamic

stability, in terms of unstable eigenmodes, was remarkably consistent across events

for each subject, suggesting that within-subject cortical stability transitions follow a

stereotypical manner.

Figure 4b presents the mean change in the number of unstable eigenmodes during

seizures. For all subjects, the average number of unstable eigenmodes increased from

the baseline (value at the beginning) in the preictal period, indicating that cortical

dynamics instability consistently rises before seizure onset, causing the system to deviate

from equilibrium more rapidly with minor perturbations. In all subjects except S2 and

S4, there was a substantial drop in the number of unstable eigenmodes immediately
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after seizure onset, with some subjects showing numbers below the baseline. This

suggests that the onset of a seizure represents a spatiotemporal transition from a

very unstable state to a less unstable state. Subsequently, the degree of instability

increased immediately after the decline and was highest during the ictal phase. This

was confirmed in all subjects except S13 by paired t-tests (p < 0.01), which showed that

the stability measure in the ictal period was significantly greater than in the preictal

period. Overall, cortical activity in epileptogenic regions exhibited higher instability

during seizures compared to pre-seizure periods, despite a significant transient decrease

at the beginning of seizures.

Figure 4. Changes in the number of unstable eigenmodes during epileptic

seizures. a Each subpanel represents the time-varying number of unstable eigenmodes

in the multiple regions model’s Jacobian matrix spanning all seizures for each subject.

Seizures are sorted shortest to longest. b Each subpanel represents the mean number

of unstable eigenmodes (averaged across seizures) for each subject (grey shading is the

95% confidence interval of the mean). The horizontal gray line represents the baseline

(the number of unstable eigenmodes at the beginning of the recording).
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3.4. Seizures as individualized changes in maximal Lyapunov exponent

Figure 3b presents the temporal evolution of the Lyapunov spectrum for the model

based on an example iEEG recording. The top panel shows the Lyapunov spectrum

and a substantial decrease in the magnitude of the Lyapunov exponents (indicated by

the transition from yellow to blue) occurred around seizure onset, signifying an reduction

in the system’s chaotic dynamics. This decreased chaos persisted throughout the early

phases of the seizure. A noticeable growth of chaos was observed subsequently denoted

by the transition from blue to yellow, meaning the increased chaotic dynamics over

the epileptogenic regions. The bottom panel depicted the temporal evolution of the

maximal Lyapunov exponent, Lmax, during the seizure. It consistently decreased from a

minute before the seizure onset to around 10 seconds after seizure onset. The exponent

then observed a sharp increase to a high level and maintained that during the rest of

the seizure, ending with a notable drop at the seizure offset.

We expanded our analysis to include 12 subjects, applying the same chaos metrics

to identify consistent patterns or variations across the group. Figure 5a illustrates the

within-subject variability in the temporal evolution of Lmax for all subjects. Seizures

in subjects S1, S3, S6, S7, S11, S13, and S15 followed a consistent evolution of Lmax,

indicating that the chaos of cortical activity during seizures transitions in a stereotypical

pathway. Conversely, subjects S2 and S4 showed noticeable within-subject variability in

the temporal change of Lmax, while subjects S8, S9, and S10 exhibited negligible changes

in chaos during seizures.

Figure 5b shows the mean change of Lmax during seizures across all events for each

subject. Some general trends can be identified in most subjects, although no universal

pattern was found in the mean changes of Lmax across all subjects. A consistent motif

was that Lmax continuously decreased during the preictal phase for most subjects except

for S4 and S9, who showed negligible changes in Lmax. This suggests that the preictal

state represents a spatiotemporal transition from a more chaotic to a less chaotic state.

Following seizure onset, there was a more noticeable decline in Lmax for most subjects

except S2, S4, and S9. The more ordered cortical activity likely reflects the synchronized

rhythmic firing patterns of neurons involved in epileptic discharges. The remaining

ictal period saw a reset of cortical dynamics from ordered to chaotic, evidenced by the

increasing Lmax in most subjects except S9. While most subjects showed Lmax values

exceeding the preictal baseline, the Lmax of S8 remained significantly below the baseline.
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Figure 5. Change in maximum Lyapunov index during each epileptic

seizure. a Each subpanel represents the time-varying Lmax of the multiple regions

model for all seizures for each subject. Seizures are sorted from shortest to longest. b

Each subpanel represents the mean Lmax (averaged across seizures) for each subject

(grey shading is the 95% confidence interval of the mean). The horizontal gray line

represents the baseline (Lmax at the beginning of the recording).

