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Abstract 

 

Background 

The selection of optimal contacts for chronic deep brain stimulation (DBS) requires manual iterative 

testing of multiple stimulation configurations: the monopolar review. This requires time, highly trained 

personnel, and can cause patient discomfort. The use of neural biomarkers may help speed up this 

process.  

Objective 

This study aimed to validate the use of local field potentials (LFP) from a chronically implanted DBS 

neurostimulator to inform clinical selection of optimal stimulation contact-levels. 

 

Methods 

We retrospectively analysed bipolar LFP-recordings performed in patients with Parkinson’s disease 

OFF-medication and OFF-stimulation across three centres. For each contact-level chosen clinically, 

we ranked the recordings obtained by different channels according to the informative value of various 

beta-band (13-35Hz) power measures. We then developed two prediction algorithms: (i) a “decision-

tree” method for direct, in-clinic use, and (ii) a “pattern based” method for offline validation. We finally 

compared these approaches to existing prediction algorithms.  

Results 

We included 68 subthalamic nuclei from the Netherlands (NL), 21 from Switzerland (CH), and 32 from 
Germany (DE). Recording channel rankings depended on the clinically chosen contact-level. When 
predicting the first two contact-levels, the online “decision tree” method achieved a predictive accuracy 
of 86.5% (NL), 86.7% (CH), and 75.0% (DE), respectively. The offline “pattern based” technique 
attained similar results. Both prediction techniques outperformed an existing algorithm and were 
robust in different clinical and recording conditions.  
 
Conclusion 

This study demonstrates that using these new methods, LFP-signals recorded in-clinic can support the 

selection of stimulation contact-levels, with high accuracy, reducing DBS programming time by half. 

 

 

Keywords 

deep brain stimulation, local field potentials, beta power, contact prediction, Parkinson’s disease, 

directional lead  
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1. Introduction 
 

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for 

Parkinson’s disease (PD) [1, 2]. Optimisation of stimulation parameters is critical to maximise therapy 

efficacy. Identification of the optimal stimulation contact-level is challenging and time-consuming, 

requiring long iterative manual testing of multiple combinations (monopolar review, MPR), and several 

follow-up visits [3]. Novel neurostimulator devices are now capable of recording local field potentials 

(LFP) from the chronically implanted DBS electrodes, which may serve as a neural biomarker to guide 

clinical programming [4-7]. LFP are generated by the integrated (weighted) sum of all synaptic 

potential changes [8]. These signals can provide direct insight into the functioning of basal ganglia 

circuits [8, 9]. Subthalamic LFP activity within the beta-frequency band (13-35 Hz) correlates with 

akinetic-rigid symptoms in PD and can be modulated by therapies (e.g., levodopa and STN-DBS) [10]. 

Suppression of power in the beta-frequency band corresponds with motor improvement in PD patients.  

To date, various studies have explored LFP-based DBS contact-level selection techniques, mostly 

relying on neural features in the beta-band [11]. The maximum value of the beta-frequency power in a 

patient-specific range is mostly used as a measure to guide contact-level selection [12-19]. However, 

the clinical application of these techniques is still restricted due to limited validation, uncertainties 

regarding the reliability of the online visual inspection approach, or the need for complex methods and 

offline analysis. The most informative spectral feature of LFP for determining optimal stimulation 

therefore remains unclear.  

Importantly, LFP activity is recorded bipolarly, between pairs of contact-levels. Identifying one 

individual monopolar stimulation level from these bipolar recordings presents a complex challenge. It 
has been suggested that either the contact-level in between the bipolar recording pair (e.g. contact-

level 2 if channel (contact pair) 1-3 shows the highest maximum power) or one of the two recording 

contact-levels (e.g. contact-levels 1 or 3 if channel 1-3 shows the highest maximum power) could be 

the optimal stimulation location(s) [18, 19]. Studies addressing this issue using custom algorithms 

show a median predictive accuracy of 45% (range 25-71%) on selected datasets [20-26]. However, 

these algorithms often focus on predicting an optimal horizontal direction for stimulation [20-24] with 

directional leads, rather than an optimal vertical contact-level. Furthermore, they do not compare 

different predictors or techniques to derive monopolar predictions from bipolar recordings [20-25].  

