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Abstract 19 

Genome-wide association studies identify common genomic variants associated with disease 20 

across a population. Individual environmental effects are often not included, despite evidence 21 

that environment mediates genomic regulation of higher order biology. Body mass index (BMI) 22 

is associated with complex disorders across clinical specialties, yet has not been modeled as a 23 

genomic environment. Here, we tested for expression quantitative trait (eQTL) loci that 24 

contextually regulate gene expression across the BMI spectrum using an interaction approach. 25 

We parsed the impact of cell type, enhancer interactions, and created novel BMI-dynamic gene 26 

expression predictor models. We found that BMI main effects associated with endocrine gene 27 

expression, while interactive variant-by-BMI effects impacted gene expression in the brain and 28 

gut. Cortical BMI-dynamic loci were experimentally dysregulated by inflammatory cytokines in 29 

an in vitro system. Using BMI-dynamic models, we identify novel genes in nitric oxide signaling 30 

pathways in the nucleus accumbens significantly associated with depression and smoking. 31 

While neither genetics nor BMI are sufficient as standalone measures to capture the complexity 32 

of downstream cellular consequences, including environment powers disease gene discovery.  33 
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Introduction 34 

The utilization of genetics in medicine has drastically expanded over the last 30 years 35 

through the identification of a growing body of rare and common genetic variation that 36 

contributes to diseases across specialties. While high penetrance rare variation can be tested in 37 

the clinic and is relevant to the clinical management of a subset of mendelian cases1,2, but the 38 

clinical translation of common variation, which cumulatively represents the bulk of heritability in 39 

complex traits, has proven more challenging3,4. Much success in identifying trait-associated 40 

common variants has come from genome-wide association studies (GWAS). This population-41 

level approach maximizes power to identify disease-associated single nucleotide 42 

polymorphisms (SNPs)5, yielding hundreds of genome-wide significant loci across a very large 43 

number of complex traits. However, discovery of causal variants from GWAS is challenging; this 44 

difficulty stems from the complexity in pinpointing causal alleles from complex LD structures, 45 

translating population-level statistics to individual-level associations and, on a larger scale, 46 

because many of the common diseases in the clinic are multifactorial, i.e. due to a combination 47 

of genomic and environmental factors6. Moreover, GWAS will miss SNPs that are associated in 48 

only certain environmental contexts or SNPs with varying gene-by-environment (GxE) effect 49 

sizes7. Dynamic variant effects may be a core reason, in addition to ancestry and diagnostic 50 

bias, why population-level predictors derived from GWAS (e.g., polygenic risk scores) perform 51 

poorly on an individual level and have not successfully been translated to patient care. To truly 52 

capture the predictors of multifactorial disease development, we need to consider both genetics 53 

and environment in disease risk models. 54 

A global finding from GWAS shows disorder risk-increasing SNPs are enriched for 55 

expression quantitative trait loci (eQTL) - variants with the functional capacity to regulate gene 56 

expression8. This enrichment of eQTLs may imply that the primary modality by which GWAS 57 

variants affect disease is through a cumulative impact of gene expression in disease-relevant 58 

tissues. Understanding eQTL architecture, and integrating these with GWAS summary statistics, 59 

yields biological insights and interpretability, for example allowing researchers to implicate a 60 

gene, tissue or cell type involved in the complex trait. However to-date, studies of eQTLs have 61 

focused on static associations despite evidence that eQTL activity may be highly context-62 

specific, with dynamic effects sizes across tissues, cell-types, sex, hormonal state, 63 

developmental stage, and immune activation9,10,11,12,13,14, with implications for risk-estimates of 64 

common immunologic disorders and cell types10,11.  65 

We propose that studies that integrate only static eQTL estimates fail to capture 66 

important context-specific associations. By characterizing and incorporating dynamic estimates 67 
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into eQTL architecture, and integrating these estimates with GWAS, we hope to move beyond 68 

static estimates and into a personalized understanding of dynamic risk. Here, we focus on body 69 

mass index (BMI), a key physiological context with potential relevance to many complex traits. 70 

Obesity, often defined as BMI of >30, is rising across the globe15, with important physiologic 71 

impacts including inflammation, oxidative stress, and hormonal dysregulation16,17,18. The 72 

combined morbidity of obesity-associated cardiometabolic, oncologic, psychiatric, and 73 

neurologic conditions is substantial,19,20,21. Many efforts have been undertaken to use GWAS to 74 

identify factors associated with genomic susceptibility to these complex disorders 22,23,24, yet no 75 

studies have evaluated the impact of the environment of obesity on genomic risk estimates. In 76 

this study we test whether BMI (body mass index: kg/m2), here used as a proxy for the 77 

endocrinologic physiologic environment, interacts with the genome to regulate gene expression 78 

across tissues. We aim to identify BMI-dynamic genomic variants, postulate cell-type specific 79 

regulatory BMI-dynamic mechanisms, and identify novel genes and pathways relevant to 80 

complex disease, which are missed with conventional GWAS approaches. 81 

Previous work has shown that cell type proportion may be a key mediator in eQTL and 82 

environmental interactions25 and is a vital consideration in defining gene-by-environment 83 

findings. To parse the impact of cell type on our BMI-dynamic eQTL effects, we perform cell 84 

type deconvolution across body systems and identify novel associations of BMI and cell fraction. 85 

We postulate cell-type specific dynamic mechanisms using transcription factor binding affinity 86 

prediction and human induced pluripotent stem cell (hiPSC)-derived glutamatergic neurons 87 

treated with pro-inflammatory factors. We build gene expression predictor models to predict 88 

tissue-specific gene expression from BMI and SNP interactions and discover novel genes that 89 

have a BMI-dynamic relationship with brain traits in a large-scale biobank. 90 

 91 

Results 92 

Defining the Impact of BMI in the regulation of Gene Expression 93 

 We implemented an eQTL linear regression framework to test for the main and 94 

interactive effects of SNPs and BMI on gene expression (Fig 1A). First, we followed the classic 95 

eQTL approach to identify the main effects of SNPs on expression without regard for 96 

environmental context; we term these Base-eQTL and Base-eGenes. The number of Base-97 

eGenes was highest in the GTEx tissues with the largest sample size (cor=0.89), in line with the 98 

published GTEx v8 cis-eQTL analysis26 (Fig 1B). To determine the impact of BMI directly on 99 

gene expression, we tested for differentially expressed genes in the context of BMI (BMI DE-100 

genes, Fig. 1C,1D). We find BMI-DE genes in 18 non-brain tissues, with most in the endocrine 101 
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system including subcutaneous adipose (n=2341 genes), skeletal muscle (n=1894 genes), and 102 

skin-not sun exposed (n=1823 genes) (Fig 1D). We identified 7,563 total BMI DE-genes (FDR < 103 

0.05), 4,199 of which are negatively associated with BMI and 3,364 are positively associated 104 

(Fig 1C), including known BMI-associated genes such as LEP27, SLC27A228, and GPD1L29.   105 

We next examined whether BMI impacts gene expression indirectly through interactions 106 

with SNPs, called BMI-eQTL, and their associated eGenes, called BMI-eGenes, by adding an 107 

interaction term to the classic framework (Exp ~ SNP*BMI + SNP + BMI + PC1:20). Because 108 

eQTL discovery is correlated with sample size, we applied QC specific to the large (n>500), 109 

medium (500>n>200), and small tissues (n<200). Among large tissues, subcutaneous adipose 110 

and non-sun-exposed skin contained the most BMI-eGenes. Among the mid-size tissues, brain 111 

cortex and transverse colon had the most BMI-eGenes, and within the small tissues nucleus 112 

accumbens (NAc), caudate in basal ganglia and small intestine had the most BMI-eGenes (Fig 113 

1E,1F). A portion of BMI-eGenes overlap both Base-eGenes and BMI DE-genes in 114 

subcutaneous adipose, however in cortex the majority of BMI-eGenes are not Base-eGenes 115 

(Supplement Fig 2A-B). Base-eGenes have greater overlap across tissues compared to BMI-116 

eGenes (Average Szymkiewicz–Simpson (SS) overlap coefficient:  Base-eGenes SS=0.67; 117 

BMI-Genes =0.066; Supplement Fig 2C-D). 118 

 119 

Characterizing BMI-eGenes Function and Interaction Direction 120 

Base-eGenes are generally tolerant to loss-of-function variation and have limited 121 

constraint in the genome, as opposed to GWAS hits which are more constrained30. We 122 

assessed whether BMI-eGenes show a similar pattern by annotating the probability of loss-of-123 

function intolerance (pLI) score for our eQTL sets and testing for enrichment of high pLI scores 124 

in Base- and BMI-eGenes compared to background. We found that BMI-eGenes are enriched 125 

for loss-of-function intolerance in subcutaneous adipose (p=7.5x10-25), brain cortex (p=0.034), 126 

and cerebellar hemisphere (p=0.01) (Fig. 2A), while Base-eGenes have no enrichment of 127 

constrained genes. BMI-DE genes are enriched for constrained genes in subcutaneous adipose 128 

(p=1.9x1010), skeletal muscle (p=7.6x10-7), liver (p=4.4x10-2), and skin not sun exposed 129 

