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Abstract 

This study investigates the genetic underpinnings of congenital tooth agenesis (CTA) using a 
multi-omics approach, integrating whole exome sequencing (WES)and RNA expression 
analysis. WES was used to analyze the genetic basis of CTA in six affected individuals one with 
syndromic and five with non-syndromic CTA alongside three healthy and two internal controls. 
We identified both known and novel variants in candidate genes (EDA, WNT10A, PAX9, 
TSPEAR) and assessed the functional impacts of novel variants (WNT10A (A135S), and 
compound heterozygous TSPEAR (L219P, I419Lfs*150) using RT-PCR, while bioinformatics 
tools were applied to both known and novel variants. RT-PCR indicated disrupted EDA and 
WNT10A signaling in novel candidate genes WNT10A and TSPEAR. Computational analysis 
showed deleterious effects for six variants, with gene ontology, protein disorder, localization, 
and post-translational modifications suggesting significant functional changes. Molecular 
dynamics simulations predicted that these variants could impact protein stability and function. 
Additionally, WES analysis revealed 21 genes consistently present in all patients (MAF ≤20%), 
including novel variants in OR4F21 (K310R, F44L) and LCORL (L1734P). Two variants, 
OR4F21 (K310R) and MRTFB (A135A), appeared in all cases. Furthermore, 391 genes were 
shared among three patients, 204 among four, and 98 among five. Integrating multi-omic data 
from the GEO database identified 18 upregulated and 15 downregulated genes, with variants 
linked to systemic conditions such as autism, Alzheimer’s, congenital heart disease (CHD), ALS 
(amyotrophic lateral sclerosis) and cancer. 
Our findings provide insights into CTA's molecular mechanisms, identifying potential 
biomarkers and therapeutic targets. Further validation could improve diagnosis and treatment 
strategies for CTA. 

Keywords: Omics integration, Diseases association, Compound heterozygous, Bioinformatics, 
Molecular Dynamics. 
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Abbreviations  

CTA - Congenital Tooth Agenesis 
WES - Whole Exome Sequencing 
GWAS - Genome-Wide Association Studies 
 OMIM - Online Mendelian Inheritance in Man 
MAF - Minor Allele Frequency 
qRT-PCR - Quantitative Reverse Transcription Polymerase Chain Reaction 
CCDS - Consensus Coding Sequence 
VUS - Variants of Uncertain Significance 
AR- Autosomal Recessive 
AD - Autosomal Dominant 
XLR - X-linked Recessive 
1CADD - Combined Annotation Dependent Depletion 
OMIM - Online Mendelian Inheritance in Man 
 DEGs - Differentially Expressed Genes 
SIFT - Sorting Intolerant from Tolerant 
 mCSM - Mutation Cutoff Scanning Matrix 
DUET - Dual Enrichment Testing 
PTMs- Protein Translational Modification 
KEGG - Kyoto Encyclopedia of Genes and Genomes 
 RMSD - Root Mean Square Deviation 
RMSF - Root Mean Square Fluctuation 
Rg - Radius of Gyration 
SAS - Solvent-Accessible Surface Area 
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1. Introduction 

Congenital tooth agenesis (CTA) is a developmental anomaly marked by the absence of one or 

more teeth, making it one of the most prevalent dental irregularities observed in humans. CTA is 

categorized based on the number of missing teeth: hypodontia involves the absence of one to 

five teeth (excluding third molars), oligodontia refers to the absence of six or more teeth, and 

anodontia denotes the complete absence of all teeth, which is extremely uncommon 

(Schonberger et al., 2023). CTA may present as a non-syndromic condition, occurring 

independently, or as a component of a syndromic disorder that also affects other ectodermal 

tissues, such as hair, nails, and sweat glands (Meade & Dreyer, 2023). 

Non-syndromic congenital tooth agenesis (CTA) is estimated to affect around 8% of the global 

population, though prevalence rates vary widely by region. For example, some European studies 

have reported rates as low as 0.4%, reflecting the complex genetic factors influencing this 

condition(Galluccio et al., 2012). Inheritance patterns for non-syndromic CTA include 

autosomal dominant, autosomal recessive, and X-linked modes, highlighting its genetic 

heterogeneity (Yu et al., 2019). 

Over the past few decades, various genes have been implicated in CTA. Early research identified 

mutations in genes such as MSX1 and PAX9, both essential for tooth development, as key 

contributors to non-syndromic CTA. These genes are expressed in the dental mesenchyme and 

play a role in regulating other critical genes like BMP4, which is necessary for odontogenesis 

(Galluccio et al., 2012). Additionally, genes in the Wnt signaling pathway, including WNT10A 

and AXIN2, have been linked to CTA, with AXIN2 mutations particularly associated with 

familial cases of oligodontia (Yu et al., 2019). The X-linked gene EDA, which is crucial for 

ectodermal development, has also been connected to both syndromic and non-syndromic tooth 

agenesis(Gao et al., 2023). 

In our study, whole exome sequencing (WES) was employed to explore the genetic 

underpinnings of CTA. We analyzed exome data from six affected individuals (five with non-

syndromic CTA and one with syndromic CTA), as well as three matched healthy controls and 

two internal family controls. This analysis revealed both previously reported and novel variants 

in candidate genes, including EDA, WNT10A, PAX9, and TSPEAR. Bioinformatics analysis were 

conducted to assess the potential functional impact of these variations. Our WES data identified 

21 genes consistently present across all six patients, filtered based on a minor allele frequency 
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(MAF) of ≤20%. We also observed 391 genes shared among three patients, 204 among four 

patients, and 98 genes shared by five patients, which enabled us to refine a gene panel focused 

on genes identified in at least three CTA samples. To enhance our genetic findings, we 

integrated multi-omic data from the Gene Expression Omnibus (GEO) database, specifically 

examining syndromic CTA cases. This integrated approach revealed 18 upregulated and 15 

downregulated genes from our WES panel. Our analysis identified three novel variants 

associated with tooth agenesis, along with several other gene variants previously unlinked to 

CTA but known to play roles in other conditions. These findings underscore the significant 

genetic contributions to congenital tooth agenesis, offering new insights that could improve 

diagnostic and therapeutic approaches. Enhanced genetic understanding may facilitate early 

diagnosis, enabling timely, targeted interventions that can improve outcomes for those affected 

by CTA. 

2. Methodology 

2.1 Study Participants and Ethical Approval 

The Declaration of Helsinki's ethical standards were followed in this investigation. All 

participants or, in the case of minors, their parents or legal guardians, provided written informed 

consent. The Institute of Science's Ethics Committee of Banaras Hindu University in India 

examined and approved the research procedure. CTA patients were among the participants. 

Participation conditions were a verified diagnosis of CTA, being between the ages of 18 and 35, 

having complete dental records and radiographic images available, and having written consent 

from participants or their legal guardians. The exclusion criteria included a history of 

orthodontic treatment, inadequate dental records, or tooth loss due to non-congenital causes. The 

Institute of Medical Sciences, India's Department of Dentistry, Oral Surgery, and Medicine 

provided the five control samples and six patients for the study. The patients were booked for 

dental implant treatments after undergoing clinical evaluations. Five control subjects, who were 

all between the ages of 20 and 40, were chosen in order to closely resemble the patients' 

demographics. To maintain confidentiality and anonymity, each sample was assigned a unique 

study code. 

2.2 Data Collection 
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Dental records and radiographs of each participant were carefully examined to confirm the 

diagnosis and determine the extent of CTA. Clinical assessments were performed by qualified 

dental professionals to ensure the accuracy and consistency of data collection. 

2.3 Blood Collection, Storage, and DNA/RNA Isolation 

Peripheral blood samples (1.5 mL) were collected using a 5 mL heparinized syringe and 

transported to the laboratory within 60 minutes, stored in a cooling box to preserve sample 

integrity. Genomic DNA was first extracted from these samples using the standardized salting-

out method. The quality and quantity of the DNA were evaluated through spectrophotometric 

analysis (NanoDrop 2000, Thermo Scientific Inc.) or fluorometry-based methods, including the 

DNA Assay BR (Invitrogen, Cat# Q32853) and the Qubit High Sensitivity Assay (Invitrogen). 

For RNA isolation, 200 μL of blood was processed using the Trizol reagent (Sigma-Aldrich, 

Catalog No. T9424). The concentration and purity of the extracted RNA were assessed using a 

NanoDrop spectrophotometer (Thermo Scientific, USA). 

2.4 WES Analysis 

WES was conducted utilizing the Illumina Next-Generation Sequencing platform, focusing on 

approximately 30Mb of the human exome. This approach encompassed nearly 99% of the 

coding regions as defined by CCDS and RefSeq. Sequencing achieved a mean depth of 80- 

100X, with over 90% of the targeted regions covered at a minimum depth of 20X. To ensure 

data quality, duplicate reads were eliminated, and base quality recalibration was performed. The 

reads were mapped to the human reference genome GRCh38. Variant calling followed the 

GATK best practices, and subsequent variant annotation was carried out using databases such as 

OMIM, GWAS, gnomAD, and 1000 Genomes. Filtration of the annotated variants was based on 

several criteria, including a gnomAD allele frequency ≤ 0.01 or unavailable, a minimum read 

depth of 20, pathogenicity, and predicted functional consequences. Upon confirming the 

presence of the mutant variant in the candidate gene with a minor allele frequency (MAF) of ≤ 

0.01.  

The WES analysis was conducted on a small Indian cohort consisting of 11 samples: 6 patient 

samples (DEN1, DEN10, DEN12, DEN20.1, DEN24.1, DEN23.1) and 5 controls, which 

included 3 healthy individuals and 2 internal controls. Notably, samples DEN1 and DEN12 were 

sourced from (Ranjan Jr et al., 2024; Sarkar et al., 2014). Initially, variants were filtered across 
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all samples using a Minor Allele Frequency (MAF) threshold of ≤0.20 to focus on rare variants 

that may be relevant to tooth agenesis. Following this, variants detected in control samples were 

subtracted from those found in the patient data, thus removing common variants likely unrelated 

to the condition. 

Subsequent analysis involved identifying genes shared among different numbers of patients by 

examining the presence of variants across 3, 4, 5, or all 6 patient samples. This was 

accomplished using a combination of Excel and Python scripting to facilitate accurate 

comparison across datasets. Genes that appeared in at least 3 out of the 6 patient samples were 

selected to form the final WES gene panel, prioritizing those with a higher likelihood of being 

associated with tooth agenesis based on their recurrence across multiple patients. 

2.5 Sanger Sequencing 

The salting-out technique was used to separate DNA from patient samples in order to verify new 

TSPEAR and WNT10A variations. Using certain primers, the TSPEAR and WNT10A sections 

were amplified by PCR and purified. Particular primers surrounding the target areas in TSPEAR 

and WNT10A were created and verified for the ideal melting temperature in order to perform 

Sanger sequencing. Initial denaturation at 95°C for 5 minutes, 30–35 cycles of 95°C for 30 

seconds, primer-specific annealing at 55–60°C for 30 seconds, extension at 72°C for 45–60 

seconds, and final extension at 72°C for 5 minutes were the processes used in PCR 

amplification. Following confirmation of the anticipated size on a 1.5% agarose gel, PCR 

products were purified to get rid of extra primers and nucleotides. The purified PCR products 

were subjected to Sanger sequencing using a sequencing dye terminator mix. Sequencing 

reactions included initial denaturation at 96°C for 1 minute, followed by 25–30 cycles of 96°C 

for 10 seconds, annealing at 50–55°C for 5 seconds, and extension at 60°C for 4 minutes. 

Sequencing reaction products were then purified and loaded onto a capillary electrophoresis 

instrument for analysis. Chromatograms were analyzed to confirm the presence of nucleotide 

changes, with mutant changes indicated by red arrows and unchanged nucleotides by green 

arrows Figure2. 

2.6 RT PCR 

Blood samples from patients were used to extract total RNA, which was then measured using 

spectrophotometry to guarantee purity. Using oligo(dT) primers and the RevertAid First Strand 
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cDNA Synthesis Kit (Thermo Scientific, Catalog #K1622, USA), reverse transcription of mRNA 

was carried out in accordance with the manufacturer's instructions. The QuantStudio 6 Flex 

Real-Time PCR System from Applied Biosystems (Thermo Scientific, USA) was used to 

perform quantitative PCR (qRT-PCR). One microliter of cDNA (diluted 1:5), 6.25 microliters of 

Maxima SYBR Green/ROX qPCR Master Mix (2X, Thermo Scientific, Catalog #K0221, USA), 

one microliter of 10 μM forward primer, one microliter of 10 μM reverse primer specific for 

EDA or WNT10A, and nuclease-free water were all included in the 12.5 microliter reaction 

mixture. Following two minutes of initial denaturation at 95°C, 40 cycles of 95°C for 15 seconds 

and 60°C for 30 seconds comprised the qPCR cycling conditions. Primer blast utilized Primer 

designing. The ΔCT technique was used to quantify relative expression levels after normalizing 

gene expression to an endogenous control (Beta-Actin). 

