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Abstract 33 

We report the findings of a genome-wide association study (GWAS) meta-analysis of 34 

endometriosis consisting of a large portion (31%) of non-European samples across 14 biobanks 35 

worldwide as part of the Global Biobank Meta-Analysis Initiative (GBMI). We identified 45 36 

significant loci using a wide phenotype definition, seven of which are previously unreported and 37 

detected first genome-wide significant locus (POLR2M) among only African-ancestry. Our 38 

narrow phenotypes and surgically confirmed case definitions for endometriosis analyses 39 

replicated the known loci near CDC42, SKAP1, and GREB1. Through this large ancestry stratified 40 

analyses, we document heritability estimates in range of 10-12% for all ancestral groups. Thirty-41 

eight loci had at least one variant in the credible set after fine-mapping. An imputed 42 
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transcriptome-wide association study (TWAS) identified 11 associated genes (two previously 43 

unreported), while the proteome-wide association study (PWAS) suggests significant 44 

association of R-spondin 3 (RSPO3) with wide endometriosis, which plays a crucial role in 45 

modulating the Wnt signaling pathway. Our diverse, comprehensive GWAS, coupled with 46 

integrative -omics analysis, identifies critical roles of immunopathogenesis, Wnt signaling, and 47 

balance between proliferation, differentiation, and migration of endometrial cells as hallmarks 48 

for endometriosis. These interconnected pathways and risk factors underscore a complex, 49 

multi-faceted etiology of endometriosis, suggesting multiple targets for precise and effective 50 

therapeutic interventions.  51 

Introduction 52 

Endometriosis, a debilitating condition characterized by the growth of endometrial-like tissues 53 

outside of the uterus affects approximately 10% of women of reproductive age worldwide
1,2

. 54 

The precise mechanisms of these lesions are presently unknown. Endometriosis is incurable, 55 

leaving patients to manage severe pain
3
 and cope with fertility challenges

4
. Despite its 56 

prevalence and impact, the etiology of endometriosis remains poorly understood, hampering 57 

efforts to develop effective diagnostic tools and targeted treatments.  58 

Genome-wide association studies (GWASs) have been an important tool for implicating 59 

candidate genes and pathways linked with endometriosis. GWASs for endometriosis have 60 

uncovered over 40 loci associated with endometriosis risk. However, like most GWASs 61 

historically, the previous endometriosis studies have primarily included European populations 62 

with some East-Asian datasets as well
5
. Consequently, they have explained about 7% of 63 
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phenotypic variance with common variants
6,7

 and have fallen short in elucidating the full 64 

spectrum of its pathophysiology. 65 

The advent of large-scale biobanks has revolutionized genetic research, offering unique 66 

opportunities to conduct well-powered studies across diverse populations. As more diverse 67 

genomic datasets are developed, like the Penn Medicine Biobank (PMBB)
8
, the All of Us 68 

Research Program (AOU)
9
, and the Million Veterans Program (MVP)

10
, that diversity can 69 

increase statistical power and enhance the discovery of trait loci
11

. A worldwide consortium of 70 

genomic researchers, the global biobank meta-analysis initiative (GBMI), was established to 71 

facilitate collaboration in GWAS studies on unprecedented scales. In this study, we have 72 

collaborated with 12 biobanks across several countries
9,12–22

. These resources not only enhance 73 

statistical power to detect novel associations but also provide rich phenotypic data, enabling 74 

more refined analyses. Moreover, the inclusion of diverse ancestries in genetic studies is crucial 75 

for improving the generalizability of findings and addressing health disparities. This is 76 

particularly pertinent for endometriosis, where significant variations in prevalence and clinical 77 

presentation have been observed across different ethnic groups
23

. 78 

Beyond GWAS, there are many methods which can be employed in silico to investigate 79 

other elements of the central dogma, providing further validation of GWAS loci and discovery of 80 

additional disease-associated genes. Recent advances in multi-omics technologies have further 81 

expanded our ability to translate genetic associations into biological insights. Integration of 82 

GWAS results with transcriptomic, proteomic, and single-cell data using methods such allows 83 

for a more comprehensive understanding of disease mechanisms, potentially identifying novel 84 

therapeutic targets and biomarkers. Then, these multi-omic layers of association can be 85 
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integrated using tools such as Mergeomics
24

, which also identifies gene sets enriched for 86 

association with the disease of interest. For endometriosis, where the interplay between 87 

genetic predisposition and complex tissue-specific processes is central to its pathogenesis, such 88 

integrative approaches are especially valuable. Given these considerations, there is a critical 89 

need for a large-scale, ancestrally diverse GWAS of endometriosis that incorporates rigorous 90 

phenotyping and leverages multi-omics data to provide a more complete picture of the 91 

disease's genetic landscape and underlying biology. 92 

Here, we present the results of large-scale GWAS meta-analyses that significantly 93 

advances our understanding of endometriosis pathophysiology. Our study encompasses a 94 

diverse cohort from 14 biobanks worldwide, with over 30% non-European participants, 95 

enhancing the generalizability of our findings. We employed a comprehensive phenotyping 96 

approach, including not only a wide spectrum of endometriosis presentations but also surgically 97 

confirmed and procedure-validated (surgery or imaging) phenotypes. This rigorous phenotyping 98 

strategy allows for a more nuanced exploration of the genetic architecture underlying various 99 

manifestations of endometriosis. Through integrative multi-omics analyses, incorporating 100 

transcriptomic, proteomic, and single-cell data from endometrial tissues, we have explored five 101 

major hallmarks of endometriosis pathogenesis. These findings provide unprecedented insights 102 

into the molecular mechanisms driving this complex disorder, paving the way for improved 103 

diagnostics and targeted therapeutic interventions. 104 
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Results 105 

