
1 

Associations between weather and Plasmodium vivax malaria in an elimination setting in 1 
Peru: a distributed lag analysis 2 
Gabriella Barratt Heitmann,1* Xue Wu,2 Anna T. Nguyen,1 Astrid Altamirano-Quiroz,3 Sydney Fine,2 3 
Bryan Fernandez-Camacho,3 Antony Barja,3 Renato Cava,3 Verónica Soto-Calle,3 Hugo Rodriguez,4 4 
Gabriel Carrasco-Escobar,3 Adam Bennett,2 Alejandro Llanos-Cuentas,3 Erin A. Mordecai,5,6 Michelle S. 5 
Hsiang,2,7,8,9 Jade Benjamin-Chung1,9 6 
 7 
1. Department of Epidemiology and Population Health, School of Medicine, Stanford University, 8 
Stanford, CA, USA 9 
2. Malaria Elimination Initiative, Institute for Global Health Sciences, University of California San 10 
Francisco (UCSF), San Francisco, CA, USA 11 
3. Instituto de Medicina Tropical, Alexander von Humboldt, Universidad Peruana Cayetano Heredia, 12 
Lima, Perú 13 
4. Universidad Nacional de la Amazonía Peruana, Loreto, Perú 14 
5. Department of Biology, Stanford University, Stanford, CA, USA 15 
6. Woods Institute for the Environment, Stanford University, Stanford, CA, USA 16 
7. Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA, USA 17 
8. Department of Pediatrics, UCSF, San Francisco, CA, USA 18 
9. Chan Zuckerberg Biohub, San Francisco, CA, USA 19 
 20 
*Corresponding author contact information: 21 
Email: gabbyrbh@stanford.edu 22 
Phone number: 609-972-2178 23 
ORCID: https://orcid.org/0000-0002-4212-0954 24 
 25 
Conflicts of Interest Statement 26 
The authors declare they have no conflicts of interest related to this work to disclose. 27 
 28 
Funding Statement 29 
Research reported in this publication was supported by grants to MH from the National Institute of 30 
Allergy and Infectious Disease under Award Number U01AI157962.  31 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 28, 2024. ; https://doi.org/10.1101/2024.11.26.24318000doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.11.26.24318000
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

ABSTRACT 32 
Background 33 
Plasmodium vivax (Pv) is the predominant malaria species in countries approaching elimination. 34 
In the context of climate change, understanding environmental drivers of transmission can guide 35 

interventions, yet evidence is limited, particularly in Latin America.   36 

 37 
Objectives 38 
We estimated the association between temperature and precipitation and Pv malaria incidence in 39 
a malaria elimination setting in Peru. 40 

 41 

Methods 42 
We analyzed malaria incidence data from 2021-2023 from 30 communities in Loreto, Peru with 43 
hourly weather data from the ERA5 dataset and land cover data from MapBiomas. Predictors 44 
included average weekly minimum and maximum temperature, high heat (>90th percentile mean 45 
temperature), total weekly precipitation, and heavy rain (>90th percentile total precipitation). We 46 
fit non-linear distributed lag models for continuous weather predictors and generalized additive 47 

models for binary predictors and the lookback period was 2—16 weeks. Temperature models 48 
adjusted for total precipitation; precipitation models adjusted for maximum temperature. We 49 
performed subgroup analyses by season, community type, and distance to forest edge. 50 

 51 
Results 52 
The median vs. lowest values of weekly average minimum temperature was associated with 2.16 53 

to 3.93-fold higher incidence 3-16 weeks later (5-week lag incidence ratio (IR) =3.93 [95% CI 54 
2.18, 7.09]); for maximum temperature, the association was hump-shaped across lags, with 55 
protective associations at 1-2 and 15-16 week lags and 1.07-1.66-fold higher incidence at 6-13 56 
week lags. High heat (>27.5ºC) was associated with 1.23 to 1.37-fold higher incidence at 5--9 57 
week lags (9-week lag IR = 1.25 [1.02, 1.53]). Associations between total precipitation and 58 
malaria incidence were hump-shaped across lags, with the strongest positive association at 750 59 
mm of precipitation at a 9-week lag (IR=1.56; [1.27, 1.65]). Heavy rain (>186mm) was 60 

associated with 1.22–1.60-fold higher incidence at 2–10 week lags (9-week lag IR=1.23 [1.02, 61 
1.49]). 62 

 63 
Discussion 64 
Higher temperatures and precipitation were generally associated with higher malaria incidence 65 
over 1–4 months.   66 

 67 

 68 
  69 
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INTRODUCTION 70 
As countries approach malaria elimination, the proportion of malaria infections due to 71 
Plasmodium vivax (Pv) increases.1 Pv presents unique challenges for malaria elimination efforts 72 
because of its ability to survive in a wide range of environments, including temperate settings, by 73 

utilizing a dormant hypnozoite stage.2 Relapsing infections occur weeks to months after a prior 74 
infection or relapse, and serve as a significant reservoir for persistent transmission.3 4,5 That Pv 75 
infections can be latent, as well asymptomatic, sub-patent, or minimally symptomatic makes 76 
diagnosis and surveillance a challenge. Further, symptomatic infections are low density and often 77 
missed through standard diagnostics.4,6,7. These characteristics greatly obfuscate Pv transmission 78 
biology and make Pv harder to detect, treat, and ultimately eliminate. 79 