3.5. Exogenous input driving epileptic dynamics between chaos and order

We computed the temporal evolution of the Lyapunov spectrum of the multiple regions

model for each seizure (Figure 6a). This approach facilitated the identification of model

states associated with Lmax during seizures. For this, we determined the model state

index corresponding to Lmax in each time window (Figure 6b). Since the multiple

regions model consists of interconnected neural mass models that are identical in both

architecture and types of model states, we identified the specific model state associated

with Lmax in each time window (Figure 6c). Figure 6d illustrates the frequency of

each variable associated with Lmax across the entire recording. In this example, state

variable zep, representing the time derivative of the post-synaptic membrane potential

from the excitatory to pyramidal neuronal population, corresponded to Lmax in most
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time windows. This indicates that zep was primarily responsible for the cortical chaotic

behaviours and played a significant role in driving epileptogenic zones between order

and chaos.

Figure 6. Identification of cortical chaotic driver. a Time-evolved Lyapunov

spectrum. Abscissa indicates time and ordinate refers to multiple regions model states.

Blue to yellow indicates small to large Lyapunov exponent values. b Highlighted points

on each column indicate the chaotic driver corresponding to the maximal Lyapunov

exponent in each time window. c Highlighted points on each columns are the type of

model state associated with the maximal Lyapunov exponent in each time window. d

The histogram shows the model state serving as the chaotic driver during the whole

seizure recording. The dominant chaotic driver is the one with the highest frequency.

e The percentage of model states that are the dominant chaotic driver in each subject

is shown.

Group-level analysis in Figure 6e revealed that, among the 12 subjects, eight

demonstrated the time derivative of the post-synaptic membrane potential induced

by inter-regional neuronal firing, u, as the primary contributor to chaotic behavior

in the epileptogenic regions. The remaining four subjects showed that the post-

synaptic membrane potential resulting from neuronal firing between regions, µ, primarily

influenced the chaotic dynamics observed. Notably, µ and u, as the primary drivers of

chaos, were predominant in over 80% of seizures in all subjects except for S1, where zep
accounted for one third of seizures. Nevertheless, µ and u, representing exogenous inputs

from other regions, are the main neurophysiological processes in steering the degree of

cortical chaos in focal epilepsy while the time-derivative of post-synaptic membrane

potential from excitatory to pyramidal population zep also serves as chaotic driver in a
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noticeable number of seizures in 9 of 12 subjects.

4. Discussion

In this study, we analyzed temporal evolution of the stability and chaos of cortical

dynamics in human epileptogenic brain region networks in a period from 60 seconds prior

to seizure onset to 10 seconds after seizure offset in drug-resistant patients undergoing

iEEG monitoring. We hypothesized that the degree of stability and chaos of cortical

dynamics within the clinically identified epileptogenic regions would vary noticeably

prior to, and post, seizure onset. We implemented and fit a multiple regions model

consisting of 16 interconnected neural mass models to the data, and estimated model

state and parameters over time. The model and parameter estimates allowed us to track

the cortical stability and chaos of the epileptogenic brain regions.

For dynamic stability, the consistent pattern over time across seizure events for

each subject, as shown in Figure 4a, underscores a stereotypical transition in cortical

stability within individuals. This consistency highlights the potential for predicting

and understanding the onset and progression of seizures in a subject-specific manner.

Figure 4b illustrates an increase in the number of unstable eigenmodes in the preictal

period across subjects. This verified an established theory of increasing instability

of cortical dynamics preceding epileptic seizures [48, 49, 50, 51, 52]. The difference

is that we directly calculated the Jacobian matrix eigenvalues of the multiple regions

model using parameter estimates from the clinical data, enabling a fine-grained temporal

resolution picture of the evolution of the dynamical stability spectrum to describe the

epileptogenic regions. Whereas other studies mainly examined the stability from the

response (e.g., line length) of models to active probings or spontaneous perturbations

[53]. Furthermore, the progressive loss of model stability marks dynamic features

of critical slowing in the transition to focal seizures [54, 55]. Critical slowing down

in the context of seizure is that the brain becomes sensitive to perturbations in an

invisible way because of very subtle changes in a slow underlying process [55, 54, 56].

