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A B S T R A C T
Infectious diseases can create significant global threats to public health and economic stability
by creating pandemics. SARS-CoV-2 is a recent example. Early detection of infectious
diseases is crucial to prevent global outbreaks. Mpox, a contagious viral disease first detected
in humans in 1970, has experienced multiple outbreaks in recent decades, which emphasizes
the development of tools for its early detection. In this paper, we develop a hybrid deep
learning framework for Mpox detection. This framework allows us to construct hybrid deep
learning models combining deep learning architectures as a feature extraction tool with
Machine Learning classifiers and perform a comprehensive analysis of Mpox detection from
image data. Our best-performing model consists of MobileNetV2 with LightGBM classifier,
which achieves an accuracy of 91.49%, 91.87% weighted precision, 91.49% weighted recall,
91.51% weighted F1-score and Matthews Correlation Coefficient score of 0.83.

1. Introduction
Mpox, also known as monkeypox (MPX), is caused

by the Mpox virus (MPXV), is a zoonotic disease,
more specifically an infectious skin disease that can
spread between animals and humans. It is a 200-250
nm brick-like or ovoid shaped double helix DNA virus
that belongs to the Orthopoxvirus genus, Proxviriade
family, and Chordopoxvirinae subfamily (Moore et al.
(2021)). Along with MPXV, variola major virus, which
causes smallpox, variola minor virus (also known as
variola alastrim) from the same genus, also infects
the human body (Petersen et al. (2019)). MPXV can
be transmitted into the human body in several ways,
from animal to human and human to human (Vaughan
et al. (2020)). Moreover, it can be transmitted by
contact with contaminated objects, a patient’s droplets,
body fluids, and lesions (Vaughan et al. (2020)). After
exposure to MPXV, it takes 3-17 days to develop
symptoms, which can last nearly 2-5 weeks (Centers
for Disease Control and Prevention (2024a)). A few
symptoms of Mpox are fever, swollen lymph nodes,
headache, muscle aches, and backache (Centers for
Disease Control and Prevention (2024a)).

The first human case caused by MPXV was re-
ported in 1970 (Ladnyj et al. (1972); Gessain et al.
(2022)). In 2022-23, there was a global outbreak of
Mpox (Ianache et al. (2024)). Before that, between
1970 and 2017, several outbreaks occurred in central
and west Africa (Organization et al. (2022); Breman
et al. (1980); Foster et al. (1972)). Clade I, previously
known as the Congo Basin Clade or Central African
Clade, and Clade II, previously known as West African

Clade, were responsible for the outbreaks in Central
and West Africa (Eke (1972); Brown and Leggat
(2016)). The first outbreak outside Africa occurred
in the USA in 2003 (McCollum and Damon (2014);
Brown and Leggat (2016)). In 2023, 809 positive cases
were reported in different states of the USA, and 1,945
have been reported up to September 09, 2024 (Centers
for Disease Control and Prevention (2024b)). In Figure
1, we present a scenario based on data collected from
Centers for Disease Control and Prevention (2024b)
and Ritchie et al. (2024) respectively for different states
in the USA and Worldwide. From these reported cases,
it is visible that developing tools for the early detection
of Mpox has evolved into a significant research prob-
lem.

Biomedical images have been a valuable tool in
disease diagnosis for an extended period. In general,
images have found wide-ranging applications in var-
ious fields, including health care, for example, brain
tumor detection from MRI images (Bhattacharyya
and Kim (2011); Amin et al. (2020); Anantharajan
et al. (2024); Arumugam et al. (2024); Khan et al.
(2024)), skin cancer detection from histopathological
images (Lu and Mandal (2015); Esteva et al. (2017);
Kimeswenger et al. (2021); Akilandasowmya et al.
(2024); Ali et al. (2021); Strzelecki et al. (2024));
in agriculture, such as plant disease detection, for
example, wheat disease detection (Franke and Menz
(2007); Lu et al. (2017); Goyal et al. (2021); Verma
et al. (2024)); in disaster management such as flood
detection by satellite images (Kussul et al. (2008);
Vanama et al. (2021); Composto et al. (2024)); in retail
and E-commerce (Li and Li (2019); Chen et al. (2021);
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(a) (b) (c)
Figure 1: Mpox reported cases in the USA and Worldwide. 1a and 1b illustrate the number of infected cases in 2023
and 2024, respectively, in different states of the USA, and 1c shows cumulative infected cases reported globally up to
September 2024.

Liang et al. (2016)). Mathematically, one can model
a grayscale image as a function 𝑓 ∶ ℝ2 → [0, 255].
Similarly, a color image can be modeled as 𝑓 ∶ ℝ2 →
[0, 255]3. Note that [0, 255] denotes the intensity values
of the image.

Recently, biomedical images have become very
useful to detect infectious diseases such as COVID-
19 using chest X-ray images (Sailunaz et al. (2023);
Bhattacharya et al. (2021); Jiang et al. (2020); Ebenezer
et al. (2022); Ismael and Şengür (2021)). It is important
to note that a commonly used diagnostic tool for in-
fectious diseases is Polymerase Chain Reaction (PCR)
test (Fredricks and Relman (1999)). It provides precise
genetic analysis. However, PCR has risks of contami-
nation, and limitations in detecting large or unknown
sequences (Yang and Rothman (2004)). Moreover, it
requires specialized equipment and expertise, making it
less accessible in some resource-limited settings (Yang
and Rothman (2004)).