(p=6.9x10-4). 130 

Gene set enrichment reveals that the Immunoglobulin complex is interactively regulated 131 

by SNPs and BMI in the stomach (p=3.9x10-3) and transverse colon (p=0.026). Cancer 132 

pathways are enriched across tissues, including cyclin D - associated events in G1 in minor 133 

salivary gland (p=0.043) and P-body in breast tissue (p=0.029), and oxidative damage response 134 

on colon-sigmoid (p=0.014) (Fig. 2B). 135 
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For subsequent analyses, we selected a subset of tissues across the sample size 136 

categories that had the most BMI-eGenes, including adipose subcutaneous and skin not sun 137 

exposed in the large category, transverse colon and brain cortex in the medium, and small 138 

intestine and nucleus accumbens (NAc) in the small. We added minor salivary gland due to the 139 

presence of numerous gene set enrichments and in total have seven tissues prioritized for 140 

future study.  141 

Thus far, we have analyzed the properties of the significant eGenes identified in the 142 

eQTL analyses. To characterize the number of independent genomic loci in each cis region that 143 

regulate each eGene, we performed stepwise conditional analysis. We selected the 144 

independent SNPs from conditional analysis, called the top SNP(s), and identified SNPs in LD 145 

with the top SNPs to generate eQTL credible sets for each locus in the Base-eQTL and BMI-146 

eQTL analyses. We find 10,451 credible sets of BMI-eQTL across the 7-tissue subset, including 147 

9,612 unique SNPs and 8,434 unique genes. Across tissues, Base-eGenes had more 148 

independent credible sets in the cis-region locus than BMI-eGenes, but there was a shared 149 

pattern of distribution across tissues (Sup Fig 2E). 150 

To determine whether BMI*SNP interactions have a predominant direction, i.e. if high 151 

BMI is most often associated with a reduction of eQTL activity, we characterized the 152 

directionality of the independent BMI*SNP relationships. Using a decision tree based on 153 

categorical BMI models, we identified four possible directions: positive (absolute eQTL activity, 154 

i.e. beta, is larger at high BMIs), negative (absolute eQTL activity is larger at low BMI), flipped 155 

(eQTL activity is significant in high and low in opposite direction) (Fig. 2C-2F), and uncertain 156 

(Fig 1A, Supplemental Figure 3A). Across the seven tissues, 4,167 BMI-eQTL are positive, 157 

2,471 are flipped, 2,427 are negative, and 1,383 are uncertain. We found that the distribution of 158 

directions among BMI-eQTL were not shared across tissues. The negative direction was the 159 

largest category in cortex, NAc, skin, and small intestine while the positive direction was the 160 

largest category in subcutaneous adipose and salivary gland. We noted each tissue had BMI-161 

eQTL in all possible directions (Fig. 2G, Supp Fig 3A-B).  162 

 163 

Parsing the Roles of Sequence and Cell Type in BMI Dynamic Processes 164 

We next asked whether BMI interacts with the genome at certain transcription factor (TF) 165 

binding sites by comparing TF binding affinity prediction between significant Base-eQTL and 166 

BMI-eQTL. There are 67 total nominal, and 53 FDR TFs significantly enriched in BMI-eQTL 167 

compared to Base (Fig. 3A). The majority of TFBS (37/53) are significant in one tissue, five TFs 168 
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are significant in two tissues, and two TFs, NFATC2 and NR4A2 are FDR significant in three 169 

tissues. Of note, FOXO3 in nominally significant in the most (5/7) tissues. 170 

Our study uses bulk RNA sequencing data, including a combination of mRNA from all 171 

cell types in the sample. To determine whether cell type proportion plays a role in BMI-eGene 172 

discovery, we applied cell type deconvolution techniques (Fig. 3B). The association of BMI and 173 

cell fraction has been previously characterized in the adipose and endocrine system31, therefore 174 

we focused on (novel) brain, gut, and salivary gland. 175 

 BMI was significantly correlated with estimated cell type fractions of four immune cell 176 

types in salivary gland: T-helper cells (cor=0.16, p=0.044), macrophage Type 2 (cor=0.19, 177 

p=0.014), mast cells (cor=-0.16, p=0.035), and dendritic cells type 2 (cor=-0.26, p=6.4x10-4) 178 

(Fig. 3C). The positive association between BMI and macrophage is supported by analyses 179 

completed in adipose31. BMI was negatively correlated with estimated proportion of microglia in 180 

NAc (cor=-0.17, p=6.6x10-3) and with myeloid cells in the transverse colon (cor=-0.12, p=0.013). 181 

To determine the impact of cell fraction on BMI-eGene discovery, we repeated the interaction 182 

eQTL analysis correcting for cell fraction. A range of 33-65% of BMI-eGenes remain significant 183 

after cell type correction (Supplemental Figure 4A). Our data indicate that both immune cell type 184 

proportion and cis regulatory motifs underline the BMI-dynamic signal identified. 185 

We identify enrichment of cell-type specific gene sets in genes significant after cell type 186 

correction in transverse colon (Fig 3E) and cortex (Supp). In colon, we find antibody-mediated 187 

complement activation is enriched in neuronal cells (pFDR =2.1x10-3), while myeloid cells have 188 

enrichment for insulin (pFDR =0.019) and GnRH (pFDR =0.018) signaling, among others. In 189 

endothelium, inflammatory factors including IL-6 (pFDR =0.036), IL-4 (pFDR =0.036), and 190 

INFA/INFB (pFDR =8.7x10-3) are enriched, while in the epithelial cells type II interferon (pFDR 191 

=0.023) is enriched. To test for cell types enriched with BMI-dynamic effects, we tested for 192 

differential enrichment of lead BMI-eQTL compared to Base-eQTL in specific cell types. We 193 

found that BMI-eQTLs were significantly enriched in T-cells in minor salivary gland (pFDR 194 

=6.5x10-4) and small intestine (pFDR=0.012), in endothelium in transverse colon (pFDR =0.039) 195 

and nominally enriched in endothelium in cortex (p=0.037) (Fig 3E).  196 

 197 

Deciphering Mechanisms of BMI Dynamic Effects using in Vitro Models 198 

Because BMI-dynamic processes are in part inflammatory, one possibility is that 199 

overactivated microglia may release proinflammatory cytokines that crosstalk with neurons 200 
32,33,34 ]. To empirically resolve whether inflammatory signals indeed mediate cortical BMI-eQTL 201 

activity in neurons, we conducted ATACseq on hiPSC-derived NGN2-induced glutamatergic 202 
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neurons at baseline and in the context of three acutely treated (48 hours) pro-inflammatory 203 

cytokines IL-6 (60 ng/uL), INFa-2b (500 UI/mL), and TNFa (100ng/mL)35. An adapted activity-204 

by-contact (ABC) model using STARE36 predicted dynamic enhancer-gene interactions across 205 

inflammatory contexts, linking BMI-eQTL to predicted target genes (Fig 4A). While only 37% 206 

(256/690) of base-eQTL top SNPs were active at baseline (ABC >= 0.1), 73% (141/194) of BMI-207 

eQTL top SNPs were active at baseline. In most cases, BMI-eQTL top SNPs in the credible set 208 

were the SNPs with the maximum ABC score (max-ABC) for that gene (81%, 131/161), but this 209 

was not true from base-eQTLs, which were more likely to have a max-ABC that was in LD with 210 

the top SNP (33% 230/689).  211 

In all BMI-eQTL sets, we identified 50 SNPs regulating 37 genes that have an ABC-212 

score shift from vehicle >= 0.02 for at least one context (Fig 4B). INFa shifted the most BMI 213 

genes(n=42), while TNFa the least (n=23). Regulatory shifts for eQTL activity could be shared 214 

or distinct across contexts; for example, ABHD12, displayed a TNFa-specific shift. TF-binding 215 

disruption is predicted to underlie five of the genes identified (Fig 4C), with altered ZNF354C 216 

binding predicted to distupt two genes UBXN10 and FARSA found on different chromosomes. 217 

SLC16A10, a monocarboxylate transporter also called MCT10, showed context-wide regulatory 218 

shifts at two SNPs (rs6927687 and rs4945850), one of which (rs6927687) had a predicted 219 

impact on MZF1 binding and so was likely the BMI-dynamic regulatory SNP of SLC16A10 (Fig 220 

4D), which had pan context-specific accessibility at its promoter region (Sup Fig 4D).  221 

 222 

Advancing Brain Trait Gene Discovery using BMI-aware Gene Expression Predictor 223 

Models 224 

Our results show that BMI interacts with the genome to regulate gene expression. 225 

Predicting gene expression from genotype is well established and allows researchers to add 226 

gene- and tissue- level context to GWAS studies. However, available predictor models have 227 

focused on prediction only using genomic data, called genetically regulated gene expression 228 

(GREx). Here, we created new predictor models that incorporate BMI, allowing prediction of 229 

dynamic, context-specific gene expression. We trained predictor models that include main 230 

effects of genotype, BMI, and interaction terms, and compared our BMI-dynamic models to 231 

existing GREx predictors using PredictDB-PrediXcan37 (Fig 5A). BMI-dynamic models 232 

significantly predicted fewer genes (NGREx=3670-8650, NBMI-dynamic=1653-5508) (Fig 5B), with 233 

both shared and novel genes compared to GREx predictor models (Nnovel=262-361, Sup Fig 234 