 80 
Climatic and environmental factors such as temperature, precipitation, land use, and vegetation 81 
are strong drivers of malaria transmission in various endemic settings.8 All initial Pv infections 82 
are environmentally mediated, and understanding these drivers is critical to interrupting the long, 83 
enduring cycles of Pv transmission described above. Increased precipitation can increase 84 
standing water presence, soil moisture, and humidity, which in turn increase breeding habitat for 85 

Anopheles,9 the vector for malaria transmission. However, this relationship is complicated: in 86 
dry-land communities, heavy rain can flush mosquito larvae, leading to decreased mosquito 87 
populations, whereas in riverine settings such as in the Amazon, flooding from heavy rains can 88 
increase breeding ground and mosquito populations.9 Temperature has strong effects on the 89 
capacity of the Anopheles vector to transmit malaria via the mosquito biting rate, mosquito 90 
abundance, parasite incubation rate, and mosquito longevity.10,11 A schematic of the timeline of 91 

these environmental drivers of transmission is presented in Figure 1, generated from prior 92 
findings.6,12–16 Modeling suggest Pf malaria transmission by various Anopheles peaks at 93 
25ºC,10,17 with substantial decreases in transmission above this thermal optimum. More recent 94 
work has supported this thermal optimum for both Pf and Pv transmission by An. gambiae.11 95 
Finally, weather could be a direct trigger for relapse infections for Pv infections18, and there is 96 
other indirect evidence that relapses may be triggered by antigens in uninfected mosquito saliva 97 
(biting rate is temperature-sensitive).3 However, there is limited research on environmental 98 

drivers of Pv, especially in Latin America, including in the Amazon, which is estimated to bear 99 
5% of the world’s Pv malaria burden.6 100 
 101 
Our objective was to assess the influence of rainfall and temperature on Pv incidence in Loreto 102 
Region, Peru, a low transmission area key to the Peruvian government’s target of malaria 103 
elimination by 2030.19 Environmental risk factors for malaria tend to be highly localized,20,21 and 104 

the Loreto Region has maximum temperatures between 30–35ºC thought to be above the malaria 105 
transmission thermal optimum, and daily temperature extremes are thought to impact malaria 106 
transmission22. To our knowledge, the thermal biology of Pv transmission by An. darlingi, the 107 
primary vector in this region, has not been well characterized in disease ecology studies. 108 
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Information about climatic drivers of Pv transmission is needed to inform effective tailoring and 109 
targeting of interventions for malaria elimination.  110 

 111 
 112 

METHODS 113 
Study design 114 
We analyzed malaria incidence data collected from January 2021 to December 2023 in 30 115 
communities in San Juan Bautista, Punchana, Alto Nanay, Iquitos, and Belen districts in Loreto 116 
region, Peru, an area covering 2,569 km2 (Figure 2). This study used data collected prior to 117 
baseline for the FocaL Mass Drug Administration for Vivax Malaria Elimination (FLAME) trial 118 

in Peru (NCT05690841), and therefore communities included in this study were those that met 119 
the eligibility criteria for FLAME. The study included surveillance data from riverine 120 
communities only accessible via boat on the Itaya, Momón, and Nanay rivers and dryland 121 
communities along the Iquitos-Nauta highway. The spatial distribution of these communities is 122 
shown in Figure 2. According to a census conducted for the FLAME trial, the average population 123 
size of each community was 240 individuals (range: 31 to 807). 124 

 125 
Peru’s malaria burden is concentrated in the Loreto Region, which includes a large swath of the 126 
Peruvian Amazon.7 Since the 1990s, rapid urbanization and deforestation in the area surrounding 127 
Iquitos, the capital of the Department of Loreto, has contributed to increased malaria burden7, 128 
likely through increased forest edge habitat, which promotes mosquito breeding, survival, and 129 
biting23. While this region is approaching elimination, sustained, endemic transmission remains, 130 

with an annual incidence rate of 17.4 cases per 1000 in 2019,19 and Pv malaria accounts for 131 
approximately 80% of the malaria burden.7 Transmission typically peaks in Loreto between 132 
February and July7 and there is a sizable asymptomatic caseload.13 Asymptomatic infections 133 
typically go undetected and uncounted in routine malaria surveillance in Peru,13 since only 134 
febrile individuals are tested.  135 
 136 
From 2005-2010, there was a large effort towards malaria elimination via the Project for Malaria 137 