 
To better support initial DBS programming in PD, we explored the predictive efficacy of various beta-

frequency band features using novel prediction techniques. We compared these novel techniques, 

which translate bipolar contact-level recordings to predictions for the optimal monopolar stimulation 

contact-level, with existing published algorithms.  
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2. Methods 

2.1 Study design 
This study concerns a retrospective, international multi-centre study across three DBS centres: Haga 

Teaching Hospital/Leiden University Medical Centre (The Netherlands (NL)); Lausanne University 

Hospital, (Switzerland (CH)); University Hospital of Würzburg (Germany (DE)). In the three 

participating centres, PD patients implanted in the subthalamic nucleus (STN) with directional 

Sensight™ leads in combination with the Percept PC® neurostimulator (Medtronic, Minneapolis) were 

screened for inclusion. In all three study centres ethical approval was obtained from local ethics 

committees. 

2.2 Data acquisition 
2.2.1 LFP measurements 

Contact-level bipolar LFP recordings conducted in the OFF-medication state (i.e. after overnight 

suspension of all dopaminergic drugs) with the BrainSense™ Survey (i.e. OFF-stimulation) were used. 

All “NL” and “CH” recordings were performed within the first two weeks after lead implantation, “DE” 

measurements were mostly collected after a longer follow-up.  

2.2.2 Clinical contact-level choice  

The contact-level chosen for chronic stimulation by the clinician after MPR served as a reference for 

all the LFP-based predictions. MPR was performed between 8 days and 3 months after lead 

implantation. For all centres, we additionally compared the contact-levels used for chronic stimulation 

at 1 year after surgery. In the case of interleaved programming at follow-up, we considered the contact 

with the highest stimulation amplitude, or, in the case of an equal contribution by both contacts, the 

contact with the smallest distance to the contact chosen at MPR.  

 

2.3 Data analysis 
Matlab (version R2022b, MathWorks®) was used for all data pre-processing and analyses. 

Figure 1. Original spectrum and FOOOF-algorithm aperiodic fit demonstrating the extraction of four 
beta-band power measures: the maximum power (Max); the maximum flattened (i.e. after removal of 
the aperiodic signal component) power (Max_flat); the area under the curve (AUC); and the flattened 
area under the curve (AUC_flat). 
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2.3.1 Data pre-processing and feature extraction 

Available Brainsense™ Survey measurements were visually inspected for potential artefacts in the 

frequency and time domain. All analyses were performed for the left and right hemispheres separately. 

Stimulation contact-levels for both hemispheres were numbered 0, 1, 2 and 3 (ventral, ventromedial, 

dorsomedial, dorsal).  

From all recording channels, four features of the beta-frequency band (13-35Hz) were extracted. The 
first is the maximum beta power value (“Max”), commonly used in clinical practice, as it is easily 
readable from the clinician programmer's screen. As this value can be affected by varying levels of 
background noise across contacts, we also evaluated this feature after removal of the 1/f component 
using the FOOF algorithm (“Max_flat”) [27]. The third feature was the area under the curve over the 
whole beta-frequency band (“AUC”), which may be more representative or stable than a simple 
discrete value but requires offline analysis. This feature was additionally evaluated after removing the 
aperiodic 1/f component (“AUC_flat”) (Figure 1). For the main analyses, Brainsense™ Survey 
recordings were only included if a beta-peak was present, determined based on a threshold chosen by 
visual inspection of the LFP signals. 
  

2.3.2 From clinically-chosen contact-level to recording channel ranking 

We aimed to determine the relation between bipolar recordings and clinical choice. To this end, for 

each clinically chosen contact-level across all hemispheres, we ranked all LFP recording channels 

based on the amplitude of each of the four aforementioned features (Figure 4).  

2.3.3 From recordings to contact-level prediction 

To test the possibility of predicting the clinically-chosen contact-level directly from LFP recordings, two 

custom ranking methods were developed and evaluated, together with an existing ranking model 

(DETEC-algorithm [20]). All “NL” recordings were used to design the ranking methods. External 

validation was performed using the “CH” and “DE” datasets.  

2.3.3a. Ranking approach for online contact selection (“decision tree” method) 

A ranking method based on a decision tree set of hierarchical models was developed as a tool to be 

used for online, in-clinic applications. 

Two types of decision trees were included, a “selection tree” and an ”elimination tree”, that can be 

applied consecutively. The first decision tree (“selection tree”) uses the three bipolar recordings with 

the highest beta-peak (“Max” feature) to select the two best stimulation contact-levels (Figure 2 and 

Supplementary figure 1, Supplementary file-1). The second decision tree (“elimination tree”) then 

discards the least promising stimulation levels by looking at the bipolar recordings with the lowest 

beta-peak (Supplementary figure 2, Supplementary file-1). We tested whether the use of the 

elimination tree in addition to the selection tree increased the accuracy. 

