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Abstract 

INTRODUCTION: Phenotype clustering reduces patient heterogeneity and could be useful 
when designing precision clinical trials. We hypothesized that the onset of early cognitive 
decline in patients would exhibit variance predicated on the clinical history documented prior to 
an Alzheimer's Disease (AD) diagnosis  

METHODS: Self-reported medical and substance use history (i.e., problem history) was used to 
cluster participants from the National Alzheimer’s Coordinating Centers (NACC) into distinct 
subtypes. Linear mixed effects modeling was used to determine the effect of problem history 
subtype on cognitive decline over two years. 

RESULTS: 2754 individuals were partitioned into three subtypes: minimal (n = 1380), 
substance use (n = 1038), and cardiovascular (n = 336) subtypes. The cardiovascular problem 
history subtype had significantly worse cognitive decline over a two-year follow-up period (p = 
0.013).  

DISCUSSION: Our study highlights the need to account for problem history to reduce 
heterogeneity of outcomes in AD clinical trials.  
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1. Background 

Alzheimer’s disease (AD) is the most common form of dementia, with an estimated prevalence 
in the U.S. of 6 million as of 2020 [1]. AD presentation is clinically and biologically 
heterogeneous with many factors affecting the progression of the disease including 
socioeconomic status [2], nutrition [3], apolipoprotein E (APO3) genotype [4], sex [4], and co-
morbidities including diabetes, depression, and hypertension [5–7]. Decades of clinical trials 
have resulted in only three Food and Drug Administration approved therapies for AD in the last 
20 years which showed only a modest slowing of cognitive decline [8,9]. One reason for these 
underwhelming results may be that AD trials generally enroll participants as one homogenous 
group, despite evidence that AD progression and response to therapy is highly heterogeneous 
[10]. When not accounted for, this heterogeneity could inflate the type II error rate in clinical 
trials and minimize the average treatment effect of interventions when relevant subgroups are not 
accounted for. 

The advent of large biomedical databases and machine learning algorithms, such as clustering, 
enables precision medicine approaches focused on identifying subgroups of individuals 
according to complex patterns in a hypothesis-independent manner and reducing heterogeneity in 
patient populations [11–13]. These data-driven clusters can then be used to augment future 
clinical trial enrollment and predict treatment response [14,15]. For example, Seymour and 
colleagues [16] used 29 variables to retrospectively cluster participants in the ProCESS clinical 
trial which aimed to improve outcomes in patients with sepsis [17]. Even though the original trial 
showed nearly zero percent chance of benefit, when informed by phenotype clusters derived in 
this study, the chance of benefit rose to 35% [16].  

Most previous clustering studies in AD utilize either cognitive tests [18–21] or biological data 
such as neuroimaging or fluid biomarkers in patients after a diagnosis has been made [22–24]. 
However, when using these data, it can be difficult to distinguish between true subgroups or 
different stages of the disease after onset [25]. Moreover, clinical trials generally try to target 
individuals early in the disease progression [8,9] when cognitive decline and biomarkers are less 
pronounced. One approach to address this dilemma is to use medical and substance use history 
(i.e., problem history) prior to disease onset which is commonly collected at every routine 
primary care visit. We hypothesized that problem history subtypes could be especially relevant to 
AD heterogeneity given that many previous studies have shown that co-morbidities and 
substance use, such as smoking and alcohol intake, affect AD progression [6,26,27]. A few 
previous studies have performed clustering in AD using problem history data; however, they 
utilize data from the electronic health record (EHR) [28–31]. The accuracy of AD diagnoses 
using International Classification of Diseases (ICD) billing codes is mixed at best [32–35] with 
one study identifying a lack of cognitive testing and time as major barriers in a primary care 
setting [36]. To ensure accurate AD diagnosis, we utilized the Uniform Data Set (UDS) [37], 
with consistent testing and diagnosis procedures, from the National Alzheimer’s Coordinating 
Centers (NACC) which is comprised of specialist Alzheimer’s Disease Research Centers 
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(ADRCs) across the U.S. and is one of the largest clinical databases of individuals with AD in 
the world. In a cohort of individuals with AD, we performed multivariate clustering of medical 
and substance use survey items (problem history items) collected prior to AD diagnosis. To infer 
whether problem history subtypes could be used to inform future AD clinical trials, we compared 
each cluster’s mean trajectory of cognitive decline over the next two years.  