EHR-Based Phenotyping of Endometriosis in Genetically Diverse Datasets  106 

We considered six phenotype definitions for our GWASs: wide endometriosis (W), wide 107 

endometriosis excluding cases and controls with adenomyosis (Wex), procedure-confirmed 108 

narrow endometriosis versus all controls (PCN.v1) and versus procedure-confirmed controls 109 

(PCN.v2), and surgically-confirmed narrow endometriosis versus all controls (SCN.v1) and 110 

versus surgically-confirmed controls (SCN.v2). The largest phenotype, W, comprised 928,413 111 

women, including 44,125 cases. We leveraged publicly-available FinnGen
25

 and MVP
10

 summary 112 

statistics to increase the sample size. The Wex phenotype, for which several biobanks were 113 

omitted, had a total sample size of 434,444 (Ncases = 8,122). Sample sizes for the PCN and SCN 114 

phenotypes were smaller (Table 1), with summary statistics included from only eight of the 12 115 

contributing GBMI biobanks (Supplementary Table 1). 116 

Table 1: All GWAS meta-analysis sample sizes. All six phenotypes had a multi-ancestry meta-analysis as well as 117 

single-ancestry meta-analyses for AFR, AMR, EAS, and EUR. There were not enough EAS studies to conduct meta-118 

analyses for the surgically confirmed narrow (SCN) phenotypes. 119 

Phenotype Ancestry N Cases Prevalence 

W 

AFR 74,976 2,772 3.70% 

AMR 38,837 1,262 3.25% 

CSA 5,222 208 3.98% 

EAS 165,464 7,814 4.72% 

EUR 643,914 32,069 4.98% 

META 928,413 44,125 4.75% 

Wex 

AFR 56,314 862 1.53% 

AMR 38,195 620 1.62% 

CSA 5,066 62 1.22% 

EAS 80,375 1,531 1.90% 

EUR 254,494 5,047 1.98% 

META 434,444 8,122 1.87% 

PCN.v1 

AFR 51,050 823 1.61% 

AMR 36,719 599 1.63% 

EAS 78,999 155 0.20% 
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EUR 209,207 3,207 1.53% 

META 375,975 4,784 1.27% 

PCN.v2 

AFR 9,874 823 8.34% 

AMR 7,113 599 8.42% 

EAS 1,539 155 10.07% 

EUR 35,722 3,207 8.98% 

META 54,248 4,784 8.82% 

SCN.v1 

AFR 50,592 365 0.72% 

AMR 36,465 345 0.95% 

EUR 208,136 2,137 1.03% 

META 295,193 2,847 0.96% 

SCN.v2 

AFR 1,436 365 25.42% 

AMR 1,957 345 17.63% 

EUR 12,926 2,137 16.53% 

META 16,319 2,847 17.45% 

Multi-Ancestry GWAS Meta-Analysis Results 120 

All 4,983 genome-wide significant variants (P < 5 x 10
-8

) from all meta-analyses are listed in 121 

Supplementary Table 2. The primary meta-analysis performed (multi-ancestry, wide phenotype) 122 

yielded 96 regions. From there, physically overlapping clumps were merged, resulting in 42 loci 123 

significantly associated with endometriosis. Besides those 42, there were two EUR-specific loci 124 

(LINC01317 and LINC02456) and one AFR-specific locus (POLR2M), totaling 45 loci annotated in 125 

Figure 1a (Supplementary Table 3). All EAS loci overlapped with loci from the multi-ancestry 126 

meta-analyses, and the AMR W GWAS did not yield any genome-wide significant loci. Of the 45 127 

unique W loci, 24 of their lead SNPs were in LD (R
2
 > 0.25) with the lead SNPs reported in 128 

Rahmioglu et al, 2023, and an additional 14 were found within 50 Mb of the 2023 GWAS lead 129 

SNPs. The seven remaining loci were unreported in the 2023 GWAS: RUVBL1 (rs4058156, P = 130 

3.51E-10), 3q28 (rs9870207, P = 4.17E-09), 5p13.1 (rs55920409, P = 2.66E-08), VAPA 131 

(rs79380316, P = 3.56E-08), DTD1 (rs6112068, P = 8.72E-10), ZHX3 (rs17265513, P = 5.58E-09), 132 

MIRLET7BHG (rs873492, P = 4.80E-08). The observed SNP heritability, computed with LDSC, was 133 

significantly greater than zero (P < 0.05) in the multi-ancestry meta-analysis (h
2
lia = 0.070) as 134 

well as the AFR (h
2
lia = 0.129), EAS (h

2
lia = 0.108), and EUR (h

2
lia = 0.108) single-ancestry meta-135 

analyses (Figure1b).136 

 137 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 29, 2024. ; https://doi.org/10.1101/2024.11.26.24316723doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.26.24316723


138 
Figure 1: main meta-analysis results. Top left: overlayed Manhattan plots for the five W GWASs (multi-ancestry +139 

four single-ancestries). Significant loci are highlighted, with black text representing the previously unreported hits140 