2.7 Statistical Analysis 

GraphPad Prism software (version 8; GraphPad Software, La Jolla, CA, USA) was used to 

conduct statistical analyses (Swift, 1997). To identify significant differences between groups, a 

one-way analysis of variance (ANOVA) was employed. To find particular group differences, 

post hoc comparisons were carried out using Tukey's multiple comparison test, with a 

significance threshold set at p < 0.05. The mean ± standard deviation (SD) of the data was 

displayed.  

2.8 Multiomics Integration: 

2.8.1 Data Sources and Gene Selection: Differentially expressed genes (DEGs) were obtained 

from the study by(Ranjan Jr et al., 2024), using the GEO dataset ID GSE56486. This dataset was 

analyzed to identify genes that were significantly upregulated or downregulated. WES data was 

also utilized, comprising a gene panel with 709 genes relevant to congenital tooth agenesis. 

2.8.2 Identification of Common Genes: To identify common genetic elements, the list of 709 

WES genes was compared against the list of DEGs from the GSE56486 dataset. The comparison 

was performed using Venny 2.0 (Oliveros, 2007), a widely-used tool for visualizing and 

identifying overlapping genes between datasets. Common genes between the WES panel and 

both upregulated and downregulated DEGs were identified, providing a focused set of targets for 

further analysis. 
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2.8.3 Enrichment Analysis of WES Panel: WES data was analyzed to identify genetic variants 

associated with congenital tooth agenesis. Variants from the WES panel were annotated and 

filtered based on established criteria, including allele frequency, functional impact predictions, 

and known associations with dental development. Following variant filtration, enrichment 

analysis was performed using Enrichr(E. Y. Chen et al., 2013), a comprehensive tool that allows 

for the functional characterization of gene lists. The analysis included pathways, biological 

processes, and disease ontology terms to determine if specific molecular pathways or biological 

functions were significantly overrepresented among the identified genes. 

2.8.4 Enrichment Analysis of Common Genes in DEGs: Microarray-seq data analysis was 

used to identify differentially expressed genes (DEGs). To identify genes shared by the two 

datasets, genes exhibiting a significant differential expression (p-value < 0.05) were compared to 

the WES panel. After that, Enrichr was used to do an enrichment analysis on the shared genes 

(E. Y. Chen et al., 2013)(E. Y. This method assisted in the identification of cellular components, 

molecular processes, and enriched biological pathways linked to the genes that exhibit both 

genetic variation and differential expression. The research offered a more thorough 

comprehension of the molecular pathways behind congenital tooth agenesis by combining the 

information from WES and DEGs. 

2.8.5 PPI Network Construction and Analysis 

A list of 709 genes was examined using the STRING database (Szklarczyk et al., 2010) in order 

to look into the protein-protein interaction (PPI) network among the genes from the WES panel. 

The interaction score threshold was set to a high confidence level (≥0.4) to ensure dependability 

when the genes were submitted to STRING in order to find known and anticipated interactions. 

Finding possible clusters and functional relationships within the network that could be connected 

to congenital tooth agenesis was the goal of this investigation.  

Then, using Cytoscape (Doncheva et al., 2018) a powerful tool for network visualization and 

analysis, the PPI network data from STRING was exported and loaded. After the network was 

further optimized within Cytoscape, interconnecting clusters and paths could be seen more 

clearly. The analysis included the calculation of topological parameters such as node degree, 

betweenness centrality, and clustering coefficients, which are essential for identifying key 

characteristics of the network structure.  
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2.8.6 Hub Gene Identification: To pinpoint central genes playing crucial roles within the PPI 

network, hub gene analysis was performed using CytoHubba (Chin et al., 2014), a plugin for 

Cytoscape. CytoHubba offers multiple algorithms to rank nodes based on their importance, using 

metrics such as Degree, Betweenness, Closeness, and EPC (Edge Percolated Component) 

scores. By applying these algorithms, the genes were ranked, and those with the highest 

centrality measures were identified as hub genes, indicating their potential key regulatory roles 

in the network. 

The hub genes were visually highlighted within the PPI network, and sub-networks were 

extracted to focus on significant interactions involving these central nodes. This approach 

enabled the identification of core molecular interactions and pathways, providing deeper insights 

into the biological mechanisms that may contribute to congenital tooth agenesis. 

2.9 Pathogenicity Prediction 

To predict the pathogenic potential of mutant proteins, we utilized a range of algorithm-based 

online tools, including SIFT (Vaser et al., 2016), PolyPhen-2 (Adzhubei & Jordan, n.d.), 

MutationTaster (Schwarz et al., 2010) and CADD (Rentzsch et al., 2019). Each tool required 

mutation-specific input, such as details of the amino acid substitution, and provided predictions 

based on distinct threshold and cutoff values.   

2.10 Protein Stability Prediction 

We used a number of methods based on Gibbs free energy estimates to investigate how 

mutations affect protein stability. The stability changes linked to the mutant proteins were 

predicted using tools like mCSM (mutation cut off scanning matrix)(Pires et al., 2014b), DUET 

(Pires et al., 2014a), SDM (Worth et al., 2011) (Site Directed Mutator), SDM2 (Karnik et al., 

2013), I-Mutant (Capriotti et al., 2005), MUpro (Parthiban et al., 2006), and the Cologne 

University Protein Stability Analysis Tool (CUPSAT)(Parthiban et al., 2006).  

These tools have different input requirements; mCSM, DUET, SDM, and CUPSAT require the 

protein's three-dimensional structure, whereas MUpro simply needs the amino acid sequence.  

 Additionally, I-Mutant was utilized to predict stability changes due to single-site mutations, 

with the tool capable of making predictions using either the protein sequence or structure based 

on SVM models.  

2.11 Evolutionary Conservation Analysis 
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Evolutionary conservation analysis was performed using the ConSurf web server (Glaser et al., 

2003). The Position-Specific Iterative Basic Local Alignment Search Tool (PSI-BLAST) was 

used to identify homologous sequences for the EDA, WNT10A, PAX9, and TSPEAR protein 

sequences, selecting the top 150 sequences for further analysis. Conservation scores of amino 

acid residues were calculated by ConSurf, which applies Bayesian inference to evaluate 

evolutionary conservation. The scores range on a nine-point scale, where a score of 1 represents 

low conservation, indicating variable positions, and a score of 9 indicates high conservation, 

representing conserved regions. 

2.12 Structural Analysis, Modeling, and Validation 

The 3D structures of PAX9, EDA, TSPEAR, and WNT10A proteins were obtained using 

AlphaFold(Jumper et al., 2021). Mutant models were generated through homology modeling 

based on AlphaFold templates (PAX9 AF-P55771-F1-v4, EDA AF-Q92838-F1-v4, TSPEAR 

AF-Q8WU66-F1-v4 and WNT10A AF-Q9GZT5-F1-v4) using the Swiss-Model webserver 

(Kiefer et al., 2009). To refine the models and minimize potential structural inconsistencies, 

energy minimization was performed using the "steepest descent" method with the GROMACS 

2018 software suite (Berendsen et al., 1995). The quality and integrity of the modeled structures 

were further evaluated using the PDBsum tool (Laskowski et al., 2018). 

2.13 RNA Sequence Retrieval 

The RNA sequences under analysis were sourced from the following transcript IDs: WNT10A 

NM_025216, EDA NM_001399, and TSPEAR NM_144991.  Short 41-nucleotide RNA 

segments were extracted with the mutation site precisely positioned at the 21st nucleotide having 

a sequence length of 20 bases on either side of the mutation site. 

 

2.14 Prediction of RNA Secondary Structure 

For predicting the secondary structures (2D) of the RNA snippets, the RNAStructure Web 

Server (version 6.0.1) was employed(Devi, Ranjan, Raj, et al., 2024)(Bellaousov et al., 2013). 

This server utilizes algorithms grounded in thermodynamic principles to forecast RNA 

secondary structures. These predictions elucidate folding patterns and potential base pairing 

interactions within the RNA molecules. 

 

2.15 Assessment of Mutation Effects on RNA Structure 
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To explore the structural alterations induced by each missense mutation, the MutaRNA tool 

facilitated the mutational analysis of RNA sequence (Miladi et al., 2020). This analysis 

encompassed evaluating the intra-molecular base pairing potential, determining base pairing 

probabilities of the mutant RNA, and assessing accessibility (single-strandedness) in comparison 

to the wild-type counterparts (Miladi et al., 2020)(Bernhart et al., 2011). By incorporating 

remuRNA (Salari et al., 2013) and RNAsnp, this tool provides insights into the mutation-

induced changes in RNA structures. 

 

2.16  Prediction of Post-Translational Modifications (PTMs) 

To identify potential PTMs in proteins, various computational tools were used. NetPhos 

3.1(Blom et al., 1999) predicted phosphorylation sites (serine, threonine, tyrosine), while 

NetNGlyc (Pugalenthi et al., 2020) and NetOGlyc(Hansen et al., 1998) identified N- and O-

glycosylation sites, respectively. GPSSNO(Xue et al., 2010) was employed for S-nitrosylation 

prediction, and GPSSUMO (Zhao et al., 2014) identified sumoylation sites and motifs. PrePS 

analyzed prenylation types, including farnesylation and geranylgeranylation (Maurer-Stroh & 

Eisenhaber, 2005). UbPred(Radivojac et al., 2010) predicted ubiquitination sites, Myristoylator 

identified N-terminal myristoylation, and CKSAAPPalm (Ranjan & Das, 2023) along with 

eqPalm were used for palmitoylation. Finally, GPS PAIL (Deng et al., 2016) predicted lysine 

acetylation sites. Each tool relied on protein sequence inputs to detect possible modifications, 

providing insights into how these PTMs might regulate protein function and stability, with 

implications for congenital tooth agenesis. 

2.17 Molecular Simulations 

 

GROMACS was used to perform molecular dynamics (MD) simulations in order to examine the 

structural behavior of the wild-type and mutant forms of the proteins PAX9, EDA, TSPEAR, 

and WNT10A. For these simulations, the GROMOS96 54a7 force field (Schmid et al., 

2011)(Devi, Ranjan, & Das, 2024) was used. SPC216 water molecules were used to encircle the 

proteins in a dodecahedron box arrangement, with the proteins and box edges spaced at least 1.0 

nm apart. In order to simulate physiological circumstances, 0.15 M NaCl and Na ions were 

added to electrically neutralize the system. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 27, 2024. ; https://doi.org/10.1101/2024.11.26.24317461doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.26.24317461
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

The steepest descent approach was used to minimize energy and resolve any steric conflicts. 

Subsequently, the system underwent two stages of equilibration: first, at 300 K, under the NVT 

ensemble (constant number of particles, volume, and temperature); and secondly, at 1 atm for 

100 ps, under the NPT ensemble (constant number of particles, pressure to temperature). MD 

simulations were prolonged to a period of 50 ns following the equilibration phases. All mutant 

and wild-type structures achieved a stable equilibrium state within 10 ns. GROMACS tools (e.g., 

gmx rms, rmsf, gyrate, hbond, and sas) were used to analyze key parameters, such as solvent-

accessible surface area (SAS), hydrogen bonds (intra-protein and protein-water interactions), 

radius of gyration (Rg), root mean square deviation (RMSD), and root mean square fluctuation 

(RMSF). The results were visualized using XMGRACE (Cowan & Grosdidier, 2000) and MS 

excel(Berk & Carey, 1998). 

 

2.18 Principal Component Analysis (PCA) of Biophysical Metrics and Matplot analysis 

To assess and visualize variability among different protein variants, we conducted Principal 

Component Analysis (PCA) based on key biophysical metrics: root mean square deviation 

(RMSD), root mean square fluctuation (RMSF), solvent-accessible surface area (SAS), 

hydrogen bond count (H-bonds), radius of gyration (Rg), and subcellular localization properties. 

