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Abstract 14 

Background and Objectives:  Imaging biomarkers enable in vivo quantification of 15 

amyloid, tau, and neurogenerative pathologies that develop in Alzheimer’s Disease 16 

(AD).  Interest in imaging biomarkers has led to a wide variety of biomarker definitions, 17 

some of which potentially offer less predictive value than others.  We aimed to assess 18 

how different operationalizations of AD imaging biomarkers affect prediction of 19 

cognition. 20 

Methods:  We included individuals from ADNI who underwent amyloid-PET ([18F]-21 

Florbetapir), tau-PET ([18F]-Flortaucipir), and volumetric MRI imaging.  We compiled a 22 

large collection of imaging biomarker definitions (42 in total) spanning different 23 

pathologies (amyloid, tau, neurodegeneration) and variable types (continuous, binary, 24 

non-binary categorical).  Using cross-validation, we trained regression models to predict 25 

neuropsychological performance, both globally and across different subdomains 26 

(Phenotype Harmonization Consortium composites), using different combinations of 27 

biomarkers.  We also compared these biomarker models to support vector machines 28 

(SVMs) trained to predict cognition directly from imaging regions of interest.  In a 29 

subsample of individuals with CSF biomarker readouts, we repeated experiments 30 

comparing the accuracy of models using imaging and fluid biomarkers.  Additional 31 

analyses tested the predictive strength of imaging biomarkers when limited to specific 32 

clinical stages of disease (cognitive unimpaired vs. impaired) and when modeling 33 

longitudinal cognitive change. 34 

Results:  Our sample included 490 people (247 female) with a mix of no impairment 35 

(n=288), mild impairment (n=163), and dementia (n=39).  While almost all biomarkers 36 

tested were predictive of cognitive performance, we observed substantial variability in 37 

accuracy, even for measures of the same pathology.  Tau biomarkers were the single 38 

most accurate single predictors, though combination of biomarkers spanning multiple 39 

pathologies were more accurate overall.  SVM models were generally more accurate 40 

than models using traditional biomarkers.  Incorporating continuous or non-binary 41 

categorical biomarkers was beneficial only for tau and neurodegeneration, but not 42 

amyloid.  Patterns of results were largely consistent when considering different clinical 43 
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stages of disease, neuropsychological domains, and longitudinal cognition.  In the CSF 44 

subsample (n=246), imaging biomarkers strongly outperformed CSF versions for 45 

cognitive prediction. 46 

Discussion:  We demonstrated that different imaging biomarker definitions can lead to 47 

variability in downstream predictive tasks.  Researchers should consider how their 48 

biomarker operationalizations may help or hinder the assessment of disease severity.  49 
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Introduction 50 

 The modern biological definition of Alzheimer’s Disease (AD) relies on 51 

biomarkers.1–3  Biomarkers can accurately quantify pathobiological disease processes 52 

which are specific to AD, particularly the aggregation of amyloid-beta (Ab) plaques and 53 

the neocortical spread of tau neurofibrillary tangles.  Importantly, biomarkers can detect 54 

and measure these pathologies prior to symptomatic onset.  Because of their 55 

capabilities, biomarkers have been used in a variety of research settings including 56 

disease classification4, cognitive forecasting5, subtype identification6, clinical trial 57 

stratification7, disease staging8,9, and more.  Moreover, biomarkers are becoming 58 

increasingly important for clinical management of AD2.  For instance, recently approved 59 

anti-Ab treatments for AD require the presence of Ab-pathology as assessed by 60 

biomarkers. 61 

Interest in biological AD assessment has led to the creation of many AD-sensitive 62 

biomarkers which vary in terms of modality, underlying pathology, and statistical 63 

formulation.  Idiosyncrasies of biomarker definitions may result in unwanted variability 64 

when applied for clinical and research uses.  For example, estimated cut points for PET 65 

and CSF biomarker dichotomization are fairly application specific 10–12, and different 66 

approaches to pathological thresholding result in considerable variability for group 67 

assignment13–16.  Less is known, however, about how variability in biomarker definitions 68 

affects prediction of cognition in AD.  Identifying which specific biomarkers are most 69 

predictive of cognitive trajectories, particularly at different stages of disease, can provide 70 

insight into biological mechanisms of AD.  Moreover, precise cognitive decline 71 

predictions are valuable for identifying candidates for early therapeutic interventions and 72 

for establishing meaningful cognitive endpoints in clinical trials.  Despite these 73 

implications, investigations into the ramifications of different biomarker 74 

operationalizations remain limited.   One previous study found that different biomarker 75 

definitions varied in their ability to predict longitudinal Mini-Mental State Examination 76 

(MMSE) scores, and that dichotomization hindered predictive power of some 77 

biomarkers relative to continuous values.13  Similar analyses in separate cohorts with 78 

additional cognitive measures are needed to confirm and extend these findings, 79 
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particularly to establish optimal biomarker combinations for both prognostic accuracy 80 

and mechanistic insight. 81 

Here, we developed a comprehensive set of neuroimaging measures (42 in total) 82 

covering the AD core biomarkers Ab (A) and tau (T), as well as non-specific biomarkers 83 

of neurodegeneration ((N)).  We systematically evaluated how different categories of 84 

biomarkers and individual variants differ in their ability to predict different cognitive 85 

outcomes.  While we focused on cross-sectional cognition, we also extended analyses 86 

to measures of prospective longitudinal cognition and neuropsychological domains.  We 87 

additionally incorporated machine learning to test how traditional biomarker approaches 88 

compare to methods which can detect more complex, multivariate patterns in imaging 89 

data.  Finally, we tested multiple CSF biomarkers (20 definitions spanning 4 analytes) 90 

and compared their performance with imaging alternatives. 91 

Methods 92 

Participants 93 

 We selected a baseline, cross-sectional sample of Alzheimer’s Disease 94 

Neuroimaging Initiative (ADNI) participants with tau-PET, Ab-PET, and structural MRI 95 

imaging data.  Exclusion criteria were gaps between scans of greater than 1 year or 96 

missing values for any of the following variables: age, sex, APOE genotype, Clinical 97 

Dementia RatingÒ (CDR) status17, Phenotype Harmonization Consortium (PHC) 98 

cognitive composite scores18. 99 

Standard protocol approvals, registrations, and patient consents 100 

 All participants provided informed written consent for participating in ADNI.  101 

Study protocols were approved by site-specific institutional review and ethical boards. 102 

Image acquisition and processing 103 

 Detailed descriptions of imaging protocols are provided on the ADNI website19. 104 