Bottom left: Overlayed Manhattan plots for the five multi-ancestry GWASs for the other phenotypes. All loci are141 

previously reported. Top right: LDSC heritability estimates for the W GWASs; AMR is excluded because the142 

heritability estimate was not significant. Bottom right: volcano plot highlighting variants with an absolute log-odds143 

effect size > 0.1, colored by ancestry group. 144 

Precise Phenotype Analyses Replicate Known Loci 145 

For the other phenotype meta-analyses, we identified seven significant loci: two for EUR and146 

multi-ancestry (SCN.v2 and SCN.v1), one for AFR and multi-ancestry (SCN.v1), three just in147 

multi-ancestry (two Wex and one SCN.v1), and one just in AMR (PCN.v1). Both loci associated148 

with Wex in the multi-ancestry analysis replicate known signals. CDC42 (rs56319427, P = 4.91E-149 

11) is in LD (R2 = 0.91) with the previous CDC42 locus, and RMND1 (rs9322319, P = 2.86E-08) is150 

near the previous SYNE1 locus. The five loci identified with the narrow phenotypes are within151 

50Mb of known signals, so they are not considered previously unreported. The surgically-152 

confirmed cases vs all controls phenotype (SCN.v1) yielded two loci: 2p13.3 (rs116763937, P =153 

4.07E-08), also significant in AFR, and CD163 (rs118078722, P = 1.39E-08), also significant in154 

EUR. When comparing surgically-confirmed cases with only surgically-confirmed controls155 
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(SCN.v2), we identified two loci: KCNF1 (rs115117372, P = 1.97E-08) and 12q24.32 (rs12581759, 156 

P = 2.64E-08), with KCNF1 also significant in the EUR meta-analysis. The final locus, OTUD7A 157 

(rs17762839, P = 1.72E-08), was associated with the PCN.v1 phenotype in the AMR meta-158 

analysis. These loci are displayed in Figure 1c. 159 

Fine-Mapping to Detect Causal Variants at GWAS Loci 160 

To elucidate shared and population-specific putative causal variants, we conducted statistical 161 

fine-mapping on all hits from multi-population meta-analyses, totaling 48 loci in five (PCN.v2 162 

had no significant hits) studies (See Methods). Of those 48 loci, 38 had at least one variant with 163 

posterior probability of being causal (PIP) greater than 0.5, totaling 132 causal variants 164 

(Supplementary Table 4). The cross-ancestry fine-mapping analyses computed PIPs for each 165 

variant across all combinations of ancestry groups included in the overall study. We identified 166 

credible sets (CS) for the 38 distinct loci associated with endometriosis as reported in Table 2. 167 

Table 2: credible sets of multi-ancestry GWAS loci. 34 are for the W phenotype, 2 are for Wex, and 2 are for SCN.v2 168 

(SCN cases versus surgically-confirmed controls). An “X” in the AFR-EUR columns denote whether that ancestry 169 

group was used for detecting any SNPs in the credible set (PIP > 0.5). Locus names match the GWAS. 170 

Phenotyp

e Locus Locus P # CS AFR 

AM

R EAS EUR Credible Set 

W WNT4 1.12E-37 3     X X rs2473331, rs61768001, rs16826658 

W MIR4418 1.85E-09 3 X   X X rs1934478, rs10917216, rs12097230 

W NGF-AS1 1.11E-08 4     X X 

rs12030576, rs11102915, rs6656381, 

rs12075799 

W DNM3 2.38E-08 2   X X X rs479960, rs569179 

W GREB1 2.45E-25 2   X X X rs10929759, rs10165819 

W FSHR 8.59E-10 6 X X X X 

rs12614817, rs6716567, rs2134811, 

rs13032266, rs4420736, rs6722885 

W 2p14 2.23E-15 2     X X rs2683680, rs2860517 

W DIRC3 6.11E-09 3     X X 

rs13018792, rs67436597, 

rs72613753 

W EEFSEC 1.00E-09 2   X   X rs2955102, rs2811529 

W 3q28 4.17E-09 7     X X 

rs9870207, rs6778588, rs9290954, 

rs9837216, rs9872656, rs9834978, 

rs9830307 
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W KDR 6.46E-24 2 X X X X rs7680198, rs17081840 