Many neurophysiological processes have been identified and hypothesized to play crucial

roles in epileptic seizure development [57, 21]. Nonetheless, most of these processes

may simply represent random perturbations that trigger epileptic seizures in neural

networks whose dynamics are already approaching catastrophic bifurcation through

critical slowing down on certain timescales.

We also demonstrated that a noticeable reduction of instability at the start of

seizure onset followed by a rise of instability. This observation can be supported by two

aspects from human and animal experiments. First, excess synchronization of neuronal

activity at the onset of a seizure [58, 59] can lead to a more stable, organized pattern of

activity, at least in the short term. Second, an ictal discharge is preceded by exhausted

presynaptic excitatory neurotransmitter release [60], which temporarily reduces overall

excitability and potentially promotes a less unstable state. Moreover, the involvement of

inhibition is dominant at the start of seizures and thus prevents seizure spread initially
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even though neurons experience a period of large rhythmic depolarizations [61, 62].

We observed up to tens of seconds of decreasing instability before it increased, which

matched the experimental observation after focal injections of GABAergic blockers to

create an ictal focus [61]. This indicates that the shift from the preictal to the ictal

state in spontaneous complex partial seizures does not occur instantaneously but via

multiple complicated neurophysiological processes that need to be explored to establish a

more comprehensive mechanism of regulating the evolution of seizures. The subsequent

increase of instability of cortical dynamics up until the end of seizures aligns with

observations made in various epilepsy studies [63, 64, 65, 52]. As the seizure progresses,

it may lead to increased synchronization, hyperexcitability, and a breakdown of the

normal balance between neuronal inhibition and excitation, contributing to heightened

instability [66, 67, 68]. Our analysis showed a fine-grained dynamic stability of focal

seizures and unveiled a seldom-observed abrupt decline in instability at the initiation of

seizures.

The observation of the within-subject consistency in the evolution of chaos aligns

with studies that suggest individualized patterns in seizure dynamics. Previous studies

indicated that, while seizure characteristics can vary widely among individuals, they

often follow a consistent pattern within the same individual over time [69, 70, 71, 72].

An interesting finding is that epileptic seizures manifested in opposite ways, with some

individuals exhibiting more chaotic and unpredictable patterns while others exhibited

more stable, predictable patterns. This coincides with an important finding that the

seizure dynamics might not exhibit a large change of chaos in certain scenarios, such as

specific seizure types or under certain input conditions [73, 74].

The decrease in Lmax during the preictal phase, indicating a transition to less chaotic

states, is in line with studies that have identified changes in brain chaos preceding

seizures [75, 25, 24]. The sharp decline in Lmax following seizure onset in some subjects

reflects a transition to more synchronized neural activity, which is a well-documented

characteristic of the seizure onset from previous studies [25, 24, 76, 58]. The increase in

Lmax during the remaining ictal period, indicating a return to highly chaotic brain state,

confirmed observations directly derived from EEG signals [25, 24]. This observation is

attributed by increase in brain complexity [77] and changes of cortical input frequency

[73].

We found the critical roles of the exogenous input from neighboring and distant

regions (µ) and its time derivative (u) in driving chaotic behavior within the cerebral

cortex of the epileptogenic zone in epileptic seizures. The predominance of µ and u

in over 80% of seizures across the majority of subjects underscores their significant

influence on cortical dynamics. There is hitherto no study specifically uncovering chaotic

dynamic regulation through inter-regional cortical communication during seizures,

although biomolecular studies found changing neuromodulatory inputs could relate to

chaotic behavior in the cerebral cortex [78] and dynamic regulation of inter-regional

cortical communication during working memory tasks which may contribute to chaotic

neuronal activity in cerebral cortex [79]. Notably, the exception observed in subject
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S1, where the time derivative of the postsynaptic membrane potential from excitatory

populations to pyramidal populations played a substantial role, suggests a variability

in the dynamical drivers of epileptic seizures that warrants further investigation. While

studies highlighted the importance of excitability in modulating seizure dynamics from

a biomolecular perspective [12, 80], the importance of excitability in driving chaotic

behaviour during epileptic seizures has not been observed before. These findings suggest

that exogenous inputs and changes of excitability are pivotal in steering the degree of

chaos in focal epilepsy.