These metrics were measured for a variety of wild-type and mutant proteins, including EDA 

(EDA_WT, EDA_R156H), PAX9 (PAX9_WT, PAX9_Q145*), TSPEAR (TSPEAR_WT, 

TSPEAR_419fs150, TSPEAR+Compound_Hetero), and WNT10A (WNT10A_WT, 

WNT10A_V145M, WNT10A_A135S). 

To ensure fair comparison, the data were standardized, allowing each feature to contribute 

equally to the analysis and preventing any single metric from dominating the results. PCA was 

performed using the scikit-learn library(Kramer, 2016), reducing the dataset to two principal 

components (PC1 and PC2) that captured most of the variance. 

The PCA results were visualized as a scatter plot, where each point represented a protein variant. 

Different colors and annotations were used to distinguish between the variants, facilitating easy 

identification of patterns and clusters. The protein variant analysis was conducted using Python 

(v3.12) (Python, 2021)) with pandas for data management and matplotlib (Hunter & Dale, 2007) 

for visualization. The biophysical metrics (RMSD, RMSF, SAS, H-Bonds, Rg) were plotted 

across the different protein variants using subplots. Distinct colors and triangular markers were 

employed for each metric, enhancing clarity and comparison. 

2.19 Others relevant miscellaneous analysis 
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For the analysis of protein variants, several computational tools were employed. Secondary 

structure prediction and Gene Ontology (GO) annotations for wild-type and variant forms of 

PAX9, EDA, WNT10A, and TSPEAR were performed using the Psipred Workbench (Buchan & 

Jones, 2019). The protein sequences served as input for these predictions, providing insights into 

structural changes and functional implications associated with each variant. The difference 

distance matrix and Root Mean Square Deviation (RMSD) calculations were conducted using 

Superpose Version 1.0 (Bauer et al., 2008), enabling a detailed comparison of structural 

variations between the wild-type and mutant proteins. Additionally, TBtools (C. Chen et al., 

2020), a versatile toolkit for biological data analysis, was utilized to generate heat maps, offering 

a clear visualization of the data across multiple metrics. Subcellular localization of the wild-type 

and variant proteins (PAX9, EDA, WNT10A, TSPEAR) was predicted using DeepLoc 2.0 

(Thumuluri et al., 2022). Protein sequences were submitted to the DeepLoc 2.0 web server, 

which employs a convolutional neural network to predict localization probabilities for various 

cellular compartments (e.g., nucleus, cytoplasm, mitochondria). The predictions were analyzed 

to identify the most likely localizations for each variant, and results were visualized for 

comparative analysis. 

Discover Studio(Systèmes, 2016) was used for detailed structural analysis, providing insights 

into the biophysical properties of each protein variant. 

 

3 Result 

 

3.1 WES Analysis 

The WES analysis of CTA patients identified several variations in candidate genes linked to 

tooth agenesis. In WNT10A, a homozygous variation V145M (c.433G>A) was found, classified 

as likely pathogenic with autosomal recessive (AR) inheritance, and is a known variant. 

Additionally, a heterozygous novel variant A135S (c.403G>T) was identified as a variant of 

uncertain significance (VUS) associated with autosomal dominant (AD) inheritance. For EDA, a 

known homozygous variant R156H (c.467G>A), classified as likely pathogenic, was observed, 

linked to ectodermal dysplasia and X-linked recessive (XLR) inheritance. In PAX9 a stop-gained 

mutation (c.433C>T; p.Gln145*), classified as pathogenic, known, and related to AR 

inheritance. In TSPEAR, two compound heterozygous variations were identified: L219P 

(c.656T>C), a novel VUS with autosomal recessive (AR) inheritance, and a frameshift variant 

I419Lfs*150 (c.1255delA), classified as a known VUS. These findings provide insights into the 
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genetic basis of tooth agenesis, highlighting both known pathogenic variants and novel uncertain 

variants for further investigation (Table 1, Figure1). Further Novel variants cross validated by 

sanger sequencing showed in Figure2. 

The variant analysis summarized here corresponds to the findings presented in Table 2. Each 

variant, including TSPEAR (L219P and I419fs150), PAX9 (Q145*), WNT10A (A135S and 

V145M), and EDA (R156H), has been assessed across multiple databases and predictive tools. 

The results indicate their potential pathogenicity, with entries in databases like OMIM, EXAC, 

and gnomAD, along with consistent damaging predictions from tools such as SIFT, Polyphen-2, 

MutationTaster2, and CADD3 Phred scores.  

3.2 RT-PCR Assessment of Novel Variants Affecting Wnt and EDA Signaling 

RT-PCR analysis revealed significant reductions in the expression levels of EDA and WNT10A 

in samples carrying the identified variants. Specifically, EDA expression was notably decreased 

compared to the internal control (Figure 2. G), with ΔCT values indicating substantial 

downregulation. Similarly, WNT10A expression was significantly lower in variant samples 

(Figure 2. H), further supported by the ΔCT values. Statistical analysis confirmed these findings, 

with ****p < 0.0001 for EDA and ***p < 0.001 for WNT10A, indicating that the identified 

variants adversely affect EDA and WNT signaling pathways, potentially contributing to the 

observed phenotypes. 

3.3 WES Gene Panel 

Data from five control samples and six CTA patients were filtered using a minor allele 

frequency (MAF) criterion of ≤20% as part of the full WES analysis. The emphasis was on 

possible related genes unique to the CTA patients by excluding common variations using those 

found in the control samples. 709 genes made up the final curated gene panel that was 

discovered using this method. Of the genes in the panel, 21 are consistently seen in all six 

patients, 391 are shared by three patients, 204 are found in four patients, and 98 are seen in five 

patients. By giving priority to genes found in more than three CTA samples, the gene panel was 

improved in terms of specificity and CTA relevance.  

Gene panel showed in Supplementary File Information S2. Ten genes (TM4SF20, LCORL, 

OR4F21, TNS2, VWA8, MYH6, KNL1, LOC400499, MRTFB, and PRR32) contained mutations 

categorized as synonymous, non-synonymous, or found in UTR sections, according to a 
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thorough study of variants present in 21 genes shared by all six patient samples. This analysis 

did not include variants that fell outside of these categories (Table 3). Diverse conclusions were 

drawn from the examination of variations in ten genes that were present in six patient samples. 

Variants in MYH6 (G56R) and TM4SF20 (A27V) were found to be benign, had moderate minor 

allele frequencies (MAF), and were present in several samples, indicating that they were 

common.  

LCORL revealed three variations, including a benign synonymous variant (T1042) that was 

found in several samples and two variants of unclear significance (VUS) L1734P (new) and 

P1709R (rare), suggesting possible variation in regulatory functions. Two novel VUS (K310R, 

F44L) were found in OR4F21 across samples, suggesting unique variants of unknown 

importance. There were two non-synonymous variations found in TNS2 (I858M and G774E), the 

former of which was categorized as VUS and the latter as benign. With modest MAFs, the 

VWA8 (R552H, I1439L) and PRR32 (M193T) variants were likewise innocuous. 

Although there was no clinical categorization information available, LOC400499 had two non-

synonymous variations (G2806R, I176V), and KNL1 displayed a rare VUS (A1270V). A 

harmless synonymous variation (A135) of MRTFB was found in several samples, indicating a 

shared polymorphism. All things considered, the study found both new and benign VUS 

variations, offering information on the genetic causes of a number of illnesses. TM4SF20 

(autism, Alzheimer's), LCORL (growth disorders, Alzheimer's), OR4F21 (no known diseases), 

TNS2 (kidney diseases), VWA8 (COVID-19, cleft lip palate, autism), MYH6 (congenital heart 

disease (CHD)), KNL1 (microcephaly), LOC400499 (unknown), MRTFB (autism, CHD), and 

PRR32 (intellectual development disorders) were among the gene-disease associations found by 

the analysis.  

These correlations point to possible genetic causes of the disorders seen in the patient samples. 

In all six samples, two variations were consistently found: MRTFB (A135, c.405T>C) and 

OR4F21 (K310R, c.929A>G). Whereas the MRTFB variation is a known synonymous alteration, 

the OR4F21 variant is a new, non-synonymous modification. 

Key pathways and functions were discovered by the WES panel's enrichment analysis (Figure 

3). Pathway study revealed important roles in apoptotic signaling, cell cycle control, and DNA 

damage response. Protein localization to membranes and DNA replication and repair were 

examples of biological activities that suggested roles in cellular growth and stability. 

Mitochondrial complexes, CMG complexes, and cell junctions were found to be abundant in 
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cellular components, indicating their significance in energy metabolism, DNA synthesis, and cell 

communication. DNA binding, helicase activity, and oxidoreductase activity were the main 

molecular activities that were linked to enzymatic processes and genomic stability. Human 

phenotypic ontology revealed links to diseases such as myelodysplasia and bone marrow 

hypoplasia, suggesting genetic susceptibilities to hematological and developmental disorders. 

The PPI network analysis of the WES gene panel identified 470 nodes and 1211 interactions, 

showing a well-connected network structure (Figure 4 Panel A). The analysis revealed 11 

network modules with key hub genes, including TNF, TP53, STAT3, and CXCL12 (Figure 4 

Panel C), indicating their central role. Yellow-highlighted genes within the network represent 

those associated with developmental processes, suggesting their relevance in tooth development. 

Summary metrics (Figure 4 Panel B) showed an average of 5.153 neighbors per node, a 

clustering coefficient of 0.126, and a network density of 0.005. 

3.4 Multiomics Integration 

The multi-omics integration analysis revealed shared gene elements across the WES Panel, 

GSE56486_UP, and GSE56486_Down datasets. The Venn diagram showed 676 unique genes in 

the WES Panel, 726 in GSE56486_UP, and 60 in GSE56486_Down, with 18 genes common 

between the WES Panel and GSE56486_UP, and 15 shared between the WES Panel and 

GSE56486_Down. The heatmap of the 18 common genes suggests possible functional or 

regulatory relationships. KEGG pathway analysis indicated that upregulated genes were 

enriched in pathways like NOD-like receptor signaling, steroid biosynthesis, and cytoskeletal 

metabolism, while downregulated genes were linked to pathways involving endocytosis, 

bacterial invasion of epithelial cells, and fatty acid degradation, hinting at disruptions in cellular 

metabolic activities (Figure5). 

The functional analysis integrating WES panel data with differentially expressed genes (DEGs) 

shows that upregulated genes are primarily associated with binding activities and enzymatic 

functions, while downregulated genes are linked to oxidoreductase activities, cytoskeletal 

binding, and ion transport. On the cellular level, upregulated genes contribute to extracellular 

matrix components, ion transport, and adhesion, whereas downregulated genes are connected to 

cell junctions, protein complexes, and cytoskeleton components. In terms of biological function, 

upregulated genes are enriched in processes like cell adhesion, signal transduction, and vascular 

development, while downregulated genes are focused on cell proliferation, immune response, 

and metabolism (Figure5). A comprehensive analysis of 33 differentially expressed genes 
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(DEGs) revealed several notable variants. Among these, ENAH exhibited a benign deletion 

variant (ERQERLD217D) in samples DEN1 and DEN20.1. LOX showed a benign non-

synonymous variant (R158Q) with a minor allele frequency (MAF) of 17.02%. NR3C1 and 

TIMP2 presented synonymous changes, while IRF5, CEL (novel), and ABTB2 had variants 

classified as variants of uncertain significance (VUS). Additionally, RNF175, TGFB1, and 

PRKCB presented benign and VUS variants across multiple samples, contributing to the 

understanding of genetic factors associated with various diseases. Further insights can be 

gleaned from the detailed Table4. 

 

 

3.5 Diseases Association 

 

The genetic variants identified in patients with tooth agenesis show associations with several 

systemic diseases. TM4SF20, involved in cell adhesion, has been linked to autism and AZ. 

LCORL, a transcriptional regulator, is associated with growth development disorders, AZ, and 

autism. OR4F21, an olfactory receptor gene, presents novel variants but has no reported disease 

associations. TNS2, associated with kidney diseases, harbors mutations that could impact cell 

migration, possibly contributing to nephropathy and other organ-related conditions. VWA8, 

involved in extracellular matrix stability, is associated with COVID-19, cleft lip palate, and 

autism. MYH6, related to cardiac muscle function, is linked to CHD. The role of cellular division 

and mitosis in tooth and brain development is supported by KNL1, which is linked to 

microcephaly and cancer. A putative protein called LOC400499 may have important but 

unidentified roles in systemic illnesses. Autism and congenital heart disease are linked to 

MRTFB, which is involved in transcription and cell signaling. Lastly, there is more evidence 

linking neurological issues to tooth growth through PRR32, which is linked to intellectual 

development difficulties.  