W 

MUC7/AMT

N 4.27E-08 4 X     X 

rs13105826, rs4694318, rs28751942, 

rs28503247 

W BMPR1B-DT 3.88E-10 3     X X rs11938840, rs6532503, rs7680214 

W 5p13.1 2.66E-08 2     X X rs13165498, rs2220801 

W ARHGAP26 5.06E-10 2     X X rs7728894, rs1799293 

W 5q33.3 3.49E-08 6 X   X X 

rs1316379, rs13170063, rs2963462, 

rs2901003, rs11135035, rs17055653 

W SYNE1 9.67E-43 7   X X X 

rs9371219, rs7740302, rs9371528, 

rs6927162, rs58415480, rs9371246, 

rs6557210 

W 6p15.2 4.40E-11 5     X X 

rs1812673, rs13231733, rs11976790, 

rs1451383, rs1451385 

W HMGN1P19 5.37E-11 2     X X rs10951860, rs11975261 

W GNRH1 6.06E-12 2     X X rs7819740, rs13277090 

W CDKN2B-AS1 9.16E-24 9     X X 

rs7028213, rs10122243, rs10757288, 

rs1333054, rs1537377, rs10965274, 

rs2779747, rs10738612, rs1095899 

W LCN1P2 4.67E-14 1     X X rs633862 

W RNLS 5.69E-17 6     X X 

rs792208, rs792212, rs111958828, 

rs10788601, rs7922551, rs1935578 

W ARL14EP-DT 8.96E-33 5 X   X X 

rs606651, rs606642, rs476669, 

rs601681, rs76242056 

W PAX6_HS2 1.86E-09 2     X X rs6484567, rs2207550 

W FGD6 1.41E-23 2 X   X X rs10777675, rs6538622 

W LINC02456 7.72E-10 5 X   X X 

rs7306496, rs12319554, rs10437892, 

rs7296495, rs11111353 

W TBX3-AS1 9.23E-10 3     X X 

rs11067288, rs11067298, 

rs117549885 

W SRP14-DT 4.16E-09 5 X X X X 

rs4924409, rs2412474, rs78053299, 

rs12441483, rs7162269 

W VAPA 3.56E-08 2     X X rs604079, rs486270 

W NFILZ 2.25E-10 1     X X rs2967676 

W DTD1 8.72E-10 4     X X 

rs6075379, rs6081270, rs34478401, 

rs6045578 

W ZHX3 1.29E-08 3     X X rs6102464, rs6102467, rs4610114 

W MIRLET7BHG 4.80E-08 3 X X   X rs11702897, rs9626905, rs3859891 

Wex CDC42 4.91E-11 2     X X rs3754496, rs7529389 

Wex RMND1 2.86E-08 3 X X X X rs3778608, rs6913515, rs6904364 

SCNv2 KCNF1 1.97E-08 5   X   X 

rs13387419, rs77606953, 

rs10194777, rs2091817, rs1317430 

SCNv2 12q24.32 2.64E-08 2   X     rs10773384, rs10847311 

Of the 38 loci with at least one variant in the credible set, 34 were from the W multi-171 

population meta-analysis, 2 were from Wex, and 2 were from SCN.v2. Fourteen of the credible 172 
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sets included variants detectable in part due to new genetic ancestry groups incorporated in 173 

the analyses (AMR and AFR). In particular, three loci leveraged the incorporation of all four 174 

ancestries to compute the credible set: FSHR, KDR, and SRP14-DT. 175 

GWAS Variant Gene Enrichment Analyses 176 

From the wide multi-population meta-analysis, we identified 47 unique gene regions 177 

that were enriched for significant GWAS variants. Eight genes were specific to the multi-178 

ancestry W meta-analysis: CDKN2A, CCHCR1, AP3M1, SPECC1, IGF1, DTD1, DNM3, and TCF19. 179 

Eleven were specific to the EUR meta-analysis: CBX1, GRB14, HOXA5, RPS10, SNX11, CHD6, VIP, 180 

LOC105375205, PARPBP, NOL4L, NR2C1, and one (CEBPE) was specific to the AMR meta-181 

analysis. Two additional genes were identified for the other phenotypes: TCEA2 with Wex in the 182 

multi-ancestry meta-analysis, and HAVCR2 in the PCN.v1 EAS meta-analysis. Full MAGMA 183 

results are given in Supplementary Table 5. 184 

Post-GWAS Multi-Omic Analyses Fuel Pathway Identification 185 

To identify associations between endometriosis and both the transcriptome and proteome, we 186 

performed TWAS using uterine tissue eQTL weights from GTEx and PWAS on whole blood 187 

pQTLs, inputting the multi-ancestry W GWAS summary statistics (See Methods). The TWAS 188 

tested 9,642 genes, and the PWAS tested 300 proteins. There were 11 genes achieving genome-189 

wide significance (Bonferroni P value < 0.05) in the TWAS and 1 in the PWAS, shown in Table 3. 190 

Table 3: 11 significant TWAS genes and one significant PWAS protein. The p-value thresholds were adjusted for the 191 

numbers of tests (TWAS P < 0.05 / 9,642, and PWAS P < 0.05 / 300). 192 

Gene Symbol 

Z-

score  

Beta

  

P-

value  

RMND1  8.69 4.92 3.7E-18 

ARL14EP  -8.35 

-

0.16 6.8E-17 
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ZBTB2  -6.86 

-

1.77 6.7E-12 

VEZT  6.62 0.44 3.5E-11 

KDR  -6.17 

-

0.54 6.7E-10 

ARMT1  6.13 0.77 8.9E-10 

RP11-

521C20.2  -5.11 

-

0.27 3.3E-07 

RP11-

521C20.5  -5.11 

-

0.13 3.3E-07 

CCDC88B  -4.79 

-

0.20 1.7E-06 

DTD1  4.77 0.20 1.9E-06 

NOL4L  4.57 0.77 4.8E-06 

RSPO3 6.08 0.14 1.2E-09 

Of 11 significant genes identified from TWAS, nine of them were proximal to our 193 

significant multi-ancestry W GWAS loci. Three of them are the nearest genes to GWAS loci: 194 

ARL14EP, KDR, and DTD1. Three TWAS genes (RMND1, ZBTB2, and ARMT1) are related to the 195 

chromosome six cluster of loci which also includes SYNE1 and ESR1. In the GWAS results, RMD1 196 

was more prominent in the Wex phenotype. VEZT (TWAS P = 3.5E-11) was most significant in 197 

the EAS GWAS results and was overlapping with the multi-ancestry GWAS locus FGD6. Two 198 