Deep Learning (DL) techniques have become an
alternative to detect infectious diseases. For a de-
tailed review, one can see Sharma and Guleria (2024),
Ibrahim et al. (2024), Bhatele et al. (2024), Chen et al.
(2024), Foltz et al. (2024). While PCR is more likely
inclined toward the lab resources and has a risk of
contamination, DL techniques are mainly focused on
biomedical images. DL techniques are data driven
and a subclass of artificial intelligence (Huang et al.
(2019)). It can predict patterns from large and complex
datasets (Huang et al. (2019)). It involves training
neural networks that can mimic the neural orientation
of the human brain (Huang et al. (2019)). Most impor-
tantly, once the model is trained, it can be deployed on a
simpler system to predict, classify, and generate output

(Huang et al. (2019)).
In addition to DL, there are Machine Learning

(ML) tools for classification. For example, Support
vector machine (SVM) (Suthaharan and Suthaharan
(2016b)), Logistic regression (Musa (2013)), Random
Forest (RF) (Breiman (2001); Biau and Scornet (2016);
Rashidi et al. (2019)), Naïve bayes (NB) (Webb et al.
(2010)). Due to computational efficiency these classi-
fiers have found wide ranging applications in various
fields. For detailed review see Pereira et al. (2009),
Narudin et al. (2016), and Abro et al. (2021).

Furthermore, One can study the dynamics of any
infectious disease by developing models using a system
of ordinary or partial differential equations. A simple
framework for these models is the SIR (Susceptible,
Infectious, Recovered) model, given by (Hattaf and
Dutta (2020)):

𝑑𝑆
𝑑𝑡

= Λ − 𝑎𝐼𝑆
𝑁

𝑑𝐼
𝑑𝑡

= 𝑎𝐼𝑆
𝑁

− 𝑏𝐼

𝑑𝑅
𝑑𝑡

= 𝑏𝐼,

(1)

with initial conditions 𝑆(0) = 𝑆0, 𝐼(0) = 𝐼0, 𝑅(0) =
𝑅0. Here 𝑆, 𝐼 , and 𝑅 are the number of individuals
in the Susceptible, Infectious, and Recovered compart-
ments, Λ represents the recruitment number in the
Susceptible compartment, 𝑎 is the infection or disease
transmission rate from susceptible to infection, and 𝑏
denotes the recovery rate. Note that 𝑡 > 0 and the total
population is given by:

𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡). (2)
2
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Using this model framework, one can compute the
basic reproduction number 0, which is a threshold
that determines whether the disease will spread or die
out.

Due to the mathematical elegance, this model is
widely popular and found wide ranging applications
in the published literature. For example, consider the
SEIR model, an extended version of (1) proposed by
Li (2011) to study Malaria transmission. This model
incorporates the life stages of mosquitoes that reflect
their biological life cycles and malaria transmission
dynamics between humans and mosquitoes. Etbaigha
et al. (2018) developed a compartmental model to
study influenza A virus (IAV) transmission within a
swine farm. The model investigated different stages of
infection and immunity within the swine population.
Ahmed et al. (2021) proposed a SEIAPH (Susceptible,
Exposed, Infectious, Asymptotic, Pre-symptomatic,
Symptomatic hospitalized, and Recovered) model that
reflects a critical aspect of SARS-CoV-2 virus trans-
mission concerning the role of asymptomatic carriers.
Mahata et al. (2022) proposed an advanced model
incorporating fractional order derivatives and vacci-
nation strategies in the classical SEIR model. More-
over, they introduced optimal control strategies and
provided stability analysis of the model. Furthermore,
they provided a comparison between the classical and
fractional-order SEIR models.

Recently, this infectious disease model has been
studied to analyze the dynamics of Mpox and predict
the virus’s spread. Liu et al. (2023) proposed a SEIR-
type model for continuous monitoring and early inter-
vention of the spread of Mpox virus. They proposed
a robust model and performed sensitivity analyses for
different parameters such as infection rate and recov-
ery rate. Most importantly, they estimated the basic
reproduction number for 2022 outbreak to investigate
how rapidly the virus could spread. Batiha et al. (2023)
investigated the dynamics of Mpox outbreak using
fractional-order SEIR model. They analyzed the effects
of vaccination in the transmission and mitigation of
Mpox virus. Betti et al. (2023) developed a model fo-
cusing on pair formation that reflects how close contact
with individuals contributes to the spread of Mpox.
Additionally, they investigated recovery dynamics to
observe how quickly infected individuals recover and
how this recovery rate affects the overall spread of
the infection. Using infectious disease modeling and
statistical techniques, Zhang et al. (2024) forecasted the
global spread and trajectory of the Mpox virus. They
emphasized identifying key factors responsible for the
spread of MPXV. By analyzing the current data, they
predicted the future scenario of the outbreak. Kaftan

et al. (2024) performed a comprehensive analysis of
the 2022 Mpox outbreak in New York City. They
analyzed and compared different mathematical models,
including SEIR, and evaluated their effectiveness in
predicting and forecasting outbreak patterns. Molla
et al. (2023) has provided a comprehensive review on
infectious disease modeling to investigate the Mpox
transmission.

