1 Bimodal distributions of anti-*Trypanosoma cruzi*

2 antibody levels in blood donors are associated

- 3 with parasite detection and antibody waning in
- 4 peripheral blood.

5

- 6 Mirta C. Remesar ¹ [¶], Ester C. Sabino ^{2, 3} [¶], Lewis F. Buss⁴ [¶], Claudio D. Merlo ⁵ [&],
- 7 Mónica G. López ⁵ [&], Sebastián L. Humeres ⁶ [&], Pavón A. Héctor ⁵ [&], Clara Di
- 8 Germanio C. ⁷ [&], Sonia Bakkour Coco ⁷ [&], Léa C. Oliveira-da Silva ² [&], Marcelo
- 9 Martins Pinto Filho ⁸ [&], Antonio Luiz P. Ribeiro ⁸ [&], Michael P. Busch ^{7,9} [¶], Ana E. del
- 10 Pozo ^{1,10} ¶

11

- ¹Centro Regional de Hemoterapia Garrahan, Hospital de Pediatría Prof. Dr. J. P.
- 13 Garrahan, Ciudad de Buenos Aires, Buenos Aires, Argentina

14

- ¹⁵ ² Laboratório de Parasitología Medica (LIM-46), Hospital das Clínicas da
- 16 Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil

It is made available under a CC-BY 4.0 International license .

18	³ Departamento de Moléstias Infecciosas e Parasitárias, Hospital das Clínicas da
19	Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo,
20	Brazil.
21	
22	⁴ Centre for Academic Primary care, University of Bristol, Bristol, United Kingdom
23	⁵ Centro Especializado en Hemoterapia, Resistencia, Chaco, Argentina
24	
25	⁶ Facultad de Ciencias Exactas y Agrimensura, Universidad Nacional del Nordeste,
26	Ciudad de Corrientes, Corrientes, Argentina
27	
28	⁷ Vitalant Research Institute, San Francisco, California, United States of America
29	
30	⁸ Telehealth Center and Cardiology Service, Hospital das Clínicas, Universidade
31	Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
32	
33	⁹ Department of Laboratory Medicine, University of California, San Francisco, San
34	Francisco, California, United States of America
35	
36	¹⁰ Chaco Province Blood Program Consultant, Ministerio de Salud de la Provincia
37	de Chaco, Resistencia, Chaco, Argentina

It is made available under a CC-BY 4.0 International license .

2	n
	×
J	υ

- 39
- 40 * Corresponding author
- 41 E-mail: <u>mirtaremesar@gmail.com</u> (MR)
- 42 * Corresponding author
- 43 E-mail: <u>sabinoec@gmail.com</u> (SE)
- 44
- 45 [¶] These authors contributed equally to this work
- ⁴⁶ [&] These authors also contributed equally to this work

47 Abstract

48 Background

- 49 In our previous study of blood donors in the Argentinian Chaco Province, we
- 50 documented bimodal distributions of anti-*Trypanosoma cruzi* antibody (Ab) levels,
- suggesting potential self-cure in donors with low-reactive samples. This study
- aimed to correlate "high" and "low" Ab level groups, defined by a mathematical
- 53 model, with parasitemia and electrocardiogram findings. Ab decline over time was
- 54 also assessed.

55 Methodology / Principal Findings

It is made available under a CC-BY 4.0 International license .

56	We invited <i>T. cruzi</i> Ab reactive blood donors to enroll in the study from October
57	2018 to November 2019 with a follow up visit two years later. Blood samples were
58	tested for <i>T cruzi</i> Ab by: Chagatest ELISA Lisado and Chagatest ELISA
59	Recombinante v.4.0 (Wiener Lab, Argentina); VITROS Immunodiagnostic Products
60	Anti-T.cruzi (Chagas) (Ortho-Clinical Diagnostics Inc., UK), and Architect Chagas
61	(Abbott Laboratories, Germany). Target capture PCR was performed on lysed
62	whole blood samples from enrollment visits and electrocardiograms on second
63	visits.
64	Four hundred fifty donors were recruited, but 68 were excluded due to negative
65	results on all study Ab assays. Ab level distributions were bimodal and classified as
66	"high" or "low" at a calculated threshold for each of four assays. There were 160
67	donors with low and 179 with high Ab results on all assays. The remainder 43 were
68	discordant reactive. Ninety-seven percentage of the PCR positive donors were
69	among the concordant high Ab group. During the 2-4 year follow-up interval,
70	relative Ab declines by three assays were significantly greater among those
71	classified as low Ab and with negative PCR results.

72 Conclusions / Significance

Ab reactivity is associated with PCR-detectable parasitemia. Greater Ab declines
 were detected among donors with low and/or discordant Ab reactivity and negative
 PCR results, suggesting spontaneous parasite clearance in these donors.