In terms of the methodology, to address the Kalman filter initialization, we followed

the approach described in a previous paper [21], using parameter values corresponding

to non-seizure brain activity, since the recordings began in a non-seizure state. We

also excluded the first five seconds (2000 time points at 400 Hz) from our analysis,

ensuring the filter had converged during this initial period, as the parameter estimates

experienced drastic changes during this initial period and then stabilized, suggesting

the filter had converged. Regarding the verification of our inference method, forward

simulations have been done using parameter estimates showing reasonably negligible

prediction error (see Figure C1). Effective connectivity was estimated using linear

regression, which provided a good fit to the data.

The scope of our study was confined to individuals with drug-resistant focal epilepsy,

raising uncertainties about the generalizability of our findings on dynamic stability and

chaos to other epilepsy variants. Additionally, the adequacy of our data set, particularly

for patients with fewer than 100 recordings, remains a point of potential concern.

A further constraint of our methodology pertained to the identification of seizure

commencement and conclusion, which were determined either through clinical judgment

or algorithmic processes. The clinical labeling of seizures is inherently subjective and

prone to variability among clinicians. Lastly, we acknowledge the limitations of the

current parameter estimation approach, where effective connectivity is derived based

on local inference for each neural mass model. In future work, we aim to develop a

unified inference framework that allows for the simultaneous estimation of both local

parameters and effective connectivity.

Our findings on the temporal evolution of cortical stability and chaos in

epileptogenic brain regions open up several applications. By identifying consistent

patterns in stability and chaos dynamics within individuals, we can explore personalized

therapeutic strategies, such as targeted electrical or optogenetic stimulation, to

preemptively counteract the progression toward a seizure state. The analysis of the

chaotic drivers, specifically the roles of exogenous inputs and changes in excitability

suggests an application in the design of adaptive neuromodulation therapies. By

identifying and targeting these key drivers, clinicians could develop responsive systems

that dynamically adjust neuromodulatory inputs in real time to regulate cortical chaos

and prevent seizures. For instance, closed-loop brain stimulation devices could be

programmed to monitor chaotic behavior and deliver electrical or pharmacological

interventions precisely when chaotic drivers surpass a critical threshold, thereby
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stabilizing brain activity and minimizing the risk of seizure onset. Additionally, our

observations could pave the way for novel diagnostic tools that use the dynamic spectrum

of stability and chaos to better characterize seizure types [81], providing a deeper

understanding of individual seizure mechanisms and enhancing treatment approaches

in a dynamical systems context.
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Appendix A. Details of model

Appendix A.1. Definition of matrices A, B, and C in neural mass model

The matrix A has a block diagonal structure that is comprised of two sub-matrices,

A =

[
Ψ 0

0 Inθ,nθ
,

]
(A.1)

where Inθ,nθ
∈ Rnθ×nθ is the identity matrix and nθ is the number of parameters in the

model, and Ψ ∈ Rnx×nx is also composed of the sub-matrices and nx is the number of

states in the model,

Ψ = diag(Ψj) (A.2)

Ψj =

[
0 1

− 1
τ2j

− 2
τj
,

]
(A.3)

where j = 1, . . . , N indexes connections.
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The discrete time version Aδ is related to A by

Aδ =

[
I+ δΨ 0

0 I.

]
(A.4)

The matrix B has the form

B =

[
0nx,nx ϑ

0nθ,nx 0nθ,nθ
,

]
(A.5)

where ϑ ∈ Rnx×nθ maps the connectivity to the relevant sigmoidal function and is of the

form

ϑ =


0 . . . 0

1 0
...

. . .
...

0 0

0 . . . 1

 . (A.6)

The discrete time version is simply

Bδ = δB. (A.7)

The adjacency matrix C is the same for both the continuous and discrete version

of the model. It has a block diagonal structure where

C = diag(Γ,0nθ,nθ
) (A.8)

and Γ ∈ Rnx×nx sums the relevant post-synaptic potentials to form the mean membrane

potentials then maps them to the sigmoidal function and is of the form

Γ =


0 0 . . . 0 0

c2,1 0 c2,nx−1 0
...

. . .
...