Ali et al. (2022) created an image dataset to detect
and analyze Mpox with DL algorithms. The dataset
consists of images with a resolution of 224 × 224 × 3
and allows the implementation of DL models. Ali
et al. (2022) applied three pre-trained models, VGG-16,
InceptionV3, and ResNet-50, to classify Mpox images.
In addition to that, they combined these DL algorithms
by employing majority voting and proposed an ensem-
ble model. Among these models, ResNet-50 achieved
82.96% accuracy, 87% precision, 83% recall, and 84%
F1 score, while other models, including the ensemble,
produced lower scores in every metric. Using the same
dataset, Sahin et al. (2022) developed a DL framework
tailored for mobile based applications to diagnose
Mpox lesions. They obtained 91.11% accuracy, 90%
precision, 90% recall, and 90% F1 score. Sitaula and
Shahi (2022) proposed an ensemble based DL frame-
work focused not only on Mpox detection but also on
classifying other Skin diseases. Their dataset was cu-
rated with samples of different skin diseases. Initially,
they implemented 13 different DL techniques, then
ensembled two best-performing algorithms—Xception
and DenseNet-169 and achieved 87.13% accuracy,
85.44% precision, 85.47% recall, and 85.40% F1 score.
Dwivedi et al. (2022) explored ResNet-50, Efficient-
Netb3, and EfficientNetb7 on a dataset that contains
160 Mpox lesions, 178 chickenpox, 54 cowpox, 358
small pox, and 50 healthy skins. They obtained 87%
accuracy, 92% precision, 87% recall, and 90% F1 score
by EfficientNetb3.

Uysal (2023) proposed a hybrid DL framework
for Mpox detection. Unlike developing an ensemble
model employing majority voting, they combined the
two models with the highest accuracy with the Long
Short-term Memory (LSTM) model and obtained 87%
accuracy, 84% precision, 87% recall, and 85% F1
score. Nayak et al. (2023) tested GoogleNet, ReseNet-
18, ResNet-50, ResNet-101, and SquezeNet for multi-
classification and Mpox detection and obtained 91.19%
average accuracy. Explainable Artificial Intelligence
(XAI) is crucial in Medical research. Nayak et al.
(2023) introduced XAI to make the DL model more in-
terpretable. Gupta et al. (2023) developed a blockchain
enabled DL framework for early detection of Mpox
lesions. They obtained 98% accuracy using a dataset
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with 1905 images. Sorayaie Azar et al. (2023) imple-
mented ResNetV2, InceptionV3, ResNet152V2, VGG-
16, VGG-19, Xception, DenseNet-201 on a dataset that
consists of 43 Mpox, 47 Chickenpox, 27 Measles, 54
normal images. They found that DenseNet-201 outper-
formed other models and produced 95.18% accuracy.
However, they have augmented the sample size ten
times before implementing transfer learning models.
Akula and Pushkar (2023) investigated seven different
pre-trained transfer learning models and achieved an
accuracy of 89.24% with the Xception model.

Recently, Ahsan et al. (2024) proposed a modified
VGG-16 and ResNet-50 model to classify Mpox. To
ensure data privacy, they have used a federated learning
strategy. Meena et al. (2024) used VGG19, Xception,
InceptionV3 transfer learning models on augmented
dataset created by Ali et al. (2021), which includes,
1428 Mpox and 1764 others Skin lesions images.
They achieved 98% accuracy by using InceptionV3
model. Yolcu Oztel (2024) explored Vision Transform-
ers (VITs) and Convolutional Neural Networks (CNNs)
for Mpox lesion analysis. They proposed an ensemble
learning strategy using the bagging ensemble technique
and obtained 81.91% strategy.

In this paper, we predict Mpox from image dataset.
Our contributions include:

• We develop a hybrid Deep learning (DL) frame-
work combining a pre-trained DL architecture
with a Machine Learning (ML) classifier. The
pre-trained DL architecture will be used for fea-
ture extraction from image data. After that, the
ML model will be trained for Mpox prediction.

• We develop several hybrid DL models using
our DL framework and perform a comprehen-
sive analysis of Mpox prediction. To evaluate
the model, we compute accuracy, precision,
weighted precision, recall, weighted recall, F1-
score, weighted F1-score, and Matthews Corre-
lation Coefficient (MCC) score.

• Finally, we compare our best-performing model
with previously published results to highlight its
effectiveness in Mpox prediction.

We organize this paper as follows: In section 2, we
develop a hybrid DL framework. Next, we present our
experimental resources along with a brief discussion
about our dataset, train-test splitting procedure, and
data augmentation strategy in section 3. In the same
section, we also discuss the pre-trained DL architec-
tures that we have used in this paper and different ML
tools. After that, in section 4, we discuss our results and

compare our best performing model with previously
published results. Finally, we conclude our work.

2. Hybrid Deep Learning Framework for
Mpox Detection
Consider the dataset 𝑆 =

{ (

𝑖,𝑖
) }𝑛

𝑖=1, where
𝑖 denotes the 𝑖𝑡ℎ image and 𝑖 represents its corre-
sponding image label. We develop the framework by
combining a pre-trained DL architecture and an ML
classifier in the following steps:

Step 1 (Preprocessing): In this initial phase, we
clean the dataset through various processes, includ-
ing noise reduction, handling mislabeled images, and
removing duplicate images to ensure the dataset is
prepared for optimal model performance.

Step 2 (Train-test split): We partition the given
dataset 𝑆 into two distinct subsets, 𝑆Train and 𝑆Test,such that

𝑆 = 𝑆Train ∪ 𝑆Test, and 𝑆Train ∩ 𝑆Test = 𝜙,

where 𝑆Train denotes the training set containing 80%
of the sample and 𝑆Test denotes the test set containing
20% of the samples from the dataset 𝑆. We perform
data augmentation on 𝑆Train.