2. Methods 

2.1 Data source 

This cross-sectional study analyzed data from UDS annual visits between September 2005 and 
November 2020 across 40 ADRCs in the NACC database. Details regarding data collection are 
well documented.[38] For individual problem history, self-reported data (available 2005-present) 
were chosen instead of clinician-assessed medical conditions (available 2015-present) to 
minimize missingness and increase statistical power.  

29,818 individuals in the NACC database had at least 1 follow-up visit. Individuals were 
included if he or she had: 1) normal cognitive status, impaired but not mild cognitive impairment 
(MCI), or MCI at the initial visit, 2) dementia at any follow-up visit, and 3) dementia was 
determined to have a “primary etiology” of AD. The primary etiology of dementia was 
determined using the individual’s most recent visit to maximize diagnosis accuracy. Individuals 
<50 years old were removed to exclude autosomal-dominant forms of AD. Additionally, 298 
individuals with missing problem history data were excluded. Ultimately, data from 2,754 
individuals were included in the final cluster analysis (Figure 1; Table 1). 

2.2 Cluster Analysis 

In total, 26 self-reported variables reflecting problem history were used as input for clustering 
(Table 2). Variables ranged from cardiovascular disease history to neurological conditions and 
substance use. For each variable, individuals could indicate “Absent”, “Recent/Active”, or 
“Remote/Inactive.” Both the “Recent/Active” and “Remote/Inactive” answers were collapsed 
into “Present” because 1) the difference was often not clinically relevant and 2) the individuals’ 
judgment of what is “remote” may introduce bias into the study.  

Data preprocessing and clustering was conducted in R (version 4.3.1) and RStudio (version 
2023.06.1+524). Initially, multiple correspondence analysis (MCA) [39] was performed to: 1) 
reduce the overall dimensionality of the data, and 2) transform categorical data into continuous 
component scores for clustering. To determine the number of components necessary to explain 
the majority of the variability observed in the dataset, the mean-squared error of prediction 
(MSEP) was plotted after performing k-fold cross-validation with 5% missing values added to 
the dataset across 100 simulations using the missMDA (v1.18) package in R. Five components 
substantially decreased the MSEP and were thus retained as input for clustering. The 
FactoMineR (v2.8) [40] and factoextra (v1.07) packages were used to perform MCA and 
visualize results. 
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Agglomerative hierarchical clustering was performed on individual component scores using the 
FactoMineR (v2.8) package. Individual similarity was determined using Euclidean distance and 
Ward’s method to build the tree [41]. Inertia gain estimates were calculated when dividing the 
dataset between 2 and 10 clusters. The final cluster solution was determined by the largest 
relative drop in inertia gain which resulted in three clusters [39]. See Supplementary Figure 1 for 
the dendrogram as well as the top five most closely associated categories for each problem 
history cluster. Overall, clusters characterized and named according to which problem history 
items were present in higher proportions than the other clusters (Table 2).  

2.3 Supplemental Variable Definitions 

Clusters were further characterized by other features not used as input in the clustering 
algorithm. Age, sex, race, and ethnicity were self-reported and provided by the NACC. APOE 
genotypes were supplied by the NACC when available [42–44]. The NACC received genotypes 
from the participating ADRCs, ADGC, and the National Centralized Repository for Alzheimer’s 
Disease (https://naccdata.org).	

2.4 Statistics and Longitudinal Analysis 

First, chi-square tests of independence (or Fisher’s exact test when the expected count of a 
category was n<5) were performed to determine differences in categorical non-transformed input 
variables and supplemental variables between clusters. One-way analyses of variance (ANOVA) 
were used to compare continuous supplemental measures among clusters. Unadjusted p-values 
less than 0.05 were considered significant.   

The progression of cognitive decline for individuals in each cluster was characterized using a 
linear mixed effects model. The outcome variable was the Clinical Dementia Rating Sum of 
Boxes (CDRSUM) which ranges from 0 to 18, with higher numbers indicating worsening 
cognitive decline. CDRSUM was chosen because of its clinical relevance and use as an outcome 
in recent AD clinical trials [9]. Three annual study visits were included in the longitudinal 
analysis to: 1) minimize the effect of study dropout between subsequent visits and 2) focus on a 
follow-up period that is typical for a phase III AD clinical trial [8,9]. Age, sex, APOE genotype, 
baseline CDR, visit number, and cluster membership were included as fixed effects and subject 
ID was included as a random effect to account for repeated measures. Prior to conducting 
analyses, 316 (11.4%) individuals were dropped because APOE genotype was missing, leaving 
2,438 individuals. Of these, 2,407 individuals (98.7%) completed at least three NACC study 
visits. To account for non-random censoring between clusters, the model was weighted by the 
inverse probability of censoring estimated using a binomial general linear model with the same 
fixed effects as the unweighted model. Sex by cluster and age by cluster interaction terms were 
tested in the weighted model and not included because they were not significant at p = 0.05.  