The integrity of the extracellular matrix depends on the cross-linking of collagen and elastin, 

which is catalyzed by the LOX gene (lysyl oxidase). It has a connection to ALS. The LOX 

R158Q variation, which occurs 17.02% of the time, is categorized as benign. This variation, 

which was shown to be among the top 10 hub genes, results in a non-synonymous coding 

mutation due to a nucleotide change at c.473G>A. Three patient samples include LOX.  

 

3.6 Relative Entropy 
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The relative entropy scores (H(wt:mu)) computed by remuRNA in mutaRNA analysis for each 

coding sequence change in the investigated genes provides the information of structural impact 

of single nucleotide change within RNA sequences. These are summarized in Supplimentary 

Information S1.  The higher the relative entropy value, the stronger the structural impact of the 

nucleotide-change on the RNA structure. The variant WNT10A c.403G>T stands out with a 

higher relative entropy score of 3.409, suggesting a substantial alteration in RNA structure 

compared to other variants examined followed by EDA c.467G>A variant and TSPEAR 

c.656T>C exhibiting relatively high entropy scores of 2.248 and 1.392, respectively, indicating 

notable structural impacts. In contrast, the WNT10A c.433G>A variant reports a lower relative 

entropy score of 0.355, suggesting a comparatively lesser impact on RNA structure.  

3.7 Analysis of RNA structural features 

Further analysis of the variants’ impact on RNA structural features revealed distinct impacts of 

single nucleotide polymorphisms (SNPs) on the wild type (WT) and mutant (MT) RNA 

sequences. The results indicate that the variant WNT10A c.403G>T has the most pronounced 

effect on RNA structure, followed by TSPEAR c.656T>C, whereas minor alterations are 

observed in WNT10A c.433G>A and EDA c.467G>A (Figure 6, 7). Similarly, these alterations in 

the base pairing probabilities and change in structure can be observed in 2D structures of WT 

and MT depicted in Supplementary Information S1. In Figure 6, heat map dot plots illustrate the 

base pairing potential of both WT and MT RNAs, with darker color dots indicating higher 

probabilities of base pairing. Circular plots depict the same base pair probabilities, with darker 

hues of grey indicating higher probabilities. Analysis of changes in base pair probabilities, as 

shown in Figure 6 (Pr (bp in WT) – Pr (bp in mut)), highlights difference in base pairing patterns 

between WT and MT RNAs at specific locations. The weakened base pairing potential and 

increased probabilities of base pairing within each MT RNA are depicted in Figure 7.  

The accessibility profiles, as depicted in Figure 6, reveal varying effects of the examined 

variants on RNA. The accessibility profiles are assessed based on RNA single-strandedness 

(unpaired probabilities), representing the likelihood of each nucleotide position being unpaired 

within the RNA sequences. It is a crucial factor influencing RNA-protein or RNA-RNA 

interactions. Notably, the variant WNT10A c.403G>T exhibits the most pronounced alteration in 

accessibility, following closely, the variant TSPEAR c.656T>C also shows notable changes in 

accessibility profiles, indicating an impact on RNA single-strandedness. In contrast, minor 

alterations in accessibility profiles are observed for the variants WNT10A c.433G>A and EDA 
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c.467G>A, reflecting relatively lesser effects on RNA structure compared to the former variants 

as depicted in Figure 6. 

3.8 Evolutionary Conservation of Candidate gene variations. 

The conservation analysis (Figure 8) revealed that several variants, including TSPEAR L219P, 

WNT10A A135S, WNT10A V145M, and EDA R156H, are located in highly conserved regions 

with a conservation score of 9 out of 9, indicating strong evolutionary stability. TSPEAR L219P 

showed a slightly lower conservation score of 8. Variants such as PAX9 Q145* and TSPEAR 

I419fs*150 lead to truncations or frameshifts, resulting in the absence of significant portions of 

the protein. Notably, these disrupted regions consist of amino acids that are highly conserved, 

suggesting their critical functional importance. 

3.9 Protein Structure Stability Analysis 

The stability analysis of gene variants (Table 5) revealed that TSPEAR L219P, WNT10A 

A135S, WNT10A V145M, and EDA R156H predominantly show destabilizing effects across 

multiple prediction tools, indicating a decrease in protein stability. For TSPEAR L219P, all tools 

consistently predicted a destabilizing impact, with ΔΔG values ranging from -1.284 to -5.93 

kcal/mol. WNT10A A135S showed significant destabilization across all models, particularly in 

DUET (-2.606 kcal/mol). WNT10A V145M had mixed predictions, with most tools indicating 

destabilization except CUPSAT, which predicted stabilization (0.98 kcal/mol). EDA R156H 

presented a slight destabilizing trend, with I-Mutant showing the most substantial decrease (-

1.20 kcal/mol). Variants TSPEAR I419fs*150 and PAX9 Q145* could not be assessed for 

stability due to their truncating nature. 

3.10 Structural and Functional Analysis of Variants 

The tertiary structure analysis showed stability in the case of non-synonymous variants. 

However, for TSPEAR, the structural comparison of compound heterozygous variants with 

distance matrix plot, as shown in Figure 9, revealed notable alterations. The secondary structure 

analysis (Figure 10) revealed structural alterations across the WNT10A, TSPEAR, and EDA 

genes due to specific mutations. In WNT10A, the novel variant p.A135S and the known variant 

p.V145M both showed changes in helices and strands compared to the wild-type, suggesting 

potential impacts on the protein's stability and function. For TSPEAR, the variant p.L219P and 

the frameshift mutation p.Ile419Lfs*150 indicated disruptions in transmembrane helices and 

signal peptides, which may affect protein localization and signaling. In EDA, the p.R156H 
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variant showed alterations in metal-binding and extracellular domains, pointing to possible 

functional changes. These structural differences highlight how mutations can affect protein 

conformation and biological activity. 

The protein disorder prediction (Figure 11) analysis showed differences between wild-type and 

mutant forms across the WNT10A, TSPEAR, and EDA genes. For WNT10A, both the known 

variant (p.V145M) and the novel variant (p.A135S) exhibited alterations in disordered regions. 

TSPEAR variants, including p.L219P and the frameshift mutation (p.Ile419Lfs*150), showed 

shifts in disorder profiles. In EDA, the p.R156H mutant displayed changes in disordered 

segments. 

The GO enrichment analysis of the variants (Figure 12-15), compared to the wild type, revealed 

changes in the functional roles of the affected proteins. Variants showed alterations in biological 

processes, molecular functions, and cellular components, indicating shifts in protein behavior 

and potential impacts on associated pathways. PTM analysis (Figure 16) revealed functional 

alterations in TSPEAR (p.I419F), compound heterozygous TSPEAR, WNT10A (p.A135S), 

PAX9 (p.Q145*), and EDA (p.R156H) variants. Subcellular localisation analysis (Figure 17) 

indicated that most variants exhibit similar localization patterns to the wild-type. However, 

TSPEAR variants displayed distinct shifts, suggesting potential impacts on functionality. 

Hydrophobicity changes (Supplementary Information1) among protein variants. WNT10A 

variants (p.A135S, p.V145M) have slight decreases compared to wild type. PAX9 p.Q145* 

displays increased hydrophobicity. TSPEAR variants (p.L219P, compound heterozygous) show 

variable changes. EDA p.R156H has a marked increase, suggesting altered structural properties. 

3.11 Molecular Simulation Dynamics Analysis 

The molecular dynamics simulations (Figure 18-22) conducted over a period of 10 ns revealed 

that the protein variants reached equilibrium, providing valuable insights into their structural 

stability and flexibility. RMSD showed the highest deviation in EDA_R156H (3.073 Å), while 

WNT10A_WT had the lowest (0.128 Å), indicating structural stability. RMSF was highest in 

EDA_R156H (1.106 Å) and TSPEAR_Compound_Hetero (0.675 Å), suggesting increased 

flexibility. SAS showed a significant increase in EDA_R156H (124.049 Å²), while WNT10A 

variants remained stable. H-bond counts were lower in EDA and TSPEAR variants, with 

TSPEAR_Compound_Hetero at 250.722 compared to TSPEAR_WT (421.84). Rg was highest 

for TSPEAR_Compound_Hetero (2.349 Å), indicating an expanded structure. The comparative 
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analysis of protein dynamics revealed distinct clustering of variants. Variants plotted close to 

each other on the PCA plot (Figure 22) indicated similar biophysical characteristics, while those 

positioned further apart suggested significant differences due to mutations. Notable insights from 

the PCA plot included the clustering of WNT10A wild-type and its variants (V145M, A135S), 

which indicated minimal changes in their biophysical properties. In contrast, TSPEAR variants, 

including TSPEAR_419fs150 and TSPEAR+ Compound Hetero, were distinctly separated from 

TSPEAR_WT, suggesting significant alterations in their profiles due to mutations. Additionally, 

the EDA_R156H and PAX9_WT variants displayed greater dispersion compared to their wild-

type counterparts, indicating potential structural or functional changes resulting from the 

mutations. The overall wider spread of points across the plot highlighted the diversity of the 

variants, with isolated points, such as EDA_R156H, likely indicating substantial changes in 

structure or dynamics. Matplotlib, providing a clear representation of the dynamic properties of 

the simulated variants (Figure 22). 

4 Discussion 

This study provides an in-depth genetic analysis of congenital tooth agenesis (CTA) by using 

whole-exome sequencing (WES) and integrating omics data to reveal key genetic variants and 

their functional impacts. The results identify both known pathogenic variants and novel variants 

of uncertain significance (VUS), contributing valuable insights into the molecular mechanisms 

underlying CTA. Significant genetic diversity was observed, with variants identified in key CTA 

candidate genes, including WNT10A, EDA, PAX9, and TSPEAR, among others. This diversity 

highlights the heterogeneity and complex inheritance patterns characteristic of this condition. 

Our approach emphasizes the value of WES as a diagnostic and research tool for rare congenital 

disorders and highlights the functional consequences of specific gene alterations on signaling 

pathways critical for tooth development. 

The WES analysis identified key genetic variants linked to CTA, especially in WNT10A, EDA, 

PAX9, and TSPEAR. This study highlights both known pathogenic and novel variants of 

uncertain significance (VUS), reflecting the genetic diversity and complex inheritance patterns 

involved in CTA. Using variant analysis tools and databases like OMIM, EXAC, and gnomAD, 

the pathogenicity of these variants was consistently supported, providing valuable insights into 

CTA's genetic basis.   
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In WNT10A, a homozygous V145M (c.433G>A) variant, classified as likely pathogenic, 

underscores the critical role of WNT signaling in tooth development. WNT10A has previously 

been associated with several ectodermal dysplasia syndromes that manifest with tooth agenesis, 

highlighting its influence on ectodermal organogenesis (Bohring et al., 2009). This autosomal 

recessive (AR) variant aligns with previous studies indicating that WNT10A homozygous 

mutations often lead to more severe phenotypes, such as oligodontia and hypodontia (van den 

Boogaard et al., 2012). Additionally, the heterozygous novel variant A135S (c.403G>T), 

classified as a VUS with autosomal dominant (AD) inheritance, introduces a potential new 

dimension to the inheritance pattern of WNT10A-related agenesis. The presence of this variant as 

a VUS suggests possible gene-environment interactions or oligogenic contributions that may 

modify its penetrance and expressivity in CTA phenotypes. 

The EDA gene variant R156H (c.467G>A), found in a homozygous form and linked to X-linked 

recessive (XLR) inheritance, is classified as likely pathogenic and highlights the role of 

ectodysplasin A signaling in ectodermal tissue development. Mutations in EDA are well-

documented in ectodermal dysplasias, often affecting multiple ectodermal structures, including 

teeth (Cardoso et al., 2021). This variant’s association with tooth agenesis further validates the 

role of EDA in CTA, with consistent damaging predictions across SIFT, Polyphen-2, and 

MutationTaster2 indicating a probable disruptive effect on EDA signaling. Since EDA mutations 

typically follow XLR inheritance, this variant could contribute to CTA, particularly in male 

patients who are hemizygous for the mutation. 