Step 3 (Feature extraction): In this step, using a
pre-trained DL architecture  , we extract features from
each image as follows:

𝑥Train
𝑗 = 

(

Train
𝑗

)

, 𝑗 = 1, 2,… , 𝑁 (3)
𝑥Test
𝑘 = 

(

Test
𝑘

)

, 𝑘 = 1, 2,… ,𝑀, (4)
where 𝑥Train

𝑗 and 𝑥Test
𝑘 represent the features extracted

from Train
𝑗 ∈ 𝑆Train and Test

𝑘 ∈ 𝑆Test respectively.
Note that each extracted feature is a tensor of di-

mension 𝑙×𝑝×𝑞, where 𝑙 and 𝑝 are the height and width
of the feature map and 𝑞 denotes the number of feature
channels. In order to train a ML classifier, we have
reshaped each of these features into a 𝑑-dimensional
vector where 𝑑 = 𝑙× 𝑝× 𝑞. The reshaping procedure is
performed as follows:

𝑧Train
𝑗 = reshape

(

𝑥Train
𝑗 , 𝑑

)

, (5)
𝑧Test
𝑘 = reshape (𝑥Test

𝑘 , 𝑑
)

, (6)
where 𝑗 = 1, 2,… , 𝑁 , and 𝑘 = 1, 2,… ,𝑀 .

Step 4 (Train classification model): Using these
features 𝑧Train

𝑗 , we train a classification model . After
that, we test the model using the features 𝑧Test

𝑘 and
predict the labels ̂Test

𝑘 as follows:
̂Test
𝑘 = (𝑧Test

𝑘 ), 𝑘 = 1, 2,… ,𝑀. (7)
4
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Figure 2: A hybrid Deep Learning framework for Mpox classification, combining a pre-trained Deep Learning architecture
and Machine Learning classifier.

Step 5 (Model Evaluation): Finally, we evaluate the
hybrid model using standard metrics such as accuracy,
precision, weighted precision, recall, weighted recall,
F1 score, weighted F1 score, and Matthews Correlation
Coefficient (MCC) score. We discuss these metrics in
subsection 3.4.

In Figure 2, we illustrate this framework in detail.

3. Resources for Constructing Hybrid
Models
In this section, we discuss our dataset, data aug-

mentation strategy, DL architectures, and ML classifi-
cation models, which we have used to construct hybrid
models.
3.1. Data Description

In this paper, we have used a publicly available
dataset for Mpox detection created by Ali et al. (2021).
The dataset contains images with a resolution of 224 ×
224 × 3. It is divided into two categories–Mpox and

non-Mpox, where the latter includes images of other
diseases–chickenpox and measles. In Table 1, we present
a summary of the dataset, including the number of
images in each category.

Table 1
Summary of the Dataset

Category Number of Images

Mpox 102
Others 126

Total 228

3.1.1. Train-Test Split and Data Augmentation
We split the dataset into two subsets– Train set,

which contains 80%, and Test set, which includes 20%
of the samples from the original dataset. We present a
detailed summary in Table 2.

5
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Table 2
Summary of the Train and Test data

Train set Test set

Mpox 81 21
Others 100 26

Total 181 47

We have performed data augmentation in the train-
ing dataset. Since the dataset is imbalanced, one can
observe it from Table 1 and Table 2; we have balanced
the number of Mpox and Other images using standard
augmentation strategies. In Table 3, we present these in
detail.
3.2. Pre-trained DL Architectures

We have used several pre-trained DL architectures
for feature extraction, including DenseNet, MobileNet,
Inception, Inception-Residual Network, and Xception.
We discuss them briefly in the following subsections.
3.2.1. DenseNet

All the layers of this architecture are connected
in a feedforward manner, where all the features from
the preceding layers are concatenated and transferred
to the successive layers (Zhu and Newsam (2017);
Dhillon and Verma (2020)). This process allows to
reuse the features, leverage the gradient flow, and pre-
vent the vanishing gradient problem. In addition to
that, it has transition layers that consist of batch nor-
malization, ReLu activation function, 1 × 1 convolu-
tion to reduce dimensions, and 2 × 2 average pool-
ing that controls the growth of the number of fea-
tures and consequently reduces the computational com-
plexity (Zhu and Newsam (2017); Dhillon and Verma
(2020)). In this paper, we have implemented three dif-
ferent versions of DenseNet. These are DenseNet-121,
DenseNet-169, and DenseNet-201 (see Huang et al.
(2017)). These versions, respectively, contain 121, 169,
and 201 layers (Huang et al. (2017)).
3.2.2. MobileNet

It is an alternative to CNNs, computationally more
efficient than CNNs and tailored for deployment on
devices with limited computational capacities, such as
smartphones (Howard et al. (2017)). Unlike CNNs,
which use regular convolution operations where a filter
processes all the input channels (e.g., red, green, blue
for a color image) together, MobileNet uses a depth-
wise separable convolution (DPSC) operation (Nelson
and Gailly (1995)). DPSC comprises into two steps—

Depthwise convolution (DC) and Pointwise convolu-
tion (PC) (Nelson and Gailly (1995)). Initially DC,
filters are applied to each input channel individually
and reduce the number of parameters, which makes the
computational process faster compared to the regular
convolution operation. Then, PC combines the outputs
from DC and transforms them into a single output
(Nelson and Gailly (1995)). In this paper, we employed
MobileNetV1 (Howard et al. (2017)) and MobileNetV2
(Sandler et al. (2018)) for feature extraction from im-
ages.
3.2.3. Inception