LincRNA genes identified in TWAS, RP11-521C20.2, RP11-521C20.5, are close to the GWAS locus 199 

SRP14-DT. The remaining two TWAS genes, NOL4L and CCDC88B, are not proximal to any GWAS 200 

loci we identified (at least 20 Mb away). PWAS identified RSPO3 (P = 1.2E-09) as the only 201 

significantly-associated protein, which was also a significant locus from our GWAS meta-202 

analysis. 203 

Identifying Disease-Relevant Cell Types and Crucial Genes 204 

We prioritized 18 cell type – menstrual stage pairs with AUROC > 0.6 in which to compare gene 205 

expression for the 35 top MAGMA genes in the multi-ancestry W meta-analysis. 206 
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 207 

Figure 3: single cell analyses – disease relevance scores (scDRSs) and differential gene expression. The left panels 208 

show the distributions of scDRS comparing cells from donors with endometriosis (red) to donors without 209 

endometriosis (blue). Each set of boxes is annotated on the y-axis with the menstrual stage and cell type, an 210 

AUROC for the scDRS, and a P-value for a one-sided t-test of independent means. The right panels show the results211 

of two-sided t-tests comparing the gene expression of the top MAGMA genes, with significant tests circled with a 212 

black border. 213 

Of the 18 cell type – menstrual stage pairs with significantly different mean scDRS and214 

AUROC > 0.6, nine came from donors in the “Hormones” menstrual phase (two endometrial cel215 

types, three endometrial nucleus types, and four immune nucleus types). Of those nine, the216 

s 

d 

l 

e 
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gene CD109 was more highly expressed in six: immune myeloid cells, venous cells, glandular 217 

nuclei, stromal MMP (matrix metalloproteinase – expressing) nuclei, uterine natural killer 218 

nuclei, and cycling uterine natural killer nuclei. 219 

The expression of IGF1 was significantly different between cells from endometriosis 220 

cases and controls in ten cell type – menstrual stage pairs (three endometrial cell types, two 221 

endometrial nucleus types, and all five immune nucleus types). It did not always have the same 222 

direction; for seven out of those ten groups, expression of IGF1 was greater, while for the 223 

remaining three (secretory phase ciliated cells, stromal MMP nuclei from donors on hormones, 224 

and proliferative phase uterine macrophage nuclei), it was downregulated. 225 

WNT4 and ESR1 are well-known endometriosis-associated genes. WNT4’s expression 226 

was significantly different between endometriosis cases and controls in four cell type – 227 

menstrual stage pairs. WNT4 expression was higher in both macrophage nucleus populations 228 

(eM1 and eM2) in donors taking exogenous hormones and secretory phase perivascular 229 

(ePV_2) nuclei. In contrast, WNT4 expression was lower in stromal MMP nuclei from donors on 230 

hormones. ESR1 expression was significantly different in nine cell type – menstrual stage pairs 231 

(three secretory, six hormones). All but one association were positive – the one negative T 232 

statistic was found in stromal MMP nuclei from donors on hormones. The three secretory 233 

groups with ESR1 upregulated in donors with endometriosis were ciliated cells, perivascular 234 

(ePV_2) cells, and stromal MMP nuclei. 235 
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Mergeomics identifies significant biological processes from multi-omic236 

integration 237 

Using marker set enrichment analysis (MSEA) on KEGG database gene sets
26

, we identified one238 

significantly enriched pathway that provides insight into the molecular mechanisms underlying239 

endometriosis. The WNT signaling pathway (hsa04310) was the most significantly enriched240 

biological process, driven by markers including RUVBL1, WNT4, and CTBP2 (Supplementary241 

Figure XX). Other significant pathways (FDR P < 0.05) were Focal Adhesion (hsa04510), B cel242 

receptor signaling pathway (hsa04662), Notch signaling pathway (hsa04330), and chronic243 

myeloid leukemia (hsa05220). along with pathways in cancer and small cell lung cancer. The244 

detailed module enrichment result is shown in Supplementary Table 6. 245 
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Figure 4: Summary of genes identified from multi-omics analysis and their potential role in each of the hallmarks of 247 

endometriosis. 248 

Discussion 249 

We report the largest multi-population GWAS for endometriosis to date incorporating 250 

nearly a million participants from 14 diverse biobanks across the world and increasing the total 251 

number of GWAS loci. Although multiple significant loci obtained from our study have been 252 

previously implicated in endometriosis pathophysiology, we have identified seven previously 253 

unreported GWAS loci and two previously unreported TWAS genes associated with 254 

endometriosis, which provides important insights into the underlying genetic architecture of 255 

endometriosis across population. We have summarized the major associations based on their 256 

involvement in specific biological functions (increased sex steroid hormones, immune 257 

regulation, inflammation, cell morphogenesis and vascular development and remodeling) in 258 

Figure 4, these could also be defined as five hallmarks of endometriosis. 259 

Our ancestry stratified meta-analyses revealed a consistent observed SNP heritability of 260 