0 0 0 0

cnx,1 0 cnx,nx−1 0

 . (A.9)

Appendix A.2. Filter initialization

We used the average and covariance of simulated data to initialize ξ̂ξξ
+

0 and P̂
+

0 . For

the model uncertainty we used small constant values (5µV ), which prevents the filter

converging, and enables new measurements to continue to influence the estimation. For

the measurement noise we used a value of 1µV .
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Appendix A.3. Definition of matrices D, E, F, G and O in the multiple regions model

The matrix D has a block diagonal structure that is comprised of two sub-matrices,

D =

[
Ψ 0

0 Inβ ,nβ
,

]
(A.10)

where Inβ ,nβ
∈ Rnβ×nβ is the identity matrix and nβ is the number of parameters in the

model, and Ψ ∈ Rnx×nx is also composed of the sub-matrices and nx is the number of

states in the model,

Ψ = diag(Ψj) (A.11)

Ψj =

[
0 1

− 1
τ2j

− 2
τj
,

]
(A.12)

where j = 1, . . . , N indexes inter-population connections.

The discrete time version Dδ is related to D by

Dδ =

[
I+ δΨ 0

0 I.

]
(A.13)

The matrix E has the form

E =

[
0nx,nx ϑϑϑ

0nβ ,nx 0nβ ,nβ
,

]
(A.14)

where ϑϑϑ ∈ Rnx×nβ maps the connectivity to the relevant sigmoidal function and is of

the form

ϑϑϑ =


0 . . . 0

1 0
...

. . .
...

0 0

0 . . . 1

 . (A.15)

The discrete time version is

Eδ = δE. (A.16)

The matrix F is the same for both the continuous and discrete version of the model.

It has a block diagonal structure where

F = diag(∆∆∆1, . . . , ∆∆∆ny ,0nβ ,nβ
) (A.17)

and ∆ defines the connectivity structure of each single region model. It is a matrix of

zeros or ones that specifies all the connections between the cell population types.

The matrix G has the form

G =

[
Φ 0nx,nΘ

0nΘ,nx 0nΘ,nΘ

]
, (A.18)
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where Φ ∈ Rnx×nx and has the form Φ = [Υ1 . . . Υny ]
⊤. Υk mapps the inter-regional

connectivity weights to the relevant sigmoidal function and is of the form

Υk =

[
09,nx

01,9 w1,1 . . . 01,9 wny ,1

]
(A.19)

where k = 1, . . . , ny indexes individual neural mass models. The discrete time version

is

Gδ = δG. (A.20)

The matrix O is the same for both the continuous and discrete version of the model.

It has a block diagonal structure where

O = diag(Λ1, . . . ,Λny ,0nβ ,nβ
), (A.21)

and Λk is defined to sum the relevant post-synaptic potentials to form the pyramidal

membrane potential for each neural mass model then map them to the activation

function as the output firing rates to other regions and is of the form

Λi =


0 . . . 0
...

. . .
...

0 . . . 0

γ1 0 . . . γ5 0

 . (A.22)

The last row of Λi indicates the post-synaptic membrane potentials that contribute to

the pyramidal membrane potential.

Appendix B. Supplementary Tables

Subject Total seizures Number of days Mean seizure rate (seizures/day)

1 121 767 16%

2 32 730 0.04

3 341 557 0.61

4 22 233 0.09

5 9 273 0.03

6 71 441 0.16

7 246 185 1.3

8 466 558 0.84

9 204 395 0.52

10 484 373 1.30

11 463 722 0.64

12 13 729 0.02

13 481 747 0.64

14 12 627 0.02

15 77 466 0.17

Table B1. Subject data summary. The total number of seizures considered in this

study, the number of days and the mean seizure rate are tabulated. Subject 5, 12, 14

were excluded in the data pre-processing phase.
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Appendix C. Supplementary Figures

Figure C1. The distributions of the data prediction errors for all 12 subjects displayed

as probability density functions (black histogram) plotted against normal probability

density functions with the same mean and standard deviation as the data from each

subject (green curves). In each plot, the y-axis represents the value of the density and

the x-axis represents the data prediction errors.
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[9] Stöber T M, Batulin D, Triesch J, Narayanan R and Jedlicka P 2023 Communications Biology 6

479

[10] Ren X, Brodovskaya A, Hudson J L and Kapur J 2021 Journal of Neuroscience 41 7623–7635

[11] Shao L R, Habela C W and Stafstrom C E 2019 Children 6 23

[12] Sumadewi K T, Harkitasari S and Tjandra D C 2023 Acta Epileptologica 5 1–22

[13] D’Adamo M C, Liantonio A, Conte E, Pessia M and Imbrici P 2020 Neuroscience 440 337–359

[14] Nappi P, Miceli F, Soldovieri M V, Ambrosino P, Barrese V and Taglialatela M 2020 Pflügers
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