This DL architecture uses an inception module,
which allows Inception to learn global and local pat-
terns and leverage its ability to learn features com-
prehensively (Kolla et al. (2023)). More specifically,
the inception module applies convolutional filters of
different sizes (1 × 1, 3 × 3, and 5 × 5) in parallel,
which allows this architecture to learn features simul-
taneously at multiple scales (Alzubaidi et al. (2021)).
In addition, 1 × 1 convolution reduces the dimension-
ality before applying the larger filters, which leverages
the architecture’s computational efficiency (Alzubaidi
et al. (2021)). It was first introduced in 2014 by Google
(Szegedy et al. (2015)). Inception-V3 architecture was
introduced in 2016. It has 159 layers, and for feature
extraction, it uses a standard convolutional block (Kas-
sani et al. (2019)).
3.2.4. Inception-Residual Network

It ensembles the architecture of Inception and
Residual networks, incorporating residual connections
within the inception block structure (Szegedy et al.
(2017)). Residual connections resolve the vanishing
gradient issue and enhance the efficiency of this ar-
chitecture in classification tasks, particularly for image
data (Szegedy et al. (2017)). In this paper, we have
used Inception-ResNet-V2 architecture for feature ex-
traction.
3.2.5. Xception

The architecture of Xception is an improvement
over Inception (Chollet (2017)). One can consider this a
bundle of depthwise separable convolution (DSC) with
residual connection (RC), where DSC reduces the com-
putational cost as well as improves memory usage by
separating the learning of channel-wise and space-wise
features, and RC solves the vanishing gradient issue
(Alzubaidi et al. (2021)). It has 36 convolutional layers
structured into 14 modules (Kassani et al. (2019)).
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Table 3
Summary of the Augmentation Parameters

Augmentation Parameter Description Value

Rotation range Degree range for random rotation 20 degree
Width shift range Range of random horizontal shift 20% of the image width
Height shift range Range of random vertical shift 20% of the image height
Shear range Transformation that slants the image shape 0.2 radians
Zoom range Range of random zooming 20% of the image
Horizontal flip Randomly flip images horizontally True
Fill mode Fill strategy for newly created pixels Nearest

3.3. Machine Learning Classifiers
We have used the following feature set
 = {𝑧Train

𝑗 ∶ 𝑗 = 1, 2,… , 𝑁}, 𝑧Train
𝑗 ∈ ℝ𝑑

to train several ML classifiers. In the following subsec-
tions, we provide an overview of how these classifiers
generally function.
3.3.1. Support Vector Machine

A crucial step in training a support vector machine
(SVM) is to find a hyperplane, given by:

𝑤𝑇 𝑧 + 𝑏 = 0, (8)
so that the margin between the nearest data points of
each class and the hyperplane is maximized. Here,
𝑤 ∈ ℝ𝑑 denotes the weight, and 𝑏 ∈ ℝ denotes
the bias in (8). It is important to note that to train an
SVM; the labels must be mapped either -1 and 1 or 0
and 1 (Stitson et al. (1996); Suthaharan and Suthaharan
(2016b)). For linearly separable data, to obtain the final
classifier 𝑥 ↦ sign (𝑤𝑇 𝑧 + 𝑏

), one has to solve the
following optimization problem (Kecman (2005)):

min
𝑤,𝑏

1
2
‖𝑤‖

2
2 (9)

subject to, 𝑗
(

𝑤𝑇 𝑧𝑗 + 𝑏
)

≥ 1, (10)
where 𝑗 ∈ {1, 2,… , 𝑁}. Note that sign (𝑤𝑇 𝑧 + 𝑏

)

=
1 if 𝑤𝑇 𝑧 + 𝑏 > 0, and 0 otherwise.

In this paper, to train SVM, we have mapped the
labels associated with each feature into 0 and 1.
3.3.2. Random Forest

It performs classification task by ensembling pre-
dictions made by multiple decision trees based on ma-
jority voting strategy (Breiman (2001)). Suppose there
are 𝓁 decision trees 𝑇1, 𝑇2,… , 𝑇𝓁 in the forest. These
trees are also known as “base learner” (Cutler et al.
(2012)). Initially, it trains each decision tree on a subset
drawn from the training feature space using bootstrap

sampling with replacement. Each of these trees make
a prediction for a given input 𝑧, then final prediction is
made as (Cutler et al. (2012)):

̂ = argmax
∈𝐶

𝓁
∑

𝑖=1
𝕀
(

 = �̂�𝓁(𝑧)
)

, (11)

where 𝕀 denotes the indicator function, �̂�𝓁 denotes the
𝓁-th fitted tree at 𝑧, and 𝐶 is the set of all possible
values of  .
3.3.3. Logistic Regression

For any probability of success 𝑝 expressed in terms
of odds as (Kleinbaum et al. (2002); Nick and Campbell
(2007); LaValley (2008)):

𝑝
1 − 𝑝

= exp (𝛽0 + 𝛽𝑡𝑧
)

, (12)

the Logisitic regression (LR) is defined as follows:

log
(

𝑝
1 − 𝑝

)

= 𝛽0 + 𝛽𝑡𝑧. (13)

Here 𝛽 = {𝛽1, 𝛽2,… , 𝛽𝑛} is the coefficient vector of 𝑧
and 𝛽0 is a constant.
3.3.4. Decision Tree

In general, a Decision tree (DT) is trained by de-
ploying a continuously growing binary decision tree in
training features 𝑧Train

𝑗 , 𝑗 = 1, 2,… , 𝑁 . It starts from a
root node and ends with the decision outputs known as
the leaf node (De Ville (2013); Song and Ying (2015);
Suthaharan and Suthaharan (2016a)).
3.3.5. K-Nearest Neighborhood