Briefly, T1-weighted MRI acquisitions were collected on 3T scanners using an 105 
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accelerated MPRAGE sequence.  Ab-PET scans were acquired 50-70 minutes (4 106 

frames ´ 5 minutes) after a 370 MBq (± 10%) injection of [18F]-Florbetapir.  Tau-PET 107 

scans were acquired 75-105 minutes (6 frames ´ 5 minutes) after a 370 MBq (± 10%) 108 

injection of [18F]-Flortaucipir. 109 

 We accessed processed MRI and PET derivatives generated by the ADNI PET 110 

Core.  A Freesurfer (v7.1.1) processing pipeline was applied to MRI scans to generate 111 

gray matter volumes within regions of interest (ROIs) of standard subcortical20 and 112 

cortical atlases21.  PET standardized uptake value ratios (SUVRs) were generated for 113 

these same ROIs after coregistration of each PET image to a contemporaneous MRI 114 

scan.  Our analyses incorporated unilateral values from 68 cortical and 14 subcortical 115 

gray matter regions.  Volumes were standardized relative to the intracranial volume.  116 

Ab-PET uptakes were standardized to a whole cerebellum ROI, while tau-PET uptakes 117 

were standardized relative to an ROI containing inferior cerebellar gray matter22. 118 

 Partial volume corrected (PVC) PET uptakes were available for tau (Geometric 119 

Transfer Matrix approach23,24) but not for Ab.  We used uncorrected SUVR values for 120 

most experiments, but we repeated some experiments with PVC-corrected tau SUVRs 121 

to evaluate the effect of PVC on cognitive prediction accuracy. 122 

Cognitive and clinical assessments 123 

 Cognition was assessed using composite scores developed by the PHC18.  We 124 

averaged the memory (PHCMemory), executive functioning (PHCEF), visuospatial 125 

(PHCVisual), and language (PHCLanguage) composites to create one global cognitive 126 

composite (PHCGlobal).  Composites are unitless factor loadings, with lower scores 127 

corresponding to more impairment. 128 

 CDR was used as a measure of dementia severity17.  Subjects were assigned to 129 

the following groups based on CDR status: cognitively unimpaired (CU, CDR=0) or 130 

cognitively impaired (CI, CDR>=0.5).  131 
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Image-based biomarker definitions 132 

 We implemented a variety of biomarker definitions to use for predicting cognition.  133 

A full list of the biomarker definitions tested is provided in eTable 1.  Biomarkers were 134 

categorized based on pathology (AT(N)) and variable type (binary [BIN], non-binary 135 

categorical [CAT], continuous [CON]).  Lists of atlas regions used to form composites 136 

are provided in eTable2.  137 

Continuous variables consisted of scalar MRI (volume) or PET (SUVR) measures 138 

in standard composite ROIs.  For Ab, continuous measures of Ab included the average 139 

SUVR in a cortical summary region25,26 (Ab composite) and Centiloid27.  Centiloids were 140 

provided by ADNI and derived from the Ab composite using previously validated 141 

equations28.  Continuous tau measures included the average uptakes in a meta-142 

temporal (MT) composite region11 and uptakes in ROIs corresponding to progressive 143 

Braak stages29,30 (Braak I, Braak III/IV, Braak V/VI).  Braak II was omitted due to off-144 

target binding issues with flortaucipir31,32.  Hippocampal volume and volume of the MT 145 

region were included as continuous assessments of neurodegeneration. 146 

 Binary predictors consisted of dichotomized versions of the continuous predictors 147 

listed above.  There were three main methods tested for binarizing continuous 148 

variables: previously published cutoffs, Z-scoring, and Gaussian mixture modeling 149 

(GMM).  Previously published cutoffs were included for the Ab composite at the 150 

following SUVRs: 1.1133, 1.2434, 1.3011, 1.4211.  We also tested Centiloid cutoffs (15, 20, 151 

25, 30) based on ranges reported in previous literature28,35,36.  Z-scoring and GMMs 152 

were included as data-driven approaches for deriving cutoffs.  These methods were 153 

applied to the Ab composite SUVR, MT tau SUVR, MT volume, and hippocampal 154 

volume.  Z-scores for each variable were computed relative to CU, Ab-negative 155 

individuals (using an SUVR cutoff of 1.11 applied to the Ab composite to determine Ab-156 

negativity, as recommended by the ADNI PET Core).  Z-scores were dichotomized 157 

using cutoffs of 2 and 2.5 standard deviations away from the CU, Ab-negative mean 158 

value.  GMM binarization was implemented by fitting two-component Gaussian mixtures 159 

to the distribution of continuous variables.  A cutoff point was estimated as the curve 160 
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intersection between the fitted Gaussians.  GMMs were omitted for hippocampal 161 

volume, due to a lack of bimodal distribution. 162 

 Non-binary categorical biomarkers consisted of quartiles, binarization with an 163 

indeterminate zone, and staging systems.  Quartiles were computed by binning 164 

continuous values at the 25th, 50th, and 75th percentiles.  Binarization with an 165 

intermediate zone (BIZ) was used to model the uncertainty of assigning individuals who 166 

display biomarker values near the cutoff threshold2.  BIZ was implemented with a GMM, 167 

where individuals were marked as uncertain if they showed less than 60% probability of 168 

being assigned to either Gaussian component. 169 

 Staging systems were included as non-binary categorical measures which assign 170 

disease severity grades based on the spatial extent of Ab or tau pathology.  For Ab, we 171 

applied two previously published staging models9,37.  For tau, we implemented two 172 

versions of Braak staging with different granularities: Braak staging (6) (I, III, IV, V, VI) 173 

and Braak staging (3) (I, III/IV, V/VI).  Detailed description of the staging procedures for 174 

each of these systems is provided in the eMethods.  175 

CSF-based biomarkers 176 

 We identified a subsample of individuals who had CSF immunoassays within 1 177 

year of imaging.  CSF samples were analyzed with Roche Elecsys kits sensitive to Ab42, 178 

Ab40, total-tau (tTau), and tau phosphorylated at threonine 181 (pTau181).  CSF 179 

processing was administered by the ADNI Biomarker Core at the University of 180 

Pennsylvania. 181 

 CSF concentrations of analytes were grouped into biomarker categories as 182 

previously recommended14,151 (Ab: Ab42, Ab40, Ab42/Ab40, tau: pTau181, 183 

neurodegeneration: tTau).  Raw concentrations were included as continuous measures.  184 

GMMs were used to define binary versions of CSF biomarkers.   BIZ and quartiles were 185 

used to generate non-binary categorical versions. 186 
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Statistical analyses 187 