76

77 Introduction

It is made available under a CC-BY 4.0 International license .

78 Chagas disease (CD), caused by the Trypanosoma cruzi (T. cruzi) parasite, is a significant public health concern affecting approximately 6 million people worldwide 79 [1]. Recognized as a neglected tropical disease, CD is primarily transmitted 80 81 through contact with the feces of infected triatomine bugs [1]. Approximately 70 million people reside in areas at risk of exposure to this vector and parasite [2]. 82 The diagnosis of chronically infected individuals relies on antibody (Ab) detection. 83 84 as parasitemia is typically low and intermittent [1]. Due to well documented risks of transfusion transmission of T. cruzi, all blood donations are screened for T. cruzi 85 Ab in endemic countries in Latin America, while donations from first time donors or 86 travelers to endemic countries are screened for T. cruzi Ab in many non-endemic 87 countries [3]. However, nearly one-third of individuals including blood donors 88 identified as seropositive exhibit low Ab levels or discordant test results [4]. These 89 borderline or low level Ab cases share risk factors with unequivocal seropositive 90 cases, strongly suggesting true exposure to *T. cruzi* rather than false-positive 91 results [5.6]. Since T. cruzi infection is widely considered to be lifelong [7], these 92 low reactive samples are often considered as indicative of active infection and 93 these patients and donors are deferred and counseled as infected and may be 94 95 treated. This underscores the need to enhance the sensitivity of existing tests and forms the basis for PAHO's recommendation of parallel screening using two 96 different immunoassays for CD diagnosis [8]. 97

98 Our previous study conducted in the highly endemic Chaco province of Argentina 99 revealed a bimodal distribution of Ab signals in seroreactive blood donors when 100 tested in parallel with six different immunoassays [6,9]. The bimodal distribution

It is made available under a CC-BY 4.0 International license .

101	led us to hypothesize the existence of two infection outcome phenotypes, with low-
102	level Ab cases reflecting spontaneously resolved and high-level Ab reflecting
103	chronic/active T. cruzi infections. We further hypothesized that parasite clearance
104	would diminish the antigenic stimulus, resulting in gradual seroreversion on follow-
105	up testing. Consistent with our hypotheses, spontaneous cure has also been
106	observed in other studies [10-15]
107	In the current study, we enrolled Chagas Ab-reactive donors at the same blood
108	bank in the Chaco region as our previous study and conducted baseline and
109	follow-up visits to confirm the bimodal distribution and correlate Ab levels with PCR
110	results. Additionally, the follow-up visits allowed us to assess Ab decline over time
111	and disease penetrance as measured by electrocardiogram (ECC)

112 Methods

113 Study design

In Argentina, blood donor screening policies mandate performance of two T. cruzi 114 115 Ab tests based on different assay designs, such as parasite lysate and recombinant antigens. This prospective cohort study involved seropositive blood 116 117 donors with at least one reactive screening test for T. cruzi at the Servicio 118 Especializado en Hemoterapia in Chaco Province, Argentina, from 2009 to 2018. 119 Eligible Ab-reactive donors were identified using blood bank records, and basic demographic data were retrieved. We organized the work within the province to 120 secure local collaboration, ensuring an efficient process of recruitment, consent, 121 122 sample acquisition and processing, and ECG testing. A local telemarketer was

It is made available under a CC-BY 4.0 International license .

trained to make calls to donors in accordance with a protocol established with thelocal health providers.

125	The initial enrollment appointments and visits were conducted from October 2018
126	to November 2019. Donors completed a questionnaire regarding their risk factors
127	for exposure to CD, and blood samples were collected for serological tests and
128	PCR. Donors who reported previous treatment for CD were excluded from the
129	study. The second follow-up visits took place from November 2021 to March 2023.
130	During these visits, a second blood sample was collected for Ab testing, and each
131	participant underwent an ECG.

132

133 Serology testing

134 Four commercial tests were used for the characterization of *T. cruzi* Abs in the

135 samples: Chagatest ELISA Lisado (Wiener Lab, Rosario, Argentina), Chagatest

136 ELISA Recombinante v.4.0 (Wiener Lab, Rosario, Argentina), VITROS

137 Immunodiagnostic Products Anti-T.cruzi (Chagas) (Ortho-Clinical Diagnostics Inc.,

138 Pencoed, Bridgend, UK), and Architect Chagas (Abbott Laboratories, Wiesbaden,

139 Germany). The Chaco Province blood bank performed the Wiener and Abbott

assays, and Vitalant Research Institute (San Francisco CA) was responsible for

141 the Ortho assay. All *T. cruzi* Ab testing was performed according to the

142 manufacturer's instructions.