Control in Andean Border Areas (PAMAFRO) program that improved case management, 138 
including through community case workers, and deployed insecticide-treated bed nets.7 139 
Transmission declined during the project, but the project did not achieve elimination, and 140 
transmission has since risen.24 Following PAMAFRO, the government of Peru adopted Plan 141 
Malaria Cero (PMC) in 2017 to achieve malaria elimination. Control activities over the study 142 
period involved some reactive (RCD) and active case detection (ACD), distribution of long-143 

lasting insecticide-treated bed nets, indoor residual spraying, and community-level 144 
chemoprophylaxis25.  145 

 146 
Outcome data 147 
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Our primary outcome was weekly community-level vivax malaria incidence primarily measured 148 
through passive case detection conducted by the Peruvian Ministry of Health (MINSA), though 149 
PMC activities including ACD and RCD also occurred over the study period and were recorded 150 
in surveillance data. Both physical records stored in health posts and online records compiled by 151 

MINSA were used in this analysis. Febrile patients presented for care at a health post and were 152 
tested for malaria via microscopy. According to PMC policy25, blood smears are stained with 2% 153 
Giemsa for 30 minutes. Parasite densities are calculated from the number of asexual parasites per 154 
200 leukocytes (or per 500, if <10 asexual parasites/200 leukocytes), assuming a leukocyte count 155 
of 8,000/µL. A blood smear is considered negative if examination of 100 high power fields does 156 
not reveal asexual parasites. Thin smears are used for parasite species identification. Slides are 157 

read by two microscopists. If there are discordant results, the results are determined by a third 158 
microscopist. Only Pv cases were included in the present study, and the data did not distinguish 159 
between primary infections versus relapse cases. Cases were matched to community census data 160 
to confirm community of residence, and then matched to a community centroid. Population 161 
counts per community were calculated from a census conducted from 2023, which was adjusted 162 
via interpolation for missing and/or non-participatory households.  163 

 164 

Environmental variables 165 
We obtained temperature and precipitation data from the ERA5-Land Hourly dataset collected 166 
by the Copernicus Climate Change Service26. We used the air temperature at 2 meters above the 167 
surface (K) band for all temperature variables and the total precipitation (m) band for 168 
precipitation variables. Weather variables were matched to incidence data via community 169 

centroid. 170 
  171 
We imputed temperature or precipitation values less than 0 as missing. We aggregated hourly 172 
temperature values into the weekly minimum, mean, and maximum temperature; the average of 173 
each day's temperature range (maximum minus minimum) over a week; and total precipitation 174 
observed each week. We defined a binary indicator for high heat events coded as 1 for weeks 175 
with any days when the mean daily temperature exceeded the 90th percentile of mean daily 176 

temperatures for that year (average over all years was 27.5ºC) and 0 otherwise. Similarly, we 177 
defined a binary indicator for heavy rain events coded as 1 for weeks with any days when the 178 
total daily precipitation exceeded the 90th percentile of total daily precipitation for that year 179 
(average of all years was186mm) and 0 otherwise. 180 
 181 
We conducted a distinct household-level analysis on distance to forest edge as a potential effect 182 

modifier of the associations between temperature and rainfall and malaria incidence. Minimum 183 
distance to forest edge was calculated from the MapBiomas Perú 2022 dataset.27 We retained 184 
forest classes (forest, dry forest, mangrove, and flooded forest) and removed all other classes. 185 
These forest cells were transformed into vector point data for the distance calculation. For each 186 
household, we calculated the minimum Euclidean distance to the nearest forest within a 5-187 
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kilometer (km) radius around each household. There were no households for which the minimum 188 
distance to forest edge was greater than 5km. Population density was calculated from the census 189 
data. A population density raster was created by summing up the number of individuals in each 190 
household with 1km by 1km resolution. Population density values were then extracted for each 191 

household GPS point.  192 

 193 
Statistical analysis 194 
We published a pre-analysis plan at https://osf.io/fgr6w. Deviations from the pre-analysis plan 195 
are listed in Table S1. All positive cases were matched to weather data. Thus, we performed a 196 
complete case analysis. 197 

 198 
We assessed associations between malaria incidence and weather variables using distributed lag 199 
models. We chose a 2–16 week lookback period (i.e. an infection during the course of 200 
epidemiologic week 20 looked back to epidemiologic weeks 2—18) to account for potential 201 
variation in the influence of rainfall and temperature in Pv transmission and to account for 202 
potential impacts on relapse cases (Figure 1). For continuous exposures (weekly maximum 203 

temperature, weekly mean temperature, weekly mean temperature range, weekly minimum 204 
temperature, and total precipitation), we fit non-linear distributed lag (DL) models28 with a log 205 
link and Poisson family using weekly malaria case counts per village as the dependent variable 206 
with an offset for log community population size. For the distributed lag cross-basis function, we 207 
specified a log function with 2 knots to allow for more flexible variation in the short term, and 208 
natural splines with 2 degrees of freedom for the non-linear predictors, which yielded the lowest 209 

AIC and BIC in model testing. All incidence ratios were calculated relative to reference weeks. 210 
For temperature predictors, weeks with the minimum observed value during the study period 211 
were used as the reference. For total precipitation, weeks with 0 mm of precipitation were used 212 
as the reference. Continuous temperature variables were adjusted for the cross-basis matrix for 213 
total precipitation, and total precipitation was adjusted for the cross-basis matrix for maximum 214 
temperature.  215 
 216 