 We ran a series of cross-validated modeling experiments to assess how different 188 

biomarker definitions compared in their ability to model cognition.  Complete details of 189 

these experiments are provided in the eMethods.  Briefly, we used linear regression 190 

models to predict PHCGlobal using single or multiple biomarker definitions.  All regression 191 

models also included covariates of age, sex, and APOE E4 carriership.  Models which 192 

only included these covariates were included as controls.  Models with single 193 

biomarkers were used to test (1) if all included biomarker definitions improved cognitive 194 

prediction accuracy and (2) which individual definitions were most predictive of cognitive 195 

impairment.  Next, we developed linear models combining multiple biomarker definitions 196 

as predictors of PHCGlobal.  To limit comparisons for these models, biomarkers were 197 

grouped based on the underlying pathology (AT(N)) and the variable type (binary, non-198 

binary categorical, continuous), with nested cross-validation used to select the best 199 

predicting definition within each group.  These models were used to test (3) if 200 

combination of biomarkers improved prediction accuracy, and (4) if models 201 

incorporating continuous or non-categorical binary biomarkers outperformed models 202 

with binary biomarkers.  Next, we trained support vector machines (SVM) to predict 203 

PHCGlobal from regional biomarker values to test if (5) multivariate modeling of AD 204 

pathology could improve prediction accuracy beyond that of pre-defined biomarker 205 

definitions.  SVMs were trained with both linear and non-linear kernels with a grid 206 

search to select optimal hyperparameters (see eMethods). 207 

 All cross-validation experiments had 10 outer folds and were repeated 10 times 208 

to generate 100 out of sample error estimates for each tested model.  Model error was 209 

assessed using root mean squared error (RMSE).  Boxplots included in the Results 210 

show distributions of the 100 out-of-sample RMSE measurements from trained models.  211 

To statistically evaluate differences in accuracy for comparisons of interest, we used 212 

Nadeau-Bengio t-tests.  The Nadeau-Bengio t-test includes a bias correction for the 213 

interdependency of out-of-sample error estimates when using repeated, cross-validated 214 

designs38,39.  All tests were corrected for multiple comparisons with a false discovery 215 

rate method40.  We investigated feature importance by plotting the distribution of 216 
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selected biomarkers across folds, the magnitude of the coefficients on biomarkers in 217 

linear regression models, and the covariance corrected weights for SVM models41 (see 218 

eMethods).  Additionally, we visualized the distribution of model-selected SUVR cutoffs 219 

for binary Ab- and tau-PET biomarkers. 220 

Finally, we ran a series of additional cross-validated experiments using 221 

alternative features, target variables, or clinical disease states.  Specific experiments 222 

were as follows: (a) predicting the prospective slope of PHCGlobal instead of the cross-223 

sectional value, (b) predicting neuropsychological domains instead of PHCGlobal, (c) 224 

using PVC tau data instead of non-PVC, (d) using CSF-based biomarkers instead of 225 

imaging-based versions, and (e) using only CU or CI individuals for model selection and 226 

out-of-sample evaluation.  For (a), we only included individuals who had longitudinal 227 

cognitive measurements following baseline.  To estimate longitudinal change in 228 

PHCGlobal, linear mixed effect models were fit to model longitudinal scores following the 229 

baseline assessment.  Models were fit with random slopes and intercepts for 230 

participants. 231 

Data availability 232 

 Data used in the preparation of this article were obtained from the Alzheimer’s 233 

Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was 234 

launched in 2003 as a public-private partnership, led by Principal Investigator Michael 235 

W. Weiner, MD. The primary goal of ADNI has been to test whether serial MRI, PET, 236 

other biological markers, and clinical and neuropsychological assessment can be 237 

combined to measure the progression of MCI and early AD. For up-to-date information, 238 

see www.adni-info.org.  All data used in this study are accessible from ADNI following 239 

formal data usage agreements.  Data were downloaded on May 10th, 2024.  All R 240 

(v4.4.0) and Python (v3.10) code for this project will be shared at the following 241 

repository: https://github.com/sotiraslab/earnest_ad_biomarker_modeling. 242 
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Results 243 

Sample characteristics 244 

 We selected 490 individuals with baseline biomarker imaging (Table 1). The 245 

cohort consisted of a mix of individuals with no cognitive impairment (CDR=0, n=288), 246 

very mild dementia (CDR=0.5, n=163), and mild to severe dementia (CDR>0.5, n=39).  247 

We observed significant differences in the distribution of age (p=0.001), sex (p=0.005), 248 

Ab-burden (Centilioid, p<0.001), and PHCGlobal (p<0.001) across dementia status.  Mean 249 

age and Ab-burden increased with dementia status, while PHCGlobal decreased.  250 

Relatively more females were observed in the CU group (56.6%) than those with very 251 

mild (41.1%) or mild to severe dementia (43.6%).  APOE E4 status was not significantly 252 

different across groups (p=0.200). 253 

 We also selected subsamples of individuals who had longitudinal PHCGlobal 254 

assessments following baseline (n=383) and those who had CSF biomarker 255 

measurements as well as imaging (n=246).  Characteristics of these samples are shown 256 

in eTables 4 and 5, respectively. 257 

Assessment of modeling performance for biomarkers 258 

Relative to a control model which included covariates (RMSE=0.531), almost all 259 

tested biomarkers led to a significant improvement in prediction accuracy for modeling 260 

cognitive scores (Figure 1).  The only exception was hippocampal volume binarized at -261 

2.5 Z-scores (RMSE=0.525 [0.06], p=0.09).  While these results indicated that most 262 

biomarker definitions provided some predictive value, gains in performance were not 263 

equal across pathologies and variable types (range in RMSE reduction: 3.4-21.1%).  264 

Tau biomarkers led to the largest improvements in accuracy, with 9/10 of the best 265 

performing biomarkers being tau-based.  Furthermore, SVM models which were trained 266 

on regional pathology were more accurate than linear models using single biomarker 267 

definitions.  The tau SVM was the best performing model overall (RMSE=0.419 [0.05], 268 

p<0.001), while the Ab SVM (RMSE=0.472 [0.06], p<0.001) and volume SVM 269 

(RMSE=0.452 [0.05], p<0.001) were the best performing Ab and neurodegeneration 270 
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models, respectively.  Outside of SVMs, the best performing models for each AT(N) 271 

category were the Ab SUVR binarized at 1.24 (RMSE=0.492 [0.06], p<0.001), 272 

continuous MT tau SUVR (RMSE=0.440 [0.05], p<0.001), and continuous MT volume 273 

(RMSE=0.471 [0.05], p<0.001). 274 

Combination of biomarkers 275 

 Our next experiments applied a model selection to identify the best performing 276 

biomarker predictors based on AT(N) category and variable type.  We observed that all 277 

biomarker varieties caused a reduction in error over the covariate-only model (Figure 278 

2A; mean RMSEs: Covariates=0.531, ABIN=0.498, ACAT=0.495, ACON=0.495, TBIN=0.470, 279 

TCAT=0.443, TCON=0.440, NBIN=0.495, NCAT=0.492, NCON=0.471; all p<0.01).  Like our 280 

experiments (Figure 1), benefits were largest for tau predictors relative to Ab and 281 

neurodegeneration.  282 

Combination models which included assessments for all AT(N) categories 283 

generally outperformed models with only one category included.  All combination 284 

models were more accurate than the covariate-only model in predicting global cognition 285 