A likelihood ratio test was used to evaluate the contribution of the problem history cluster on 
CDRSUM trajectory. To investigate differences between clusters at visit three, the pairwise 
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contrasts between the marginal means of each cluster was compared using a Wald test. 
Unadjusted p values less than 0.05 were considered significant. Longitudinal analyses were 
conducted using R version 4.3.1 and the lme4, ggeffects, and ipw packages.  

3. Results 

Overall, there were 2,754 participants in the NACC database who did not have AD at their initial 
visit but were diagnosed at a later visit and met cohort criteria (see Methods and Figure 1). The 
overall dataset had a mean (SD) age of 76.2 (8.3) years, was 55.1% female, 84.9% white, 94.4% 
non-Hispanic, and had a mean (SD) of 15.7 (6.0) years of education (Table 1). We then 
performed hierarchical clustering on principal components from MCA, which resulted in three 
problem history subtypes summarized in Table 2. The three subtypes can be described as 1) 
minimal problem history (n = 1,380), 2) substance use history (n = 1,038), and 3) cardiovascular 
problem history (n = 336). Age at initial visit, sex, and ethnicity were significantly different 
across the three subtypes (Table 1). The cardiovascular problem history subtype had a 
numerically higher mean age of 78.6, lower proportion of females (28.0%), and higher 
proportion of non-Hispanic individuals (97.0%) (Table 1). The demographics of race and years 
of education were not significantly different across the subtypes. Every problem history item was 
significantly different between the subtypes except vitamin B12 deficiency, thyroid disease, 
traumatic brain injury, seizures, other Parkinsonian disorders, urinary incontinence, and 
depression (Table 2). The minimal problem history subtype was noted to have the most problem 
history variables reported as ‘Absent’ across nearly all categories, including fewer reports of 
smoking >100 cigarettes lifetime (1.5%), angioplasty/endarterectomy/stent placement (0.4%), 
and cardiac arrest (0.6%) (Table 2). The substance use history subtype had the most individuals 
indicating a smoking (6.9%) and alcohol abuse (6.5%) history compared to other subtypes (Table 
2). The cardiovascular problem history subtype had the highest proportion of individuals 
indicating a significant cardiovascular disease history including a heart attack/cardiac arrest 
(42.9%), atrial fibrillation (20.5%), and hypertension (74.4%), among others (Table 2).  

Next, we further characterized these problem history subtypes according to the age of AD 
diagnosis, family history, APOE genotype, and co-occurrence of other types of dementia. The 
age of AD diagnosis was significantly different across subtypes with the cardiovascular problem 
history cluster having the numerically highest mean age (80.9) (Table 3). It should be noted that 
the overall mean (SD) age at the NACC initial visit was 76.2 (8.3) and the overall mean (SD) age 
of AD diagnosis was 78.5 (8.8) which results in a mean (SD) difference of 2.4 (2.5) between 
evaluation and later diagnosis. The subtypes were also significantly different with respect to 
early-onset (age range 50 to 64) versus late-onset (>65 years) AD. The minimal problem history 
subtype had the numerically highest proportion of early-onset AD (6.6%) and the cardiovascular 
problem history subtype had numerically highest proportion of late-onset AD (97.0%) (Table 3). 
The proportion of a self-reported family history of AD was also significantly different on both 
the maternal and paternal side (Table 3). The cardiovascular problem history subtype had a 
markedly lower proportion of individuals reporting a maternal family history (28.9%) than the 
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overall dataset (36.3%). The cardiovascular problem history subtype also had a numerically 
lower proportion of individuals reporting a paternal family history, although the comparison to 
the overall dataset was less (14.9% vs 17.1% for the cardiovascular problem history subtype 
compared to the overall dataset respectively). The difference in the frequency of APOE 
genotypes across subtypes was nearly significant (p = 0.08). Compared to the overall dataset, the 
largest differences with respect to APOE genotype were the ε3/ε3 genotype in the cardiovascular 
problem history subtype (36.0% vs 43.8%) and the ε4/ε4 genotype in the cardiovascular problem 
history subtype (9.8% vs 6.2%) in the overall dataset versus within-subtype respectively. No 
differences between subtypes were observed with respect to the co-occurrence of vascular, Lewy 
body, or frontotemporal dementia (Table 3).  