This online selection technique was additionally tested for the three remaining features (AUC, Max_flat 

and AUC_flat). However, results relying on the “Max” feature are considered of greatest value as this 

method is most viable in an online clinical setting. 
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Figure 2. Example of the “selection decision tree” online ranking technique which uses the two or three recording channels with the highest beta feature value 
to select the two most likely best contact-levels. For this method the clinician performs a BrainSense™ Survey for the contact-levels using the clinician 
programmer. These contact-level recordings can thereafter be used on-screen to visually select the channel (contact pair) with the highest beta peak (i.e. 
channel “0 to 2” in this example). This information is used to choose the appropriate “selection decision tree”, i.e. the one which starts with the selected 
channel. Hereafter, the channel with the second highest beta peak (here channel “1 to 2”) is selected in the first branch of the decision tree. Finally, the channel 
with the third highest beta peak (here channel “0 to 3”) is selected in the second and final branch. This then leads to a final block which shows which contact-
levels are expected to be most promising (here level 0 and 1) based on the  “selection decision tree” technique and should thus be considered (first) during the 
clinical contact-level evaluation.   
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2.3.3b. Ranking approach for offline contact selection (“pattern based” method) 

We developed a non-iterative method that maps the distribution of beta features across all bipolar 

recording pairs and provides an estimate of relevance for all stimulation contact candidates. Albeit 

more computationally expensive, this “pattern based” process allows offline confirmation of the choice 

derived from the online decision-tree approach. Contributions to each stimulation contact may come 

from bipolar combinations that include the contact, as well as from pairs that surround the contact, our 

approach inherently accounts for both. 

In this “pattern based” method, beta features of all channels are first mapped onto a heatmap to 

represent the spatial distribution of the beta feature and the relative power that each bipolar recording 

channel conveys. This heatmap can then be used to derive the overall contribution of beta power to 

each contact-level by combining two methods. Method 1: averages the feature value across all 

channels which include the contact (e.g. for level 0: channel 0-1, channel 0-2 and channel 0-3); 

method 2: evaluates the feature value of the channels surrounding level 1 and 2 (e.g. for level 1: 

channel 0-2). The maximum value from both methods is kept, and the contact-level with the highest 

feature value is selected as the optimal DBS contact-level (Figure 3).  

2.3.3c. Ranking approach for offline contact selection based on DETEC algorithm (Strelow et al. 

(2022)) [20] 

We aimed to compare the results of both the online and offline methods to existing algorithms. As we 

only had access to level-based Brainsense™ Survey recordings, the only published algorithm that 

could be included was the DETEC-algorithm (Equation 1), which is an offline algorithm [20]. 

PSDweighted =  
∑ 𝑃𝑆𝐷𝑖 ∗

1
𝑑𝑖

𝑛
𝑖=1

∑
1
𝑑𝑖

𝑛
𝑖=1

 

 

(1) 

 
In Equation(1), PSDi is the power spectral density from bipolar recording ί of the n bipolar recordings involving the investigated 

contact-level. dί is the distance between the centre of the investigated contact-level and its bipolar recording partner for each ίi-

th bipolar recording (mm).  
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Figure 3. Example of the “pattern 

based” ranking technique which 

computes a single feature value per 

eligible contact-level to use for the 

selection of the optimal stimulation 

level. 

A) The feature value (example in 

figure = AUC) is determined for all 

recording channels (contact pairs) on 

one lead.  

This information is thereafter 

summarised in a single image where 

the intersection of contact-levels is 

represented on two axes using a 

heatmap with colour intensity 

corresponding to the feature value. 

(In this example maximum AUC 

power was at contact pairs 1-3 and 

minimum at contact pairs 2-3) 

B) The information in the summary 

image is thereafter converted using 

the “pattern based” method to provide 

a single “beta-power contribution” 

value for each of the four eligible 

contact-levels.  

This conversion is performed by: 

1) averaging all feature values for 

channels including a certain level and 

assigning this value to the respective 

contact-level (e.g. for level 0 feature 

values of: channel 0-1, channel 0-2 

and channel 0-3 – red arrows -  are 

averaged to obtain a single “beta-

power contribution” value for level 0) 

2) in addition, for contact levels 1 and 

2, the feature power of the contact 

pairs adjacent to these levels (e.g. for 

level 1: channel 0-2, blue arrows) is 

compared to the values obtained in 

step 1) and the highest value 

between the two is assigned to these 

contact levels. 