(mean RMSEs: ABIN/TBIN/NBIN=0.446, ACAT/TCAT/NCAT=0.428, ACON/TCON/NCON=0.415, 286 

ASVM/TSVM/NSVM=0.405, all p<0.001).  Additionally, models which combined biomarkers 287 

resulted in significantly higher accuracy than models which only included one pathology 288 

assessment (Figure 2A).  The benefit of combination was evident for binary 289 

(ABIN/TBIN/NBIN vs. ABIN: t=3.96, p<0.001; vs. TBIN: t=2.61, p<0.05; vs. NBIN: t=3.92, 290 

p<0.001), non-binary categorical (ACAT/TCAT/NCAT vs. ACAT: t=4.46, p<0.001; vs. TCAT: 291 

t=2.22, p<0.05; vs. NCAT: t=4.31 p<0.001), and continuous (ACON/TCON/NCON vs. ACON: 292 

t=5.22, p<0.001; vs. TCON: t=3.34, p<0.01; vs. NCON: t=4.48 p<0.001) biomarkers.  The 293 

combination SVM outperformed the Ab (t=5.29, p<0.001) and gray matter (t=3.62, 294 

p<0.001) SVMs, but not the tau SVM (t=1.56, p=0.12), indicating that the improved 295 

accuracy of the multimodal SVM may be primarily driven by tau. 296 

Direct comparison of biomarkers based on variable types indicated that 297 

biomarker binarization reduced the accuracy for tau and neurodegeneration predictors, 298 

but not Ab (Figure 2B).  Relative to the model with all binary predictors (mean RMSE for 299 
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ABIN/TBIN/NBIN=0.446), reductions in error were seen when incorporating non-binary 300 

categorical tau (ABIN/TCAT/NBIN: RMSE=0.426, t=2.14, p<0.05), continuous tau 301 

(ABIN/TCON/NBIN: RMSE=0.424, t=2.42, p<0.05), or continuous neurodegeneration 302 

(ABIN/TBIN/NCON: RMSE=0.432, t=2.10, p<0.05) biomarkers.  An improvement was also 303 

observed when including all continuous biomarkers (ACON/TCON/NCON: RMSE=0.415, 304 

t=2.99, p<0.05), but not when including all non-binary biomarkers (ACAT/TCAT/NCAT: 305 

RMSE=0.428, t=1.56, p=0.10).  The tau SVM (RMSE=0.419, t=2.02, p<0.05) and the 306 

AT(N) SVM model (RMSE=0.405, t=3.42, p<0.01) also outperformed the all-binary 307 

model.  Models which replaced the binary Ab definition with a non-binary categorical 308 

(ACAT/TBIN/NBIN: RMSE=0.446, t=0.26, p=0.60) or continuous (ACON/TBIN/NBIN: 309 

RMSE=0.447, t=0.24, p=0.71) version did not improve accuracy.  Improvements were 310 

also not seen for Ab and neurodegeneration SVMs (p>0.05).   311 

We found no differences in accuracy between models which used PVC for tau 312 

SUVRs and ones with no correction (eFigure 1, all p>0.05). 313 

Feature importance and model interpretation 314 

 For models which applied nested cross-validation to group biomarkers based on 315 

AT(N) category and variable type, the best performing predictors were highly consistent 316 

across folds, suggesting that some biomarker definitions generally outperformed others 317 

measuring the same pathology (Figure 3A).  This was particularly true for tau and 318 

neurodegeneration models, where the same biomarker definitions were selected in 319 

more than 95% of folds.  There was slightly more variation for Ab, but the best 320 

performing biomarker was still chosen at least 67% of the time.  For PET binarization, 321 

previously published cutoffs accounted for 100% of selected Ab biomarkers, but only 322 

1% of tau biomarkers (the other 99% being a GMM applied to the MTT SUVR).  For 323 

non-binary categorical measures of PET, staging systems appeared to generally 324 

outperform other approaches, appearing in 76% of selected Ab models and 100% of tau 325 

models. 326 

 Inspection of model coefficients highlighted the relative importance of tau for 327 

predicting cognition.  For linear models which included multiple biomarkers as 328 
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predictors, coefficients were highest for tau, followed by neurodegeneration and Ab 329 

(Figure 3B).  When considering continuous biomarkers in particular, weights for Ab were 330 

much lower than those of tau or neurodegeneration.  Similarly, the weights for tau 331 

features were on average higher than those of Ab or atrophy in the multimodal SVM 332 

model (Figure 3C).  Cortical weights for tau and neurodegeneration highlighted medial 333 

and lateral temporal structures, while Ab weights were more homogenous.  Subcortical 334 

regions were weighted lower than cortical ones, except for tau uptake and gray matter 335 

volume in the amygdala and hippocampus.   Similar spatial patterns were observed 336 

when considering the SVM weights from separate Ab, tau, and neurodegeneration 337 

models (eFigure 2). 338 

 We used our cross-validated modeling to identify the optimal cutoffs for Ab and 339 

tau binarization in our cognitive modeling experiments.  Our results indicated SUVR 340 

cutoffs of 1.26 (range: 1.24-1.30) for Ab and 1.44 (range: 1.33-1.45) for tau (Figure 4). 341 

Cognitive modeling in CU and CI populations 342 

 We also trained separate models to optimize the prediction of cognitive scores 343 

for individuals who were CU (CDR=0) and those who were CI (CDR>0).  Like our 344 

results in the whole sample, we found that almost all biomarker models tested resulted 345 

in a significant improvement in accuracy relative to a baseline model with just covariates 346 

(eFigure 3).  These benefits were observed for both CU (range in RMSE reduction: 3.9-347 

15.1%) and CI (range in RMSE reduction: 7.2-30.2%) settings.  The only exception was 348 

for categorical neurodegeneration models in those CU, where the difference was non-349 

significant (t=1.65, p=0.05).  The best performing models in the CU and CI populations 350 

were the all-continuous (ACON/TCON/NCON: RMSE=0.349, t=6.1, p<0.001) and AT(N) 351 

SVM models (ASVM/TSVM/NSVM: RMSE=0.452, t=7.5, p<0.001), respectively. 352 

 Similarly to the whole-sample results, non-binary measures of tau and 353 

neurodegeneration, but not Ab, provided additional accuracy for modeling PHCGlobal in 354 

CU and CI individuals (eFigure 4).  Larger benefits were seen for models including non-355 

binary tau and neurodegeneration in CI individuals relative to CU individuals.  For CU 356 

individuals (mean RMSE for ABIN/TBIN/NBIN: 0.381), we observed improvements when 357 
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including non-binary categorical tau (ABIN/TCAT/NBIN: RMSE=0.366, t=2.8, p<0.05), 358 

continuous tau (ABIN/TCON/NBIN: RMSE=0.366, t=2.6, p<0.05), or continuous biomarkers 359 