The K-Nearest Neighbor (K-NN) classifier predicts
the label of a target point 𝑧∗ based on the patterns
that are nearest to 𝑧∗. To identify these patterns, the
classifier computes the similarity between the target
point 𝑧∗ and the input features using distance metrics
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such as the Euclidean distance or the Minkowski dis-
tance (Peterson (2009); Kramer (2013)). For binary
classification, K-NN is defined as (Kramer (2013)):

̂ =

{

1, if ∑

𝑖∈𝑁𝐾 (𝑧∗) 𝑖 ≥ 0,
−1, if ∑

𝑖∈𝑁𝐾 (𝑧∗) 𝑖 < 0,
(14)

where 𝐾 denotes the neighborhood size, and 𝑁𝐾 (𝑧∗)denotes the set of indices of the 𝐾 nearest neighbor. In
this paper, we have considered 𝐾 = 5.
3.3.6. Naïve Bayes Classifier

It assumes that the features are conditionally in-
dependent given any target label (Szostak (2012)). In
other words, it considers the contribution of each fea-
ture independently. For binary classification, it predicts
a label as follows (Szostak (2012); Permission (2005)):

̂ = argmax
𝑘∈{0,1}

ℙ ( = 𝑘)
𝑑
∏

𝑗=1
ℙ
(

𝑧𝑗| = 𝑘
)

. (15)

In this paper, for each 𝑧𝑗 , we have considered
that the likelihood function ℙ

(

𝑧𝑗| = 𝑘
) is normally

distributed with mean 𝜇𝑗𝑘 and variance 𝜎𝑖.
3.3.7. Adaptive Boosting

Adaptive boosting (AdaBoost) combines weak clas-
sifiers 𝑇1, 𝑇2,… , 𝑇𝑚 and creates a strong classifier as
follows:

 =
𝑚
∑

𝑖=1
𝑤𝑖𝑇𝑖(𝑧), (16)

where 𝑚 denotes the total number of classifiers, and
𝑤𝑖 is the weight assigned to the weak classifier 𝑇𝑖 (see
Freund and Schapire (1997); Singh et al. (2023)).
3.3.8. Extreme Gradient Boosting (XGBoost)

It is an improvement over Gradient boosting (GB),
which forms a model for prediction by ensembling mul-
tiple decision trees where each successive tree depends
upon the previous tree and tries to fix errors made by
the preceding ones (Chen (2015); Chen and Guestrin
(2016)). One of the important features of XGBoost is
it prevents overfitting by regularizing the loss function
as follows:

𝑛
∑

𝑖=1

(

𝑖, ̂𝑖
)

+, (17)

where ̂𝑖 denotes the predicted observations, denotes
the loss function, and  is the regularization term,

given by:

 = 𝛾𝑡 + 1
2
𝜆

𝑡
∑

𝑗=1
𝑤2

𝑗 . (18)

Here 𝜆 denotes the regularized parameter to scale the
penalty, 𝛾 the minimum loss needed to further partition
the leaf node, 𝑤 denotes the weight of the leafs, 𝑡 is the
number of leaves in the tree.
3.3.9. Light Gradient Boosting (LightGBM)

It was built at the top of the Gradient boost-
ing framework for classification and other machine-
learning tasks. It was developed by Microsoft (Ke
et al. (2017)). Its architecture includes histogram based
learning, which reduces memory usage and accel-
erates computational speed, leaf-wise tree growth,
Gradient based one-sided sampling (GOSS), exclusive
feature bundling, which groups categorical features
with common values, parallel and GPU learning, and
regularization to prevent overfitting such as 𝐿1 or 𝐿2regularization (Ke et al. (2017)).

In this paper, we utilized packages and modules
from the Scikit-learn library in Python to implement
the classifiers (Pedregosa et al. (2011)).
3.4. Evaluation Metrics

In this section, we present evaluation metrics to
evaluate hybrid DL models. Our goal is to classify
Mpox and other conditions from image data. To formal-
ize the evaluation process, we construct the following
hypotheses:

𝐻0 ∶ The observation belongs to the "Others" class
𝐻𝐴 ∶ The observation belongs to the "Mpox" class

where 𝐻0 denotes the null hypothesis and 𝐻𝐴 is the
alternative hypothesis. Based on the predictions made
by a hybrid DL model, the possible outcomes of this
hypothesis test are:

i) True positive (TP): observation is correctly pre-
dicted as Mpox. In other words, 𝐻0 is rejected.

ii) True negative (TN): 𝐻0 is accepted, that is ob-
servation is classified as others.

iii) False positive (FP): observation is incorrectly
classified as Mpox when it is actually others,
which means that the 𝐻0 is rejected when it is
true.

iv) False negative (FN): observation is incorrectly
classified as others when it is actually Mpox. In
other words, 𝐻0 is accepted when it is false.
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These outcomes can be represented in a matrix
form, commonly referred to as the confusion matrix
(CM), as follows:

𝐶𝑀 =
[TP FN

FP TN
]

We have computed accuracy, precision, recall, F1
score, weighted precision, weighted recall, weighted
F1 score, and Matthews Correlation Coefficient (MCC)
using these outcomes. In Table 4, we present the eval-
uation metrics in detail.