10-12% for endometriosis for three studied genetic ancestry populations (EUR, EAS, and AFR), 261 

which is higher than previously observed SNP heritability of 7% based solely on European 262 

populations. The higher and more consistent heritability we observed can be attributed to the 263 

unprecedented scale and diversity of our study cohort. The previous GWASs have not included 264 

any African-ancestry or Admixed-American-ancestry (AMR) populations, which were essential 265 

in the computation of 14 / 38 (37%) credible sets in our fine-mapping analysis. We detected 266 

one African-only GWAS locus, POLR2M, and one AMR-only MAGMA gene, CEBPE. By 267 
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incorporating biobanks from various regions and ancestry backgrounds worldwide, we were 268 

able to capture a more comprehensive genetic landscape of endometriosis.  269 

Given that diagnosis codes from the EHR can be unreliable for accurately phenotyping 270 

endometriosis, we employed narrow phenotyping algorithms which incorporated procedure 271 

codes (surgical and imaging). Despite the diminished sample sizes, there were still genome-272 

wide significant loci: one for PCN.v1, two for SCN.v1, and two for SCN.v2. Both GWAS loci for 273 

SCN.v2 (KCNF1 and 12q24.32) were successfully fine-mapped, with five and two putative causal 274 

variants in their credible sets, respectively. The EAS-only PCN.v1 meta-analysis yielded a 275 

significantly enriched gene, HAVCR2, an immune receptor gene near the 5q33.3 GWAS locus, 276 

which was not present in the other meta-analyses. Leveraging multi-modal EHR data for more 277 

precise phenotyping significantly enhanced our ability to refine and validate genetic 278 

associations and uncover deeper biological insights. 279 

Our meta-GWAS and PWAS analyses underscore the potential role of RSPO3 in 280 

endometriosis pathophysiology. RSPO3, previously known to modulate risk of endometriosis, 281 

interacts with WNT4 via Frizzled (FZD) receptors, influencing the WNT/Ca2+ and WNT/β-catenin 282 

pathways
27,28

. WNT4 interacts with ESR1 (Estrogen Receptor Alpha), key regulator of 283 

endometrial cell proliferation and survival throughout the menstrual cycle
29

. Additionally, 284 

scDRS analyses identified ESR1, WNT4, SYNE1, GREB1, IGF1, and FSHB as relevant in 285 

endometrial perivascular cells (ePV) from donors in the secretory phase, while RMND1 286 

(Required for Meiotic Nuclear Division 1 homolog), ARMT1, and CCDC170 were linked to 287 

secretory phase ciliated cells. Collectively, these genes likely promote increased sex steroid 288 

hormone production and signaling. This hormonal milieu may, in turn, fuel inflammatory 289 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 29, 2024. ; https://doi.org/10.1101/2024.11.26.24316723doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.26.24316723


responses and dysregulate immune function, potentially driving the progression of 290 

endometriosis
6,30,31

. 291 

Our meta-GWAS and TWAS analyses identified VEZT (Vezatin) and ARL14EP as 292 

significant. VEZT exhibits menstrual cycle-dependent expression in endometrial glands during 293 

the secretory phase and is also relevant in venous cells of individuals on exogenous 294 

hormones
32

. Together with FGD6, VEZT plays a crucial role in cytoskeletal remodeling. 295 

Dysregulation of this process can accelerate cell proliferation, migration, and invasion into the 296 

endometrium, promoting the development of ectopic lesions. This dysregulation may also lead 297 

to uncontrolled epithelial-mesenchymal transition (EMT), potentially driving endometriosis 298 

progression
32,33

. ARL14EP has previously been linked to depression which is a known 299 

endometriosis comorbidity
34

. It was also prominent in ciliated cells from the secretory phase in 300 

scDRS analysis. ARL14EP is involved in MHCII movement via the TGF-β pathway, suggesting a 301 

role in immune modulation, a hallmark of endometriosis
35,36

. Last, we also identified VEGFR2 302 

(KDR), significant in arterial cells from the secretory phase, and CDKN2A, both known to 303 

regulate angiogenesis and endothelial cell adhesion
37,38

. CDC42, another significant hit, plays a 304 

role in vascular remodeling along with VEGFR2
39–41

. Together, these findings highlight pathways 305 

in vascular and immune modulation, guiding future functional studies on endometriosis. 306 

Despite the large sample size, heritability observed with GWAS (10-12%) still fails to 307 

measure up to the broad sense heritability estimation from a twin study of 47%
42

. Rare 308 

variants, structural variants, nonlinear effects, or gene-environment interactions might 309 

contribute to endometriosis risk but remain undetected in our analyses. As we leveraged the 310 

GWAS results to study other levels of the central dogma, one limitation was that we lacked 311 
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individual-level transcriptomic/proteomic data. The TWAS and PWAS performance relied on 312 

previously-trained cis-eQTL expression models, limiting the power, since the models do not 313 

capture all the gene expression variability and complex genetic architecture potentially relevant 314 

to our phenotype of interest
43

. Mergeomics assumes that overlapping signals between GWAS, 315 

TWAS, and PWAS are biologically relevant. The tool primarily considers only the association p-316 

value, but not the directionality of association, which may limit the validity of detected 317 

biological signals. Additionally, Mergeomics may not fully capture complex interactions 318 

between genes or the functional effects of non-coding variants. While this tool does not allow 319 

us to infer causality, it does generate testable biological hypotheses for further functional 320 

assays. 321 

In addition to replicating findings from previous studies, we uncovered new insights that 322 

advanced our understanding of the genetic underpinnings of endometriosis. Our integrative 323 

multi-omics approach, combining genomic data with transcriptomic, proteomic, and single-cell 324 

analyses, has provided unprecedented insights into the molecular mechanisms driving this 325 

chronic condition. These findings lay a robust foundation for future functional studies to 326 

elucidate the precise roles of identified genes and pathways in endometriosis pathogenesis. 327 