(ACON/TCON/NCON: RMSE=0.359, t=2.5, p<0.05).  Considering CI people (mean RMSE 360 

for ABIN/TBIN/NBIN: 0.523), we observed increases in accuracy for the categorical tau 361 

(ABIN/TCAT/NBIN: RMSE=0.490, t=2.6, p<0.05), continuous tau (ABIN/TCON/NBIN: 362 

RMSE=0.485, t=3.3, p<0.01), continuous neurodegeneration (ABIN/TBIN/NCON: 363 

RMSE=0.495, t=3.4, p<0.01), continuous AT(N) (ACON/TCON/NCON: RMSE=0.479, t=3.4, 364 

p<0.01), tau SVM (TSVM: RMSE=0.484, t=2.4, p<0.05), and AT(N) SVM 365 

(ASVM/TSVM/NSVM: RMSE=0.442, t=4.8, p<0.001) models. 366 

Modeling longitudinal cognition 367 

 The pattern of results we observed were largely consistent when modeling 368 

prospective change in cognition.  All model varieties tested were significantly more 369 

accurate for predicting longitudinal change in PHCGlobal (range in RMSE reduction: 4.1-370 

30.3%, all p<0.05) relative to a covariate-only model (eFigure 5a), with the largest 371 

benefits seen for the all-continuous (ACON/TCON/NCON: RMSE=0.386, t=5.83, p<0.001), 372 

multimodal SVM (ASVM/TSVM/NSVM: RMSE=0.368, t=5.44, p<0.001), and tau SVM (TSVM: 373 

RMSE=0.373, t=5.44, p<0.001).  No biomarker linear models with non-binary measures 374 

improved prediction accuracy relative to an all-binary baseline (eFigure 5b, all p>0.05).  375 

However, the tau SVM (TSVM: RMSE=0.373, t=3.05, p<0.01) and multimodal SVM 376 

(ASVM/TSVM/NSVM: RMSE=0.368, t=3.54, p<0.01) were still significantly more accurate at 377 

predicting change in PHCGlobal than a model consisting of all-binary predictors. 378 

Modeling of individual neuropsychological domains 379 

 We also observed similar patterns of accuracy differences for non-binary 380 

biomarker definitions when modeling neuropsychological domains instead of PHCGlobal.  381 

Significant benefits were only observed for models which included non-binary or SVM-382 

based assessments of tau and neurodegenerative pathology (eFigure 6).  Models which 383 

included non-binary definitions of Ab alone did not surpass the all-binary model for any 384 

neuropsychological domain.  Continuous tau and neurodegeneration measures 385 

improved accuracy for prediction of PHCEF (p<0.05) and PHCVisual (p<0.05), while non-386 
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binary categorical measures only improved prediction of PHCVisual (p<0.05).  The AT(N) 387 

SVM had significantly higher accuracy for modeling PHCEF (p<0.01), PHCVisual (p<0.05), 388 

and PHCMemory (p<0.05).  No significant differences were observed for PHCLanguage 389 

prediction accuracy (all p>0.05). 390 

Comparison of image-based and CSF-based models 391 

 We observed that CSF-based models performed relatively poorly for modeling 392 

cognition.  Models which incorporated CSF-based biomarkers, as opposed to imaging-393 

based ones, did not perform better than a baseline model consisting of only covariates 394 

(Figure 5 & eFigure 7, all p>0.05).  Moreover, imaging-based models were significantly 395 

more accurate than CSF-based models.  This was true for binary (t=2.81, p<0.01), non-396 

binary categorical (t=3.68, p<0.01), and continuous (t=3.96, p<0.01) biomarker 397 

definitions. 398 

Discussion 399 

 AD biomarkers differ from each other along various axes such as the underlying 400 

pathology they measure (e.g. Ab, tau), the modality (e.g., imaging, CSF, blood), and 401 

measurement characteristics (e.g., variable type).  Our analyses indicate that 402 

differences along these dimensions result in considerable variability when imaging 403 

biomarkers are utilized in downstream tasks.  We show that even biomarkers which 404 

assess the same pathology exhibit a range in accuracy when applied for modeling 405 

cognition.  Additionally, we demonstrate that multivariate machine learning approaches 406 

can surpass traditional biomarker definitions for cognitive prediction in AD.  Careful 407 

consideration should be applied when selecting biomarker definitions for predictive 408 

tasks, as certain operationalizations may be relatively less informative than other 409 

variants.  While we specifically focus on cognitive prediction, our results may be 410 

relevant for other settings where researchers wish to quantify AD pathology. 411 

 While nearly all tested biomarkers provided predictive gains when modeling 412 

cognition, some categories of biomarkers yielded consistently larger improvements than 413 

others.  Multiple analyses demonstrated that tau biomarkers exhibited stronger 414 
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associations with cognition than assessments of Ab or neurodegeneration, a well-415 

documented finding.42–44  Feature importance analyses indicated that tau predictors 416 

were weighted higher than Ab or neurodegeneration measures in models which 417 

incorporated all three AT(N) categories.  However, combined AT(N) models generally 418 

outperformed unimodal ones, even when tau was the single biomarker included.  Thus, 419 

while measures of tau are important indicators of cognitive decline, incorporation of 420 

measures spanning other pathologies is warranted for enhancing predictive accuracy. 421 

 We observed that SVM models outperformed more traditional linear models of 422 

cognition.  Tau and multimodal SVMs were the best predictors overall in many 423 

experiments.  These models were also the only models which outperformed binary 424 

biomarker models for prediction of longitudinal cognitive decline.  Ab and 425 

neurodegeneration SVMs were also relatively stronger than other individual biomarker 426 

definitions of these pathologies.  The superior performance of SVM models suggest that 427 

there may be key predictive signal occurring in brain regions external to the manually 428 

defined meta-ROIs which are utilized in most of the biomarker definitions we tested.  429 

However, the SVMs also allowed for non-linear transformations of input features, 430 

making them relatively more powerful models. 431 

 Inclusion of non-binary tau and neurodegeneration predictors led to small but 432 

consistent improvements in accuracy relative to binary alternatives.  However, binary Ab 433 

measures performed equally to non-binary ones.  As such, our findings indicate that 434 

binarization along dimensions of tau and neurodegeneration (e.g., labeling individuals 435 

as T+/- or N+/-) may obfuscate information relevant to the prediction of cognitive 436 

decline.  On the other hand, dichotomization of Ab status may be sufficient.  These 437 

notion agrees with revised criteria for diagnosis and staging of AD2: their proposed PET 438 

staging system includes binary assessment of Ab (i.e., has AD or not) and multi-level 439 

staging of tau based on the extent of progression outside the medial temporal lobe.  440 