5B). For genes that have models made using both methods, BMI-dynamic models that include 235 

interaction terms explained significantly more variance in gene expression than GREx models 236 
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(padipose= 2.58x10-35, pcortex=5.13x10-23 , pNAc =3.08x10-23, pskin =7.85x10-28, psmall intestine=7.32x10-237 
19=7, pcolon 4.01x10-21=7)(Fig 5C). We found that BMI is primarily included as only a main effect 238 

in endocrine tissues, including skin and subcutaneous adipose, while in the brain and gut we 239 

predominately found interactive effects and minimal BMI main effects, which mirrored the results 240 

from the BMI DE-gene and BMI-eGene analysis (Fig 5D). 241 

We hypothesized that by applying BMI-dynamic predictor models to brain traits, we may 242 

enhance gene discovery over methods that predict using only SNP effects. We applied our 243 

models to predict BMI-dynamic gene expression in cortex, NAc, and subcutaneous adipose for 244 

all UK Biobank participants, and tested for the association of predicted expression with 245 

depression and current smoking (Fig 6A). Across tissues and traits, BMI-dynamic models 246 

identified more significant associations (Fig 6B) compared to GREx models. Most of these 247 

additional associations occurred in genes where the BMI-dynamic predictors include BMI as a 248 

main effect with or without an interaction (Fig 6D). The significant gene associations in 249 

depression in NAc (p=0.011) and adipose (p=0.03) were enriched with nominally significant S-250 

predixcan MDD-GWAS hits (Sup Fig 6A). In the NAc, the MHC locus is enriched in the BMI-251 

dynamic depression association (pFDR=9.13 x10-5) driven by genes HLA-G, HLA-DQB2, HLA-252 

DMB, and HLA-DMA (Fig 6C). We identified enrichment in the BMI-dynamic NAc association for 253 

glutathione peroxidase (pFDR=0.029) in smoking and hydrolase activity (pFDR=0.029) in 254 

smoking and depression, both components of the oxidative stress pathways. The significant 255 

BMI-dynamic trait-gene associations are not commonly shared across tissue, with more overlap 256 

across traits (Sup Fig 6D-H). 257 

We compared the published GREx and BMI-dynamic associations in the NAc smoking 258 

associations and found a subset of the BMI-dynamic model genes only contain SNPs as 259 

predictors but are not significant in the published GREx analysis (Sup Fig 6B-C). In this set, we 260 

find genes that overlap our BMI-eGene analysis and iPSC analysis, including ABHD12, 261 

indicating they may be BMI-dynamic while not including BMI as a main or interactive effect in 262 

the model. We surmise that these genes have BMI effects of expression which have been 263 

preserved in our BMI-specific RNA sequencing quality control but were not in the BMI-agnostic 264 

QC from previous studies.   265 

We found 215 genes in adipose and nine genes in cortex significant in the BMI-dynamic 266 

depression and smoking associations that were also significant BMI-eGenes. To identify 267 

phenotypic associations beyond depression and smoking, we tested for the nominal association 268 

across GWAS traits using S-Predixcan in the nine cortex overlap set (Fig 6E). Of the nine 269 

genes, seven have PredictDB-GREx models published and can be used with the S-Predixcan 270 
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tool. Of note, this analysis will not capture the true breadth in association, as S-Predixcan is 271 

based on models that do not learn BMI effects, but it gives insight toward nominal associations 272 

that might be stronger when BMI is considered. We see most of the genes (6/7) are nominally 273 

significant in the height or BMI GWAS, indicating these SNPs might serve as both a predictor for 274 

BMI and have dynamic regulatory action in the context of BMI. The gene SNUPN has the most 275 

associations across traits including attention-deficient hyperactivity disorder, type 2 diabetes, 276 

Tourette syndrome, Alzheimer’s disease, height, autism spectrum disorders, and age at 277 

menopause.  278 

 279 

Discussion 280 

In this work we demonstrate that BMI interacts with the genome to (dys)regulate gene 281 

expression within and beyond the endocrine system. Gene-by-BMI effects on gene expression 282 

in the brain are most pronounced in the reward regions including the basal ganglia and cortex, 283 

but not in classical obesity-associated regions such as the hypothalamus, which had the third 284 

lowest number of genes regulated by BMI*SNP interactions across tissues. The observation 285 

that the striatum has more BMI-dynamic genetic regulation than the hypothalamus expands our 286 

understanding of the variety of brain regions involved in metabolic response. We note that we 287 

did not identify any FDR significant BMI-differentially expressed genes in the brain; instead, BMI 288 

DE-genes were primarily found in endocrine tissues. This is intuitive as the endocrine system is 289 

responsible for adapting to the fed or fasted state while the brain is protected from direct BMI 290 

effects. Adipose and cortical BMI-eGenes were enriched for genes that are highly constrained, 291 

and thus more vital for reproductive fitness. Previous work has shown that classic eQTL are 292 

generally less constrained while GWAS hits demonstrate greater constraint30 which constitutes 293 

a core difference between eQTL and GWAS that limits colocalization and the mapping of 294 

common eQTL to disease trait. We show here that context-specific eQTL look more like GWAS 295 

hits in terms of loss-of-function intolerance and may be more likely to be trait-associated.   296 

The epidemiological associations of BMI with adverse outcomes such as all-cause 297 

mortality exhibit a U-shaped pattern of effect, where mortality is increased at low and high ends 298 

of the BMI-spectrum38. To identify eQTL effect differences at high versus low BMI, we 299 

implemented a directionality analysis of BMI-eQTL using categorical BMI eQTL models. We find 300 

that BMI-eQTL can exhibit multiple patterns, where some eQTL are more active at high and 301 

others at low, and there is not an apparent pattern across tissues. In the adipose, BMI-eQTL are 302 

most often active at high BMI whereas in the brain most are more active at low BMI, but eQTL in 303 

both directions exist in both. This highlights the pattern of BMI-dynamic effects described, some 304 
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people may have more eQTL active, and be more susceptible, at high BMI and others at low. 305 

Further work about context-wide susceptibility scores is needed to precisely sum the effects of 306 

trait risk in the context of environmental factors. 307 

We used the publicly available dataset GTEx to explore these relationships, however 308 

GTEx is a postmortem dataset and does not represent the full range of BMI, especially the very 309 

low and very high BMI ranges. Additionally, the associations of BMI and health outcomes are 310 

reported to be related to sex, age, and developmental stage 39,40, which are not represented  in 311 

just one dataset and may impact replication when applying to other datasets with different 312 

demographic features. Further research into the timing of BMI-SNP relationships in the context 313 

of age and sex are vital to parsing the impacts of the interactions identified above.  314 

Previous literature has shown that obesity impacts cell type proportion in adipose tissue, 315 

where macrophage infiltration and abundance increases in the context of obesity41, and in the 316 

brain where volume loss and migroglial activation are noted42,43. We see a similar pattern of 317 

correlation between microglia and BMI in the nucleus accumbens, however the correlation is 318 

negative. Previous reports have shown that over-activated microglia are targets of apoptosis44, 319 

which may be an explanation for the negative relationship. We found that the surrogate 320 

variables used to residualize the expression matrix correlated with cell fraction and therefore are 321 

corrected for in our BMI-eQTL equation- however we preserved the effects of BMI in the 322 

residualization and therefore a portion of our signal may still be due to BMI effects on cell type 323 

that are difficult to deconvolute. This is a limitation of the study and should be addressed in 324 

single cell datasets with BMI as a measure in donors to validate our findings. 325 

We find evidence that the expression of genes in inflammatory pathways such as IL-6 326 

and INFA/B/G are interactively regulated by SNPs and BMI in the endothelium of the transverse 327 

colon. The literature reports IL-6, TNFa, and interferons45,46 (among other inflammatory factors) 328 

underlie the physiologic effects of obesity. The endothelium has been attributed to both 329 

response to and production of immune responses47, and this work highlights the role of the 330 

colonic endothelium as a BMI-dynamic pro-inflammatory cytokine producer, which may be a 331 

vital aspect of inflammatory gut disorders. 332 

We hypothesize that, in the brain, overactive microglia secrete pro-inflammatory 333 

cytokines48,49,50 which cross-talk with neurons51,32, and induce the BMI-dynamic loci identified in 334 

this study. We tested this hypothesis by washing a glutamatergic iPSC neuronal system with 335 

pro-inflammatory cytokines, measuring baseline and context-specific chromatic accessibility 336 

with ATACseq in neurons, and testing for overlapping effects with BMI-eQTL using an activity-337 

by-contact model. We find evidence that pro-inflammatory cytokine signals mediate context-338 
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specific regulation for several BMI-eGenes in shared and distinct cytokine patterns. Surprisingly, 339 

we see the most context-specific shits in our data in the context of interferon-alpha, which is 340 

less often cited as a player in obesity than TNFa and IL-6. Further work on the interrogation of 341 

interferon-mediated inflammation in the CNS and nucleus accumbens, including the effects if 342 

INF-G, should be completed52. Additionally, iPSC systems model fetal-like cell states while the 343 

effects found here were in postmortem adult. Synchronization of developmental stages may 344 

identify even more overlap. 345 

We have shown that the functional capacity to regulate gene expression for a subset of 346 

SNPs is not static in a population, and instead is dynamic in the context of their physiology. This 347 

has implications for modeling BMI-associated complex disease genetic associations. We have 348 

shown that by adapting genomic predictor models to include the effects of BMI, we find more 349 

disease-associated genes. We find more disease-associated genes despite a lower number of 350 

significant models compared to the gold-standard GREx approach using Predixcan-PredictDB. 351 