To determine the significance of problem history on the subsequent cognitive decline of the 
NACC participants we modeled the longitudinal Clinical Dementia Rating Sum of Boxes 
(CDRSUM) scale over the next two annual follow-up visits (Figure 2).  Problem history 
subtypes had significantly different changes in CDRSUM while controlling for age, sex, APOE 
genotype, baseline CDRSUM, and visit number (p = 0.013). At visit three, the substance use 
subtype had the lowest adjusted mean (±SE) change in CDRSUM compared to baseline of 
1.51±0.07. The cardiovascular problem history subtype had the highest adjusted mean (±SE) 
change in CDRSUM of 1.96±0.l6. Post-hoc analyses indicated that these two subtypes were 
significantly different at visit 3 (p = 0.005) (Figure 2; Supplementary Table 1).  

4. Discussion 

In this study, we leveraged the NACC database to perform clustering of medical and substance 
use history (i.e., problem history) in a cohort of participants who developed incident Alzheimer’s 
Disease at a follow-up visit. We identified three unique problem history subtypes: minimal 
problem history, substance use history, and cardiovascular problem history. Notably, cognitive 
decline among problem history subtypes varied with the level of effect being clinically 
significant over a subsequent follow-up of two years. The difference between the adjusted mean 
change in CDRSUM between the substance use history and cardiovascular problem history 
subtype at visit three was 0.45. This is the same difference that was seen between the treatment 
and placebo groups at 18 months of follow-up in the phase III lecanemab trial [9]. Thus, 
heterogeneity in problem history among clinic trial participants is likely a significant factor in 
clinical trials. Future clinical trials should therefore consider problem history in their 
inclusion/exclusion criteria and their analysis.  

Furthermore, our AD clustering study expands on findings from other studies that have clustered 
on EHR-derived problem history variables in patients already diagnosed with AD. Notably, all 
three previous clustering studies found a group with higher prevalence of cardiovascular 
disease—a finding corroborated by our study [28,30,31]. Moreover, we showed a significantly 
faster decline in cognition over a two-year follow-up period in the cardiovascular problem 
history subtype. Cardiorespiratory fitness has been observed as a mediating factor in AD 
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treatment [45] and AD progression [46]. Future clinical trials should therefore either specifically 
target these individuals or account for a cardiovascular disease history to minimize the chance of 
a type II error. Alexander et al., found a subtype of AD patients with higher rates of smoking that 
was also associated with more depression and anxiety diagnoses and a faster rate of AD 
progression [31]. Our study, however, detected a substance use history cluster with no significant 
difference in rates of depression and a slower cognitive decline over two years. Although 
depression and substance use disorders are often comorbid [47,48], other reports have found 
conflicting results in different sexes [49] and ages [50] which could account for our different 
results. It is also possible that our study was not sensitive enough to characterize depression and 
anxiety histories given that the data we analyzed included only two questions pertaining to 
mental health (Table 2). Finally, our study identified a novel minimal problem history cluster 
with a higher proportion of female and Hispanic individuals. This group of individuals is 
historically understudied in healthcare [51] and the prevalence of AD in this population is 
expected to grow by an estimated 460% by 2060 [1]—highlighting the need for future studies to 
target these individuals.  

Our study has a few limitations. First, the NACC cohort analyzed in this study was comprised 
primarily of highly educated white individuals and thus may not as generalizable as studies using 
the EHR. However, one advantage of our NACC cohort is that all participants are seen at 
specialist memory centers and thus likely have more accurate diagnoses. By contrast, EHR-
derived data are limited by the issue that AD is often misdiagnosed outside of specialist memory 
centers [52,53] and that co-pathology can make it difficult to distinguish between different types 
of dementia [54]. Second, our inclusion criteria targeted individuals who did not have a diagnosis 
of AD but would receive one in the future—thus the estimated cognitive decline over a two-year 
period is not generalizable to a wide clinic population of older adults with early cognitive 
decline. However, our cohort is similar to individuals who would be targeted for a late-phase 
clinical trial and thus our results remain very relevant to future AD intervention strategies [55]. 
Third, we were limited to the 26 problem history variables in the NACC questionnaire. Future 
studies should include additional problem history variables such as generalized anxiety disorder, 
sleep disorders, kidney disease, autoimmune conditions, etc. 