143

144 **Polymerase Chain Reaction (PCR)**

It is made available under a CC-BY 4.0 International license .

145	During the enrolment appointment, 20 mL of EDTA-anticoagulated whole blood
146	was drawn from each donor and mixed with an equal volume of guanidine (6 M)/
147	EDTA (200 mM) solution. Aliquots were prepared and stored at -20 degrees C until
148	they were shipped to Vitalant Research Institute (San Francisco, CA) for PCR
149	testing. Aliquots of lysed whole blood samples were tested using a target-capture
150	(TC) real-time (RT) PCR assay, as previously described [12]. Capture of T. cruzi
151	DNA was performed using magnetic beads coated with three 20-mer capture
152	oligonucleotides:
153	TCZ 1 CGAGCTCTTGCCCACACGGGAAAAAAAAAAAAAAAAAAA
154	TCZ 2
155	CCTCCAAGCAGCGGATAGTTCAGGAAAAAAAAAAAAAAA
156	TCZ 3 TGCTGCASTCGGCTGATCGTTTTC-GAAAAAAAAAAAAAAAAAAAAAA
157	AAAAAA.
158	The captured DNA targets were eluted from the magnetic beads and real-time
159	PCR amplified on an Applied Biosystems 7500 thermocycler. Briefly, 25 μL of DNA
160	was added to 50 μL of PCR reaction mix. The PCR conditions were 10 min at 95°
161	C, followed by 45 cycles of 30 sec at 95° C, 30 sec at 64° C, and 45 sec at 72° C.
162	After completion of thermal cycling and real-time monitoring of cyber green
163	intercalation, a dissociation step was performed, and the melting curves were
164	analyzed. Product dissociations with one or two peaks at 80-82 degrees C were
165	considered positive if the cycle threshold (CT) was less than 45 cycles. Eight
166	replicate assays were performed, and the final interpretation was considered
167	positive if at least two replicates produced a specific PCR product based CT and

It is made available under a CC-BY 4.0 International license .

169

170 Electrocardiogram (ECG)

Standard 12-lead ECG was obtained using an electrocardiograph manufactured by 171 172 Tecnologia Eletrônica Brasileira (São Paulo, Brazil)-model TEB ECGPC. All ECGs were transmitted to an ECG reading center at the Telehealth Center of the 173 University Hospital of the Federal University of Minas Gerais, for standardized 174 measurement, reporting and codification according to the Minnesota coding criteria 175 176 (MC) in validated ECG data management software [16]. A certified cardiologist 177 reviewed the exam, and a clinical report was sent back for counseling. All exams were manually codified according to the Minnesota code as normal or with minor or 178 major electrocardiographic alterations, as previously described and validated for 179 180 Chagas disease [17].

181 **Statistical analysis**

Ab results were reported as signal-to-cutoff (S/CO) ratios, a function of the 182 quantity/avidity of *T. cruzi* Ab present in samples. The results from our previous 183 study in the same Argentinian Chaco region showed bimodal distributions of anti-T. 184 185 cruzi antibodies in blood donors [6]. This bimodality suggests different hostparasite trajectories in the two groups, potentially reflecting high versus low or 186 absent parasite burden and consequent CD pathogenicity. As such, we aimed to 187 categorize all four serologic assays into "low" and "high" Ab levels in order to 188 classify donor participants into two discrete groups based on their Ab reactivity. We 189 fit mixture models, assuming underlying bimodal normal distributions. We then 190 selected thresholds for each assay to optimally separate the two distributions using 191

It is made available under a CC-BY 4.0 International license .

- an "expectation minimization" algorithm [18] available at
- 193 <u>http://marcchoisy.free.fr//fmm/index.html</u>.

Next, we explored differences in infection characteristics between high- and low-Ab
reactive donor participants. In order to test the hypothesis that individuals with high
Ab levels have higher rates of parasite persistence and parasite loads than those

197 with low Abs, we compared the proportion with positive *T. cruzi* TC-PCR results at

198 visit one across these groups.

199 We also compared the change in Ab reactivity between visit 1 and visit 2 according

to baseline Ab category (high versus low) and TC-PCR results. The change in

201 S/CO values for each serology test was defined as the difference between S/CO at

follow-up and first enrolment visits, with negative values indicating a falling S/CO

value. We analyze both relative and absolute change in S/CO. Relative S/CO

values were defined as: (Follow-up S/CO value – Enrollment S/CO)/Enrollment

205 S/CO value). A non-parametric significance test for continuous variables quantified

Ab declines.

207 The presence of ECG abnormalities was evaluated as their distributions in three

groups: high Ab levels, low Ab levels, and negative Ab subjects, considering as

negative those individuals non-reactive for all serology tests at enrollment.