For binary predictors (high heat and heavy rain) we fit generalized additive models (GAMs) with 217 
a Poisson family and log link and an offset for community population size. We fit separate 218 
models at each lag from 2–16 weeks. We adjusted the high heat model for total precipitation at 219 
the concurrent lag modeled as a smooth term with k = 3. Similarly, we adjusted the heavy rain 220 
model for maximum temperature at the concurrent lag modeled as a smooth term with k = 3.  221 
 222 

To examine the influence of other environmental factors, we conducted subgroup analyses by: 223 
distance to forest edge (above/below the median), season (rainy/dry), and community type 224 
(riverine/dry land). We discretized the distance from each household to the nearest forest edge 225 
into a binary variable for above or below median distance, and categorized months November-226 
April as the rainy season and all other months as the dry season based on both historical 227 
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precendence7 and data for our study. For distance to forest edge models, we aggregated incidence 228 
per household-week and adjusted for 1km population density. We fit the same DL models as the 229 
main effect models on subsets of the data according to the subgroup, and non-forest models were 230 
offset for community size. We also assessed the association between the minimum distance to 231 

forest edge as both a continuous and categorical predictor and fit GAMs with Poisson 232 
distributions and log link functions.  233 
 234 
For the association between maximum temperature and malaria incidence, we conducted two 235 
sensitivity analyses with additional adjustments. First, we adjusted for both total precipitation 236 
and minimum temperature at concurrent lags to account for potential collinearity between 237 

minimum temperature and maximum temperature (Pearson’s correlation coefficient = 0.48). 238 
Second, we adjusted for minimum temperature at concurrent lags and total precipitation at 4-239 
week delayed lags, where we only considered the effect of precipitation beginning at 6 weeks 240 
and continuing through 20 weeks. This time-delayed lag was included to account for the onset of 241 
the rainy season about 4 weeks after the highest maximum temperatures were typically observed 242 
(Figure 3). 243 

 244 
For the association between total precipitation and malaria incidence, we conducted a sensitivity 245 
analysis where we adjusted for minimum temperature instead of maximum temperature. The 246 
Pearson’s correlation coefficient for total precipitation and maximum temperature was -0.30, and 247 
thus we kept this as the main effect adjustment covariate, while the Pearson’s correlation 248 
coefficient for total precipitation and minimum temperature was 0.1.  249 

  250 
Because incidence data for the weather models was aggregated at the community level, we did 251 
not test for spatial autocorrelation or adjust for spatial clustering. All hourly to daily aggregation 252 
was performed using the Python API for Google Earth Engine on Google Colab servers. Weekly 253 
aggregation and modeling were performed in R version 4.2.1. All distributed lag models were 254 
built using the R package DLNM version 2.4.729. This study was approved by the Institutional 255 
Review Board of Stanford University (72291) and by the Dirección Universitaria de Asuntos 256 

Regulatorios de la Investigación de la Universidad Peruana Cayetano Heredia (211747). 257 

 258 
 259 
RESULTS 260 
During the study period from January 2021 to December 2023, the rainy season generally lasted 261 
from November through April (Figure 3). Weekly cumulative precipitation ranged between 500–262 

1750 mm during the rainy season and did not exceed 500mm in the dry season which lasted 263 
roughly from July through October.  264 
 265 
Minimum temperature varied from 22–26ºC, and maximum temperature varied from 28–38ºC. 266 
The weekly mean temperature range varied from 4–12ºC. During the dry season, there was more 267 
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variation in temperature: minimum temperature dipped below 20ºC in the early dry season, while 268 
temperature peaked during the late dry season, with maximum temperature values as high as 269 
38ºC.  270 
 271 

The mean threshold for high heat events across all study years was 27.5ºC, and high heat events 272 
generally occurred just prior to the rainy season. The mean threshold for heavy rain events across 273 
all study years was 186 mm, and there were more heavy rain events during the rainy season than 274 
the dry season. 2023 was an El Niño year, reflected by the low precipitation and high 275 
temperature compared to 2022 and 2021. Malaria incidence did not appear to follow a distinct 276 
seasonal trend. 277 

 278 
Temperature 279 
Associations between minimum or maximum temperature and malaria incidence are shown in 280 
Figure 4. Weeks with a minimum temperature of 22.5ºC (the median) were associated with 2.16–281 
3.93-fold higher malaria incidence for lags 3–16 weeks compared to weeks with the lowest 282 
minimum temperature of 16.8ºC, with the incidence ratio peaking at lag of 5 weeks (IR = 3.93, 283 