Moreover, our results have important clinical implications, potentially informing the 328 

development of more accurate diagnostic tools, personalized risk prediction models, and 329 

targeted therapeutic interventions. As we move forward, this work emphasizes the critical 330 

importance of large-scale, diverse genetic studies in unraveling the complexities of 331 

multifactorial diseases like endometriosis, paving the way for improved patient outcomes and a 332 

deeper understanding of women's health issues globally. 333 
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Methods 334 

Phenotyping 335 

For the EHR-linked biobanks, we used structured data to define the phenotypes. Cases for wide 336 

endometriosis (W) were any women with a history of ICD-9, ICD-10, or SNOMED codes for 337 

endometriosis. For the wide phenotype excluding adenomyosis (Wex), women with a history of 338 

ICD-9, ICD-10, or SNOMED codes for uterine endometriosis were excluded from both cases and 339 

controls. Our two narrow case definitions were procedure-confirmed and surgically-confirmed 340 

(PCN and SCN). These narrow phenotypes were designed to capture confirmed cases and 341 

controls of endometriosis based on procedure history including hysterectomies, laparoscopies 342 

and ultrasounds. The list of procedure codes (CPT-4 or OPCS) for PCN included all the surgery 343 

codes in SCN but added non-obstetric ultrasound codes to account for potential imaging 344 

diagnoses. Each of the two narrow phenotypes was tested in two versions: cases versus all 345 

controls (PCN.v1 and SCN.v1) and cases versus confirmed controls (PCN.v2 and SCN.v2) where 346 

confirmed controls were those who had history of the corresponding procedure codes for each 347 

phenotype with no history of endometriosis diagnosis. For additional details on the 348 

phenotyping algorithms, see Supplemental Appendix 1. 349 

Genotyping by Biobank 350 

Most contributing biobanks acquired several hundred thousand variants. After those data are 351 

collected, then the rest of the genomic variants can be imputed probabilistically based on a 352 

reference panel such as TOPMED. Some biobanks used short read whole genome sequencing 353 

(WGS) to gather their genomic data. The sequences from the short reads are aligned and 354 
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compared to the reference to produce variant calls. References and platform information for 355 

each biobank’s genotyping method and QC can be found in Supplemental Appendix 2. 356 

Genetic Association Testing 357 

Each contributing biobank performed ancestry-stratified association testing with up to six 358 

phenotypes (W, Wex, PCN.v1, PCN.v2, SCN.v1, and SCN.v2), depending on whether they had at 359 

least 50 cases for that phenotype and ancestry combination. Genetically-informed ancestry 360 

(GIA) is defined based on genetic distance from subpopulations of a reference group such as 361 

the 1000 Genomes Project dataset
44

 (1KG). Genetic distance is measured using a dimensionality 362 

reduction technique such as principal component analysis (PCA). Ancestry is then assigned 363 

using a classifier such as a mixture model or k-nearest neighbors. For references and methods 364 

used for assigning GIA within each biobank, see Supplemental Appendix 3. 365 

Contributing biobanks used linear mixed models to estimate the effect of each variant 366 

on the six phenotypes. Tools implemented for these tests include SAIGE
45

 and Regenie
46

. 367 

Association tests were adjusted for principal components, age at EHR data collection, and any 368 

biobank-specific batch variables (for example, collection site within eMERGE). For estimation of 369 

the null models (SAIGE or Regenie step 1), variants were required to have a call rate of at least 370 

95%, a minor allele frequency of 0.01, and a Hardy-Weinberg p-value of at least 1x10
-6

. For 371 

association testing (SAIGE or Regenie step 2), variants were required to have a minor allele 372 

count of at least 20, and an imputation quality of at least 0.6. Individuals were included if their 373 

overall genotyping rate was at least 95%. A summary of each biobank’s exact covariates and QC 374 

procedures is in Supplemental Appendix 4. 375 
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After biobank analyses were completed and collected, summary statistics were cleaned 376 

and lifted into genome build hg38 as necessary. Then, inverse variance-weighted, fixed-effect 377 

meta-analyses were performed using GWAMA
47

. GWAMA adjusts each study based on its 378 

overall genomic inflation factor. Prior to meta-analysis, input summary statistics were restricted 379 

to variants with a minor allele frequency of at least 0.005 to ensure stability in the estimates. 380 

We started by applying the clumping function of Plink 1.9
48

 with the lead SNP p-value threshold 381 

set to 5x10
-8

, the secondary SNP threshold set to 1x10
-3

, minimum R
2
 of 0.1, and a window of 382 

1000kb. 1KG was used as a linkage disequilibrium (LD) reference since the meta-analyses were 383 

multi-ancestry. After the variant clumps were identified, any clumps that were physically 384 

overlapping with one another were merged into loci. Then, we tested if any loci were in LD with 385 

(R
2
 > 0.25) or proximal to tag SNPs of the 39 autosomal lead SNPs from the 2023 GWAS

49
 to 386 

determine whether our hits were known or previously unreported
10

. 387 

Estimation of Observed SNP Heritability 388 

We estimated heritability with the LD-Score Regression tool, LDSC
50

, for four ancestry-389 

stratified meta-analyses and the multi-ancestry meta-analysis. LD scores were computed from 390 

the full 1KG for the multi-ancestry summary statistics, and from the respective super-391 

population subgroups from 1KG for each ancestry-stratified meta-analysis. 392 

Variant-Set Enrichment for Identifying Enriched Gene Regions 393 

MAGMA
51

 was used to assess gene regions within the GWAS results for enrichment. 394 

MAGMA uses a model based on multiple regression to test the association of a phenotype with 395 

groups of variants. Testing groups of variants increases statistical power over the single-variant 396 
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GWAS tests performed
51