Analyses were conducted in R statistical software.

211

212 Ethics statement

The study protocol was approved by the local Ethics committee at *Hospital Julio C*.

214 *Perrando*, located in Resistencia City, the capital of Chaco province. All donor

It is made available under a CC-BY 4.0 International license .

- 215 participants provided written informed consent before enrollment and follow-up
- 216 visits.
- 217

218 **Results**

219 Cohort characteristics

- A total of 455 donors participated in the first visit, with 450 providing valid results
- for all serological tests and valid PCR results. In the second visit, 390 of these 450
- donors (86%) returned. Of those, 314 had their ECGs performed through the
- Telehealth system, allowing their ECG data to be entered and analyzed by the
- 224 central reading core. The remaining 76 donors had their ECGs performed locally
- and the data could not be used in the study.
- Table 1 summarizes the epidemiological characteristics of the 450 informative
- donors. The majority had significant epidemiological risk exposure: 358 donors
- (79.5%) had lived in a house where the vector of T. cruzi was present, 370 (82.2%)
- had lived in a house with mud walls, and 227 (50.4%) knew that a relative had
- suffered from Chagas Disease.
- Table 1. Characteristics of 450 enrolled *T. cruzi* seroreactive blood donors,

232 Chaco region, 2018-2019

Subject characteristics	Full cohort
	N=450 (%)
Age (years)	
17-25	19 (4.2)

It is made available under a CC-BY 4.0 International license .

26-35	88 (19.6)
36-45	136 (30.2)
46-55	134 (29.8)
≥ 56	73 (16.2)
Gender	
Male	286 (63.6)
Female	164 (36.4)
Educational level	
No schooling	10 (2.2)
Incomplete primary schooling	138 (30.7)
Complete primary schooling	147 (32.7)
Incomplete secondary schooling	50 (11.1)
Complete secondary schooling	61 (13.5)
Tertiary/University incomplete or complete	44 (9.8)

233

234 Serology testing and PCR detection

235 Serology analysis of the first visit samples revealed that 289 donors (64%) tested

reactive on all four tests, 36 (8.0%) on three tests, 29 (6.4%) on two tests, and 28

(6.2%) on one test. The remaining 68 samples (15%) were negative on all four

tests, and these were presumed to be false positive results in the initial donation

screening; these 68 donors were excluded from subsequent analyses.

It is made available under a CC-BY 4.0 International license .

240	Fig 1 presents the distributions of S/CO values for each assay, revealing a clear
241	bimodal distribution for each assay. Cut-off S/C values could be established to
242	classify the samples into high and low Ab levels: 9.6 for the Architect Abbott assay,
243	5.2 for the Vitros assay; 4.8 for Wiener Lysate EIA and 4.7 for Wiener
244	Recombinant EIA. There were 160 concordant (all four assays) low-level reactive
245	samples and 179 concordant high-level Ab reactive samples. The remaining 43
246	samples were discordant with respect to low- and high-level reactivity on the four
247	assays.
248	Fig 1. Determination of thresholds of bimodal signal-to-cutoff (S/CO) values
249	distribution for each antibody test
249 250	Abbott: CMIA Chagas Architect, Abbott, Germany; EIA Lysate: ELISA Lisado,
249 250 251	distribution for each antibody test Abbott: CMIA Chagas Architect, Abbott, Germany; EIA Lysate: ELISA Lisado, Wiener Lab., Argentina; Recomb EIA: ELISA Recombinante, Wiener Lab.,
249 250 251 252	distribution for each antibody test Abbott: CMIA Chagas Architect, Abbott, Germany; EIA Lysate: ELISA Lisado, Wiener Lab., Argentina; Recomb EIA: ELISA Recombinante, Wiener Lab., Argentina; Vitros: Vitros Immunodiagnostics Products Anti- <i>T. cruzi</i> (Chagas) Assay
249 250 251 252 253	distribution for each antibody test Abbott: CMIA Chagas Architect, Abbott, Germany; EIA Lysate: ELISA Lisado, Wiener Lab., Argentina; Recomb EIA: ELISA Recombinante, Wiener Lab., Argentina; Vitros: Vitros Immunodiagnostics Products Anti- <i>T. cruzi</i> (Chagas) Assay (Ortho Clinical Diagnosis, Raritan NJ, USA. The dotted lines indicate the threshold
249 250 251 252 253 254	distribution for each antibody test Abbott: CMIA Chagas Architect, Abbott, Germany; EIA Lysate: ELISA Lisado, Wiener Lab., Argentina; Recomb EIA: ELISA Recombinante, Wiener Lab., Argentina; Vitros: Vitros Immunodiagnostics Products Anti- <i>T. cruzi</i> (Chagas) Assay (Ortho Clinical Diagnosis, Raritan NJ, USA. The dotted lines indicate the threshold values obtained using expectation minimization, assuming normal latent
249 250 251 252 253 254 255	distribution for each antibody test Abbott: CMIA Chagas Architect, Abbott, Germany; EIA Lysate: ELISA Lisado, Wiener Lab., Argentina; Recomb EIA: ELISA Recombinante, Wiener Lab., Argentina; Vitros: Vitros Immunodiagnostics Products Anti- <i>T. cruzi</i> (Chagas) Assay (Ortho Clinical Diagnosis, Raritan NJ, USA. The dotted lines indicate the threshold values obtained using expectation minimization, assuming normal latent distributions. They resulted as 9.6 S/CO for CMIA, Architect Abbott; 5.2 S/CO for
249 250 251 252 253 254 255 256	distribution for each antibody test Abbott: CMIA Chagas Architect, Abbott, Germany; EIA Lysate: ELISA Lisado, Wiener Lab., Argentina; Recomb EIA: ELISA Recombinante, Wiener Lab., Argentina; Vitros: Vitros Immunodiagnostics Products Anti- <i>T. cruzi</i> (Chagas) Assay (Ortho Clinical Diagnosis, Raritan NJ, USA. The dotted lines indicate the threshold values obtained using expectation minimization, assuming normal latent distributions. They resulted as 9.6 S/CO for CMIA, Architect Abbott; 5.2 S/CO for Vitros assay; 4.8 S/CO for Lysate EIA and 4.7 S/CO for Recombinant EIA.