The PAX9 gene, which encodes a transcription factor crucial for tooth development, also 

exhibited two variants. A stop-gain mutation, Q145* (c.433C>T), classified as pathogenic with 

AR inheritance, is consistent with prior findings that pathogenic PAX9 mutations contribute to 

non-syndromic oligodontia (Bonczek et al., 2017). Additionally, a novel VUS (c.-31C>A), 

associated with AD inheritance, further complicates the genetic picture in CTA. The AD VUS 

may suggest a less severe or subclinical phenotype, indicating that not all PAX9 mutations 

manifest with complete penetrance in CTA. Such variants emphasize the importance of 

considering diverse inheritance models when evaluating CTA's genetic etiology, as heterozygous 

variants in PAX9 may also impact dental development in a dose-sensitive manner. 

The TSPEAR gene cause both Syndromic and non-Syndromic CTA(Du et al., 2018)(Peled et al., 

2016). The identification of heterozygous variants in the TSPEAR gene in both affected siblings, 

with one variant inherited from an unaffected mother, raises critical questions about the gene's 
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role in disease pathology. TSPEAR is associated with developmental processes, and 

haploinsufficiency has been linked to phenotypic manifestations in affected individuals. The 

presence of two variants—L219P (c.656T>C) and a frameshift mutation I419Lfs150 

(c.1255delA)—suggests that compound heterozygosity may contribute to the clinical phenotype. 

The second variant may be a de novo mutation or be inherited from the father, whereas the first 

variant is transmitted from the mother. Because the I419Lfs150 frameshift mutation results in a 

shortened protein, it may alter its function and impact ectodermal structures, which is important 

for diseases like tooth agenesis. The relevance of assessing both hereditary and de novo 

mutations in genetic evaluations is highlighted by the possibility that both variations, although 

being categorized as variants of unknown significance (VUS), may jointly contribute to the 

phenotype. 

In order to clarify these variations' contributions to CTA and improve our knowledge of the 

genetic foundation of this disorder, more functional research is required to determine how these 

variants affect TSPEAR activity and their function in dental epithelial signaling. Further 

functional validation is necessary to ascertain if the defective TSPEAR protein affects tooth 

epithelial signaling, since the compound heterozygous presentation implies that both alleles 

contribute to the phenotype. 

All identified variants were assessed across predictive tools, including SIFT, Polyphen-2, 

MutationTaster2, and CADD3 Phred scores, all of which indicated damaging effects for 

pathogenic variants in WNT10A, EDA, PAX9, and TSPEAR. This consistent pathogenicity 

prediction across tools and databases strengthens the evidence that these variants likely 

contribute to CTA. The use of multiple databases, such as OMIM, EXAC, and gnomAD, 

allowed us to cross-reference allele frequencies and variant classifications, enhancing the 

robustness of our analysis. Specifically, the presence of these variants in disease-associated 

databases and their classification as likely damaging through computational models underscores 

the relevance of these candidate genes in CTA pathogenesis. 

The RT-PCR analysis reveals that variants in EDA and WNT10A significantly reduce the 

expression levels of these genes in CTA samples. Specifically, EDA expression showed marked 

downregulation, with ΔCT values reflecting substantial decreases relative to the internal control 

(p < 0.0001). Similarly, WNT10A expression was also notably diminished in samples carrying 

the variants (p < 0.001), suggesting a direct impact of these mutations on WNT and EDA 

signaling pathways. This downregulation supports the hypothesis that impaired WNT and EDA 
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signaling contributes to tooth agenesis by disrupting essential pathways in ectodermal tissue 

development. Prior studies emphasize the roles of EDA and WNT10A in regulating ectodermal 

differentiation, further validating their association with phenotypes seen in CTA (Bohring et al., 

2009)(Cardoso et al., 2021). 

This WES gene panel analysis has identified a curated set of 709 genes with potential relevance 

to congenital CTA, providing critical insights into the genetic underpinnings of this condition. 

By filtering variants with a minor allele frequency (MAF) threshold of ≤20% and comparing 

patient-specific variants against controls, the study narrowed down candidate genes that may 

influence CTA. The final gene panel includes both rare variants of uncertain significance (VUS) 

and benign variants, offering a comprehensive view of both potential pathogenic contributors 

and common polymorphisms in CTA. 

Among the 21 genes commonly present in all patient samples, variants in TM4SF20, LCORL, 

OR4F21, TNS2, VWA8, and MYH6 were identified. These genes contain both synonymous and 

non-synonymous variants that span benign and VUS classifications. Notably, OR4F21 exhibited 

two novel VUS (K310R, F44L), indicating possible regulatory functions yet to be fully 

understood. The observed variation in LCORL (L1734P, P1709R), a gene previously associated 

with growth disorders and Alzheimer’s, suggests it may play a broader role in developmental 

pathways relevant to CTA (Scelsi et al., 2018)(Lin et al., 2017). Similarly, TNS2 is involved in 

kidney diseases and cancer (Ashraf et al., 2018)(Cheng et al., 2018), while VWA8 variants are 

implicated in kidney diseases, cleft lip and palate, cancer, and autism, suggesting cross-system 

genetic influences that could indirectly impact tooth development. (Aylward et al., 2016)(Anney 

et al., 2010)(Guo et al., 2023). 

The identified variants across genes like TM4SF20 (autism and Alzheimer’s) (Krgovic et al., 

2022)(Floudas et al., 2014)(Laskowski et al., 2018), MYH6 (CHD) (Granados-Riveron et al., 

2010), and KNL1 (microcephaly, Cancer) (Genin et al., 2012)(He et al., 2023) highlight potential 

genetic contributors to systemic or developmental abnormalities, emphasizing the pleiotropic 

nature of CTA. The presence of two consistently observed variants, OR4F21 (K310R) and 

MRTFB (A135), highlights genetic diversity across the six CTA cohort. Notably, the MRTFB 

variant has been associated with autism and CHD (Holt et al., 2010), supporting its relevance in 

neurodevelopmental and cardiovascular disorders. In contrast, OR4F21 (K310R) has not yet 

been linked to any specific disease, suggesting it may represent a unique, potentially VUS 

variant within this cohort. Further investigation could clarify OR4F21's role, if any, in 
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developmental anomalies or other conditions. These findings highlight the importance of 

exploring shared genetic factors across these conditions, which may contribute to the 

comorbidity and varied clinical presentations observed in patients. Pathway enrichment analysis 

of the WES panel demonstrated significant roles in DNA damage response, cell cycle regulation, 

and apoptotic signaling pathways, all critical to cellular stability and development. The 

involvement of biological processes like DNA replication and repair aligns with the rapid cell 

division and differentiation required during early tooth bud formation. Additionally, enriched 

cellular components, including mitochondrial complexes and cell junctions, imply a substantial 

role for these genes in energy metabolism, cell communication, and genomic stability—all 

essential for normal tooth development (Sui et al., 2023)(Nijakowski et al., 2023). The R158Q 

variant in the LOX  is classified as benign, with a frequency of 17.02%, suggesting evolutionary 

neutrality. This c.473G>A nucleotide change leads to a non-synonymous coding mutation that 

does not impair LOX function. As a top 10 hub gene, LOX plays a critical role in collagen and 

elastin cross-linking, maintaining extracellular matrix stability. Although benign, the variant’s 

presence in three patient samples, highlights its relevance and possible involvement in pathways 

associated with cancer, diabetes, and heart conditions. Further studies could explore any subtle 

phenotypic effects associated with its prevalence. 

PPI network analysis revealed a well-connected structure with 470 nodes and 1211 interactions, 

including 11 network modules and key hub genes such as TNF, TP53, STAT3, and CXCL12. The 

clustering of developmental genes within the network suggests their relevance in tooth 

morphogenesis, with central genes like TP53 and STAT3 indicating their involvement in cellular 

proliferation and apoptosis, both critical to the formation and patterning of teeth (Romano et al., 

2012)(Yamashiro et al., 2022). The network’s connectivity metrics, with an average of 5.153 

neighbors per node and a clustering coefficient of 0.126, underscore the strong interactions 

between these candidate genes, emphasizing their potential coordinated role in CTA 

pathogenesis. 

The multi-omics integration analysis, combining data from the WES panel and GSE56486 

datasets, highlights several shared genes and pathways potentially involved in CTA. By 

identifying gene overlaps across WES Panel, GSE56486_UP, and GSE56486_Down datasets, 

this approach underscores both unique and shared molecular signatures in CTA. The integration 

revealed 18 common genes between WES and upregulated GSE56486 genes, and 15 between 

WES and downregulated GSE56486 genes, suggesting functional or regulatory relationships that 

may influence dental development. 
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Pathway enrichment of upregulated genes identified associations with NOD-like receptor 

signaling, steroid biosynthesis, and cytoskeletal metabolism. These pathways have well-

established roles in immune response regulation, cellular signaling, and structural stability, 

suggesting that dysregulation could impact the ectodermal tissues involved in tooth formation 

(Lopez-Pajares et al., 2013). Conversely, downregulated genes were linked to pathways like 

endocytosis, bacterial invasion of epithelial cells, and fatty acid degradation, hinting at 

compromised metabolic activities that could indirectly influence cellular processes essential for 

tooth morphogenesis. 

The functional analysis further emphasized that upregulated genes are primarily associated with 

binding activities, enzymatic functions, and extracellular matrix formation, which are essential 

for tissue adhesion and structural integrity during tooth development (Nowwarote et al., 2022). 

Downregulated genes, meanwhile, are involved in oxidoreductase activities, cytoskeletal 

binding, and ion transport—processes critical for cellular organization and signaling. Notably, 

downregulated genes' involvement in cell junctions and cytoskeleton components may indicate 

disrupted cellular cohesion or communication in CTA, potentially affecting morphogenesis and 

cellular architecture. 

Among the 33 differentially expressed genes (DEGs), notable variants were identified. ENAH, 

which displayed a benign deletion variant (ERQERLD217D) in multiple samples, is known for 

its role in actin dynamics and cell motility, which are crucial during morphogenesis (Hwang et 

al., 2022). Additionally, LOX (R158Q), with a benign non-synonymous variant, is involved in 

extracellular matrix stabilization, further supporting the role of structural integrity in CTA. 

Several genes, including IRF5, CEL, and ABTB2, presented VUS, adding potential regulatory or 

structural effects that could contribute to variability in phenotypes. Moreover, benign and VUS 

variants in genes like RNF175, TGFB1, and PRKCB—which play roles in immune signaling and 

tissue remodeling—suggest genetic factors that may influence disease progression and severity. 

The mutaRNA analysis reveals significant variations in the structural impacts of single 

nucleotide changes in RNA snippets of the examined genes. Utilizing remuRNA's computed 

relative entropy scores (H(wt:mu)), we assess how specific SNPs perturb local RNA structures, 

with higher scores indicating greater alterations. The WNT10A c.403G>T variant stands out with 

a relative entropy score of 3.409, suggesting substantial structural changes, while EDA 

c.467G>A (2.248) and TSPEAR c.656T>C (1.392) also indicate notable impacts. In contrast, 

WNT10A c.433G>A shows a lower score of 0.355, indicating a lesser effect on RNA structure. 
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Base pairing probabilities and accessibility profiles further elucidate these structural 

consequences (Figures 1, 2, 3). The pronounced alterations in base pairing, particularly for 

WNT10A c.403G>T and TSPEAR c.656T>C, suggest disruptions in RNA folding that may affect 

function and stability. Although WNT10A c.433G>A and EDA c.467G>A exhibit only minor 

structural changes, even slight variations can influence RNA-protein interactions, which are 

crucial for genes like WNT10A, involved in development and tissue homeostasis. 

Overall, these findings highlight the necessity of considering RNA accessibility alongside 

structural features to fully understand the functional consequences of genetic variants. This 

research underscores the importance of further experimental validation and functional assays to 

clarify the precise effects of these variants on RNA structure and function, providing insights 

into the molecular mechanisms related to disease pathogenesis or specific cellular phenotypes 

(Salari et al., 2013). 

The evolutionary conservation and protein structure analyses reveal critical insights into how 

specific gene variants impact protein stability and function, underscoring their potential roles in 

CTA. The conservation analysis highlighted highly conserved variants, such as TSPEAR L219P, 

WNT10A A135S, WNT10A V145M, and EDA R156H, with conservation scores of 9 out of 9. 

This strong conservation suggests that these amino acids play essential roles in protein function, 

where mutations are likely to have significant biological consequences. The slight decrease in 

conservation for TSPEAR L219P (score of 8) still indicates considerable functional importance, 

while the truncating mutations in PAX9 Q145 and TSPEAR I419fs150 remove highly conserved 

regions, further supporting their likely disruptive impact. 