This result is stored in a single “beta-

power contribution” value per eligible 

contact-level. The level with the 

highest assigned value is then 

considered as the predicted optimal 

level (Here: level 2) .    

This prediction can then be compared 

to the optimal clinical level selected 

by the physician (green in the figure) 

to determine the predictive accuracy 

of the “pattern based” technique.  
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2.4 Model evaluation 

To assess each ranking model’s performance, we calculated how often the clinically chosen 

stimulation level matched the 1st ranked contact-level, or the 1st or 2nd ranked level (without any 

priority/weight), based on LFP. Including both the 1st and 2nd ranked levels allowed fair comparison 

between the “decision tree” method, which often selects two optimal contact-levels, and the other 

models, where a single optimal contact-level can be selected.  

2.4.1 Performance in case of reduced beta power 

Ranking models were additionally evaluated for sub-groups based on their amount of AUC beta 

activity without 1/f, (“AUC_flat” feature). Visual inspection defined that below a threshold of 0.6µV, the 

detection of a beta-peak was unclear. We thus clustered hemispheres into the following three groups:  

(i) “clear beta”: at least one channel with “AUC_flat” ≥ 0.6 µV. (ii) “little beta”: one or more channels 

with “AUC_flat” between 0.0 and 0.6 µV. (iii) “background signal only”: all channels with “AUC_flat” ≤ 

0.0 µV. Even in cases with a reduced flattened power (“little beta” or “background signal only”), we 

could still extract an order from the global beta (i.e., background activity in the beta-band). Therefore, 

ranking using the “AUC” feature is still possible in these cases, providing similar results as visual 

ranking of background activity in clinical practice.   

 

2.4.2 Performance in case of “Stun effect” 

For the “NL” dataset, ranking models were evaluated for a subgroup of hemispheres with a stun effect 

at the time of MPR. A stun effect was considered when no symptoms could be detected during the 

clinical evaluation at MPR (UPDRS-III OFF-medication). 

2.4.3 Effect of medication  

The predictive accuracy of the algorithms was also assessed for a subset of LFP recordings (“CH” 

ON) where patients were ON-medication (i.e. practically defined ON).  

 

2.5 Statistical analysis 

Differences in population characteristics were evaluated using a Kruskal-Wallis test for numerical data 

or a Chi-Square test in case of categorical data.  

A Chi-square test was used to investigate significant differences in performance based on the 

subgroups described in 2.4.1 – 2.4.3. 

In all statistical evaluations, a two-sided p-value smaller than 0.05 was considered significant. 
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3. Results 

3.1 Subject characteristics 

Across the three centres, a BrainSense™ Survey measurement (after overnight suspension of all 

dopaminergic drugs) was available for 62 patients (121 STN) (Table 1). Additionally, an extra set of 

patients (“CH”, N=18, 35 STN) with recordings in ON-medication were included for a sub-analysis 

(Supplementary table 5, Supplementary file-2). 

Table 1. Patient characteristics 

 Training set  

“NL” (n=34) 

Validation set  

“CH” (n=12) 

Validation set   

“DE” (n=16) 

P-

value† 

Age at surgery (years) 63.1 (SD 7.9) 64.4 (SD 6.0) 59.4 (SD 9.8) 0.321 

Male, N (%) 23 (67.6%) 9 (75.0%) 14 (87.5%) 0.326 

Disease duration at 

recording (years) 
9.7 (SD 4.3) 9.1 (SD 2.8) 9.4 (SD 5.1) 0.807 

Clinical total pre-

operative OFF-med 

motor score  

39.4 (SD 11.9)  39.7 (SD 11.4) 37.5 (SD 12.8)  0.846 

Clinical total pre-

operative ON-med 

motor score 

18.9 (SD 9.1) 14.4 (SD 8.2) 14.1 (SD 7.0) 0.152 

Levodopa response 
(OFF-ON/OFF*100) 

52.6% (SD 17.5%) 66.1% (SD 15.8%) 63.4% (SD 12.0%) 0.030* 

Preoperative LEDD 1350 (SD 591) 1112 (SD 583) 1100 (SD 466) 0.183 

Time since lead 

implantation at LFP 

recording (days) 

8.2 (SD 2.8) 5.6 (SD 1.5) 106.0 (SD 91.0) <0.001* 

Time since lead 

implantation at MPR 

(days) 

9.2 (SD 1.1) 20.8 (SD 32.3) 106.6 (SD 20.2) <0.001* 

† Kruskal Wallis test (numerical data); Chi-square test (categorical data). 