This may be due to differences in quality control such as a more lenient MAF threshold or the 352 

decision to use the entire ancestry cohort53. It also may be a byproduct of the different machine 353 

learning models used, reflected by the differing number of features selected. A final contributor 354 

is the increased variance explained in gene expression denoted by BMI-aware models, which 355 

capture additional direct and indirect effects of BMI. If the field can adapt GWAS and post-356 

GWAS approaches including polygenic risk scores to be environment-aware and fit for the 357 

individual, we likely will see better predictive performance in the clinic. 358 

The gene discovery powered by environment-aware modeling is not only relevant for risk 359 

prediction, but also highlights molecular pathways associated with BMI-associated disorders 360 

that may be targeted for therapeutics. We find evidence that depression is a metabo-immune 361 

disorder in the brain with enrichments in both the MHC region and various metabolic pathways. 362 

Hydrolase activity on carbon-nitrogen bonds, which is driven by signal is DDAH1, AGA, 363 

HDAC10, and GLS, was significant in both depression and smoking in the nucleus accumbens. 364 

DDAH1 is a nitric oxide synthase regulator and knockout of this gene impacts dopamine 365 

metabolism54. The nitric oxide (NO) has been implicated across psychiatric disorders including 366 

depression55,56 and has been successfully targeted in mice for prevention of stress-induced 367 

depression57. Here we show that metabolism of NO is regulated jointly by SNPs and BMI in the 368 

nucleus accumbens and associated across psychiatric disorders, proving one potential 369 

mechanism of NO effect in the brain.  370 

We see other mechanisms of oxidative stress in our analyses including the significant 371 

enrichment of glutathione peroxidase pathway, driven by GPX1 and GSTP1, in the smoking 372 
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analysis in NAc, oxidative damage response in BMI-eGenes in the sigmoid colon and 373 

cytoplasmic stress granule in the breast. ABHD12, a lipase that, when knocked out in activated 374 

microglia, have altered morphology and increased phagocytosis58, was significant in all three 375 

analyses: it is a BMI-eGene, that is dynamic in the context of TNFa in iPSCs and significant in 376 

the smoking TWAS in the UK Biobank in cortex and NAc. ABHD12 expression increases in the 377 

context of an inflammatory stimulus and tempers phagocytosis to reduce oxidative stress58. 378 

Oxidative stress has been linked to cancers, neurologic disorders, gastrointestinal disorders, 379 

and here we show it is regulated by common genetic variants and individual environment. We 380 

are providing the BMI-dynamic gene expression models for public use to promote future studies 381 

across disorders. 382 

 From these results, we assert that individuals carrying a varying number of BMI-383 

dynamic SNPs can have gene expression that is more dynamic, or perhaps dysregulated, in the 384 

context of a changing BMI than individuals without these BMI-dynamic SNPs. This work 385 

supports the guidance that medical counseling on BMI as an isolated measure is insufficient to 386 

capture the personalized nature of risk for obesity-associated disorders. BMI is a useful tool in 387 

that it is free and easy to measure and represents an individual’s weight change over time; but 388 

we are continually recognizing that BMI as a stand-alone is inadequate when defining individual 389 

risk or comparing across populations. Genetic effects, which can be elicited with a family 390 

history, in combination with environmental effects such as BMI changes, sex, age, and 391 

psychosocial factors need to be considered in unison while providing counseling and running 392 

genomic models related to multifactorial disorder risk. 393 

 394 

Methods 395 

We analyzed transcriptome samples released in the GTEx freeze v826. In brief, GTEx is 396 

a publicly available resource which includes deceased donor health questionnaire, postmortem 397 

whole genome sequencing, and transcriptome (mRNA) sequencing from one or more tissues. 398 

For genomic association testing, we required each tissue have a sample size of 100 samples, 399 

which resulted in 48 tissues included in subsequent analyses. A detailed description of 400 

biospecimen collection, analyte extraction, and GTEx-completed quality control (QC) is 401 

available in the version 8 release text and supplement. 402 

 403 

Subject and sample outlier removal 404 

We plotted and visualized tissue sample attributes to remove samples with outlying RIN, 405 

end base mismatch rate, transcripts detected, alternative alignment, brain weight, and split 406 
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reads. We excluded height, weight and BMI outliers (+- 3SD) as well as individuals with an 407 

amputation. We excluded four individuals who had outlying height values and one individual 408 

with an outlying weight listed. The GTEx dataset ranges in age from 21-70 years with a median 409 

age of 55 and is 67% male. Race of the cohort is reported to be 86% white, 11% black, 1% 410 

Asian with remaining contributions from Native Americans and unknown. We chose to include 411 

all ancestries in eQTL generation to maximize sample size and application53. The BMI range in 412 

GTEx is 17.03-35.05 kg/m2. The median and mean BMI in this study are 27.37 and 27.33 kg/m2 413 

respectively, compared to the most recent mean BMI of 30 kg/m2 in the United States from 414 

202059. 415 

 416 

Transcriptome (RNA) sequencing processing 417 

The GTEx transcriptome release transcripts per million (TPM) and read counts, which 418 

were aligned to human reference genome GRChg38/hg38 and quantified based on GENCODE 419 

release v26. In R v4.0.3, we retained transcripts annotated as autosomal lncRNAs, protein 420 

coding, and immune-related genes. We filtered out lowly expressed genes, requiring genes 421 

have greater than or equal to 6 reads and greater than or equal to 0.1 TPM in at least 20% of 422 

samples in each tissue. We normalized read counts between samples using TMM in the edgeR 423 

v3.32.0 package60. We applied a winsorize function, so that any samples deviating more than 424 

three standard deviations (sd) from the mean were set to the three sd limit. We used voom from 425 

the limma61 v3.46.0 package to transform the normalized count data to log2 counts per million 426 

(logCPM). In order to detect hidden sources of variation such as batch or age that might 427 

confound association analyses while still retaining the effect of the environmental variable BMI 428 

we used the surrogate variable analysis v3.30.1 package62. We calculated the number of 429 

surrogate variables (SVs) to create using the “be” method in the sva package. Finally, we 430 

residualized the logCPM matrix with limma to correct for the SVs. This tissue-specific residual 431 

gene expression matrix was used for subsequent linear models. 432 

 433 

Whole genome sequencing (WGS) processing 434 

We began our quality control with the final v8 phased VCF file provided by GTEx, which 435 

contains 46,526,292 sites. A detailed description of QC to generate this final is available from 436 

the GTEx consortium v8 supplement. Using plink v263, we retained only autosomes and 437 

removed insertion-deletion (indel), multi-allelic sites, and ambiguous SNPs. We removed 438 

variants with missingness greater than 1% (--geno 0.01) or that deviated from Hardy-Weinberg 439 

equilibrium (HWE) (--hwe 0.000001). We removed samples with greater than 1% genotype 440 
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missingness (--mind 0.01). To identify the largest sources of variance in the genotype data due 441 

to factors such as population structure we generated principal components (--pca) which were 442 

later used as covariates in eQTL linear models.  443 

 444 

Expression quantitative trait loci mapping 445 

Toward our goal of understanding the effects of BMI on the genetic regulation of gene 446 

expression, we first ran a BMI differential expression (DE) analysis (Eq 1). 447 

Equation 1. BMI-DE Analysis: Expression ~ BMI + PC1:20 448 

For the DE analysis, we applied a genome-wide FDR correction and report FDR < 0.05.  449 

We next generated three sets of eQTLs using the R package MatrixEQTL_v2.364 using a cis-450 

eGene window distance of 1e6. We set a MAF threshold of 10% for tissues with 199 or less 451 

samples, 5% for tissues with 200-499 samples, and 1% for tissues with 500 samples and over65. 452 

We identified significant eGenes using a hierarchical multiple testing correction procedure by 453 

first applying a local correction using eigenMT66. We then selected the smallest local adjusted p-454 

value for each eGene across the genome and applied a genome-wide Benjamini & Hochberg 455 

(BH) FDR correction65. The first eQTL set, “Base-eQTLs”, (Eq 2) are blind to BMI and identified 456 

using with the modelLINEAR function in MatrixEQTL. 457 

Equation 2. Base-eQTL Analysis: Expression ~ BMI + PC1:20 458 

 Bas-eQTLs are akin to the bulk cis-eQTLs called the seminal GTEx v8 manuscript, with 459 

slight differences in QC and significant threshold assignment. The second set of eQTLs are 460 

“Interaction-eQTLs” and generated by adding an interaction term to the base model (Eq 3) with 461 

the modelLINEAR_CROSS function. 462 

Equation 3. Expression ~ SNP + BMI + SNP*BMI + PC1:20 463 

We assessed significance of the beta coefficient of the interaction using the multiple 464 

testing procedure outlined above. Genes with at least one significant SNP are referred to as 465 

BMI-eGenes. Lastly, we calculated a “categorical-eQTL” set by subsetting the within-tissue 466 

cohort into BMI quintiles and calculating Base-eQTLs (Eq 2) within quintile. We identify 467 

significant BMI-eGenes using the coefficients of the interaction models and use the categorical 468 

models to annotate the directionality of the significant interactions. 469 

 470 

Testing assumptions of OLS in the significant eQTL models 471 

We next sought to determine if the significant BMI-eQTL models met the assumptions of 472 

ordinary least squares (OLS) regression as often as Base-eQTL and were robust significant 473 

associations. There are four assumptions of OLS: linearity of the predictor and response, 474 
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independence, normality of the errors, and homoscedasticity (constant error variance). The 475 

relationships of SNP and expression are assumed to be linear, as is the case in the eQTL 476 

literature. Additionally, relationships of BMI and SNP on expression were visualized and are 477 

depicted in Figure 2 and in the supplement. Independence also is satisfied as the data is not 478 

time-series. We statistically tested the assumption of normality for each model using the 479 