Interestingly, the specific benefits for tau and neurodegeneration (and not Ab) were 441 

consistent when considering only CU or CI individuals and when modeling some 442 

neuropsychological domains (executive functioning and visuospatial performance).  443 

These results agree with a previous study which found similar non-dichotomized tau 444 
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and neurodegeneration for modeling longitudinal cognitive decline13.  However, we did 445 

not replicate their findings showing accuracy improvements when modeling prospective 446 

cognition in CU individuals and including non-binary measures of Ab. 447 

 While nearly all the imaging biomarkers we tested improved prediction of 448 

cognitive impairment, the same was not true for CSF counterparts.  Models which 449 

incorporated CSF biomarkers as predictors did not perform better than baseline models 450 

which only included standard covariates, regardless of the analyte or its 451 

operationalization.  Previous findings have similarly demonstrated stronger associations 452 

for imaging biomarkers and cognitive scores in AD, relative to fluid biomarkers45.  453 

Importantly, the CSF analytes tested largely reflect earlier pathological cascades which 454 

likely develop and saturate prior to the onset of neurodegeneration and cognitive 455 

decline2,46.   As such, they may be less suited for providing direct associations with 456 

cognitive decline, and more suited for diagnosis or prediction of future decline. 457 

 Our study has limitations which should be considered.  First, while we performed 458 

a comprehensive and rigorous evaluation of multiple biomarkers, biomarkers such as 459 

fluorodeoxyglucose-PET, cortical thickness, and functional imaging were not included in 460 

this study. Future studies are warranted to examine them.  Second, this study relied 461 

only on ADNI because inclusion of other sources posed issues of harmonization and 462 

biomarker availability.  While ADNI is one of few databases which can enable the 463 

analyses we conducted, it is also relatively limited in its inclusion of demographic 464 

diversity47.  As such, our results warrant replication in other datasets. 465 

 The growth of large data initiatives has led to an explosion of approaches for 466 

biomarker assessment of AD.  While picking from the myriads of methods for 467 

quantification of AD pathology, it is important for researchers to mind the biological, 468 

statistical, and practical characteristics of each approach.  Our results demonstrate that 469 

different operationalizations of the same pathology can result in variable performance 470 

for downstream predictive tasks.  More complex indices of pathology may be superior to 471 

dichotomous alternatives, particularly for measures of neurodegeneration and tau.  472 

Finally, data-driven, machine learning approaches may be preferable for identifying 473 

biomarker contributions to cognitive decline. 474 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 27, 2024. ; https://doi.org/10.1101/2024.11.25.24317943doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.25.24317943
http://creativecommons.org/licenses/by-nc/4.0/


Acknowledgement 475 

The authors thank the staff for the Washington University Center for High 476 

Performance Computing who helped enable this work.  Computations were performed 477 

using the facilities of the Washington University Research Computing and Informatics 478 

Facility (RCIF). The RCIF has received funding from NIH S10 program grants: 479 

1S10OD025200-01A1 and 1S10OD030477-01. 480 

Study Funding 481 

This work was supported by the National Institutes of Health (NIH) (R01-482 

AG067103) and the BrightFocus Foundation (ADR A2021042S).    483 

Data collection and sharing for this project was funded by the Alzheimer's 484 

Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 485 

AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-486 

0012). ADNI is funded by the National Institute on Aging, the National Institute of 487 

Biomedical Imaging and Bioengineering, and through generous contributions from the 488 

following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; 489 

Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, 490 

Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; 491 

EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; 492 

Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & 493 

Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development 494 

LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx 495 

Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; 496 

Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition 497 

Therapeutics. The Canadian Institutes of Health Research is providing funds to support 498 

ADNI clinical sites in Canada. Private sector contributions are facilitated by the 499 

Foundation for the National Institutes of Health (www.fnih.org). The grantee 500 

organization is the Northern California Institute for Research and Education, and the 501 

study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University 502 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 27, 2024. ; https://doi.org/10.1101/2024.11.25.24317943doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.25.24317943
http://creativecommons.org/licenses/by-nc/4.0/


of Southern California. ADNI data are disseminated by the Laboratory for Neuro 503 

Imaging at the University of Southern California. 504 

Disclosures 505 

Author AS has equity in TheraPanacea and have received personal 506 

compensation for serving as grant reviewer for BrightFocus Foundation.  The remaining 507 

authors have no conflicting interests to report. 508 

References 509 

1. Jack CR, Bennett DA, Blennow K, et al. NIA-AA Research Framework: Toward a 510 
biological definition of Alzheimer’s disease. Alzheimer’s & Dementia. 511 
2018;14(4):535-562. doi:10.1016/j.jalz.2018.02.018 512 

2. Jack CR, Andrews JS, Beach TG, et al. Revised criteria for diagnosis and staging of 513 
Alzheimer’s disease: Alzheimer’s Association Workgroup. Alzheimer’s &amp; 514 
Dementia. Published online June 27, 2024:alz.13859. doi:10.1002/alz.13859 515 

3. Hansson O. Biomarkers for neurodegenerative diseases. Nat Med. 2021;27(6):954-516 
963. doi:10.1038/s41591-021-01382-x 517 

4. Rathore S, Habes M, Iftikhar MA, Shacklett A, Davatzikos C. A review on 518 
neuroimaging-based classification studies and associated feature extraction 519 
methods for Alzheimer’s disease and its prodromal stages. NeuroImage. 520 
2017;155:530-548. doi:10.1016/j.neuroimage.2017.03.057 521 

5. McConathy J, Sheline YI. Imaging Biomarkers Associated With Cognitive Decline: A 522 
Review. Biological Psychiatry. 2015;77(8):685-692. 523 
doi:10.1016/j.biopsych.2014.08.024 524 

6. Chen P, Zhang S, Zhao K, Kang X, Rittman T, Liu Y. Robustly uncovering the 525 
heterogeneity of neurodegenerative disease by using data-driven subtyping in 526 
neuroimaging: A review. Brain Research. 2024;1823:148675. 527 
doi:10.1016/j.brainres.2023.148675 528 

7. Abdelnour C, Agosta F, Bozzali M, et al. Perspectives and challenges in patient 529 
stratification in Alzheimer’s disease. Alzheimers Res Ther. 2022;14:112. 530 
doi:10.1186/s13195-022-01055-y 531 

8. Earnest T, Bani A, Ha SM, et al. Data-driven decomposition and staging of 532 
flortaucipir uptake in Alzheimer’s disease. Alzheimer’s & Dementia. 2024;20(6). 533 
doi:10.1002/alz.13769 534 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 27, 2024. ; https://doi.org/10.1101/2024.11.25.24317943doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.25.24317943
http://creativecommons.org/licenses/by-nc/4.0/