It is made available under a CC-BY 4.0 International license .

259

Fig 2. Correlation of antibody levels at visit 1 with T. cruzi PCR results 263

264 Scatter plots of signal-to-cutoff values at visit1.

It is made available under a CC-BY 4.0 International license .

- Abbott: CMIA Chagas Architect, Abbott, Germany; EIA Lysate: ELISA Lisado,
- 266 Wiener Lab., Argentina; Recomb EIA: ELISA Recombinante, Wiener Lab.,
- 267 Argentina; Vitros: Vitros Immunodiagnostics Products Anti-*T. cruzi* (Chagas) Assay
- 268 (Ortho Clinical Diagnosis, Raritan NJ, USA.

269

It is made available under a CC-BY 4.0 International license .

- TC-PCR results were positive on 58-67% of the samples classified as high-level Ab
- reactive but only 0-1% of those classified as low-level Ab reactive, depending on
- the assays (Table 2). There were only four samples classified as low-level reactive
- by at least one of the assays that were PCR positive.
- **Table 2.** *T. cruzi* PCR samples distribution according to classification of high
- and low antibody levels for each serology test

Assay	Positive PCR	Negative PCR
	N=127*	N=255*
CMIA		
High n (%)	125 (67)	61 (33)
Low n (%)	2 (1)	194 (99)
VITROS		
High n (%)	127 (67)	63 (33)
Low n (%)	0 (0)	192 (100)
Lysate EIA		
High n (%)	126 (62)	77 (38)
Low n (%)	1 (1)	178 (99)
Recombinant EIA		
High n (%)	126 (58)	90 (42)
Low n (%)	1 (1)	165 (99)

- * A total of 382 donors with at least one positive serology result at enrollment and a
- valid PCR (two missing)

It is made available under a CC-BY 4.0 International license .

- 279 CMIA: Chagas Architect, Abbott; VITROS: VITROS Immunodiagnostics Products
- Anti-*T.cruzi* (Chagas) Assay (Ortho Clinical Diagnostics, Raritan NJ; Lysate EIA:
- Elisa lisado, Wiener Lab; Recombinant EIA: Elisa Recombinante, Wiener Lab.
- 282

Ab levels on follow up relative to enrollment samples.

- The follow-up samples were collected 644 to 1511 days (median 899 days) after
- the enrollment samples. The relative decline in Ab reactivity was significantly
- higher among low-reactive samples when measured by three of the four kits used:
- the recombinant EIA and the two chemiluminescence assays (Fig 3). Measuring
- absolute decline was unable to detect differences (Fig 1 supplement).
- 289

290 Fig 3. The relative decline in antibody levels over time

- Box plot graphics show the relative percentage change in S/CO values at follow-up
- 292 (visit 2) visit compared to enrollment (visit 1).
- ²⁹³ The change in S/CO values for each serology test was defined as the difference
- between S/CO at follow-up and first enrolment visit, such as negative values
- indicating a falling S/CO value. For comparisons, 160 and 179 samples were fully
- concordant with four low (named as 0) and four high antibodies (named as 4)
- results, respectively.
- The blue dots represent PCR-positive samples, and the pink dots represent PCRnegative samples.