95% CI 2.18–7.09) (Figure 4A, 4C). Malaria incidence was approximately 3- to 4-fold higher for 284 
minimum weekly temperatures above 16.8ºC at a 5-week lag (Figure 4B).  285 
 286 
The effect of median maximum temperature on incidence was non-linear and hump-shaped 287 
across lag time (Figure 4D). Median maximum temperature was associated with higher incidence 288 
at lags of 6–13 weeks, whereas it was associated with lower incidence at the extremes of 3 weeks 289 

and 14–16 weeks. Compared to weeks with the lowest maximum temperature (28.4ºC), weeks 290 
with a maximum temperature of 31.8ºC (the median) were associated with 66% higher malaria 291 
incidence (95 CI 1.35–2.04) at a 9-week lag (Figure 4D, 4F). The positive association between 292 
median maximum temperature and malaria incidence grew stronger as maximum temperatures 293 
increased to 32.5ºC, then plateaued and confidence intervals were wide (Figure 4E).  294 
 295 
In a sensitivity analysis adjusting for concurrent total precipitation and minimum temperature, 296 

compared to weeks with the lowest maximum temperature, weeks with a maximum temperature 297 
of 31.8ºC (the median) were still associated with higher malaria incidence at 6–11 week lags 298 
(Figure S1). There was no association at other lags. In another sensitivity analysis adjusting for 299 
minimum temperature at concurrent lags and total precipitation at 4-week delayed lags, weeks 300 
with a maximum temperature of 31.8ºC (the median) were still associated with higher malaria 301 
incidence at 6–9 week lags (Figure S2) and were not associated with incidence at other lags. 302 

 303 
Weeks with high heat events (one or more days when the daily mean temperature exceeded 304 
27.5ºC) were associated with 35% lower malaria incidence at a 2-week lag and 1.23–1.37-fold 305 
higher malaria incidence at lags 5–9 weeks compared to weeks with no high heat events (Figure 306 
5A, Table S2). 307 
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 308 
For analyses of mean temperature, compared to weeks with the lowest value (23.1ºC), weeks 309 
with a mean temperature of 25.6ºC (the median) were associated with 10–44% lower malaria 310 
incidence for lags 2–8 weeks (Figure S3A, S3C), and the association was strongest at a 3-week 311 

lag (IR = 0.66, 95% CI 0.51–0.84). The protective association was stronger at higher mean 312 
temperatures at a 3-week lag (Figure S3B).  313 
 314 
For analyses of temperature range, compared to weeks with the narrower ranges of 4.3ºC, weeks 315 
with a temperature range of 6.5ºC (the median) were associated with 1.33- to 1.94-fold higher 316 
malaria incidence for lags 6–14 weeks (Figure S4A, S4C), with the strongest association at a 9-317 

week lag (IR = 1.94, 95% CI 1.58–2.38). The positive association was stronger at wider mean 318 
temperature ranges at a 9-week lag (Figure S4B).  319 
 320 

Precipitation 321 
The association between the effect of precipitation median precipitation on incidence was non-322 
linear and hump-shaped across lag time (Figure 6A). Compared to weeks with no rainfall, weeks 323 

with 450mm of precipitation (the median) were associated with 1.13- to 1.45-fold higher malaria 324 
incidence for lags 6–14 weeks, with the strongest association at 9 weeks (IR = 1.45, 95% CI 325 
1.27–1.65) (Figure 6A, 6C). The association was also non-linear and hump-shaped across the 326 
range of precipitation values, with the strongest associations with malaria incidence at 327 
approximately 750mm of precipitation at a 9-week lag (Figure 6B). In a sensitivity analysis 328 
adjusting for minimum temperature instead of maximum temperature, associations were still 329 

positive but somewhat attenuated towards the null (Figure S5).  330 
 331 
Compared to weeks without heavy rain, weeks with heavy rain events (one or more days when 332 
the daily precipitation exceeded 186mm) were associated with 1.22–1.60-fold higher malaria 333 
incidence at lags 2-10 weeks, with the strongest association at 6 weeks (IR = 1.60, 95% CI 1.33–334 
1.94) (Figure 5B). Heavy rain was associated with 24% lower malaria incidence at 16 weeks 335 
(95% CI 0.63–0.92).  336 

 337 

Sub-group analyses 338 
In a sub-group analysis by season, high heat events were protective in the dry season and 339 
associated with higher incidence in the rainy season at longer lags (Figure S6); heavy rain events 340 
were associated with higher incidence in the rainy season at up to 11-week lags, while results 341 
were generally null for the dry season (Figure S6).  342 

 343 
We also performed a sub-group analysis by community type; 13 communities were classified as 344 
dryland communities, while 16 were riverine. High heat events were associated with higher 345 
incidence in dryland communities and lower incidence in riverine communities at longer lags 346 
(Figure S7); heavy rain events were generally associated with higher incidence in dryland 347 
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communities across all lags, but lower incidence in riverine communities at longer lags (Figure 348 
S7). 349 
 350 
At most lags, the association between malaria incidence and maximum temperature or total 351 

precipitation did not vary by a household’s minimum distance to forest edge (Figure S8, S9).  352 
Shorter minimum distance to forest edge was associated with higher malaria incidence (Figure 353 
S10). For households living within 50m of forest edge, malaria incidence was 2.18-fold higher 354 
(95% CI 2.18–2.19) compared to those who lived 500m or beyond from forest edge (Figure 355 
S1A). 356 