9. Collij LE, Heeman F, Salvadó G, et al. Multitracer model for staging cortical amyloid 535 
deposition using PET imaging. Neurology. 2020;95(11):e1538-e1553. 536 
doi:10.1212/WNL.0000000000010256 537 

10. Klunk W, Cohen A, Bi W, et al. Why we need two cutoffs for amyloid imaging: Early 538 
versus Alzheimer’s-like amyloid-positivity. Alzheimer’s & Dementia. 2012;8(4, 539 
Supplement):P453-P454. doi:10.1016/j.jalz.2012.05.1208 540 

11. Jack CR, Wiste HJ, Weigand SD, et al. Defining imaging biomarker cut-points for 541 
brain aging and Alzheimer’s disease. Alzheimers Dement. 2017;13(3):205-216. 542 
doi:10.1016/j.jalz.2016.08.005 543 

12. Weigand AJ, Maass A, Eglit GL, Bondi MW. What’s the cut-point?: a systematic 544 
investigation of tau PET thresholding methods. Alzheimers Res Ther. 2022;14(1):49. 545 
doi:10.1186/s13195-022-00986-w 546 

13. Mattsson-Carlgren N, Leuzy A, Janelidze S, et al. The implications of different 547 
approaches to define AT(N) in Alzheimer disease. Neurology. 2020;94(21):e2233-548 
e2244. doi:10.1212/WNL.0000000000009485 549 

14. Salimi Y, Domingo-Fernández D, Hofmann-Apitius M, et al. Data-Driven 550 
Thresholding Statistically Biases ATN Profiling across Cohort Datasets. J Prev 551 
Alzheimers Dis. 2024;11(1):185-195. doi:10.14283/jpad.2023.100 552 

15. Provost K, Iaccarino L, Soleimani-Meigooni DN, et al. Comparing ATN-T designation 553 
by tau PET visual reads, tau PET quantification, and CSF PTau181 across three 554 
cohorts. Eur J Nucl Med Mol Imaging. 2021;48(7):2259-2271. doi:10.1007/s00259-555 
020-05152-8 556 

16. Bucci M, Chiotis K, Nordberg A. Alzheimer’s disease profiled by fluid and imaging 557 
markers: tau PET best predicts cognitive decline. Mol Psychiatry. 2021;26(10):5888-558 
5898. doi:10.1038/s41380-021-01263-2 559 

17. Morris JC. Clinical Dementia Rating: A Reliable and Valid Diagnostic and Staging 560 
Measure for Dementia of the Alzheimer Type. International Psychogeriatrics. 561 
1997;9(S1):173-176. doi:10.1017/S1041610297004870 562 

18. Mukherjee S, Choi SE, Lee ML, et al. Cognitive Domain Harmonization and 563 
Cocalibration in Studies of Older Adults. Neuropsychology. 2023;37(4):409-423. 564 
doi:10.1037/neu0000835 565 

19. ADNI Study Documents. Alzheimer’s Disease Neuroimaging Initiative. 2024. 566 
Accessed May 15, 2024. https://adni.loni.usc.edu/methods/documents/ 567 

20. Fischl B, Salat DH, Busa E, et al. Whole brain segmentation: automated labeling of 568 
neuroanatomical structures in the human brain. Neuron. 2002;33(3):341-355. 569 
doi:10.1016/s0896-6273(02)00569-x 570 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 27, 2024. ; https://doi.org/10.1101/2024.11.25.24317943doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.25.24317943
http://creativecommons.org/licenses/by-nc/4.0/


21. Desikan RS, Ségonne F, Fischl B, et al. An automated labeling system for 571 
subdividing the human cerebral cortex on MRI scans into gyral based regions of 572 
interest. NeuroImage. 2006;31(3):968-980. doi:10.1016/j.neuroimage.2006.01.021 573 

22. Diedrichsen J. A spatially unbiased atlas template of the human cerebellum. 574 
Neuroimage. 2006;33(1):127-138. doi:10.1016/j.neuroimage.2006.05.056 575 

23. Baker SL, Maass A, Jagust WJ. Considerations and code for partial volume 576 
correcting [18F]-AV-1451 tau PET data. Data in Brief. 2017;15:648-657. 577 
doi:10.1016/j.dib.2017.10.024 578 

24. Rousset OG, Ma Y, Evans AC. Correction for partial volume effects in PET: principle 579 
and validation. J Nucl Med. 1998;39(5):904-911. 580 

25. Mormino EC, Kluth JT, Madison CM, et al. Episodic memory loss is related to 581 
hippocampal-mediated beta-amyloid deposition in elderly subjects. Brain. 582 
2009;132(Pt 5):1310-1323. doi:10.1093/brain/awn320 583 

26. Jagust WJ, Landau SM, Shaw LM, et al. Relationships between biomarkers in aging 584 
and dementia. Neurology. 2009;73(15):1193-1199. 585 
doi:10.1212/WNL.0b013e3181bc010c 586 

27. Klunk WE, Koeppe RA, Price JC, et al. The Centiloid Project: standardizing 587 
quantitative amyloid plaque estimation by PET. Alzheimers Dement. 2015;11(1):1-588 
15.e1-4. doi:10.1016/j.jalz.2014.07.003 589 

28. Royse SK, Minhas DS, Lopresti BJ, et al. Validation of amyloid PET positivity 590 
thresholds in centiloids: a multisite PET study approach. Alzheimers Res Ther. 591 
2021;13(1):99. doi:10.1186/s13195-021-00836-1 592 

29. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta 593 
Neuropathol. 1991;82(4):239-259. doi:10.1007/BF00308809 594 

30. Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K. Staging of 595 
Alzheimer disease-associated neurofibrillary pathology using paraffin sections and 596 
immunocytochemistry. Acta Neuropathol. 2006;112(4):389-404. 597 
doi:10.1007/s00401-006-0127-z 598 

31. Lemoine L, Leuzy A, Chiotis K, Rodriguez-Vieitez E, Nordberg A. Tau positron 599 
emission tomography imaging in tauopathies: The added hurdle of off-target binding. 600 
Alzheimers Dement (Amst). 2018;10:232-236. doi:10.1016/j.dadm.2018.01.007 601 

32. Biel D, Brendel M, Rubinski A, et al. Tau-PET and in vivo Braak-staging as 602 
prognostic markers of future cognitive decline in cognitively normal to demented 603 
individuals. Alzheimer’s Research & Therapy. 2021;13(1):137. doi:10.1186/s13195-604 
021-00880-x 605 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 27, 2024. ; https://doi.org/10.1101/2024.11.25.24317943doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.25.24317943
http://creativecommons.org/licenses/by-nc/4.0/


33. Landau SM, Mintun MA, Joshi AD, et al. Amyloid deposition, hypometabolism, and 606 
longitudinal cognitive decline. Annals of Neurology. 2012;72(4):578-586. 607 
doi:10.1002/ana.23650 608 