It is made available under a CC-BY 4.0 International license .

300

301

302 Ab levels and ECG abnormalities

303 The presence of ECG abnormalities commonly associated with Chagas

- 304 cardiomyopathy, such as prolonged QRS complex duration (>120 ms) and Right
- Bundle Branch Block (RBBB), was low in these asymptomatic donors. We could

not establish an association between these abnormalities and Ab levels or PCR

results (Table 3).

- **Table 3. Electrocardiogram abnormalities distribution in groups of donors**
- 309 with four tests concordant serology reactivity, as high and low antibody
- 310 levels
- 311

Serology results at enrollment	Four high serology tests	Four low serology tests	All negative serology tests
	N(%)	N(%)	N(%)
QRS duration			
> 120 ms	14 (11)	10 (9)	0 (0)
< 120 ms	116 (89)	102 (91)	39 (100)
RBB			
Yes	6 (5)	5 (4)	0 (0)
No	124 (95)	107 (96)	39 (100)
Typical ECG abnormality			
Yes at least one	29 (22)	21 (19)	4 (10)
No	101 (78)	91 (81)	35 (90)

³¹²

313 RBBB: Right Bundle Branch Block

314

315 **Discussion**

In this study, we established a prospective cohort of *T. cruzi* seroreactive blood

donors from a highly endemic area in the Chaco region of Argentina. We confirmed

- a bimodal distribution of Ab levels and demonstrate for the first time that Ab
- reactivity levels correlate with parasite detection in lysed whole blood by a sensitive
- 320 TC-PCR assay.

It is made available under a CC-BY 4.0 International license .

322	These findings align with those from our previous cross-sectional study of blood
323	donors from the same region, in which we described a bimodal distribution of Ab
324	S/CO values on several T. cruzi Ab screening tests; however, T. cruzi parasitemia
325	and longitudinal Ab reactivity patterns were not evaluated in that study [6]. In the
326	current study, we have demonstrated that the biological process likely underlying
327	the bimodal distribution is persistence of <i>T. cruzi</i> infection based on parasitemia
328	detected by TC-PCR. Furthermore, we were able to establish a threshold S/CO
329	value for each of the four assays for classifying cases into high and low Ab level
330	groups that highly correlated with parasite persistence by PCR and can be used for
331	counselling and decisions on treatment.
332	

332

The association between PCR and Ab levels was initially described in a study we 333

conducted with blood donor samples from Honduras, the USA, and Brazil [12]. 334

However, due to the pre-screening process of the samples that excluded low 335

reactive samples in that study, a bimodal distribution of Abs was not demonstrated. 336

337

Despite the relatively short interval between enrolment and follow-up visits in the 338 339 current study (median 899 days), Ab decline was observed in the low reactive group but not in the high reactive group by three of the four assays. This suggests 340 that individuals in the low Ab group had cleared or were very effectively controlling 341 342 parasitemia and replication in tissue reservoirs, reducing the antigenic stimulus, which lead to Ab waning and eventually complete seroreversion. 343

344

It is made available under a CC-BY 4.0 International license .

345 Notably, 93 samples showed discrepant results (reactive to only 1, 2, or 3 assays), representing approximately 50% of the low reactive samples. Discrepant test 346 347 results are common in donor screening and Chagas disease diagnosis, and are 348 often viewed as due to a lack of sensitivity in the assays. Conversely, our data 349 suggest that these discrepancies indicate spontaneous cure or effective control of 350 parasite replication, implying that parallel screening with two immunoassays to detect discrepant cases may not be necessary. 351 According to PAHO, less than 10% of T. cruzi infected individuals receive timely 352 diagnosis and treatment [19]. Simplifying and optimally eliminating the requirement

for a parallel testing algorithm would improve access to diagnosis in low-income 354 355 areas.

356

353

Another important point is that most clinical trials for Chagas disease rely on PCR 357 results for the initial inclusion criteria of subjects [20]. However, T. cruzi PCR is 358 359 generally challenging to interpret due to low and intermittent parasitemia, requiring multiple replicates that often lead to discrepant results. By establishing a cut-off 360 361 value using different serological tests, we can improve the screening process for 362 clinical trials of therapeutics, as the proportion of PCR-positive cases is much higher among those with elevated Ab levels. 363

364

Ab levels have recently been associated with the development of Chagas 365

366 cardiomyopathy [21, 22]. In the present study, we could not establish an

association between disease penetrance and Ab levels, likely due to the young age 367

368 of our cohort and short follow-up period following asymptomatic blood donations.