 357 
All main effect continuous predictor estimates can be found in Table S2. All main effect binary 358 
predictor estimates can be found in Table S3.  359 

 360 
 361 
DISCUSSION 362 
In this study of associations between temperature and precipitation with malaria incidence in 363 

Loreto Region, Peru, we found that higher minimum temperatures, maximum temperatures, 364 
temperature ranges, and total precipitation were all associated with higher malaria incidence 365 
compared to weeks with minimum values. Mean temperature was generally associated with 366 
lower malaria incidence in the short (2—4 weeks) and medium (5—10 weeks) term. The effect 367 
of these weather variables generally lasted over many weeks, with the longest duration and 368 
strongest associations with minimum temperature. The effect of minimum temperature also 369 

began sooner and lasted longer than that of maximum temperature or temperature range. This 370 
may suggest that cooler minimum temperatures are a limiting factor for malaria transmission. 371 
High heat events were associated with lower malaria incidence in the short term and higher 372 
malaria incidence in the medium term. Heavy rain events were generally associated with 373 
increased malaria risk in the short and medium term, and lower malaria incidence in the long 374 
term (11—16 weeks). There was strong evidence that living further away from forest edges was 375 
protective. Overall, findings suggest that higher temperatures, particularly minimum 376 

temperatures, and periods of sustained rainfall could lead to periods of increased malaria burden. 377 
 378 
In general, our findings suggest that weather influences malaria transmission over 1-4 month lags 379 
in this region. This lasting association may be due to the relapse periodicity of Pv malaria. Even 380 
after typical treatment, 6-month relapse infection rates in this region ranged between 27—33%30, 381 
but true relapse rates are likely higher because many Pv infections go undetected and untreated, 382 

or are treated without medical supervision, outside of study settings31. However, the vast 383 
majority of Pv infections are estimated to be relapse infections32, and thus it is likely that 384 
increased incidence includes relapse cases – another study in this region found that PCR-385 
confirmed Pv prevalence was as high as 25%, most of which were attributed to asymptomatic, 386 
low parasitemia infections.33 Additionally, though the relapse period for Pv infections is poorly 387 
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understood in this region, relapses from the tropical strains of Pv are estimated to range 388 
anywhere from 2–9 months.16 Though strong geographic and micro-geographic differences exist 389 
in the Peruvian Amazon,34 a study in neighboring Brazil found that the median time to the first 390 
recurrent infection was 71 days, and that treatment delays the onset of the subsequent relapse 391 

infection, while in Southeast Asia, where short latency Pv is also present, 90% of relapse cases 392 
occurred within 6 weeks of the initial infection.35 The extended association with weather over 393 
many weeks could also reflect a high prevalence of asymptomatic and low parasitemia 394 
infections4,5, which could sustain new, onward transmission well past the initial meteorological 395 
trigger.   396 

  397 

Precipitation 398 
We found that weeks with higher precipitation were significantly associated with higher malaria 399 
incidence at lags of 6–14 weeks. These results are generally in accordance with other studies of 400 
the effect of rainfall on Pv infections. A meta-analysis in Mauritania found that Pv incidence was 401 
highest during and after the rainy season36 and that decreased rainfall was significantly correlated 402 
with decreased malaria burden; in temperate regions, one study in South Korea found that 403 

increased precipitation was associated with higher malaria incidence at a 10-week lag,37 while a 404 
similar study in China also found positive associations with precipitation at lags 2–4 weeks.38 405 
The lasting influence of precipitation likely reflects increased breeding ground following rainfall, 406 
which could impact multiple transmission cycles.  407 
 408 
Interestingly, heavy rain was generally associated with higher malaria incidence in the rainy 409 

season, but not in the dry season (Figure S8B). There were few heavy rain events in the dry 410 
season, thus limiting the statistical power of this analysis; however, our finding for the rainy 411 
season somewhat aligns with a hydrogeology hypothesis by Hiwas and Bretas9, wherein heavy 412 
rain in the rainy season may flood otherwise dry areas, increasing malaria breeding ground. We 413 
also found some evidence of qualitative effect modification by community type, with heavy rain 414 
associated with lower incidence in riverine communities at longer lags and higher incidence at 415 
longer lags in dryland communities (Figure S9B). This finding contradicts the hydrogeology 416 

hypothesis9. In riverine communities, heavy rains may be protective if they flush and agitate 417 
otherwise slow-moving rivers and stagnant pools of water and thus disrupt mosquito larva 418 
breeding; on the other hand, in dryland communities, heavy rains may increase risk due to the 419 
accumulation of surface water in otherwise dry areas. In both cases, the effect modification is 420 
strongest at longer lags, signaling that heavy rain had long-lasting effects on the transmission 421 
cycle. 422 