In conclusion, we found three problem history subtypes in a clinical cohort of AD patients: 
minimal problem history, substance use history, and cardiovascular problem history. The 
minimal problem history cluster had a higher proportion of Hispanic females and earlier onset 
AD. The substance use history subtype was comprised primarily of individuals who had smoked 
more than one hundred cigarettes over their lifetime and had the slowest decline in cognition 
over a two-year follow-up period. The cardiovascular problem history subtype was older than the 
other clusters and had a higher proportion of white male individuals. This subtype also had a 
significantly higher decline in cognition over a two-year follow-up period—indicating results 
from our study may be informative to future work aimed at designing precision clinical trials.  
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Figures 

 

Figure 1: Flowchart of study cohort selection. NACC: National Alzheimer’s Coordinating 
Centers, AD: Alzheimer’s Disease, MCI: Mild Cognitive Impairment  
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Figure 2: Change in CDR Sum of Boxes for each Problem History Cluster. Change in the 
Clinical Dementia Rating Sum of Boxes (CDRSUM) in each problem history cluster. Total 
scores range from 0-18 with higher numbers indicating worsening cognitive decline. Data are 
plotted as the adjusted mean CDRSUM (± standard error) change from baseline. Data are 
adjusted using a linear mixed effects model with age, sex, APOE genotype, and baseline 
CDRSUM included as fixed effects and subject ID included as a random effect. *p value 
corresponds to pairwise comparisons between the marginal mean of each cluster at visit 3.  
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Table 1. Demographics of NACC Cohort by Problem History Cluster 
  

Problem History Cluster 
  

Factor Unclustered (n 
= 2754) 

Minimal Problem History 
(n = 1380) 

Substance Use 
History (n = 

1038) 

Cardiovascular 
Problem 

History (n = 
336) 

χ2** 
(df) 
or  

Eta2 

p 
value 

Age at IniMal Visit 76.18 (8.29) 76.09 (8.7) 75.55 (7.80) 78.55 (7.64) 0.012 <0.01
* 

Sex 
    

152.9 
(2) 

<0.01
* Male 1237 (44.9) 492 (35.7) 503 (48.5) 242 (72.0) 

Female 1517 (55.1) 888 (64.3) 535 (51.5) 94 (28.0) 
Race 

    
- 0.17 

White 2337 (84.9) 1146 (83.0) 889 (85.6) 302 (89.9) 
Black or African American 295 (10.7) 160 (11.6) 112 (10.8) 23 (6.8) 
American Indian or Alaska 
NaMve 

7 (0.3) 5 (0.4) 2 (0.2) 0 (0.0) 

NaMve Hawaiian or Pacific 
Islander 

1 (0.0) 1 (0.1) 0 (0.0) 0 (0.0) 

Asian 67 (2.4) 41 (3.0) 18 (1.7) 8 (2.4) 
Other 38 (1.4) 22 (1.6) 14 (1.3) 2 (0.6) 
Unknown 9 (0.3) 5 (0.4) 3 (0.3) 1 (0.3) 
Ethnicity 

    
- 0.01* 

Non-Hispanic 2601 (94.4) 1285 (93.1) 990 (95.4) 326 (97.0) 
Hispanic 146 (5.3) 90 (6.5) 47 (4.5) 9 (2.7) 
Unknown 7 (0.3) 5 (0.4) 1 (0.1) 1 (0.3) 
Years of EducaMon 15.7 (6.0) 15.7 (6.0) 15.7 (5.5) 16.0 (7.3) <0.00

1 
0.67 
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Continuous factors reported as mean (SD) and categorical factors reported as n (%). * denotes a p value of <0.05. ** Differences between clusters 
evaluated using Chi-square or Fisher’s exact test for categorical variables and one-way ANOVA for quantitative variables. Chi-square (χ2) or 
correlation ratio (Eta2) reported when applicable. 