* Significant difference between groups (two-sided p-value < 0.05). 

Abbreviations: n: number of patients; SD: standard deviation; DBS: deep brain stimulation; LEDD: levodopa equivalent daily 

dose according to S.T. Jost et al. (2023) [28]. 

The contact-level used for chronic stimulation at 1 year (or 6 months if 1 year was not reached) post-

lead placement differed from the contact-level chosen during MPR in 6 out of 68 STN (9%) for the “NL” 

dataset, in 3 out of 21 STN (14%) for the “CH” dataset, and in 8 out of 32 STN (25%) for the “DE” 

dataset. No chronic contact choice was available for 20 STN (17%) in total (Supplementary table 1, 

Supplementary file-2). Since clinical choices showed minimal differences between MPR and chronic 

stimulation, the prediction methods were not evaluated using chronic contact choices as a reference. 

 

3.2 Pre-processing 

No ECG or other definite artefacts were detected upon visual inspection in any of the datasets (“NL”, 

“CH” and “DE”), therefore, no artefact extraction was applied.  

Clear beta activity (“AUC_flat” value above 0.6μV) was present in at least one recording channel for 

80.5% of all leads (52/68 (76.5%) “NL”; 15/21 (71.5%) “CH”; 32/32 (100%) “DE”). The median value of 

AUC_flat” was 2.64 (range: -2.81 to 13.60).  
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3.3 From clinically-chosen contact-level to recording channel ranking 

Rankings for the “Max” feature were similar to rankings obtained using the “AUC” feature. This 

similarity was also true for the “Max_flat” and “AUC_flat” rankings (Supplementary figure 1, 

Supplementary file-2). Since the “Max” feature is most feasible for in-clinic use, we focus on this 

feature in the results.  

The optimal contact chosen by clinicians across our three centres highlighted that contact-levels 1 and 

2 were most selected (35 and 53 hemispheres respectively), whereas contact-levels 0 and 3 were only 

seldom employed (4 and 7 hemispheres, respectively). The ranking of the LFP channels indicated that 

for contact-levels 1 and 2, the sensing channels surrounding the stimulation levels (i.e. 0-2 and 1-3), 

most often showed the highest feature amplitude. In contrast, for contact-levels 0 and 3 the sensing 

channels that most often showed the highest feature amplitude include the stimulation level itself 

(Figure 4). 

For the “Max” feature in hemispheres where contact-level “one” was chosen for stimulation, recording 

channel 0-2 was ranked first in 40.0%, followed by channel 1-3 in 31.4%. For hemispheres where 

stimulation level “two” was chosen recording channel 1-3 was ranked first in 52.8% followed by 

channel 0-3 in 20.8%.  

 

3.4 From recordings to contact-level prediction 

We then evaluated the predictive accuracy of the 1st and 2nd ranked contact-levels defined by LFP, 

focusing on cases with clear beta activity. The “selection decision tree” method using the “Max” feature 

achieved 86.5% accuracy (“CH”: 86.7%; “DE”: 75.0%), increasing to 88.5% (“CH”: 93.3%; “DE”: 

78.1%) when combining the selection and elimination trees (Figure 5 and Supplementary table 2, 

Supplementary file-2). The “pattern based” method reached 84.6% accuracy (“CH”: 66.7%, “DE”: 

71.9%) when considering both the 1st and 2nd ranked contact-levels.  

Figure 4. First- (dark blue) and second-ranked (light blue) recording channel (ch) per clinically chosen 
deep brain stimulation (DBS) contact-level at monopolar review (in red) for the maximal power beta-
frequency band feature (“Max”). Results from all included leads with clear beta activity.  
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Both the “pattern based” and DETEC algorithms performed better when combining 1st and 2nd ranked 

contact-levels instead of considering the 1st ranked contact-level alone. However, the existing DETEC 

algorithm consistently showed lower predictive accuracies across all centres (Figure 5 and 

Supplementary table 3, Supplementary file-2). 

Analyses were repeated using the “Max_flat”, “AUC” and “AUC_flat” features for both the “decision 

tree” and “pattern based” methods. Changing the applied feature mostly resulted in minor differences 

in predictive accuracy. The “decision tree” method with both the selection and elimination tree in 

combination with the “AUC” feature achieved a slightly higher predictive accuracy in comparison to the 

“Max” feature for the “DE” dataset. The predictive accuracy across the “NL” and “CH” datasets was 

equal for both methods. When considering the “pattern based” method the “AUC_flat” feature slightly 

outperformed the use of the “Max” feature across the “NL” and “DE” datasets, and was equal for the 

“CH” dataset (Supplementary tables 2-4, Supplementary file-2).  