The structural stability analysis across multiple predictive tools identified TSPEAR L219P, 

WNT10A A135S, WNT10A V145M, and EDA R156H as predominantly destabilizing, suggesting 

a decrease in protein stability. These destabilizing effects, indicated by negative ΔΔG values, 

imply structural changes that could impair protein function, especially in TSPEAR L219P with 

ΔΔG values as low as -5.93 kcal/mol. For WNT10A A135S, a consistent destabilization was 

observed across models, particularly in DUET (-2.606 kcal/mol). Mixed predictions for 

WNT10A V145M suggest that some aspects of the protein structure may tolerate the mutation, 

although overall stability is likely reduced. In contrast, EDA R156H shows a modest 

destabilizing trend with ΔΔG of -1.20 kcal/mol, hinting at a minor impact on stability that may 

still influence biological function. Truncating variants like PAX9 Q145 and TSPEAR I419fs150 
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were not evaluated for stability due to their nature but are presumed to have severe functional 

impacts due to significant protein loss. 

The tertiary structure analysis of these gene variants revealed marked structural changes in 

proteins with non-synonymous variants. For instance, WNT10A variants (A135S and V145M) 

demonstrated alterations in helices and strands, potentially affecting protein folding and 

function. The structural analysis of TSPEAR variants (L219P and I419fs*150) identified 

disruptions in transmembrane helices and signal peptides, likely influencing protein localization 

and cell signaling capabilities. These structural disturbances in TSPEAR could impair its 

function in ectodermal tissue development, relevant to CTA pathogenesis. Additionally, EDA’s 

R156H variant was associated with altered metal-binding and extracellular domains, suggesting 

potential changes in the protein’s extracellular signaling function, critical for ectodermal organ 

development(Bohring et al., 2009). 

Protein disorder predictions further support the destabilizing nature of these variants, with 

disorder profile changes in the WNT10A, TSPEAR, and EDA genes indicating altered flexibility 

in mutant forms. Both WNT10A variants (A135S, V145M) showed shifts in disordered regions, 

which could impact protein stability and interactions. The frameshift in TSPEAR (I419fs*150) 

notably shifts disorder profiles, while the EDA R156H variant exhibits altered disorder 

segments, potentially modifying extracellular interactions in pathways crucial for tooth 

development. The post-translational modifications (PTMs) observed in proteins linked to tooth 

development, including WNT10A, TSPEAR, EDA, and PAX9, reveal diverse impacts on 

cellular functions such as protein stability, signaling, and chromosome maintenance (Audagnotto 

& Dal Peraro, 2017). These mutations affect critical pathways involved in cellular homeostasis 

and developmental processes essential for tooth formation. The distinct roles of each variant 

underscore how specific PTM changes can contribute to dental abnormalities, highlighting 

potential targets for therapeutic intervention in congenital tooth defects. This analysis enhances 

our understanding of PTM-driven mechanisms in tooth morphogenesis and could inform future 

strategies in dental tissue engineering. 

GO enrichment analysis of these variants relative to wild-type forms showed alterations in 

biological processes, molecular functions, and cellular components, suggesting that these 

variants influence protein roles in critical pathways. WNT10A variants displayed reduced 

hydrophobicity, while PAX9 Q145 exhibited increased hydrophobicity, indicating altered 

structural properties that may affect protein folding and stability. TSPEAR compound 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 27, 2024. ; https://doi.org/10.1101/2024.11.26.24317461doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.26.24317461
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

heterozygous variants showed variable changes in hydrophobicity, while EDA R156H 

demonstrated a notable increase, which could alter protein conformation and interactions within 

the cellular environment. 

The molecular dynamics (MD) simulations provide a detailed assessment of the structural 

stability, flexibility, and biophysical properties of protein variants linked to CTA. Over a 10 ns 

simulation period, proteins reached equilibrium, enabling an analysis of their structural 

deviations and interactions. Root Mean Square Deviation (RMSD) values indicate that the 

EDA_R156H variant experiences the highest deviation (3.073 Å), suggesting considerable 

structural instability. In contrast, WNT10A_WT remains highly stable, with an RMSD of just 

0.128 Å, reflecting the stability of this protein’s wild-type conformation. RMSF values reveal 

that EDA_R156H and TSPEAR_Compound_Hetero display the highest flexibility, at 1.106 Å 

and 0.675 Å, respectively, potentially disrupting specific interactions or affecting protein 

function critical to signaling pathways in tooth formation. The SAS values show that 

EDA_R156H has a markedly increased surface area (124.049 Å²), which could indicate partial 

unfolding, thereby altering interactions with other proteins or ligands. Hydrogen bond counts are 

notably lower in EDA and TSPEAR variants; TSPEAR_Compound_Hetero, for example, has 

only 250.722 H-bonds compared to TSPEAR_WT with 421.84, suggesting reduced intra-

molecular stability due to mutations. The Radius of Gyration (Rg) data reveals that 

TSPEAR_Compound_Hetero has the highest Rg value (2.349 Å), indicating an expanded 

structure that may impact the protein’s stability and localization. Structural expansion, especially 

in proteins with signaling functions, could affect their proper localization and interactions within 

ectodermal tissues relevant to dental development. PCA results offer a comparative view of the 

biophysical characteristics of these variants. WNT10A wild-type and its variants (V145M, 

A135S) cluster closely, suggesting minimal structural alteration. Conversely, TSPEAR variants, 

including TSPEAR_419fs150 and TSPEAR+Compound Hetero, are distinctly separated from 

TSPEAR_WT, highlighting significant structural changes. Notably, the EDA_R156H variant 

showed substantial dispersion from its wild type, reinforcing its likely structural or functional 

impact in CTA. 

 

5. Conclusion 

This study reveals key genetic variants associated with CTA through WES and multi-omics 

integration. It significantly enhances our understanding of the genetic underpinnings of CTA by 
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uncovering both novel and established variants in crucial genes involved in tooth development. 

The integrative multi-omics analysis reveals the intricate nature of CTA and underscores the 

power of these approaches in dissecting its complex genetic landscape. Key genes such as 

WNT10A, EDA, PAX9, and TSPEAR have emerged as central contributors to the pathogenesis of 

tooth agenesis, offering valuable insights for future functional investigations. Disruption in 

critical signaling pathways, including WNT and EDA, plays a significant role in tooth 

development, as revealed by functional analyses. Additionally, in silico functional and structural 

predictions provide further support for their involvement in the underlying mechanisms of tooth 

agenesis, paving the way for deeper exploration in future research. The identified genetic 

variants also show associations with a range of systemic conditions, including AZ, ALS, autism, 

CHD, nephropathy, cleft lip palate, COVID-19, and cancer. For instance, TM4SF20 is linked to 

AZ and autism, while LCORL is implicated in growth disorders and AZ. TNS2 is associated with 

kidney diseases, and MYH6 with CHD. Additionally, VWA8 is connected to both COVID-19 and 

autism, and MRTFB is involved in both autism and CHD. These findings suggest potential 

shared genetic pathways between tooth agenesis and various systemic conditions. Moving 

forward, further research is essential to validate the identified VUS and explore their functional 

roles in developmental signaling pathways, which could ultimately inform therapeutic strategies 

for CTA and related disorders. 
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Table1: Screening of Known and Novel Variations in Candidate Genes in CTA Patients. 

 

Gene  Location Variation Zygosity Classification Disease  Inheritance Known/Novel 
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Note: VUS: Variant of Uncertain Significance, AD: Autosomal Dominant, AR: Autosomal 
Recessive.  

Table2. Analysis of Gene Variants Across Databases and Prediction Tools.  

 

Variants Database reports Predictions (scores) 

1000 
genome
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EXA
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gnomAD Turkish 
Variome 

OMIM ClinVar SIFT Polyphen-2 Mutatio
nTaster
2 

CADD3 
Phred 
score 

TSPEAR: 
L219P;c.6
56T>C 

NA NA NA NA 603140 NA NA NA NA 26 

TSPEAR: 
I419fs*150
: 

c.1255delA 

NA <0.01 <0.01 NA 603140 NA NA NA D NA 

PAX9: 
Q145*;c.4
33C>T 

NA NA NA NA 128400 NA D D D D 

WNT10A 
:A135S; 
c.403G>T 

NA NA NA NA 608522 NA D D D 24.4 

WNT10A 
(V145M) 
c.433G>A 

 

NA 0.0025 0.0073 0.0446% 606268 
Likely 

Pathogenic 
D D D 25.1 

EDA: 
p.R156H; 
c.467G>A 
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Notes: This table summarizes variant details, including relevant database reports and 
pathogenicity predictions. "NA" signifies data unavailability. The prediction scores indicate 
potential impacts on protein function: "D" denotes a damaging prediction by SIFT, PolyPhen-2, 
and MutationTaster2, while the CADD3 Phred score highlights variants with higher pathogenic 
potential, generally above 20. 
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Table 3: Analysis of genes identified across all six tooth agenesis patients, highlighting the 

presence of different variants within each gene. 
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M193T Benign 9.89% c.578T>C NON_SYNONYMOUS_

CODING 

DEN20.1

, 

DEN24.1 

 

Note: This table presents gene variants, their functions, and disease associations across samples. 
"VUS" (variant of uncertain significance) requires further study for clinical impact. "NOVEL" 
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denotes newly observed variants. "Benign" and "NA" Not Available. Highlighted showed 
present in all samples. To maintain confidentiality and anonymity, each sample was assigned a 
unique study code. 

 

Table 4: Comprehensive Analysis of Variants in 33 DEGs Common to the WES Panel and Top 

10 Hub Genes. 

Gene Function/Dise
ases 

AA 
Change 

ACMG MAF/N

OVEL 

CTA_DE
Gs 

HGVSC Effect Samples 

ENAH Actin 
polymerization 
regulator 
involved in 
cell motility 
and 
morphology/C
ancer, 
Nephropathy. 

ERQER
LD217D 

Benign 9.59% UP 
regulated 

c.651_668
delGCGG
CAGGAA
CGCCTG
GA 

CODON_CHA
NGE_PLUS_C
ODON_DELET
ION 

DEN1, 
DEN20.1 

LOX Lysyl oxidase; 
catalyzes the 
cross-linking 
of collagen 
and elastin, 
crucial for 
extracellular 
matrix 
stability/Cance
r, Diabetic, 
Heart, ALS 

R158Q Benign 17.02% NA (Top 
10 hub 
gene) 

c.473G>A NON_SYNON
YMOUS_CODI
NG 

DEN1, 
DEN10, 
DEN20.1 

NR3C1 Glucocorticoid 
receptor; 
regulates genes 
controlling 
development, 
metabolism, 
and immune 
response/Diab
etes, 
Nephrotic, 
Chrohn 
Diseases, 
Heart, 
Schizophrenia. 

N766 Benign 15.02% UP 
regulated 

c.2298T>C SYNONYMOU
S_CODING 

DEN1 
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IRF5 Interferon 
regulatory 
factor; 
involved in 
innate immune 
response and 
regulation of 
inflammatory 
cytokines/Auto
immune, 
Bowel, 
Cancer, 
Kidney 
Diseases. 

I103V VUS <0.01% Down 
regulated 

c.307A>G NON_SYNON
YMOUS_CODI
NG 

DEN1 

CEL Carboxyl ester 
lipase; 
important in 
the digestion 
and absorption 
of dietary 
fats./Diabetic, 
Cancer, 
Kidney 

S654A VUS Novel Down 
regulated 

c.1960T>
G 

NON_SYNON
YMOUS_CODI
NG 

DEN1, 
DEN20.1 

ABTB2 Ankyrin repeat 
and BTB 
(POZ) domain-
containing 
protein; 
associated with 
cellular 
signaling 
pathways/Canc
er. 

H250Q VUS 7.92% Down 
regulated 

c.750C>G NON_SYNON
YMOUS_CODI
NG 

DEN1 

IGF1 Insulin-like 
growth factor 
1; plays a key 
role in growth 
and 
development, 
especially in 
muscle and 
bone/Cancer, 
Schizophrenia, 
Diabetes, 
Miscarriage. 

 Benign 9% NA (Top 
10 hub 
gene) 

c.*6433G>
C 

UTR_3_PRIME DEN1, 
DEN10 
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TIMP2 Tissue 
inhibitor of 
metalloprotein
ase 2; inhibits 
matrix 
metalloprotein
ases (MMPs), 
which degrade 
the 
extracellular 
matrix/Cancer. 