Table 4
Evaluation metrics

Metric Formula

Accuracy 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

Precision 𝑇𝑃
𝑇𝑃+𝐹𝑃

Recall (Sensitivity) 𝑇𝑃
𝑇𝑃+𝐹𝑁

F1 Score 2 × Precision×Recall
Precision+Recall

Weighted Precision
∑𝑘

𝑖=1 𝑤𝑖×Precision𝑖
∑𝑘

𝑖=1 𝑤𝑖

Weighted Recall
∑𝑘

𝑖=1 𝑤𝑖×Recall𝑖
∑𝑘

𝑖=1 𝑤𝑖

Weighted F1 Score
∑𝑘

𝑖=1 𝑤𝑖×F1𝑖
∑𝑘

𝑖=1 𝑤𝑖

MCC score (𝑇𝑃×𝑇𝑁)−(𝐹𝑃×𝐹𝑁)
√

(𝑇𝑃+𝐹𝑃 )(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃 )(𝑇𝑁+𝐹𝑁)

In addition to these evaluation metrics, we have
also computed the area under the receiver operating
characteristic curve (ROC). ROC plots the sensitivity
(true positive rate) against the false positive rate (FPR).
FPR is given by:

FPR = FP
FP + TN (19)

For 𝑛 points on the ROC curve, area under the
curve (AUC) can be computed using Trapezoidal rule
approximation as follows:

AUC ≈
𝑛−1
∑

𝑖=1

(FPR𝑖+1 − FPR𝑖
) TPR𝑖+1 + TPR𝑖

2
. (20)

4. Results and Discussion
The objective of this research is to develop a hybrid

DL framework that integrates pre-trained DL architec-
tures with ML classifiers to predict Mpox from image
data. Lack of image data and computational complexity
are two stumbling blocks for Mpox prediction. This
framework enables the construction of hybrid DL

models capable of identifying Mpox using a small,
publicly available dataset while optimizing memory
usage and computational time. We have comprehen-
sively analyzed this framework using several hybrid DL
models (see Table 5, Table 6, and Table 7).

The hybrid models listed in Table 5 combine differ-
ent DenseNet architectures (DenseNet-201, DenseNet-
169, and DensNet-121) with ML classifiers. Notably,
the hybrid model consists of DenseNet-201, and LR
(D201LR) obtained an accuracy of 85.11%, outper-
forming other models that incorporated DenseNet-
201 as a feature extraction tool. This model identi-
fied 18 true positive Mpox images out of 21 Mpox
cases reported in the test dataset (see Figure 3a).
On the other hand, DenseNet-201 combined with K-
NN (D201KNN) achieved the highest precision (90%)
among all DenseNet-201 incorporated hybrid models,
highlighting its ability to minimize false positive cases.

The highest overall accuracy, 87.23%, was achieved
by the model consisting of DenseNet-169 with LR
(D169LR). While it outperforms other hybrid models,
its precision is significantly small (82.61%) compared
to D201KNN. It shows that D169LR had a slightly
higher rate of predicting false positive cases. However,
D169LR identified 19 true positive Mpox images (Fig-
ure 3b), which is slightly higher than D201KNN.

DenseNet-169 with Adaboost (D169Adaboost) is
another model which attained the same accuracy as
D169LR (87.23%). Other evaluation metrics of this
model, such as weighted precision (87.39%), weighted
recall (87.23%), F1-score (85%), and weighted F1-
score (87.15%) are comparable to D169LR, although
its precision is higher than D169LR, which indicates
that its strength while minimizing false positive is
essential.

DenseNet-169 with SVM (D169SVM) is another
noteworthy hybrid model for its highest recall rate,
90.48%, the same as D169LR. Hybird Models, DenseNet-
121 with LR (D121LR) and DenseNet-121 with Light-
GBM (D121LightGBM) both performed equally in
terms of every metric for Mpox prediction (see Table
5).

However, D169LR outperformed other models in
MCC score (Table 5). Note that, MCC score provides
valuable information about the model performance,
most importantly when the dataset is imbalanced.
D169LR provided a score of 0.75, which highlights
its strength in Mpox prediction. While D169Adaboost
archived a very close sore (0.74) to D169LR, perfor-
mance of other competing models are significantly low.

From the hybrid models enlisted in Table 5, we have
selected three best performing models based on their
MCC scores.
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(a) (b) (c)

(d) (e) (f)
Figure 3: Confusion matrices and ROC curves for the selected hybrid models, incorporating DenseNet-201, DenseNet-
169, and DenseNet-121 deep learning architectures as feature extraction tools from the image data. These models
are selected based on their MCC score from each category listed in Table 5. Figure 3a, 3b and 3c are the confusion
matrices for D201LR, D169LR, and D121LightGBM respectively, and 3d, 3e, and 3f illustrate their corresponding ROC
curves.

In Figure 3, we incorporated Confusion matrices
and Receiver Operating Characteristic (ROC) curves
of these models. Since D121SVM and D121LightGBM
performed equally in each evaluation metric, we only
considered one of these two models in Figure 3.
Confusion matrices allowed us to distinguish between
positive and negative cases with accuracy. Along with
these matrices, we investigated ROC curves for these
models to assess model performance. Area Under
Curve (AUC) of D161LR reflects its efficiency in Mpox
identification.

In Table 6, we have constructed a few more hybrid
models by incorporating InceptionV3, InceptionRes-
NetV2, and Xception architecture as a feature extrac-
tion tool. Out of all the models developed based on In-
ceptionV3, InceptionV3 with AdaBoost (IV3AdaBoost)
obtained the highest accuracy (87.23%). Although
IV3XGBoost (InceptionV3 with XGBoost) outper-
formed IV3AdaBoost in sensitivity (95.24%), its MCC

score (0.72) and other metric scores are significantly
lower than IV3AdaBoost. IV3AdaBoost and D169LR
performed equally to classify Mpox and other images
since both models scored equal values in every evalua-
tion metric.