Figure 5. Comparison of algorithm performances when considering the results for the 1st and 2nd ranked 
contact-levels in recordings with clear beta activity obtained in OFF-medication. The time from the implant to 
LFP recordings (LFP: used for prediction) and the time from implant to the clinical contact selection (MPR: 
reference for prediction) varied between centres (see text). A) Predictive accuracy of the novel ‘decision 
tree – selection only’ and ‘pattern based’ prediction techniques for the ‘Max’ beta feature in comparison to 
the predictive accuracy of the existing DETEC-algorithm when considering both the 1st and 2nd ranked 
contact-levels. B) Predictive accuracy for the 1st and 2nd ranked contact-levels based on the online ‘decision 
tree’ method when applying the selection tree in combination with the elimination tree. C) Predictive 
accuracy of the offline “pattern based” method and DETEC-algorithms for the 1st ranked contact-level alone.  

A) 

B) C) 
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3.5 Subgroup comparison 

3.5.1. Performance in case of reduced beta power 

We then evaluated the predictive performance across hemispheres with little or no beta power above 

1/f (Table 2). No significant differences were observed across any method or group. However, both the 

“pattern based” and DETEC algorithm showed a non-significant trend suggesting a decrease in 

predictive accuracy associated with a reduction in beta-activity.  

Table 2. Frequency of 1st/2nd ranked contact-levels corresponding to the clinically chosen 
stimulation level per ranking model for all patients from all three centres, subcategorised for clear or 
little beta above 1/f or background signal alone. 

 Decision tree† 
1st / 2nd ranked 

Pattern based  
1st / 2nd ranked 

DETEC algorithm 
1st / 2nd ranked 

Clear beta above 1/f  
(“NL”: 52 STN, “CH”: 
15 STN, “DE”: 32 
STN) 

“Max”: 82.8% (82) “Max”: 77.8% (77) 61.6% (61) 

Little beta above 1/f  
(“NL”: 9 STN, “CH”: 6 
STN, “DE”: 0 STN) 

“AUC”: 93.3% (14) “AUC”: 60.0% (9) 46.7% (7) 

Background only 
(“NL”: 7 STN, “CH”: 0 
STN, “DE”: 0 STN) 

“AUC”: 100.0% (7) “AUC”: 57.1% (4) 42.9% (3) 

Chi-square* χ2 = 2.434, p = 0.296 χ2 = 3.319, p = 0.190 χ2 = 1.968, p = 0.374 

† Results for selection decision tree only. 
* Chi-square test was considered significant if two-sided p-value < 0.05 
Abbreviations: “Max”: maximum power feature; “AUC”: area under the curve feature 

 

3.5.2 Performance in case of “stun effect” 

A sub-analysis was performed for all “NL” recordings without clinically detectable stun effect during 

MPR (Table 3). Beta activity was also reduced in 11 out of 26 STN with stun effect (42.3%). 

Patients with a stun effect had significantly lower predictive accuracy using the “pattern based” 

algorithm with the “Max” (if clear beta-activity) or “AUC” feature (if little beta-activity or background 

signals alone). The stun effect caused a non-signficant performance decrease for the DETEC 

algorithm but a non-significant increase for the “decision tree” method. No significant differences were 

found in patient characteristics, except for a lower pre-operative OFF-medication motor score (p = 

0.029) in the stun effect group (Supplementary table 5, Supplementary file-2). 
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3.5.3 Effect of medication  

Predictive accuracy differences between ON- and OFF-medication states were evaluated on an 

additional ON-medication “CH” dataset (Table 4). The “decision tree” method using the “Max” feature 

showed a trend toward reduced accuracy in the ON-state, while no differences were found for the 

“pattern based” method, or the DETEC algorithm. There were no significant differences in patient 

characteristics between subgroups (Supplementary tables 6-7, Supplementary file-2). 

Table 4. Frequency of 1st/2nd ranked contact-levels corresponding to the clinically chosen 
stimulation level per ranking model for all “CH” patients, for the ON- versus OFF-medication state. 