S101 Benign 12.54% NA (Top 
10 hub 
gene) 

c.303G>A SYNONYMOU
S_CODING 

DEN1, 
DEN10, 
DEN20.1 

RNF175 E3 ubiquitin-
protein ligase; 
involved in 
protein 
degradation 
through 
ubiquitination/
Cancer. 

L307F Benign 18.5% UP 
regulated 

c.921G>C NON_SYNON
YMOUS_CODI
NG 

DEN20.1, 
DEN24.1, 
DEN12, 
DEN23.1 

TGFB1 Transforming 
growth factor-
beta 1; 
regulates cell 
proliferation, 
differentiation, 
and 
development, 
as well as 
immune 
responses/ 
Kidney, 
Osteosclerosis, 
Heart, Cancer. 

R25P Benign 7.11% NA (Top 
10 hub 
gene) 

c.74G>C NON_SYNON
YMOUS_CODI
NG 

DEN12 

PRKCB Protein kinase 
C beta; plays a 
role in various 
cellular 
processes 
including 
proliferation, 
differentiation, 
and apoptosis/ 
Diabetes, 
Cancer. 

V139 VUS <0.01% UP 
regulated 

c.417G>A SYNONYMOU
S_CODING 

DEN10 
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STAT3 Signal 
transducer and 
activator of 
transcription 3; 
involved in 
cell growth 
and apoptosis 
regulation, 
playing a key 
role in 
cytokine 
signalling/Infla
mmatory, 
Autoimmune 
Diseases. 

 Benign 7.5% NA (Top 
10 hub 
gene) 

c.*893dup
A 

UTR_3_PRIME DEN12 

CXCL12 Chemokine 
(C-X-C motif) 
ligand 12; 
mediates 
chemotaxis, 
especially 
involved in 
immune cell 
migration and 
development/C
ancer, 
Diabetes. 

 NA NA UP 
regulated 

c.*519G>
A 

UTR_3_PRIME DEN1, 
DEN10, 
DEN12 

 

Note: This table includes gene variants, functions, disease associations, and regulatory status 
across samples. "Benign" indicates non-pathogenicity, while "VUS" (variant of uncertain 
significance) may require further research. To maintain confidentiality and anonymity, each 
sample was assigned a unique study code. 
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 Table 5: Protein Structure Stability Analysis of Gene Variants 

 

Note: Negative ΔΔG values indicate destabilizing effects, potentially impacting protein 
structure. Most tools predict destabilization for variants like TSPEAR: L219P and WNT10A: 
A135S, with WNT10A: V145M showing mixed results. "NA" denotes unavailable data. 

Variants mCSM 
Predicted 
Stability 
Change 
(ΔΔG) 

SDM 
Predicted 
Stability 
Change 
(ΔΔG) 

DUET Predicte
d Stability 
Change (ΔΔG) 

CUPSAT I-Mutant MUpro 

TSPEAR: L219P -1.284 
kcal/mol 
(Destabilizing
) 

-4.31 kcal/mol 
(Destabilizing
) 

-1.959 kcal/mol 
(Destabilizing) 

(Destabilizing
) -5.93  
kcal/mol 

-1.38  
kcal/mol  
Destabilisin
g 

-1.8029236 
(DECREAS
E stability) 

TSPEAR:I419fs*15
0 

NA NA NA NA NA NA 

PAX9: Q145* NA NA NA NA NA NA 

WNT10A :A135S -2.386 
kcal/mol 
(Destabilizing
) 

-2.57 kcal/mol 
(Destabilizing
) 

-2.606 kcal/mol 
(Destabilizing) 

Destabilising -
2.92  kcal/mol 

-0.07  
kcal/mol  
Destabilisin
g 

-0.57849674  
kcal/mol  
(DECREAS
E stability) 

WNT10A: V145M -1.387 
kcal/mol 
(Destabilizing
) 

-0.63 kcal/mol 
(Destabilizing
) 

-1.454 kcal/mol 
(Destabilizing) 

Stabilising 
0.98  kcal/mol 

-1.31  
kcal/mol  
Destabilisin
g 

-0.69678663  
kcal/mol  
(DECREAS
E stability) 

  EDA: R156H  -0.631 
kcal/mol 
(Destabilizing
) 

0.17 kcal/mol 
(Stabilizing) 

-0.519 kcal/mol 
(Destabilizing) 

Destabilising  
-0.83 

-1.20  
kcal/mol  
Destabilisin
g 

-1.5988524 
(DECREAS
E stability) 
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Figure1: Clinical and Genetic Analysis of Patients with Tooth Agenesis 

Panels (A-D) present clinical and genetic data from patients with tooth agenesis, showing key 
variants identified in EDA, WNT10A, TSPEAR, and PAX9 genes: (A) DEN10: Pedigree with an 
EDA variant (p.I156H; c.467G>A) and OPG showing dental status. (B) DEN24: WNT10A 
variant (p.A135S; c.403G>T) with OPG and FDI dental mapping. (C) DEN20: TSPEAR variant 
(p.I219P; c.656T>C) in two family members, with corresponding OPGs. (D) DEN23: PAX9 
variant (p.Gln45Ter; c.433C>T) with OPGs for two affected individuals. Each panel includes the 
patient's pedigree, OPG, and FDI tooth chart to illustrate genotype-phenotype correlations. To 
maintain confidentiality and anonymity, each sample was assigned a unique study code. Readers 
are encouraged to contact the corresponding author for access to patients opg. 

ey 
an 
A 
nt 
9 

he 
o 
rs 
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Figure2: Validation of genetic variants and their impact on EDA and WNT signaling 
through gene expression. 

(A–C) Sanger sequencing chromatograms showing validated variants in the genes WNT10A 
(p.A135S; c.403G>T) (A), TSPEAR (p.L219P; c.656T>C) (B), and TSPEAR (p.Ile419fs*150; 
c.1255_delA) (C). The red arrows indicate the locations of nucleotide changes, while green 
arrows show nucleotides that remain unchanged. (D–F) Integrative Genomics Viewer (IGV) 
screenshots showing the presence of these variants in the sequencing data. Panel (D) shows the 
EDA variant (R156H; c.467G>A), (E) shows the WNT10A variant (A135S; c.403G>T), and (F) 
shows the TSPEAR frameshift mutation (p.Ile419fs*150; c.1255_delA). (G–H) RT-PCR analysis 
of EDA and WNT10A gene expression levels. (G) Relative expression levels of EDA in samples 
carrying the variant compared to the internal control, showing a significant reduction in 
expression. (H) Relative expression levels of WNT10A in samples with the variant, also showing 
a significant decrease in expression. ΔCT values are shown for each sample, with statistical 
significance indicated as follows: ****p < 0.0001, ***p < 0.001. These findings indicate that the 
identified variants affect EDA and WNT signaling pathways, potentially contributing to the 
observed phenotypes. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 27, 2024. ; https://doi.org/10.1101/2024.11.26.24317461doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.26.24317461
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

Figure3: Enrichment analysis of the WES gene panel. The figure displays the results of 
enrichment analysis for the identified genes in terms of biological processes, cellular 
components, and molecular functions. The bars represent the enrichment score for each GO 
term, indicating the significance of the gene's involvement in the corresponding biological 
process, cellular component, or molecular function. The results highlight the potential roles of 
these genes in various cellular pathways and processes. 
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Figure 4: PPI network analysis of the WES gene panel. The figure represents the identified 
genes as nodes connected by edges, indicating protein-protein interactions. Genes involved in 
developmental processes are highlighted in yellow. The size of each node corresponds to its 
degree (number of connections), and the color represents its clustering coefficient. The top 20 
hub genes (genes with the highest number of connections) are listed in a separate table. Panel A: 
The network visualization, where nodes represent genes and edges represent protein-protein 
interactions. Panel B: Summary statistics of the network, including the number of nodes, edges, 
average degree, diameter, radius, characteristic path length, clustering coefficient, and network 
density. Panel C: A circular representation of the top 20 hub genes, with their ranks and node 
names listed. The color gradient indicates the degree of each hub gene. 
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Figure5: Venn Diagram, Heatmap, Pathway, and GO Enrichment Analysis of Common 
Elements Between WES Gene Panel and Differentially Expressed Genes (DEGs). Panel A: 
A Venn diagram illustrating the intersection between the WES gene panel and DEGs that are 
upregulated (GSE56486 UP) or downregulated (GSE56486 Down) within the dataset. The 
numbers in each segment denote the count of genes in each category. Accompanying this, a 
heatmap visualizes the common elements (CEs) shared between the WES gene panel and DEGs. 
Color intensity reflects the fold change, with shades of red indicating upregulation and shades of 
green indicating downregulation. Panel B: Pathway analysis of the DEGs, showcasing pathways 
enriched among the upregulated and downregulated genes. This highlights the pathways 
significantly affected by gene expression changes within the dataset. Panel C: Enrichment 
analysis of the common elements (CEs) between the WES gene panel and DEGs, showing 
results for three main Gene Ontology (GO) categories: Biological Processes (BP), Molecular 
Functions (MF), and Cellular Components (CC). Bars represent the enrichment score for each 
GO term, indicating the significance of the CEs in the relevant biological processes, molecular 
functions, or cellular components. This panel underscores the functional distinctions between 
upregulated and downregulated DEGs within the WES gene panel. 
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Figure 6: Analysis of RNA Structural Features. This figure presents analysis of RNA 

structural features for both wild type (WT) and mutant (MT) RNA sequences of each variant 

using mutaRNA tool. The mutated position is indicated by red dotted lines or mark. The first 

heat map like dot plots with the top-right and bottom-left panels provides a heatmap-like 

representation of base pairing probabilities in wild-type (p(WT)) and mutant (p(MT)) RNA 

sequences. The darker dots indicate higher probabilities of base pairing. The upper and lower 

circos plots visualize the base pair probabilities (p(WT) and p(MT)), with the sequence 

beginning from the 5′ end positioned at the bottom slight-left and extending clockwise until 

reaching the 3′ end. The variant of interest, located at position 21, is indicated by a red mark 
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positioned on the top of the mutant circular plot. Higher probabilities are represented by darker 

gray scales. The dot plot on the right of circos shows the differences in base pairing probabilities 

between the mutated and wild-type RNA Pr (bp in WT) – Pr (bp in mut)). In this, base pairs 

weakened by the mutation are shaded in blue, while regions exhibiting increased base pair 

probabilities in the mutant are highlighted in red. The accessibility profiles of WT and MT RNA 

sequences, in terms of unpaired probabilities, are depicted on the right. The blue line illustrates 

the variations in accessibility (WT-mut), where negative values indicate positions more prone to 

being unpaired in the mutant compared to the 

wild type (WT). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Comparative Visualization 

of Mutation Effects. The comparative 

circos plots in this figure aid in the easy 

identification and comparison of mutation effects. Right and left circus represent the increased 

base pairs and weakened base pairs probabilities between the nucleotides within the RNA 

sequence. Darker shades of gray indicate higher absolute changes. The variant position is 

marked by a red bar in the plot. 
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Figure 8: Conservation Analysis of Gene Variants Across WNT10A, PAX9, EDA, and 
TSPEAR 

The figure illustrates the conservation analysis of gene variants across four key genes: 
WNT10A, PAX9, EDA, and TSPEAR. The sequence alignment highlights regions of variability 
and conservation using a color-coded scheme. Highly conserved regions are marked in dark 
pink, indicating sequence stability and potential functional importance. Less conserved or 
variable regions are shown in shades of blue and teal, with lighter colors reflecting higher 
variability. Yellow segments indicate areas with insufficient data for reliable analysis. Red boxes 
outline specific regions containing variants of interest, emphasizing their positions within the 
protein sequences. This visual representation helps in understanding the evolutionary 
conservation of these variants, which is crucial for assessing their potential functional impacts 
and roles in related biological processes. 
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Figure 9: Comparative Analysis of TSPEAR Variants Through Matrix Plot and 3D Structural 
Evaluation Left Panel: Matrix plot comparing wild-type (WT) and mutant (compound 
heterozygous and L219P) variants of TSPEAR. Color intensity indicates the extent of structural 
alterations, with darker shades representing greater structural changes and lighter shades 
indicating minimal or no changes. Middle Panel: Local and global RMSD (Root Mean Square 
Deviation) values for the full-length protein, comparing structural deviations across wild-type 
and mutant variants. Right Panel: 3D structural representations of the TSPEAR variants, with 
color-coding to denote regions of significant structural differences. Wild-type regions are shown 
in green, while mutations are highlighted in red. These analyses underscore the impact of 
mutations on protein stability, flexibility, and interactions, offering insights into the potential 
functional consequences of these variants. 
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Figure 10: Secondary Structure Prediction of Variants in WNT10A, TSPEAR, and EDA 