Table 2. Problem History Items by Cluster 
 

Item Unclustered 
n = 2754 

Minimal 
Problem 
History 

n = 1380 

Substance 
Use 

History 
n = 1038 

Cardiovascul
ar Problem 

History 
n = 336 

χ2 (df) p 
value 

Cardiovascular 
Disease 

Heart A_ack/Cardiac Arrest 169 (6.13) 8 (0.58) 17 (1.64) 144 (42.86) 897.03 (2) <0.01
* 

Atrial FibrillaMon 200 (7.26) 59 (4.28) 72 (6.94) 69 (20.54) 106.34 (2) <0.01
* 

Angioplasty/Endarterectomy/
Stent 

203 (7.37) 5 (0.36) 16 (1.54) 182 (54.17) 1228.58 
(2) 

<0.01
* 

Cardiac Bypass Procedure 137 (4.97) 1 (0.07) 2 (0.19) 134 (39.88) - <0.01
* 

Pacemaker 95 (3.45) 23 (1.67) 16 (1.54) 56 (16.67) 200.76 (2) <0.01
* 

CongesMve Heart Failure 56 (2.03) 5 (0.36) 8 (0.77) 43 (12.80) 223.09 (2) <0.01
* 

Other Cardiovascular Disease 289 (10.49) 119 
(8.62) 

120 
(11.56) 

50 (14.88) 13.28 (2) <0.01
* 

Diabetes 334 (12.13) 159 
(11.52) 

112 
(10.79) 

63 (18.75) 16.05 (2) <0.01
* 

Hypertension 1465 (53.20) 690 (50) 524 
(50.48) 

251 (74.70) 71.15 (2) <0.01
* 

Hypercholesterolemia 1474 (53.52) 651 
(47.17) 

557 
(53.66) 

266 (79.17) 111.19 (2) <0.01
* 

Metabolic CondiMons Vitamin B12 Deficiency 155 (5.62) 79 (5.72) 59 (5.68) 17 (5.06) 0.23 (2) 0.89 
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Thyroid Disease 539 (19.57) 280 
(20.29) 

194 
(18.69) 

65 (19.35) 0.98 (2) 0.61 

Neurological 
CondiMons 

Stroke 111 (4.03) 57 (4.13) 25 (2.41) 29 (8.63) 25.48 (2) <0.01
* 

TraumaMc Brain Injury (TBI) 273 (9.91) 126 
(9.13) 

116 
(11.18) 

31 (9.23) 2.98 (2) 0.23 

Seizures 51 (1.85) 23 (1.67) 20 (1.93) 8 (2.38) 0.81 (2) 0.67 
Parkinson's Disease 8 (0.29) 8 (0.58) 0 (0) 0 (0) - 0.02* 
Other Parkinsonian Disorder 16 (0.58) 8 (0.58) 6 (0.58) 2 (0.60) - 0.99 
Urinary InconMnence 353 (12.82) 176 

(12.75) 
126 
(12.14) 

51 (15.18) 2.11 (2) 0.35 

Fecal InconMnence 72 (2.61) 53 (3.84) 13 (1.25) 6 (1.79) 16.62 (2) <0.01
* 

Psychiatric Disorders AcMve Depression in the last 
2 years 

821 (29.81) 417 
(30.22) 

315 
(30.35) 

89 (26.49) 2.02 (2) 0.36 

Other Psychiatric Disorder 128 (4.65) 57 (4.13) 62 (5.97) 9 (2.68) 7.89 (2) 0.019
* 

Tobacco Use Smoked Cigare_es in the Last 
30 Days 

85 (3.09) 1 (0.07) 72 (6.94) 12 (3.57) - <0.01
* 

Smoked More than 100 
Cigare_es in Life 

1199 (43.54) 20 (1.45) 1027 
(98.94) 

152 (45.24) 2290.94 
(2) 

<0.01
* 

Average Number of Packs 
Smoked Per Day:  

    
- <0.01

* 
0 1552 (56.35) 1360 

(98.55) 
9 (0.87) 183 (54.46) 

1 cigare_e to < 1/2 pk 417 (15.14) 10 (0.72) 367 
(35.36) 

40 (11.90) 

1/2 pk to < 1 pk 406 (14.74) 9 (0.65) 358 
(34.49) 

39 (11.61) 

1 pk to 1 & 1/2 pks 196 (7.12) 0 (0) 163 
(15.70) 