 Decision tree† -  “Max” 
1st / 2nd ranked 

Pattern based – “Max” 
1st / 2nd ranked 

DETEC algorithm 
1st / 2nd ranked 

OFF-
medication 
(21 STN) 

85.7% (18) 66.7% (14) 47.6% (10) 

ON- 
medication 
(35 STN) 

71.4% (25) 68.6% (24) 51.4% (18) 

Chi-square* χ2 = 1.503, p = 0.220 χ2 = 0.022, p = 0.883 χ2 = 0.076, p = 0.783 

† Results for selection decision tree only. 
* Chi-square test was considered significant if two-sided p-value < 0.05 
Abbreviations: Max: maximum power feature 

 

  

Table 3. Frequency of 1st/2nd ranked contact-levels corresponding to the clinically chosen 
stimulation level per ranking model for all “NL” patients, subcategorised as with/without stun effect. 

 Decision tree† – 
“Max/AUC” 
1st / 2nd ranked 

Pattern based – 
“Max/AUC” 
1st / 2nd ranked 

DETEC algorithm 
1st / 2nd ranked 

No stun 
(42 STN) 

83.3% (35) 85.7% (36) 66.7% (28) 

With stun  
(26 STN) 

96.2% (25) 65.4% (17) 46.2% (12) 

Chi-
square* 

χ2 = 2.543, p = 0.111 χ2 = 3.860, p = 0.049 χ2 = 2.790, p = 0.095 

† Results for selection decision tree only. 
* Chi-square test was considered significant if two-sided p-value < 0.05 
Abbreviations: Max: maximum power feature 
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4. Discussion 
 

4.1 Algorithm performance and comparison to existing approaches 

We retrospectively evaluated LFP signals and their relation to clinically chosen stimulation contact-

levels across three European centres and developed a novel algorithmic framework, including two 

complementary prediction algorithms, to identify optimal DBS contact-levels in over 60 PD patients.  

The decision-tree approach using the “Max” feature showed high predictive accuracy (>85%) for the 

1st and 2nd optimal contact-level predictions combined and showed robustness across validation sets. 

This new, online technique can thus help restrict the search field for optimal stimulation contacts to two 

contact-levels, thereby potentially reducing DBS programming time by half. Incorporating elimination 

trees improved results by 2 to 6 percental points, suggesting that this extra step might not be crucial 

and will only be reserved for selected cases.  

The “pattern based” approach using the same feature correctly predicted the single optimal contact-

level in 73.1% of the cases, and reached near 85% accuracy for combining 1st and 2nd optimal contact-

level predictions. These results were, however, slightly less robust across validation sets compared to 

the online “decision tree” method.  

Both approaches outperformed the existing DETEC algorithm for our datasets (15.4-26.7% for 1st 

contact-level only, and 46.7-65.6% for 1st and 2nd combined).  

We note that the predictive accuracy achieved by the DETEC-algorithm on the data from our centres 

was lower than the predictive accuracy reported [20]. The results from the “DE” dataset resemble the 

original results reported for the DETEC-algorithm most, likely because both datasets were recorded 

over 3 months post-lead placement. Our approach not only outperforms in that individual dataset but 

also translates across centres and earlier time points. 

Other existing algorithms using contact-level BrainSense™ Survey recordings (e.g. [25]) were not 

tested here, as they are not publicly available to our knowledge, and, based on the available literature, 

their accuracy is surpassed by the DETEC algorithm [20, 25]. Other existing algorithms require 

segmented BrainSense™ Survey recordings, which were not available in this retrospective analysis 

[22-24, 29].  

4.2 Relevance of beta features for prediction performance 

In all our analyses, using the “Max” and “AUC” feature yielded similar results. This indicates that albeit 

a single maximal value ignores the underlying PSD shape and is more prone to noise corruption, the 

conveyed information is enough for programming purposes. Once the aperiodic signal component is 

removed, the channels ranked second changed to channels with a smaller pick-up area (e.g. for 

contact-level 2 channel 0-3 is ranked second using the “Max” feature, whereas channel 2-3 is ranked 

second using the “Max_flat” feature). These changes were similar for both the “Max” and “AUC” 

features. 

For the online “decision tree” method, the features without removal of 1/f outperformed the flattened 

features. This is very convenient, since visual inspection of a single point is easier and faster, 

especially in the context of clinical evaluations. However, the opposite was true for the offline “pattern 

based” method.  

4.3 Robustness across different clinical and recording conditions 

The presence of beta activity is often regarded as one of the limiting factors when considering beta 
power predictions. We thus clustered LFP recordings into subsets depending on their amount of beta 
power (clear beta-activity, little beta-activity, and background signal alone). No significant difference in 
performance was observed for the proposed algorithms. However, the “decision tree” approach 
exhibited an increase in performance corresponding to a decrease in beta-activity. The opposite was 
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true for the other two algorithms, indicating that the “decision tree” might be more robust for cases 
without obvious beta activity.  
 