. We utilized gene region definitions from NCBI for human genome 397 

build 38, testing about 18,000 genes for each GWAS. 398 

Statistical Fine-Mapping for Identification of Putative Causal Variants 399 

MESuSiE
52

 was used to identify causal variants in each significant GWAS locus. We 400 

extracted the summary statistics from each locus’s region in addition to computing LD matrices 401 

for that region in all ancestry groups comprising the overall study. For single-ancestry meta-402 

analyses, only one LD matrix was needed, but the loci from the multi-ancestry meta-analyses 403 

were fine-mapped using LD matrices from AFR, AMR, EAS, and EUR. MESuSiE analyzes whether 404 

causal variants are shared between ancestry groups by computing a posterior probability of 405 

causality (PIP) for each ancestry alone and for each combination of two or more ancestries. 406 

SNPs with any PIP value greater than 0.5 are part of the credible set for that locus. 407 

Tissue-Specific Transcriptome-Wide Association Study 408 

We used GWAS summary statistics from our multi-population W meta-analysis to 409 

estimate the association between the variants on expression of genes and the complex trait, 410 

endometriosis. We used precomputed eQTL weights from the PredictDB data repository 411 

(http://predictdb.org/) which represented cis-level associations. The database files comprise of 412 

a list of genetic variants (cis-SNPs) used to predict gene expression, located within 1 Mb of a 413 

gene, eQTL weights, and covariance information. Those models along with the GWAS summary 414 

statistics were input into the summary-based PrediXcan (S-PrediXcan) pipeline for the 415 

transcriptome-wide association study (TWAS), scanning for genes whose expression levels were 416 

associated with endometriosis
53

. We used Bonferroni P < 0.05 (corrected for 9,642 tests) to 417 

identify statistically significant TWAS genes. 418 
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Proteome-Wide Association Study 419 

We performed a proteome-wide association study (PWAS) to investigate the association 420 

between genetically predicted protein levels and endometriosis. We used summary-level GWAS 421 

data from the multi-ancestry W meta-analysis, and pQTL models developed by Schubert et al
54

. 422 

The models were derived from SOMAscan assay of plasma proteins measured in multi-ethnic 423 

Trans-omics for Precision Medicine (TOPMed) Multi-omics pilot study, capturing 1mb cis-424 

regulatory window. We used baseline models only, essentially those models were trained under 425 

standard conditions without any additional adjustments for other covariates or interaction 426 

terms, typically a reference model for general prediction of gene expression based solely on 427 

genetic variation. Only models with a predictive correlation (rho) of at least 0.1 and a z-score p-428 

value threshold of 0.05, meaning that the association between the SNPs and gene expression is 429 

statistically significant, were included. The PWAS was thereby performed on 309 most robust, 430 

and reliable models for the analysis. We employed the S-PrediXcan pipeline to perform the 431 

PWAS. We used Bonferroni-correct P value threshold (P < 0.05 / 309) for identifying significant 432 

PWAS genes. 433 

Integration with Single-Cell Data 434 

Single cell data are rich resources for understanding the biology of diseases. A recently-435 

published endometrial single cell atlas includes gene expression data for cells, nuclei, immune 436 

cells, and immune nuclei, covering over 40 different cell types, three menstrual phases, and 437 

four different endometrial pathologies
55

. We leveraged these data to compute single-cell 438 

disease-relevance scores (scDRSs) based on the associated genes from the GWAS, as computed 439 

by MAGMA. Disease risk scores were computed and normalized using the scDRS software
56

. We 440 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 29, 2024. ; https://doi.org/10.1101/2024.11.26.24316723doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.26.24316723


removed any cell types labeled as “hormones,” as the authors did in the atlas release paper 441 

when they performed fGWAS. 442 

For each cell type and menstrual phase, we compared the scDRSs of cells from donors 443 

with and without endometriosis. We performed one-sided t-tests to compare the distributions, 444 

hypothesizing that the scDRSs of cells from endometriosis cases should be higher than that of 445 

cells from endometriosis controls. We also computed the area under the receiver-operating 446 

curve (AUROC) to see how well the scDRS distinguished between endometriosis case and 447 

control donors. From there, we prioritized cell type – menstrual phase combinations with 448 

significant t-tests and AUROC > 0.6 for further examination. We compared the expression of the 449 

top MAGMA genes between case and control donors using t-tests to identify which genes were 450 

driving the performance of the scDRS. 451 

Merge-Omics 452 

Using the GWAS, TWAS, and PWAS results, we conducted a marker set enrichment analysis 453 

(MSEA) with Mergeomics
24

. MSEA identifies key marker sets (genes or proteins) significantly 454 

enriched for associations across multi-omics data. The markers were mapped to Kyoto 455 

Encyclopedia of Genes and Genomes (KEGG) pathways using gene annotations. We used GWAS, 456 

TWAS and PWAS markers (rsIDs for GWAS and gene names for TWAS and PWAS), along with 457 

their corresponding –log10 transformed p-values as input for the tool. We enriched for KEGG 458 

pathways with FDR < 0.05. 459 
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