 423 

 424 
Temperature 425 
We found that higher minimum temperatures were strongly associated with higher malaria 426 
incidence consistently across lags, while maximum temperature and high heat events were 427 
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associated with higher malaria incidence in the medium term and lower incidence in the short 428 
and long term. Though the thermal optimum of the Pv–An. darlingi coupling has not been 429 
studied directly, there is some mixed support in the literature from other malaria transmission 430 
couplings: optimal Pf malaria transmission is thought to peak at 25ºC,10,17 which generally aligns 431 

with our findings for positive associations with higher minimum temperature, which were in the 432 
range of 20-24ºC. Our finding of the strongest associations with minimum temperature are 433 
biologically plausible given that An. darlingi typically bite humans at nighttime39 and daily 434 
temperatures are lowest at night.  435 
 436 
We were surprised to find that higher maximum temperatures in the range of 30-34ºC and high 437 

heat events (>27ºC) were associated with increased incidence at medium lags and lower 438 
incidence at short lags. Our maximum temperature findings were attenuated, but robust in 439 
sensitivity analyses. High heat events may be correlated with other longer-term weather 440 
variations, such as higher maximum temperature for prolonged periods, that affect incidence. 441 
High temperatures can reduce the vector biting rate and survival rate, which may explain the 442 
negative associations at shorter lags. However, high maximum temperatures may trigger Pv 443 

relapse and increase the reservoir of active infections that contribute to onward malaria 444 
transmission, explaining the positive association at medium lags. The positive association 445 
between higher maximum temperature and high heat and malaria at medium lags conflicts with 446 
previous disease ecology literature supporting a thermal optimum for Anopheles-Pf malaria 447 
transmission at 25ºC with an upper limit of 32.6ºC,10 and validated Pf malaria transmission 448 
declines above 28ºC17 in Africa. Our result does have some support in the literature: a study in 449 

neighboring regions of the Amazon with similar maximum temperatures (26.8–35.2ºC) found 450 
that a 1ºC increase in maximum temperature was associated with higher incidence at 1- and 2-451 
month lags.40 Generally, however, Anopheles life stages related to transmission (i.e., biting rate, 452 
larva survival, fecundity, adult survival) are thought to decline at the median maximum 453 
temperature range in our study (30–34ºC),11 indicating that vector activity is unlikely to be the 454 
mechanism driving this positive association. Further research on the thermal biology of Pv–An. 455 
darlingi in tropical settings are needed to elucidate the influence of temperature on malaria 456 

transmission in this region. However, it is also possible that microclimates and small-scale 457 
ecological and topographical variation in our study sites tempered high temperatures and their 458 
associated negative impacts on transmission, since our weather data was at 11km resolution and 459 
did not capture temperature variation more finely (i.e. in shaded forest areas, close to water 460 
bodies) 461 
 462 

One alternative explanation is that associations with maximum temperature primarily reflect 463 
relapsing Pv infections, which could be triggered by temperature itself or co-infections that are 464 
more common at higher temperatures. Extrinsic triggers of Pv relapse include co-infections that 465 
result in host inflammation, subsequent primary Pv infections, seasonal changes in sunlight and 466 
temperature, and mosquito bites and their associated immune responses16,41. In our study site, 467 
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dengue is increasingly common,42 and it is well-documented that dengue transmission is 468 
positively associated with maximum temperatures similar to those in our study43–45 and has a 469 
higher thermal optimum (29ºC) and upper limit (34.5ºC) than malaria.10 If high heat events 470 
trigger Pv relapse, symptoms would likely appear within 2 weeks, yet we found positive 471 

associations with maximum temperature at lags of 6–11 weeks. It is possible that high 472 
temperatures activate the hypnozoite and increase the reservoir of active infectious hosts, 473 
potentially leading to onward transmission and multiple cycles of infection, explaining the 474 
delayed positive association.  475 
 476 
Relationships with high heat varied by season and community type. At lags of 3—4 months, high 477 

heat was associated with higher malaria incidence in the dry season but lower malaria incidence 478 
in the rainy season. High heat events may dry up surface water in the dry season, reducing vector 479 
breeding, while they may lead to stagnation of water bodies in the rainy season, promoting 480 
breeding.  Similarly, we found that high heat was associated with higher malaria incidence in 481 
dryland areas, but lower malaria incidence in riverine areas at lags of 3—4 months. In general, 482 
the dryland communities in our study site were more peri-urban and more densely populated; 483 

considering dengue transmission is generally thought to thrive in more urban, densely populated 484 
communities,46,47 it is possible that elevated incidence reflects higher relapse rates due to co-485 
infection with diseases like dengue. 486 
 487 