It is made available under a CC-BY 4.0 International license .

369	In summary, this study provides additional evidence for the bimodal distribution of
370	Ab reactivity in <i>T. cruzi</i> -exposed donors/patients, and the correlation with a
371	sensitive PCR assay results suggests that spontaneous cure may be responsible
372	for low reactivity and discordant Ab results. We have also established potential
373	serological cut-off values that could help classify donors/patients who are more
374	likely to have persistent parasitemia, which could be used for prognosis and to
375	indicate the need for treatment.

It is made available under a CC-BY 4.0 International license .

377 **References**

378	1.	Sabino EC, Nunes MCP, Blum J, Molina I, Ribeiro ALP. Cardiac
379		involvement in Chagas disease and African trypanosomiasis. Nat Rev
380		Cardiol [Internet]. 2024 Jul 15; Available from:
381		http://dx.doi.org/10.1038/s41569-024-01057-3
382	2.	Pérez-Molina JA, Molina I. Chagas disease. Lancet. 2018 Jan
383		6;391(10115):82–94. doi: 10.1016/S0140-6736(17)31612-4.
384	3.	Crowder LA, Wendel S, Bloch EM, O'Brien SF, Delage G, Sauleda S, et al.
385		WP-TTID Subgroup on Parasites. International survey of strategies to
386		mitigate transfusion-transmitted Trypanosoma cruzi in non-endemic
387		countries, 2016-2018. Vox Sang. 2022 Jan;117(1):58-63. doi:
388		10.1111/vox.13164.
389	4.	Sabino EC, Salles NA, Sarr M, Barreto AM, Oikawa M, Oliveira CD, et al.
390		Enhanced classification of Chagas serologic results and epidemiologic
391		characteristics of seropositive donors at three large blood centers in Brazil.
392		Transfusion. 2010 Dec;50(12):2628-37. doi: 10.1111/j.1537-
393		2995.2010.02756.x.
394	5.	Salles NA, Sabino EC, Cliquet MG, Eluf-Neto J, Mayer A, Almeida-Neto C,
395		et al. Risk of exposure to Chagas' disease among seroreactive Brazilian
396		blood donors. Transfusion. 1996 Nov;36(11-12):969–73. doi:
397		10.1046/j.1537-2995.1996.36111297091740.x.
398	6.	Remesar M, Sabino EC, Del Pozo A, Mayer A, Busch MP, Custer B.
399		Bimodal distribution of Trypanosoma cruzi antibody levels in blood donors

It is made available under a CC-BY 4.0 International license .

- 400 from a highly endemic area of Argentina: what is the significance of low-
- 401 reactive samples? Transfusion . 2015 May 27;55(10):2499–504. doi:
- 402 10.1111/trf.13180.
- 403 7. de Sousa AS, Vermeij D, Ramos AN Jr, Luquetti AO. Chagas disease.
- 404 Lancet [Internet]. 2023 Dec 7; Available from:
- 405 http://dx.doi.org/10.1016/S0140-6736(23)01787-7
- 8. Pan American Health Organization. Guidelines for the Diagnosis and
 Treatment of Chagas Disease. Washington, DC: PAHO; 2019.
- 408 9. Remesar MC, Gamba C, Colaianni IF, Puppo M, Sartor PA, Murphy EL, et
- al. Estimation of sensitivity and specificity of several Trypanosoma cruzi
- 410 antibody assays in blood donors in Argentina. Transfusion . 2009

411 Nov;49(11):2352–8. doi: 10.1111/j.1537-2995.2009.02301.x.

- 412 10. Francolino SS, Antunes AF, Talice R, Rosa R, Selanikio J, de Rezende JM,
- 413 et al. New evidence of spontaneous cure in human Chagas' disease. Rev
- 414 Soc Bras Med Trop. 2003 Apr 22;36(1):103–7. doi: 10.1590/s0037-
- 415 86822003000100014.
- 416 11. Dias JCP, Dias E, Martins-Filho OA, Vitelli-Avelar D, Correia D, Lages E, et
- 417 al. Further evidence of spontaneous cure in human Chagas disease. Rev
- 418 Soc Bras Med Trop. 2008 Sep-Oct;41(5):505–6. doi: 10.1590/s0037-
- 419 86822008000500014.
- 420 12. Sabino EC, Lee TH, Montalvo L, Nguyen ML, Leiby DA, Carrick DM, et al.
- 421 Antibody levels correlate with detection of Trypanosoma cruzi DNA by
- 422 sensitive polymerase chain reaction assays in seropositive blood donors
- and possible resolution of infection over time. Transfusion . 2012 Sep

It is made available under a CC-BY 4.0 International license .