InceptionResNetV2 with RF (IRV2LR) performed
better in every metric compared to other models,
which are based on InceptionResNetV2 architecture.
Even though IRV2LR and D201LR have equal ac-
curacy (85.11%) and MCC score (0.70), their preci-
sion, weighted precision, recall, weighted recall, F1
score, and weighted F1 score are significantly different.
However, the AUC of D201LR is slightly higher than
IRV2LR.

Among hybrid models integrating Xception as
a feature extraction tool, XcepSVM (Xception with
SVM) and XecpLR (Xeception with LR) performed
better than others. However, its accuracy (78.72%) is
significantly low compared to D169LR and IRV2LR.
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(a) (b) (c)

(d) (e) (f)
Figure 4: Performance evaluation of the hybrid models IV3AdaBoost (4a, 4d), IRV2LR (4b, 4e), and XcepSVM (4c,
4f) based on confusion matrices and ROC curves. These models are selected based on their MCC score from the list of
models generated incorporating InceptionV3, InceptionResNetV2, and Xception as feature extraction tools (see Table
6).

XcepSVM and XecpLR identified 13 images as
Mpox (see Figure 4c). Since XcepSVM and XecpLR
performed equally, we incorporated a confusion matrix
and ROC curve only for XcepSVM (Figure 4c).

In Table 7, we have more hybrid models that were
developed by combining MobileNet architecture and
ML classifiers. MobileNetV1 and MobileNetV2 were
used to create these models. MV1LR (MobileNetV1
with LR) obtained 80.85% accuracy, which indicates
its efficiency in Mpox prediction. In addition to that, its
other evaluation metrics, such as precision (83.33%),
are also significantly higher than other models that
were developed based on MobileNetV1. Although its
sensitivity or recall (71.43%) is lower than the model
MV1LightGBM (MobileNetV1 with LightGBM), which
is 76.19%, its MCC score of 0.61 outperformed other
models. It identified 15 Mpox images and 23 other
images (see Figure 5 (a)).

MV2LightGBM obtained accuracy 91.49%, which
is highest among the models developed based on

the MobileNetV2 architecture. Although its precision
score (86.96%) is slightly lower than the precision
score of MV2AdaBosst (MobileNetV2 with AdaBoost)
(88.89%), it has outperformed other models in MCC
score. Moreover, MV2LightGBM obtained the highest
accuracy over all the hybrid models developed listed in
Table-5, Table-6 and Table-7.

86.96% Precision score of MV2LightGBM in-
dicates its ability to identify true positive cases of
Mpox, which is higher than MV1LR. Furthermore,
its weighted precision of 91.87% shows an overall
scenario of how MV2LightGBM is suitable for binary
classification, especially for an imbalanced dataset. In
addition to that, its 91.87% recall and 95.24% weighted
recall highlighted the robustness of this model in
detecting TP positive cases out of all TP positive cases.
More specifically, one can see that this model identified
20 Mpox images out of 21 (Figure 5b), which is the
highest number of predictions over all other models.
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(a) (b)

(c) (d)
Figure 5: Performance evaluation of hybrid models constructed using MobileNetV1 and MobileNetV2 architectures.
Figures 5a and 5c are the confusion matrix and ROC curve for the MV1LR model, respectively, while Figures 5b and
5d show the confusion matrix and ROC curve for the MV2LightGBM model.

Next, the 90.91% F1 score and the 91.51%weighted
F1 score of MV2LightGBM highlighted the strength
of this model in minimizing false positive and false
negative cases. In other words, it can correctly identify
90.91% of the true positive instances while keeping the
false positive and false negative cases low. Finally, the
MCC score of this model (0.83) established it as an
efficient model for the prediction of Mpox.
4.1. Comparison with Existing Methods

Through our analysis, MV2LightGBM emerged
as the best-performing hybrid model, achieving the
highest accuracy compared to all other evaluated hy-
brid models. This section compares this model with
the different models previously published in the lit-
erature for Mpox detection. In this paper, we have
used the dataset created by Ali et al. (2022). How-
ever, MV2LightGBM, which obtained 91.49% accu-
racy, outperformed the model proposed by Ali et al.
(2022). Moreover, it has outperformed the model pro-
posed by Sahin et al. (2022) by a slight margin. Note

that Sahin et al. (2022) also used the same dataset cre-
ated by Ali et al. (2022). Furthermore, MV2LightGBM
outperformed Sahin et al. (2022) and Dwivedi et al.
(2022), not only in terms of accuracy but also across
other evaluation metrics (see Table 8).

5. Conclusion
Mpox is a zoonotic infectious skin disease that

has raised concern due to its global outbreaks. The
construction of an early detection tool for Mpox has
emerged as a significant problem in preventing a pos-
sible future outbreak. In this paper, we developed
a framework for the early detection of Mpox from
biomedical image data. Our framework is constructed
with a DL architecture and an ML classifier. In our
framework, the DL architecture is accountable for
feature extraction, and ML classifiers are used for clas-
sification. We built several hybrid models to perform
a comprehensive analysis and evaluated these models
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Table 8
Comparison of Our Best-Performing Model with Previously Published Results

Accuracy Precision Recall F1 score

MV2LightGBM 91.49 86.96 95.24 90.91
Ali et al. (2022) 82.96 87 83 84
Sahin et al. (2022) 91.11 90 90 90
Sitaula and Shahi (2022) 87.13 85.44 85.47 85.40
Dwivedi et al. (2022) 87 92 87 90

with standard evaluation metrics. Finally, we com-
pared the results of our best-performing model with
those published in the literature. Our results showed
significant improvements over the results reported in
the literature. In future work, we aim to investigate
the efficiency of this framework for other infectious
diseases.
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