33 (9.82) 
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1 & 1/2 pks to 2 pks 99 (3.59) 0 (0) 79 (7.61) 20 (5.95) 
> 2 pks 84 (3.05) 1 (0.07) 62 (5.97) 21 (6.25) 

Substance Use Alcohol Abuse - Clinically 
Significant 

98 (3.56) 20 (1.45) 67 (6.45) 11 (3.27) 43.34 (2) <0.01
* 

Other Substance Abuse 13 (0.47) 0 (0) 13 (1.25) 0 (0) - <0.01
* 

 

Variable categories (n (%)) shown for every variable used to construct the problem history clusters. Differences between the clusters were tested 
using a Chi-square test of independence. If the expected frequency was less than five, a Fisher’s exact test was utilized. * denotes a p value of 
<0.05. 
 
Table 3. Alzheimer’s Disease Age of Onset, Family History, APOE Genotype, and Other Dementia Co-Occurrence for Each 
Problem History Cluster  

  
Problem History Cluster 

  
 

Unclustered (n 
= 2754) 

Minimal Problem History 
(n = 1380) 

Substance Use 
History (n = 

1038) 

Cardiovascular 
Problem History 

(n = 336) 

χ2** 
(df) 
or  

Eta2 

p 
value 

Age of AD Diagnosis 78.54 (8.79) 78.47 (9.2) 77.90 (8.33) 80.85 (8.0) 0.01
0 

<0.01
* 

AD Onset 
    

7.2 
(2) 

0.03* 
Early-Onset AD (>49 yrs & <65 
yrs) 

155 (5.60) 91 (6.6) 54 (5.2) 10 (3.0) 

Late-Onset AD (≥65 yrs) 2599 (94.4) 1289 (93.4) 984 (94.8) 326 (97.0) 
Maternal Family History of AD     15.1 

(4) 
<0.01
* Present 1001 (36.3) 507 (36.7) 397 (38.2) 97 (28.9) 

Absent 1661 (60.3) 817 (59.2) 613 (59.1) 231 (68.8) 
Unknown 92 (3.3) 56 (4.1) 28 (2.7) 8 (2.4) 
Paternal Family History of AD     0.03* 
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Present 471 (17.1) 232 (16.8) 189 (18.2) 50 (14.9) 10.8 
(4) Absent 2152 (78.1) 1068 (77.4) 806 (77.6) 278 (82.7) 

Unknown 131 (4.8) 80 (5.8) 43 (4.1) 8 (2.4) 
APOE Genotype 

    
- 0.08 

E3/E3 992 (36.0) 500 (36.2) 345 (33.2) 147 (43.8) 
E3/E4 952 (34.6) 461 (33.4) 380 (36.6) 111 (33.0) 
E3/E2 154 ( 5.6) 79 ( 5.7) 57 (5.5) 18 (5.4) 
E4/E4 270 ( 9.8) 143 (10.4) 106 (10.2) 21 (6.2) 
E4/E2 67 (2.4) 32 (2.3) 25 (2.4) 10 (3.0) 
E2/E2 3 (0.1) 2 (0.1) 1 (0.1) 0 (0.0) 
Missing/Unknown 316 (11.5) 163 (11.8) 124 (11.9) 29 (8.6) 
Co-Occurrence of Vascular 
DemenMa 

    
4.2 
(2) 

0.13 

Present  320 (11.6)  162 (11.7) 109 (10.5) 49 (14.6) 
  

Absent 2434 (88.40) 1213 (88.3) 929 (89.5) 287 (85.4) 
Co-Occurrence of Lewy Body 
DemenMa 

    
0.44 
(2) 

0.80 

Present 90 (3.3) 44 (3.2) 33 (3.2) 13 (3.9) 
Absent 2664 (96.70) 1336 (96.8) 1005 (96.8) 323 (96.1) 
Co-Occurrence of 
Frontotemporal DemenMa 

    
- 0.45 

Present 23 (0.80) 9 (0.7) 10 (1.0) 4 (1.2) 
Absent 2731 (99.20) 1371 (99.3) 1028 (99.0) 332 (98.8) 

Continuous factors reported as mean (SD) and categorical factors reported as n (%). * denotes a p value of <0.05. ** Differences between clusters 
evaluated using Chi-square or Fisher’s exact test for categorical variables and one-way ANOVA for quantitative variables. Chi-square (χ2) or 
correlation ratio (Eta2) reported when applicable. 
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