Shapiro-Wilk test, shapiro.test() in stats base R. We assessed the assumption of 480 

homoscedasticity using the Koenker's studentized version of the Breusch-Pagan test, bptest() in 481 

the lmtest package, v 0.9-38.  482 

 483 

Replication of BMI-eQTL 484 

We assess replication in two brain tissues using the Common Mind Consortium (CMC)67  485 

Dorsolateral prefrontal cortex (DLPFC) from CMC release 4. Quality control for the CMC 486 

datasets mirrored the QC performed for the GTEx data set. One subject with XXY 487 

chromosomes and samples with outlying height, weight, and BMI values were removed from 488 

subsequent analyses. Subjects of European descent were selected for testing replication. We 489 

ran ancestry analyses using the 1000 genomes reference panel and the unsupervised analysis 490 

in the admixture tool68. For RNA sequencing, genes with >= 6 reads in >= 20% of samples are 491 

retained and mapped genes were normalized between samples using edgeR. Outliers were 492 

winsorized and transformed to log2CPM. We applied surrogate variable analysis to the RNA 493 

sequencing data to generate SV’s using the “be” method that preserve the effect of BMI and 494 

residualized the expression matrices with the SVs. 495 

In contrast to GTEx and WGS data, CMC genetic data is imputed genotype calls to the 496 

HRC platform. For genotype QC, we filtered for imputation quality, Rsq >= 0.3 69 , removed sex 497 

mismatch, and ran relatedness in plink 1.9, removing a related sample if IBD > 0.125. In plink2, 498 

we applied missingness flags -geno 0.01, mind 0.01, and HWE 1x10-6 and output data in both 499 

dosage and hardcall and tested both for replication. We computed principal components in plink 500 

for later use in the eQTL model as covariates. We called Base-eQTLs and BMI-eQTLs in CMC 501 

according to the same equations as in GTEx. We assessed replication using the πι statistic from 502 

the qvalue package.  503 

 504 

Loss of Function Intolerance Enrichment  505 

To test for enrichment of functionally relevant genes in our sets, we obtained the 506 

probability of loss-of-function intolerance (pLI) score from gnomAD/2.1.170 for Base-eGenes, 507 

BMI-eGenes, BMI-DE genes. We assessed for enrichment for high pLI (pLI > 0.90) genes in 508 
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each category compared to the background of genes using a binomial test where x= number of 509 

eGenes that are high pLI and significant, n=number of significant genes, and p= number of high 510 

pLI genes in this tissue/all genes in background of tissue. 511 

 512 

Gene Set Enrichment 513 

To define enriched gene sets in the sets of BMI-dynamic loci identified, we implemented 514 

gene set enrichment using the gprofiler2 package71 with the ‘fdr’ correction method and a 515 

custom background set defined as all genes expressed in the tissue of interest. We tested GO, 516 

KEGG, REACTOME and Wikipathways.  517 

 518 

Conditional Analysis 519 

To probe the number of independent signals in each eGene loci we employed stepwise 520 

conditional analysis in R for the Base-eGenes and BMI-eGenes. For each eGene, we generated 521 

a linkage disequilibrium (LD) matrix using the genotype data from the eQTL analysis and the 522 

cor() function in R with the pairwise complete observation setting. We identified the top SNP 523 

signal, which is the SNP with the smallest SNP coefficient p-value and all SNPs with r>0.999 524 

correlation. We added the most significant SNP in the model and re-ran the eQTL model for the 525 

eGene window SNPs. If the SNP coefficient p-value of new most significant SNP in the iteration 526 

was less than 0.001, it was added into the model and a subsequent iteration was ran. The 527 

conditional analysis iterated until the top p-value was >= 0.001.  528 

For the interaction conditional analysis, we repeated this process except at start of the 529 

conditioning we add the top SNP, the top SNP*BMI interaction, and BMI into the model. The top 530 

SNP for the iteration model is the SNP with the smallest p-value of the interaction coefficient. At 531 

each iteration if the interaction coefficient p-value is less than 0.001, we add the top SNP and 532 

the top SNP*BMI terms as covariates. 533 

We identified credible sets of Base-eQTL and BMI-eQTL for each eGene by selecting 534 

the top SNPs that were conditionally independent and had an original eQTL p-value that was 535 

locally significant. Each top SNP marks a discrete credible set that also includes SNPs in LD r2 536 

>0.8. 537 

 538 

Interaction Directionality Assignment 539 

For the top SNP in each BMI-eQTL credible set we characterized the direction of the 540 

interaction of SNP and BMI into four categories: positive, negative, flipped, and uncertain, using 541 

the categorical BMI models. The full decision tree is available in Supplementary Figure 3. 542 
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Transcription Factor Binding Site Analysis 543 

To test if BMI-eQTL disrupt specific transcription factors compared to Base-eQTL we 544 

implemented transcription factor binding site (TFBS) affinity analysis using the atSNP package72 545 

and the Jaspar2020 motif library. We tested all the variants in each credible set as our TFBS 546 

input, annotated to dbSNP151 and computed the affinity scores using ComputeMotifScore() and 547 

p-values using ComputePValues(). We assessed the significance of the binding affinity change 548 

using an FDR correction of the p-value rank output. We implemented a one-sided binomial test 549 

to determine if there is an enrichment for disruption of TFs in the BMI-eQTL. The expected 550 

probability p is the number of significant rsIDs in a motif X in Base-eQTLs/number of rsIDs 551 

tested in motif X in Base. The trials n equals the number of rsIDs tested in motif X in BMI-eQTLs 552 

and the successes x are the number of FDR-significant rsIDs in motif X in the BMI-eQTLs. We 553 

implemented an FDR correction to the binomial p-values to correct for the number of motifs 554 

tested. 555 

 556 

Cell type deconvolution 557 

We downloaded single cell data across tissues across studies to deconvolute the GTEx bulk 558 

data with the most BMI-eQTL. Data was available for cortex73, nucleus accumbens74, small 559 

intestine, transverse colon75, and minor salivary gland76. We converted all counts data to CPM 560 

and used Cibersortx77 to construct a signature matrix. We applied that signature matrix to 561 

deconvolute the GTEx bulk tissue and obtain estimated cell type fractions for each GTEx 562 

sample. We tested if cell type was controlled for in the RNA sequencing quality control, 563 

completed with SVA. The estimated cell fractions correlated robustly with surrogate variables 564 

(Sup Fig 4A) however because we preserved the effect of BMI in SV creation and found BMI 565 

correlates with cell fraction there may be residual impacts on discovery. Using the cell fraction 566 

and RNA sequencing, we apply Bayesian estimation using bMIND78 to estimate cell type-567 

specific gene expression matrices. Of note, when using bMIND only a set number of cell type-568 

specific matrices can be imputed, so at this step we collapse cell types of the same kind (i.e. 569 

Excitatory neuron population 1 and 2 are collapsed, Supplementary Table). We then repeat our 570 

primary eQTL framework within each cell type to construct cell-type specific eQTL statistics. We 571 

determine a lead cell type for each eQTL denoted by the cell type eQTL with the smallest p-572 

value. To determine if there is enrichment for specific cell types amongst lead BMI-eQTL, we 573 

completed a binomial test. We tested against the proportion of lead cell type in the Base-eQTL 574 

analysis.  575 

 576 
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Activity by contact scoring of Interaction-eQTL with ATAC seq.  577 

We selected Base- and BMI eGenes credible sets significant in excitatory neurons from 578 

deconvolution. We use adapted activity-by-contact (ABC) model using STARE36 to score 579 

relative regulatory activity of the eQTL in the interaction terms using the R package. The ABC 580 

score is calculated using by integrating “activity”, which here is defined by -log10(p-value) of the 581 

SNP*BMI interaction coefficient and “contact” which we define using ATAC-sequencing in 582 

glutamatergic iPSC neurons along with the distance to eGenes to determine predicted 583 

regulatory activity of a SNP toward a specific gene. We assess a baseline contact of ATACseq 584 

peaks with no inflammatory markers applied and ATACseq in the context of IL-6, TNF-alpha, 585 

and interferon-a. The methods of cell culture can are cited elsewhere35. We visualized the 586 

distribution of ATAC seq scores across contexts and consulted the literature79, and chose to set 587 

a threshold requiring the absolute value of the ABC score difference between vehicle and 588 

context > 0.02 and ABC score in either vehicle or the context to be > 0.1.  589 

 590 

Creation of BMI-dynamic predictor models 591 

 To predict gene expression from SNPs, BMI and SNP*BMI interactions, we use the 592 

cv.glinternet() from the glinternet R package80. Glinternet employs a Hierarchical Group-Lasso 593 