A second sub-analysis on the “NL” dataset alone showed that the performance of the “decision tree” 
method remained stable even in patients with a clinical stun effect during LFP recordings, whereas the 
performance decreased significantly for the “pattern based” method and non-significantly for the 
DETEC algorithm. 
 
Across our three centres, the amount of AUC beta-activity without 1/f (“AUC_flat” feature) correlated 

with the time at which LFP recordings were performed. All the recordings with little beta activity or 

background signal alone were seen in the “NL” and “CH” datasets, for which LFP recordings were 

performed at an average of 8 and 6 days after implantation, respectively. The “DE” dataset, for which 

LFP recordings were performed at an average of 106 days after lead implantation, only contained LFP 

recordings with clear beta-activity. 

In the “CH” ON-medication dataset, accuracy was similar with and without medication, opening up the 

possibility of avoiding overnight medication withdrawal in the future. Contradictory to the results of the 

first two sub-analyses, a trend toward decreased accuracy ON-medication was observed for the 

“decision tree” method.  

While both methods, especially the “decision tree”, were generally robust in different clinical and 

recording conditions, the “decision tree” method using the “Max” feature may be more reliable in the 

OFF-medication state and post-stun effect in individual patients. Adding the elimination tree could 

enhance prediction validity in selected cases, and further confirmation can be obtained using the 

“pattern based” method with the “AUC_flat” feature.  

 

4.4 Limitations 

The studied population comprises a large cohort across three different centres, but limitations in the 

generalisation of the results should be considered. In the “NL” dataset, none of the STN were 

stimulated through contact-level 0, and only four (5.9%) through contact-level 3, reflecting typical 

preferences in lead placement and its accuracy. Similar patterns were seen in the other two datasets 

(“DE” level-0: 11.8%, level-3: 11.8%; “CH” level-0: 0.0%, level-3: 0.0%). Additionally, although no 

artefacts were visually identified, there may have been artefacts overlapping with the 

neurophysiological signal may have been present. Furthermore, differences in impedances between 

recording channels were not considered.  

 

We evaluated beta-based features within the 13-35Hz range, which differs from the beta range shown 

by the clinician programmer (8-30Hz). Additionally, we did not study other frequency bands, aiming to 

develop a simple and robust method that can be readily implemented in clinical practice. Nonetheless, 

features from other frequencies may aid in predicting optimal stimulation levels [13, 30-32]. 

 

After MPR, the contact-level for chronic stimulation is typically selected based on the lowest threshold 

for therapeutic benefit, while also considering the absence of side-effects. This implies that even if a 

contact has the lowest threshold for benefit, it might still be excluded due to the presence of side-

effects—an aspect that may not be fully reflected by LFP measurements. In this retrospective study, 

we were unable to verify this, as some necessary data were unavailable.  

 

Additionally, if a stun effect occurs during MPR, the clinical contact level might be chosen based on 

other considerations, such as anatomical factors, personal preferences of the physician. Selecting a 

contact based on these other alternative factors could potentially lead to a choice that is suboptimal for 

stimulation. To correct for this, we also considered the contact-level used for stimulation 6-12 months 

after implant and found few differences (in 9-13-≤25% of STN  ). However, due to the retrospective 

nature of this study, we cannot fully guarantee that LFPs did not influence clinical programming 

decisions in specific cases.  
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4.5 Conclusions and future directions 

This study introduces and validates both online and offline tools for supporting selection of optimal 

clinical contact-levels, potentially reducing the time required for the initial optimal contact-level 

selection. The presented novel approaches outperform existing methods and are robust under varying 

clinical conditions. The online decision tree is particularly practical for clinical use.  

Future research should explore including directionality using the segmented BrainSense™ Survey 

recordings, and should consider incorporating features from other frequency bands, which may relate 

to certain PD symptoms and/or disease states [33]. In addition, integrating our methods with imaging 

data could provide information on the expected locations of side-effects. Including information on 

stimulation-induced beta-suppression could further enhance optimal contact-level selection [21, 23]. 

Future availability of monopolar LFP recordings might also improve predictions by eliminating the need 

for a bipolar to monopolar translation, although new challenges may arise in implanted systems. 

 

While the proposed methods can enhance LFP-based contact-level selection and reduce testing time, 

especially in case of clinical complexity, clinical judgement and case-by-case considerations should 

always remain. 
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