The figure illustrates the secondary structure prediction of protein variants in the WNT10A, 
TSPEAR, and EDA genes, highlighting alterations caused by specific mutations. WNT10A 
Variants: Comparisons between wild-type (WILD), known variant (p.V145M), and novel 
variant (p.A135S). Structural elements like helices, strands, and metal-binding regions are 
shown, with changes indicating potential structural impact of the variants. TSPEAR Variants: 
Displays predicted structures for p.L219P, compound heterozygous mutations, and a frameshift 
mutation (p.Ile419Lfs*150). Variants are assessed for alterations in structural domains, 
including transmembrane helices and signal peptides. EDA Variants: Shows secondary 
structure predictions for the wild-type and p.R156H variant, highlighting potential alterations in 
metal-binding and extracellular domains. Color coding represents different structural features, 
such as strands, helices, and metal-binding regions, offering insight into how specific mutations 
might disrupt or alter protein structure and function.  
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Figure 11: Protein Disorder Prediction of Variants in WNT10A, TSPEAR, and EDA 

The figure presents the protein disorder prediction analysis for variants in the WNT10A, 
TSPEAR, and EDA genes, comparing structural changes between wild-type and mutant forms. 
WNT10A Variants: Disorder profiles for the wild-type, known variant (p.V145M), and novel 
variant (p.A135S) are depicted. Changes in disorder regions may suggest alterations in protein 
flexibility or functional sites. TSPEAR Variants: Disorder analysis includes p.L219P, 
compound heterozygous mutations, and frameshift mutation (p.Ile419Lfs*150). Variations in 
disordered regions highlight the potential impact on protein stability and interaction domains. 
EDA Variants: Displays predicted disorder patterns for wild-type and p.R156H mutant. 
Differences in disordered segments may affect protein functionality and binding capabilities. 
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Figure 12: GO enrichment analysis of WNT10A variants. The figure displays the GO 
enrichment results for three biological processes (BP), molecular functions (MF), and cellular 
components (CC) associated with WNT10A wild-type (WT), A135S, and V145M variants. The 
heatmap represents the enrichment score (y-axis) for each GO term (x-axis). The color intensity 
indicates the significance of the enrichment, with red representing higher significance and blue 
representing lower significance. The results highlight the functional differences among the 
WNT10A variants, particularly in terms of their involvement in signaling pathways, cell 
processes, and molecular functions. 
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Figure 13: Gene Ontology (GO) enrichment analysis of TSPEAR variants. The figure 
displays the GO enrichment results for three biological processes (BP), molecular functions 
(MF), and cellular components (CC) associated with TSPEAR wild-type (WT), L219P, 
I419f*150 variants, and their compound heterozygous state. The heatmap represents the 
enrichment score (y-axis) for each GO term (x-axis). The color intensity indicates the 
significance of the enrichment, with red representing higher significance and blue representing 
lower significance. The results highlight the functional differences among the TSPEAR variants, 
particularly in terms of their involvement in immune system processes, cell surface receptor 
signaling, and extracellular matrix organization. 
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Figure 14: GO enrichment analysis of PAX9 variants. The figure displays the GO enrichment 
results for three biological processes (BP), molecular functions (MF), and cellular components 
(CC) associated with PAX9 wild-type (WT) and Gln145* variant. The heatmap represents the 
enrichment score (y-axis) for each GO term (x-axis). The color intensity indicates the 
significance of the enrichment, with red representing higher significance and blue representing 
lower significance. The results highlight the functional differences between the PAX9 variants, 
particularly in terms of their involvement in gene expression regulation, transcription, and 
nuclear processes. 
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Figure 15: GO enrichment analysis of EDA variants. The figure displays the GO enrichment 
results for three biological processes (BP), molecular functions (MF), and cellular components 
(CC) associated with EDA wild-type (WT) and R156H variant. The heatmap represents the 
enrichment score (y-axis) for each GO term (x-axis). The color intensity indicates the 
significance of the enrichment, with red representing higher significance and blue representing 
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lower significance. The results highlight the functional differences between the EDA variants, 
particularly in terms of their involvement in cell signaling, receptor binding, and membrane 
components.  
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Figure 16: Post-Translational Modifications (PTMs) Enrichment Analysis of WNT10A, 
EDA, PAX9, and TSPEAR Variants. The figure illustrates the enrichment patterns of different 
PTMs (such as phosphorylation, ubiquitination, acetylation, etc.) associated with the wild-type 
(WT) and mutant forms of these genes. (A) Highlights the changes in PTMs observed in the 
variants and their potential functional impacts. (B) Shows the fluctuations in PTM levels, 
comparing the wild-type to the mutant variants, emphasizing variations in PTM profiles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: Subcellular localization analysis of WNT10A, EDA, PAX9, and TSPEAR 
variants. The figure depicts the predicted subcellular localization probabilities for each variant 
across various organelles (a-d) (peroxisome, Golgi apparatus, lysosome/vacuole, endoplasmic 
reticulum, plastid, mitochondrion, cell membrane, extracellular space, nucleus, and cytoplasm). 
(e) The PCA plot illustrates the clustering of protein variants based on cellular localization 
profiles. EDA wild-type and R156H variant cluster closely, indicating minimal changes in 
localization. PAX9 wild-type and Q145* variant show slight shifts, suggesting potential 
alterations. WNT10A wild-type and p.V145M variant cluster together, reflecting little change. 
TSPEAR variants, including the compound heterozygous and L219P, display distinct positions, 
indicating significant differences in cellular localization. Overall, most variants show similar 
localization patterns to wild-type, except for notable shifts in TSPEAR variants, which may 
affect functionality. 
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Figure 18: Molecular dynamics simulation analysis of WNT10A variants. The figure depicts 
the time evolution of various structural and dynamic properties for wild-type (WT) and mutant 
WNT10A proteins (V145M and A135S). A: Radius of gyration (Rg) over time. The graph 
shows the Rg values over time for WNT10A wild-type (WT), V145M, and A135S variants. The 
Rg values indicate the compactness of the protein structure, where consistent lower values 
suggest a more compact structure. WT (blue) shows relatively stable compactness, while 
variants exhibit fluctuations, with V145M (red) being less stable than A135S (green). B: Root-
mean-square deviation (RMSD) over time. This panel illustrates the RMSD of the protein 
backbone over time, reflecting structural stability. WT (blue) maintains lower RMSD, indicating 
higher stability, whereas V145M (red) shows increased deviation, suggesting structural 
alterations and reduced stability. A135S (green) remains moderately stable. C: Number of 
hydrogen bonds over time. The number of hydrogen bonds over time is shown for each variant. 
WT (blue) maintains a higher number of hydrogen bonds, suggesting more stable intramolecular 
interactions. The variants V145M (red) and A135S (green) show variations, with V145M 
forming fewer hydrogen bonds, potentially leading to decreased structural stability. D: Root-
mean-square fluctuation (RMSF) per residue. RMSF values across residues reveal regions of 
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high flexibility and fluctuation. WT (blue) shows lower fluctuations overall, indicating stable 
regions, while variants, especially V145M (red), show increased fluctuation at certain residues, 
pointing to local instability. E: SAS over time. The SAS values are plotted over time, where 
lower values indicate reduced exposure to the solvent. WT (blue) shows consistent lower SAS, 
suggesting a stable and compact structure. V145M (red) has a higher SAS, reflecting more 
exposure, while A135S (green) shows intermediate values. 

 

 

Figure 19: Molecular dynamics simulation analysis of TSPEAR variants. The figure depicts 
the time evolution of various structural and dynamic properties for wild-type (WT), 419fs150, 
and L219P variants of TSPEAR. (A) Radius of Gyration (Rg): This graph represents the Rg 
values for TSPEAR wild-type (WT), 419fs150, and Hetro_L219P variants over time, indicating 
the compactness of each protein structure. The WT (blue) shows a stable Rg, reflecting a 
consistent compact structure. The 419fs150 variant (red) displays slight fluctuations, while 
Hetro_L219P (green) shows more variability, suggesting a less compact and potentially more 
flexible structure. (B) Root Mean Square Deviation (RMSD): RMSD plots reveal structural 
stability across time. The WT (blue) maintains lower RMSD, indicating a stable structure 
throughout the simulation. The 419fs150 variant (red) shows moderate deviations, while 
Hetro_L219P (green) has higher RMSD values, suggesting increased structural instability and 
flexibility. (C) Number of Hydrogen Bonds: The panel shows the number of hydrogen bonds 
formed over time. The WT (blue) maintains a higher and consistent number of hydrogen bonds, 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 27, 2024. ; https://doi.org/10.1101/2024.11.26.24317461doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.26.24317461
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

suggesting strong intramolecular interactions. The 419fs150 variant (red) shows a similar pattern 
but with slight reductions, while Hetro_L219P (green) displays fewer hydrogen bonds, 
indicating weaker structural cohesion. (D) Root Mean Square Fluctuation (RMSF): RMSF 
values are displayed for each residue, revealing regions of high flexibility and fluctuation. WT 
(blue) exhibits lower overall fluctuations, showing stable regions throughout the protein. The 
419fs150 variant (red) shows moderate fluctuations, and Hetro_L219P (green) has the highest 
fluctuations, indicating regions of instability that may impact function. (E) SAS: The SAS plot 
demonstrates the degree of exposure of the protein to the solvent. WT (blue) maintains a 
relatively lower SAS, reflecting a compact structure. The 419fs150 variant (red) shows slightly 
higher SAS, and Hetro_L219P (green) exhibits the highest exposure, suggesting more open and 
less stable structural conformations. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: Molecular dynamics simulation analysis of EDA variants. The figure depicts the 
time evolution of various structural and dynamic properties for wild-type (WT) and R156H 
variants of EDA. A: Radius of gyration (Rg) over time. B: Root-mean-square deviation (RMSD) 
over time. C: Number of hydrogen bonds over time. D: Root-mean-square fluctuation (RMSF) 
per residue. E: SAS over time. The different line colors represent the different EDA variants, 
allowing for comparison of their structural and dynamic behavior. The results highlight potential 
differences in protein stability, flexibility, and interactions due to the R156H mutation. 
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Figure 21: Molecular dynamics simulation analysis of PAX9 variants. The figure depicts the 
time evolution of various structural and dynamic properties for wild-type (WT) and Q145* 
variants of PAX9. A: Radius of gyration (Rg) over time. B: SAS analysis over time. C: Number 
of hydrogen bonds over time. D: Root-mean-square deviation (RMSD) over time. E: Root-
mean-square fluctuation (RMSF) per residue. The different line colors represent the different 
PAX9 variants, allowing for comparison of their structural and dynamic behavior. The results 
highlight potential differences in protein stability, flexibility, and interactions due to the Q145* 
mutation. 
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Figure 22: Comparative analysis of protein dynamics and stability for WNT10A, EDA, 
PAX9, and TSPEAR variants. A. The figure displays the results of molecular dynamics 
simulations, including: RMSD: indicating the overall structural stability of the protein. RMSF: 
revealing the flexibility of different regions within the protein. SAS, reflecting the protein's 
exposure to solvent. Rg measuring the protein's compactness. Hydrogen bonds: The number of 
hydrogen bonds formed within the protein. The color gradients in each plot represent the 
different variants, allowing for a visual comparison of their dynamic properties. The results 
highlight potential differences in protein stability, flexibility, and interactions due to the 
mutations. B. Matplot for simulated variants. C. Principal Component Analysis (PCA) of 
Variants and Wild-Type Proteins. The scatter plot shows the PCA results for wild-type (WT) 
and variant forms of PAX9, WNT10A, TSPEAR, and EDA proteins. Each point represents a 
different protein or variant, positioned based on their principal component 1 (PC1) and principal 
component 2 (PC2) scores, indicating the degree of structural variation. Wild-type proteins are 
labeled with "WT," while variants are denoted by specific mutations (e.g., PAX9_Q145, 
EDA_R156H). The plot highlights clustering of WT and mutant proteins, illustrating how 
structural differences influence their positions in the principal component space, reflecting 
variations in protein stability, conformation, and functionality. Matplotlib, providing a clear 
representation of the dynamic properties of the simulated variants.   

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 27, 2024. ; https://doi.org/10.1101/2024.11.26.24317461doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.26.24317461
http://creativecommons.org/licenses/by-nc-nd/4.0/