Regularization to select predictive features. The software is intended to learn interactions, and if 594 

an interaction coefficient is non-zero then both main effects are included with a non-zero 595 

coefficient. We employ a four-fold approach whereby we train the models using a three-fold 596 

cross validation and hold out the fourth fold for within-sample validation. We ensured the hold 597 

out validation fold has an even distribution of BMI using used StratifiedKFold from the sklearn 598 

package in python3.7.3. We treat SNP as a continuous measure, so models can be applied to 599 

dosage data. We used the same genotype QC steps described in the eQTL set with a MAF 600 

threshold to 5%, which demonstrated reduced overfitting than 1%. For BMI-Interaction model to 601 

be significant the cross-fold R2 >0.1 and p < 0.05. Additionally, in the hold-out fold the predicted 602 

values must significantly predict the observed values (p-holdout < 0.05). 603 

We tested if the crossfold-R2 significant predicts the 4th fold hold out R2 in each tissue 604 

(Sup Fig 5 C-H), and found a significant prediction across tissues test with R2 ranging from 605 

.314-.765. We find that sample size is vital to learning interactions. In tissues with larger sample 606 

sizes, the CV-R2 better predicts the holt out validation R2. We also see the association between 607 

CV-R2 and hold out R2 is similar across models that contain just main effects as well as 608 

interaction. In smaller tissues, we find that models with interactions have worse association, 609 

indicating sample size is paramount in fitting and validating interaction predictor models. 610 
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We compare our interaction-aware models to the published GTEx v8 predictor models 611 

on PredictDB81, which use Predixcan37 to predict expression. The published models use elastic 612 

net and which account for only the main effects of SNPs using a 1% MAF threshold and have 613 

other analysis-specific differences in QC such as PEER versus SVA for latent factor correction. 614 

The models made with elastic net in general include more predictors in each model (Sup Fig 615 

5A), which may be due to a more lenient MAF filter or features of the differing ML learning 616 

approaches.  617 

 618 

BMI-dynamic predictor model application to UK Biobank 619 

The UK Biobank is a cohort of ~500,000 individuals from the United Kingdom with 620 

genotype, lifestyle, health, and anthropometric data. For the UK biobank genotype quality 621 

control, we implemented an INFO > 0.8 threshold and filtered relatedness > 0.0625 and subset 622 

to European individuals as that is the population used in the published predixcan models. We 623 

selected depression and current smoking as psychiatric traits due to epidemiologic associations 624 

with BMI21,82, the availability of case status and BMI at UKB assessment center visits, and the 625 

large sample sizes. To obtain depression case status, we used data field 20002, which is 626 

medical history obtained from verbal interview at the assessment center. For current smoking 627 

status, we used the lifestyle questionnaire data field 1239 “Current tobacco smoking”, from the 628 

touchscreen questionnaire at the assessment center. BMI values were obtained from data field 629 

21001 from the assessment center physical measures.  630 

To calculate predicted expression using the PredictDB models, called GREx, we used 631 

the predixcan python package and the elastic net v8 GTEx PredictDB predictor models. To 632 

calculate predicted expression for the BMI-interaction glinternet models, we manually multiply 633 

each predictor by the beta coefficient output by glinternet in R. The glinternet package scales 634 

the input predictors while building the model but returns the unscaled coefficients. 635 

Once predicted expression is calculated, we test the association with psychiatric 636 

phenotype using a logistic regression in R using glm() with family = “binomial”. For the trait 637 

association analyses we used age, sex, BMI, and PC1-10 as covariates in the predixcan 638 

PredictDB models and age, sex, PC1-10 as covariates in the BMI-Interaction model.  639 

We tested across GWAS traits83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98 for evidence of nominal 640 

trait association in the identified genes using S-Predixcan99. For the 2023 major depressive 641 

disorder GWAS, we tested for enrichment of the UK biobank associations in nominal S-642 

predixcan associations using a binomial test. 643 

  644 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 28, 2024. ; https://doi.org/10.1101/2024.11.26.24317923doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.26.24317923
http://creativecommons.org/licenses/by-nc-nd/4.0/


Acknowlegdements 645 

LMH acknowledges funding from NIMH (R01MH124839, R01MH118278, R01MH125938, 646 

RM1MH132648, R01MH136149), NIEHS (R01ES033630), and the Department of Defense 647 

(TP220451). 648 

 649 

This work was supported in part through the computational and data resources and staff 650 

expertise provided by Scientific Computing and Data at the Icahn School of Medicine at 651 

Mount Sinai and supported by the Clinical and Translational Science Awards (CTSA) 652 

grant UL1TR004419 from the National Center for Advancing Translational Sciences. 653 

Research reported in this publication was also supported by the Office of Research 654 

Infrastructure of the National Institutes of Health under award number S10OD026880 655 

and S10OD030463. The content is solely the responsibility of the authors and does not 656 

necessarily represent the official views of the National Institutes of Health. 657 

 658 

References 659 

 660 

1. Reza, N., Alford, R. L., Belmont, J. W. & Marston, N. The Expansion of Genetic Testing in 661 

Cardiovascular Medicine: Preparing the Cardiology Community for the Changing Landscape. 662 

Curr. Cardiol. Rep. 26, 135–146 (2024). 663 

2. Dratch, L. et al. Genetic testing in adults with neurologic disorders: indications, approach, 664 

and clinical impacts. J. Neurol. 271, 733–747 (2024). 665 

3. Hingorani, A. D. et al. Performance of polygenic risk scores in screening, prediction, and risk 666 

stratification: secondary analysis of data in the Polygenic Score Catalog. BMJ Med. 2, 667 

e000554 (2023). 668 

4. Johansson, Å. et al. Precision medicine in complex diseases-Molecular subgrouping for 669 

improved prediction and treatment stratification. J. Intern. Med. 294, 378–396 (2023). 670 

5. Gibson, G. Population genetics and GWAS: A primer. PLoS Biol. 16, e2005485 (2018). 671 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 28, 2024. ; https://doi.org/10.1101/2024.11.26.24317923doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.26.24317923
http://creativecommons.org/licenses/by-nc-nd/4.0/


6. Shi, C. et al. Multifactorial Diseases of the Heart, Kidneys, Lungs, and Liver and Incident 672 

Cancer: Epidemiology and Shared Mechanisms. Cancers 15, 729 (2023). 673 

7. Marigorta, U. M. & Gibson, G. A simulation study of gene-by-environment interactions in 674 

GWAS implies ample hidden effects. Front. Genet. 5, 225 (2014). 675 

8. Nicolae, D. L. et al. Trait-associated SNPs are more likely to be eQTLs: annotation to enhance 676 

discovery from GWAS. PLoS Genet. 6, e1000888 (2010). 677 

9. Moore, S. R. et al. Sex differences in the genetic regulation of the blood transcriptome 678 

response to glucocorticoid receptor activation. Transl. Psychiatry 11, 632 (2021). 679 

10. Ota, M. et al. Dynamic landscape of immune cell-specific gene regulation in immune-680 

mediated diseases. Cell 184, 3006-3021.e17 (2021). 681 

11. Nathan, A. et al. Single-cell eQTL models reveal dynamic T cell state dependence of 682 

disease loci. Nature 606, 120–128 (2022). 683 

12. Wingo, A. P. et al. Sex differences in brain protein expression and disease. Nat. Med. 29, 684 

2224–2232 (2023). 685 

13. Benjamin, K. J. M. et al. Sex affects transcriptional associations with schizophrenia 686 

across the dorsolateral prefrontal cortex, hippocampus, and caudate nucleus. Nat. Commun. 687 

15, 3980 (2024). 688 

14. O’Brien, H. E. et al. Expression quantitative trait loci in the developing human brain and 689 

their enrichment in neuropsychiatric disorders. Genome Biol. 19, 194 (2018). 690 

15. NCD Risk Factor Collaboration (NCD-RisC). Trends in adult body-mass index in 200 691 

countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement 692 

studies with 19·2 million participants. Lancet Lond. Engl. 387, 1377–1396 (2016). 693 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 28, 2024. ; https://doi.org/10.1101/2024.11.26.24317923doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.26.24317923
http://creativecommons.org/licenses/by-nc-nd/4.0/


16. Ellulu, M. S., Patimah, I., Khaza’ai, H., Rahmat, A. & Abed, Y. Obesity and inflammation: 694 

the linking mechanism and the complications. Arch. Med. Sci. AMS 13, 851–863 (2017). 695 

17. Rask, E. et al. Tissue-specific dysregulation of cortisol metabolism in human obesity. J. 696 

Clin. Endocrinol. Metab. 86, 1418–1421 (2001). 697 

18. Matsuda, M. & Shimomura, I. Increased oxidative stress in obesity: implications for 698 

metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. 699 

Obes. Res. Clin. Pract. 7, e330-341 (2013). 700 

19. Recalde, M. et al. Body mass index and waist circumference in relation to the risk of 26 701 

types of cancer: a prospective cohort study of 3.5 million adults in Spain. BMC Med. 19, 10 702 

(2021). 703 

20. Dobner, J. & Kaser, S. Body mass index and the risk of infection - from underweight to 704 

obesity. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 24, 24–28 705 

(2018). 706 

21. Simon, G. E. et al. Association between obesity and psychiatric disorders in the US adult 707 

population. Arch. Gen. Psychiatry 63, 824–830 (2006). 708 

22. Cross-Disorder Group of the Psychiatric Genomics Consortium. Electronic address: 709 

plee0@mgh.harvard.edu & Cross-Disorder Group of the Psychiatric Genomics Consortium. 710 

Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric 711 

Disorders. Cell 179, 1469-1482.e11 (2019). 712 

23. Zhang, H. et al. Genome-wide association study identifies 32 novel breast cancer 713 

susceptibility loci from overall and subtype-specific analyses. Nat. Genet. 52, 572–581 (2020). 714 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 28, 2024. ; https://doi.org/10.1101/2024.11.26.24317923doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.26.24317923
http://creativecommons.org/licenses/by-nc-nd/4.0/


24. Shu, L., Blencowe, M. & Yang, X. Translating GWAS Findings to Novel Therapeutic 715 

Targets for Coronary Artery Disease. Front. Cardiovasc. Med. 5, 56 (2018). 716 

25. Kasela, S. et al. Interaction molecular QTL mapping discovers cellular and environmental 717 

modifiers of genetic regulatory effects. Am. J. Hum. Genet. 111, 133–149 (2024). 718 

26. GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human 719 

tissues. Science 369, 1318–1330 (2020). 720 

27. Obradovic, M. et al. Leptin and Obesity: Role and Clinical Implication. Front. Endocrinol. 721 

12, 585887 (2021). 722 

28. Wu, P. et al. Comprehensive analysis of epigenomics and transcriptome data to identify 723 

potential target genes associated with obesity. Front. Genet. 13, 1024300 (2022). 724 

29. He, H. et al. A Systems Genetics Approach Identified GPD1L and its Molecular 725 

Mechanism for Obesity in Human Adipose Tissue. Sci. Rep. 7, 1799 (2017). 726 

30. Mostafavi, H., Spence, J. P., Naqvi, S. & Pritchard, J. K. Systematic differences in 727 

discovery of genetic effects on gene expression and complex traits. Nat. Genet. 55, 1866–728 

1875 (2023). 729 

31. Brotman, S. M. et al. Cell-Type Composition Affects Adipose Gene Expression 730 

Associations With Cardiometabolic Traits. Diabetes 72, 1707–1718 (2023). 731 

32. Salas-Venegas, V. et al. The Obese Brain: Mechanisms of Systemic and Local 732 

Inflammation, and Interventions to Reverse the Cognitive Deficit. Front. Integr. Neurosci. 16, 733 

798995 (2022). 734 

33. Wang, W.-Y., Tan, M.-S., Yu, J.-T. & Tan, L. Role of pro-inflammatory cytokines released 735 

from microglia in Alzheimer’s disease. Ann. Transl. Med. 3, 136 (2015). 736 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 28, 2024. ; https://doi.org/10.1101/2024.11.26.24317923doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.26.24317923
http://creativecommons.org/licenses/by-nc-nd/4.0/


34. West, P. K. et al. The cytokines interleukin-6 and interferon-α induce distinct microglia 737 

phenotypes. J. Neuroinflammation 19, 96 (2022). 738 

35. Retallick-Townsley, K. G. et al. Dynamic stress- and inflammatory-based regulation of 739 

psychiatric risk loci in human neurons. bioRxiv 2024.07.09.602755 (2024) 740 

doi:10.1101/2024.07.09.602755. 741 

36. Hecker, D., Behjati Ardakani, F., Karollus, A., Gagneur, J. & Schulz, M. H. The adapted 742 

Activity-By-Contact model for enhancer-gene assignment and its application to single-cell 743 

data. Bioinforma. Oxf. Engl. 39, btad062 (2023). 744 

37. Gamazon, E. R. et al. A gene-based association method for mapping traits using 745 

reference transcriptome data. Nat. Genet. 47, 1091–1098 (2015). 746 

38. Berrington de Gonzalez, A. et al. Body-mass index and mortality among 1.46 million 747 

white adults. N. Engl. J. Med. 363, 2211–2219 (2010). 748 

39. Karlsson, I. K., Lehto, K., Gatz, M., Reynolds, C. A. & Dahl Aslan, A. K. Age-dependent 749 

effects of body mass index across the adult life span on the risk of dementia: a cohort study 750 

with a genetic approach. BMC Med. 18, 131 (2020). 751 

40. Hübel, C. et al. Genetic correlations of psychiatric traits with body composition and 752 

glycemic traits are sex- and age-dependent. Nat. Commun. 10, 5765 (2019). 753 

41. Glastonbury, C. A., Couto Alves, A., El-Sayed Moustafa, J. S. & Small, K. S. Cell-Type 754 

Heterogeneity in Adipose Tissue Is Associated with Complex Traits and Reveals Disease-755 

Relevant Cell-Specific eQTLs. Am. J. Hum. Genet. 104, 1013–1024 (2019). 756 

42. Gómez-Apo, E., Mondragón-Maya, A., Ferrari-Díaz, M. & Silva-Pereyra, J. Structural 757 

Brain Changes Associated with Overweight and Obesity. J. Obes. 2021, 6613385 (2021). 758 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 28, 2024. ; https://doi.org/10.1101/2024.11.26.24317923doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.26.24317923
http://creativecommons.org/licenses/by-nc-nd/4.0/


43. Milanova, I. V., Correa-da-Silva, F., Kalsbeek, A. & Yi, C.-X. Mapping of Microglial Brain 759 

Region, Sex and Age Heterogeneity in Obesity. Int. J. Mol. Sci. 22, 3141 (2021). 760 

44. Liu, B. et al. Molecular consequences of activated microglia in the brain: overactivation 761 

induces apoptosis. J. Neurochem. 77, 182–189 (2001). 762 

45. Schmidt, F. M. et al. Inflammatory cytokines in general and central obesity and 763 

modulating effects of physical activity. PloS One 10, e0121971 (2015). 764 

46. Lumeng, C. N., Bodzin, J. L. & Saltiel, A. R. Obesity induces a phenotypic switch in 765 

adipose tissue macrophage polarization. J. Clin. Invest. 117, 175–184 (2007). 766 

47. Mai, J., Virtue, A., Shen, J., Wang, H. & Yang, X.-F. An evolving new paradigm: 767 

endothelial cells--conditional innate immune cells. J. Hematol. Oncol.J Hematol Oncol 6, 61 768 

(2013). 769 

48. Kumar, M. et al. Reduced immune cell infiltration and increased pro-inflammatory 770 

mediators in the brain of Type 2 diabetic mouse model infected with West Nile virus. J. 771 

Neuroinflammation 11, 80 (2014). 772 

49. Carraro, R. S. et al. Hypothalamic mitochondrial abnormalities occur downstream of 773 

inflammation in diet-induced obesity. Mol. Cell. Endocrinol. 460, 238–245 (2018). 774 

50. André, C. et al. Inhibiting Microglia Expansion Prevents Diet-Induced Hypothalamic and 775 

Peripheral Inflammation. Diabetes 66, 908–919 (2017). 776 

51. Léon, S., Nadjar, A. & Quarta, C. Microglia-Neuron Crosstalk in Obesity: Melodious 777 

Interaction or Kiss of Death? Int. J. Mol. Sci. 22, 5243 (2021). 778 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 28, 2024. ; https://doi.org/10.1101/2024.11.26.24317923doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.26.24317923
http://creativecommons.org/licenses/by-nc-nd/4.0/


52. Tan, P.-H., Ji, J., Hsing, C.-H., Tan, R. & Ji, R.-R. Emerging Roles of Type-I Interferons in 779 

Neuroinflammation, Neurological Diseases, and Long-Haul COVID. Int. J. Mol. Sci. 23, 14394 780 

(2022). 781 

53. Taylor, D. J. et al. Sources of gene expression variation in a globally diverse human 782 

cohort. Nature 632, 122–130 (2024). 783 

54. Kozlova, A. A. et al. Knock-out of the critical nitric oxide synthase regulator DDAH1 in 784 

mice impacts amphetamine sensitivity and dopamine metabolism. J. Neural Transm. Vienna 785 

Austria 1996 130, 1097–1112 (2023). 786 

55. Varol Tas, F., Guvenir, T., Tas, G., Cakaloz, B. & Ormen, M. Nitric oxide levels in 787 

disruptive behavioral disorder. Neuropsychobiology 53, 176–180 (2006). 788 

56. Kudlow, P., Cha, D. S., Carvalho, A. F. & McIntyre, R. S. Nitric Oxide and Major 789 

Depressive Disorder: Pathophysiology and Treatment Implications. Curr. Mol. Med. 16, 206–790 

215 (2016). 791 

57. Wang, D., An, S. C. & Zhang, X. Prevention of chronic stress-induced depression-like 792 

behavior by inducible nitric oxide inhibitor. Neurosci. Lett. 433, 59–64 (2008). 793 

58. Singh, S. & Kamat, S. S. The loss of enzymatic activity of the PHARC-associated lipase 794 

ABHD12 results in increased phagocytosis that causes neuroinflammation. Eur. J. Neurosci. 795 

54, 7442–7457 (2021). 796 

59. Kranjac, A. W. & Kranjac, D. Explaining adult obesity, severe obesity, and BMI: Five 797 

decades of change. Heliyon 9, e16210 (2023). 798 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 28, 2024. ; https://doi.org/10.1101/2024.11.26.24317923doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.26.24317923
http://creativecommons.org/licenses/by-nc-nd/4.0/


60. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for 799 

differential expression analysis of digital gene expression data. Bioinforma. Oxf. Engl. 26, 800 