Limitations 488 
Our study had several limitations. We were unable to distinguish between initial and relapse 489 

infections in our incidence data; we would expect that weather would influence initial and 490 
relapse cases over different lag periods, but our analysis was not able to investigate this. 491 
However, using distributed lag models allowed us to investigate associations over a 4-month 492 
period, including potential relapse cases. A follow-up study using genomic methods to 493 
differentiate relapse and initial infections could shed light on how weather influences primary vs. 494 
relapse infections. Our outcome data also only covered a 3-year period, preventing this analysis 495 
from studying longer climatic trends in incidence in this region. The study period also included 496 

two years (2021 and early 2022) where control efforts for the COVID-19 pandemic likely limited 497 
malaria transmission as well. We were also unable to control for PMC activities nor 498 
interventions over the study period. 499 
 500 
Regarding the weather data, one of our study years (2023) was an El Niño year; a study 501 
capturing a full El Niño-La Niña cycle could better elucidate associations with incidence along 502 

these more variable climate cycles. While we selected ERA-5 Land remote sensing data for its 503 
temporal coverage, its 11 km spatial resolution prevented identification of small-scale 504 
microclimates, i.e. those created my forest cover and topographical features, and thus did not 505 
capture small-resolution variations that likely have a large effect on mosquito breeding and 506 
survival habitat48. Additionally, publicly available surface water data did not reflect our ground 507 
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observations of surface water in the study site, so we did not include it in this analysis. Further 508 
research that considers mediation by surface water could further shed light on the complicated 509 
dynamics between precipitation and malaria incidence in this region. One such complication that 510 
our study did not resolve is the concentration-dilution hypothesis9 for malaria transmission, 511 

which posits that heavy rain in riverine communities can cause flooding and increase standing 512 
water presence, leading to increased incidence, while the same heavy rain can flush dryland 513 
communities and lead to decreased incidence. Our sub-group analyses by distance to forest edge, 514 
community type, and season were also likely limited in statistical power; these findings could be 515 
more conclusive with a longer look back period. Furthermore, our binary predictor analyses 516 
modeled individual lags separately and did not account for time autocorrelation, limiting 517 

comparisons between adjacent lags and with DL models. This study was also correlational, and 518 
inferred relationships with individual weather variables may be confounded by collinearity and 519 
correlation with other weather variables, and thus makes it difficult to tease out individual direct 520 
effects. 521 

 522 
Conclusions 523 
In our study of malaria incidence in Loreto Region, Peru, we observed generally positive 524 
associations with higher temperatures and higher rainfall for extended lag periods beginning 2–3 525 
weeks after symptom onset and enduring for about 1–4 months. Our findings indicated that the 526 
coupled transmission and relapse cycle of Pv–An. darlingi may have more complicated 527 
associations with higher temperatures than other malaria parasite – vector pairings, a critical 528 
finding in the face of climate change and global warming. These findings provide critical context 529 

to ongoing malaria elimination efforts, since apparent successes or failures of malaria 530 
interventions may be due in part to long-lasting effects of weather on initial infection and 531 
relapse.  532 
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Figure 1. Timeline of main hypothesized mechanisms of the impact of temperature and 663 
precipitation on Plasmodium vivax infection. Time estimates are generalized and were generated from 664 
previous findings. 665 
 666 
Figure 2. Study area map. Dark green areas indicate forest cells. Circles with black outlines represent 667 
the 30 study communities, colored by annual malaria incidence per 1000 individuals. The blue river to the 668 
right of Iquitos is the Amazon River. 669 
 670 
Figure 3. Weather and malaria incidence trends over the study period. All measures are aggregated 671 
weekly. The blue dots in plot A mark weeks with a heavy rain event, defined as one or more days when 672 
the daily precipitation total exceeded the 90th percentile, which averaged 186mm over the study period. 673 
The orange dots in plot B mark weeks with a high heat event, defined as one or more days when the mean 674 
temperature exceeded the 90th percentile. Shaded blue regions represent the rainy season, defined as 675 
November–April. In plot B, the darker orange line tracks the maximum temperature observed each week, 676 
and the lighter orange line tracks the minimum temperature observed each week. 677 
 678 
Figure 4. Association between temperature and malaria incidence. The associations were fit using 679 
distributed lag non-linear models. Plots A–C show the association for minimum temperature, and plots 680 
D–F show the association for maximum temperature. For all plots, incidence ratios are relative to 681 
reference weeks with the minimum observed predictor value. Plots A and D show the association between 682 
temperature and malaria incidence at the median predictor value compared to the reference. For minimum 683 
temperature, the reference is 16.8ºC; for maximum temperature, the reference is 28.4ºC. For minimum 684 
temperature, the median is 22.5ºC. For maximum temperature, the median is 31.8ºC. 685 
 686 
Figure 5. Association between binary predictors and malaria incidence. Incidence ratios were 687 
calculated for weeks with the event relative to weeks without the event. The average high heat threshold 688 
over the study period was 27.5ºC. The average heavy rain threshold over the study period was >186 mm 689 
of precipitation in one day. High heat estimates at each lag were adjusted for total precipitation at the 690 
same lag. Heavy rain estimates at each lag were adjusted for maximum temperature at the same lag.  691 
 692 
Figure 6. Association between total precipitation and malaria incidence. The association was fit using 693 
a distributed lag non-linear model. For all plots, incidence ratios are relative to reference weeks with 0mm 694 
of precipitation. Plot A shows the association between precipitation and malaria incidence at the median 695 
predictor value, 450mm, compared to the reference. 696 
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