424	25;53(6):1257–65. doi: 10.1111/j.1537-2995.2012.03902.x.
425	13. Bertocchi GL, Vigliano CA, Lococo BG, Petti MA, Viotti RJ. Clinical
426	characteristics and outcome of 107 adult patients with chronic Chagas
427	disease and parasitological cure criteria. Trans R Soc Trop Med Hyg. 2013
428	Jun;107(6):372–6. doi: 10.1093/trstmh/trt029.
429	14. Viotti R, Vigliano C, Lococo B, Bertocchi G, Petti M, Alvarez MG, et al.
430	Long-term cardiac outcomes of treating chronic Chagas disease with
431	benznidazole versus no treatment: a nonrandomized trial. Ann Intern Med.
432	2006 May 16;144(10):724–34. doi: 10.7326/0003-4819-144-10-200605160-
433	00006.
434	15. Zeledón R, Dias JC, Brilla-Salazar A, de Rezende JM, Vargas LG, Urbina A.
435	Does a spontaneous cure for Chagas' disease exist? Rev Soc Bras Med
436	Trop. 1988 Jan-Mar;21(1):15–20. doi: 10.1590/s0037-
437	86821988000100003.
438	16. Pinto-Filho MM, Paixão GM, Gomes PR, Soares CPM, Singh K, Rossi VA,
439	et al. Electrocardiographic findings and prognostic values in patients
440	hospitalised with COVID-19 in the World Heart Federation Global Study.
441	Heart. 2023 Apr 12;109(9):668–73. doi: 10.1136/heartjnl-2022-321754.
442	17. Ribeiro ALP, Marcolino MS, Prineas RJ, Lima-Costa MF.
443	Electrocardiographic abnormalities in elderly Chagas disease patients: 10-
444	year follow-up of the Bambui Cohort Study of Aging. J Am Heart Assoc.
445	2014 Feb 7;3(1):e000632. doi: 10.1161/JAHA.113.000632.
446	18. Trang NV, Choisy M, Nakagomi T, Chinh NTM, Doan YH, Yamashiro T, et
447	al. Determination of cut-off cycle threshold values in routine RT-PCR assays

It is made available under a CC-BY 4.0 International license .

- 448 to assist differential diagnosis of norovirus in children hospitalized for acute
- gastroenteritis. Epidemiol Infect. 2015 Nov;143(15):3292–9. doi:
- 450 10.1017/S095026881500059X.
- 451 19. Apr 13. Less than 10% of those infected with Chagas disease receive timely
- diagnosis and treatment [Internet]. [cited 2024 Jul 24]. Available from:
- 453 https://www.paho.org/en/news/13-4-2022-less-10-those-infected-chagas-
- 454 disease-receive-timely-diagnosis-and-treatment
- 455 20. Bosch-Nicolau P, Fernández ML, Sulleiro E, Villar JC, Perez-Molina JA,
- 456 Correa-Oliveira R, et al. Efficacy of three benznidazole dosing strategies for
- 457 adults living with chronic Chagas disease (MULTIBENZ): an international,
- 458 randomised, double-blind, phase 2b trial. Lancet Infect Dis. 2024

459 Apr;24(4):386–94. doi: 10.1016/S1473-3099(23)00629-1.

- 460 21. Nunes MCP, Buss LF, Silva JLP, Martins LNA, Oliveira CDL, Cardoso CS,
- 461 et al. Incidence and Predictors of Progression to Chagas Cardiomyopathy:
- 462 Long-Term Follow-Up of Trypanosoma cruzi-Seropositive Individuals.
- 463 Circulation. 2021 Sep 27;144(19):1553–66. doi:
- 464 10.1161/CIRCULATIONAHA.121.055112.
- 465 22. Buss LF, Campos de Oliveira-da Silva L, Moreira CHV, Manuli ER, Sales
- 466 FC, Morales I, et al. Declining antibody levels to Trypanosoma cruzi
- 467 correlate with polymerase chain reaction positivity and electrocardiographic
- 468 changes in a retrospective cohort of untreated Brazilian blood donors. PLoS
- 469 Negl Trop Dis. 2020 Oct 27;14(10):e0008787. doi:
- 470 10.1371/journal.pntd.0008787.

It is made available under a CC-BY 4.0 International license .

471

472 Acknowledgments

- 473 We acknowledged technical and laboratory personnel at Centro Especializado en
- 474 Hemoterapia del Chaco. We appreciate the administrative personnel for dedicated
- work in recruiting blood donors at blood center. We thank the Mo H of the Chaco
- 476 Province for the relevant support.

477

482

478 Supporting information

479 S1 Fig. Absolute changes in antibody levels

480 Figure 1 supplemental

481 Absolute changes in antibody levels