139–140 (2010). 801 

61. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing 802 

and microarray studies. Nucleic Acids Res. 43, e47 (2015). 803 

62. Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package for 804 

removing batch effects and other unwanted variation in high-throughput experiments. 805 

Bioinforma. Oxf. Engl. 28, 882–883 (2012). 806 

63. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer 807 

datasets. GigaScience 4, 7 (2015). 808 

64. Shabalin, A. A. Matrix eQTL: ultra fast eQTL analysis via large matrix operations. 809 

Bioinforma. Oxf. Engl. 28, 1353–1358 (2012). 810 

65. Huang, Q. Q., Ritchie, S. C., Brozynska, M. & Inouye, M. Power, false discovery rate and 811 

Winner’s Curse in eQTL studies. Nucleic Acids Res. 46, e133 (2018). 812 

66. Davis, J. R. et al. An Efficient Multiple-Testing Adjustment for eQTL Studies that 813 

Accounts for Linkage Disequilibrium between Variants. Am. J. Hum. Genet. 98, 216–224 814 

(2016). 815 

67. Hoffman, G. E. et al. CommonMind Consortium provides transcriptomic and epigenomic 816 

data for Schizophrenia and Bipolar Disorder. Sci. Data 6, 180 (2019). 817 

68. Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in 818 

unrelated individuals. Genome Res. 19, 1655–1664 (2009). 819 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 28, 2024. ; https://doi.org/10.1101/2024.11.26.24317923doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.26.24317923
http://creativecommons.org/licenses/by-nc-nd/4.0/


69. Li, Y., Willer, C. J., Ding, J., Scheet, P. & Abecasis, G. R. MaCH: using sequence and 820 

genotype data to estimate haplotypes and unobserved genotypes. Genet. Epidemiol. 34, 821 

816–834 (2010). 822 

70. Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 823 

141,456 humans. Nature 581, 434–443 (2020). 824 

71. Kolberg, L., Raudvere, U., Kuzmin, I., Vilo, J. & Peterson, H. gprofiler2 -- an R package for 825 

gene list functional enrichment analysis and namespace conversion toolset g:Profiler. 826 

F1000Research 9, ELIXIR-709 (2020). 827 

72. Zuo, C., Shin, S. & Keleş, S. atSNP: transcription factor binding affinity testing for 828 

regulatory SNP detection. Bioinforma. Oxf. Engl. 31, 3353–3355 (2015). 829 

73. Lake, B. B. et al. Integrative single-cell analysis of transcriptional and epigenetic states in 830 

the human adult brain. Nat. Biotechnol. 36, 70–80 (2018). 831 

74. Tran, M. N. et al. Single-nucleus transcriptome analysis reveals cell-type-specific 832 

molecular signatures across reward circuitry in the human brain. Neuron 109, 3088-3103.e5 833 

(2021). 834 

75. Elmentaite, R. et al. Cells of the human intestinal tract mapped across space and time. 835 

Nature 597, 250–255 (2021). 836 

76. Huang, N. et al. SARS-CoV-2 infection of the oral cavity and saliva. Nat. Med. 27, 892–837 

903 (2021). 838 

77. Newman, A. M. et al. Determining cell type abundance and expression from bulk tissues 839 

with digital cytometry. Nat. Biotechnol. 37, 773–782 (2019). 840 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 28, 2024. ; https://doi.org/10.1101/2024.11.26.24317923doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.26.24317923
http://creativecommons.org/licenses/by-nc-nd/4.0/


78. Wang, J., Roeder, K. & Devlin, B. Bayesian estimation of cell type-specific gene 841 

expression with prior derived from single-cell data. Genome Res. 31, 1807–1818 (2021). 842 

79. Nasser, J. et al. Genome-wide enhancer maps link risk variants to disease genes. Nature 843 

593, 238–243 (2021). 844 

80. Lim, M. & Hastie, T. Learning interactions via hierarchical group-lasso regularization. J. 845 

Comput. Graph. Stat. Jt. Publ. Am. Stat. Assoc. Inst. Math. Stat. Interface Found. N. Am. 24, 846 

627–654 (2015). 847 

81. Barbeira, A. N. et al. Exploiting the GTEx resources to decipher the mechanisms at GWAS 848 

loci. Genome Biol. 22, 49 (2021). 849 

82. Wolters, I., Kastaun, S. & Kotz, D. Associations between body mass index and smoking 850 

behaviour: A cross-sectional study of the German adult population. Physiol. Behav. 275, 851 

114436 (2024). 852 

83. Watson, H. J. et al. Genome-wide association study identifies eight risk loci and 853 

implicates metabo-psychiatric origins for anorexia nervosa. Nat. Genet. 51, 1207–1214 854 

(2019). 855 

84. Meng, X. et al. Multi-ancestry genome-wide association study of major depression aids 856 

locus discovery, fine mapping, gene prioritization and causal inference. Nat. Genet. 56, 222–857 

233 (2024). 858 

85. van Rheenen, W. et al. Common and rare variant association analyses in amyotrophic 859 

lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific 860 

biology. Nat. Genet. 53, 1636–1648 (2021). 861 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 28, 2024. ; https://doi.org/10.1101/2024.11.26.24317923doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.26.24317923
http://creativecommons.org/licenses/by-nc-nd/4.0/


86. Mullins, N. et al. Genome-wide association study of more than 40,000 bipolar disorder 862 

cases provides new insights into the underlying biology. Nat. Genet. 53, 817–829 (2021). 863 

87. Demontis, D. et al. Discovery of the first genome-wide significant risk loci for attention 864 

deficit/hyperactivity disorder. Nat. Genet. 51, 63–75 (2019). 865 

88. Yengo, L. et al. Meta-analysis of genome-wide association studies for height and body 866 

mass index in ∼700000 individuals of European ancestry. Hum. Mol. Genet. 27, 3641–3649 867 

(2018). 868 

89. Xu, K. et al. Genome-wide association study of smoking trajectory and meta-analysis of 869 

smoking status in 842,000 individuals. Nat. Commun. 11, 5302 (2020). 870 

90. Mahajan, A. et al. Multi-ancestry genetic study of type 2 diabetes highlights the power 871 

of diverse populations for discovery and translation. Nat. Genet. 54, 560–572 (2022). 872 

91. Yu, D. et al. Interrogating the Genetic Determinants of Tourette’s Syndrome and Other 873 

Tic Disorders Through Genome-Wide Association Studies. Am. J. Psychiatry 176, 217–227 874 

(2019). 875 

92. Wightman, D. P. et al. A genome-wide association study with 1,126,563 individuals 876 

identifies new risk loci for Alzheimer’s disease. Nat. Genet. 53, 1276–1282 (2021). 877 

93. Yengo, L. et al. A saturated map of common genetic variants associated with human 878 

height. Nature 610, 704–712 (2022). 879 

94. Tsuo, K. et al. Multi-ancestry meta-analysis of asthma identifies novel associations and 880 

highlights the value of increased power and diversity. Cell Genomics 2, 100212 (2022). 881 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 28, 2024. ; https://doi.org/10.1101/2024.11.26.24317923doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.26.24317923
http://creativecommons.org/licenses/by-nc-nd/4.0/


95. Day, F. R. et al. Genomic analyses identify hundreds of variants associated with age at 882 

menarche and support a role for puberty timing in cancer risk. Nat. Genet. 49, 834–841 883 

(2017). 884 

96. Chiou, J. et al. Interpreting type 1 diabetes risk with genetics and single-cell 885 

epigenomics. Nature 594, 398–402 (2021). 886 

97. Grove, J. et al. Identification of common genetic risk variants for autism spectrum 887 

disorder. Nat. Genet. 51, 431–444 (2019). 888 

98. Zhang, L. et al. Joint Genome-Wide Association Analyses Identified 49 Novel Loci For Age 889 

at Natural Menopause. J. Clin. Endocrinol. Metab. 106, 2574–2591 (2021). 890 

99. Barbeira, A. N. et al. Exploring the phenotypic consequences of tissue specific gene 891 

expression variation inferred from GWAS summary statistics. Nat. Commun. 9, 1825 (2018). 892 

 893 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 28, 2024. ; https://doi.org/10.1101/2024.11.26.24317923doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.26.24317923
http://creativecommons.org/licenses/by-nc-nd/4.0/


A B

C

D

E

F

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 28, 2024. ; https://doi.org/10.1101/2024.11.26.24317923doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.26.24317923
http://creativecommons.org/licenses/by-nc-nd/4.0/


A

B

C D

E F

G

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 28, 2024. ; https://doi.org/10.1101/2024.11.26.24317923doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.26.24317923
http://creativecommons.org/licenses/by-nc-nd/4.0/


A B

C

D

E

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 28, 2024. ; https://doi.org/10.1101/2024.11.26.24317923doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.26.24317923
http://creativecommons.org/licenses/by-nc-nd/4.0/


A

B

C

D

rs6927697 – SLC16A10

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 28, 2024. ; https://doi.org/10.1101/2024.11.26.24317923doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.26.24317923
http://creativecommons.org/licenses/by-nc-nd/4.0/


A D

B

C

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 28, 2024. ; https://doi.org/10.1101/2024.11.26.24317923doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.26.24317923
http://creativecommons.org/licenses/by-nc-nd/4.0/


A

B C

D

E

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 28, 2024. ; https://doi.org/10.1101/2024.11.26.24317923doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.26.24317923
http://creativecommons.org/licenses/by-nc-nd/4.0/