34. Su Y, Flores S, Wang G, et al. Comparison of Pittsburgh compound B and 609 
florbetapir in cross-sectional and longitudinal studies. Alzheimers Dement (Amst). 610 
2019;11:180-190. doi:10.1016/j.dadm.2018.12.008 611 

35. Salvadó G, Molinuevo JL, Brugulat-Serrat A, et al. Centiloid cut-off values for 612 
optimal agreement between PET and CSF core AD biomarkers. Alzheimer’s 613 
Research & Therapy. 2019;11(1):27. doi:10.1186/s13195-019-0478-z 614 

36. Farrell ME, Jiang S, Schultz AP, et al. Defining the Lowest Threshold for Amyloid-615 
PET to Predict Future Cognitive Decline and Amyloid Accumulation. Neurology. 616 
2021;96(4):e619-e631. doi:10.1212/WNL.0000000000011214 617 

37. Mattsson N, Palmqvist S, Stomrud E, Vogel J, Hansson O. Staging β-Amyloid 618 
Pathology With Amyloid Positron Emission Tomography. JAMA Neurology. 619 
2019;76(11):1319-1329. doi:10.1001/jamaneurol.2019.2214 620 

38. Nadeau C, Bengio Y. Inference for the Generalization Error. Machine Learning. 621 
2003;52(3):239-281. doi:10.1023/A:1024068626366 622 

39. Bouckaert RR, Frank E. Evaluating the Replicability of Significance Tests for 623 
Comparing Learning Algorithms. In: Dai H, Srikant R, Zhang C, eds. Advances in 624 
Knowledge Discovery and Data Mining. Lecture Notes in Computer Science. 625 
Springer; 2004:3-12. doi:10.1007/978-3-540-24775-3_3 626 

40. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and 627 
Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society: 628 
Series B (Methodological). 1995;57(1):289-300. doi:10.1111/j.2517-629 
6161.1995.tb02031.x 630 

41. Haufe S, Meinecke F, Görgen K, et al. On the interpretation of weight vectors of 631 
linear models in multivariate neuroimaging. NeuroImage. 2014;87:96-110. 632 
doi:10.1016/j.neuroimage.2013.10.067 633 

42. Gordon BA, McCullough A, Mishra S, et al. Cross-sectional and longitudinal atrophy 634 
is preferentially associated with tau rather than amyloid β positron emission 635 
tomography pathology. Alzheimers Dement (Amst). 2018;10:245-252. 636 
doi:10.1016/j.dadm.2018.02.003 637 

43. La Joie R, Visani AV, Baker SL, et al. Prospective longitudinal atrophy in 638 
Alzheimer’s disease correlates with the intensity and topography of baseline tau-639 
PET. Sci Transl Med. 2020;12(524):eaau5732. doi:10.1126/scitranslmed.aau5732 640 

44. Ossenkoppele R, Smith R, Mattsson-Carlgren N, et al. Accuracy of Tau Positron 641 
Emission Tomography as a Prognostic Marker in Preclinical and Prodromal 642 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 27, 2024. ; https://doi.org/10.1101/2024.11.25.24317943doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.25.24317943
http://creativecommons.org/licenses/by-nc/4.0/


Alzheimer Disease: A Head-to-Head Comparison Against Amyloid Positron 643 
Emission Tomography and Magnetic Resonance Imaging. JAMA Neurology. 644 
2021;78(8):961-971. doi:10.1001/jamaneurol.2021.1858 645 

45. Lu J, Ma X, Zhang H, et al. Head-to-head comparison of plasma and PET imaging 646 
ATN markers in subjects with cognitive complaints. Transl Neurodegener. 647 
2023;12(1):34. doi:10.1186/s40035-023-00365-x 648 

46. Tissot C, Therriault J, Kunach P, et al. Comparing tau status determined via plasma 649 
pTau181, pTau231 and [18F]MK6240 tau-PET. eBioMedicine. 2022;76:103837. 650 
doi:10.1016/j.ebiom.2022.103837 651 

47. Weiner MW, Veitch DP, Miller MJ, et al. Increasing participant diversity in AD 652 
research: Plans for digital screening, blood testing, and a community-engaged 653 
approach in the Alzheimer’s Disease Neuroimaging Initiative 4. Alzheimer’s & 654 
Dementia. 2023;19(1):307-317. doi:10.1002/alz.12797 655 

  656 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 27, 2024. ; https://doi.org/10.1101/2024.11.25.24317943doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.25.24317943
http://creativecommons.org/licenses/by-nc/4.0/


Tables 657 

 CDR=0.0 CDR=0.5 CDR=1.0+ p-value 

n 288 163 39  

Age 73.84 (7.44) 75.78 (8.46) 78.29 (8.58) 0.001 
Sex (M/F) 125/163 96/67 22/17 0.005 
APOE E4+ 99 (34.4%) 62 (38.0%) 19 (48.7%) 0.200 

Centiloid 19.90 (36.10) 45.57 (54.95) 78.41 (49.61) <0.001 
PHCGlobal 0.81 (0.36) 0.32 (0.46) -0.42 (0.54) <0.001 

Table 1: Sample characteristics.  The last column shows p-values for significance tests 658 
comparing distributions of variables across dementia status groups (CDR).  Chi-squared 659 
tests of association were used for categorical variables (sex, APOE status) and one-660 
way ANOVAs were used for continuous variables (age, Centiloid, PHCGlobal).  661 
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Figures 662 

 663 

Figure 1: Boxplots showing performance of individual biomarkers for predicting 664 
PHCGlobal.  Values plotted are RMSEs taken from out of sample predictions for 100 665 
cross-validation instances (lower value is more accurate).  The baseline model only 666 
included covariates as independent variables (mean performance for this model 667 
indicated by the dotted line).  All other models included the same covariates and a 668 
single amyloid (maroon), tau (green), or neurodegeneration (blue) biomarker.  Labels on 669 
the right indicate the variable type of each biomarker (BIN=binary, CAT=non-binary 670 
categorical, CON=continuous, SVM=support vector machine).  All models exhibited 671 
significantly lower RMSE than the baseline model, except for hippocampal volume 672 
binarized at -2.5 Z-scores [Hippocampus (z<-2.5)].   673 

 674 
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 675 

Figure 2:  Boxplots showing RMSE performance of combination biomarkers for 676 
predicting global neuropsychological performance (PHCGlobal).  A.  Individual and 677 
combination biomarker models are compared against a baseline model using only 678 
covariates (mean performance indicated by dotted line) to predict PHCGlobal.  B.  679 
Combination biomarker models with non-binary variable types are compared against a 680 
baseline model with binary biomarker definitions (mean performance indicated by dotted 681 
line).  In both panels, colors are used to indicate the variable type of included 682 
biomarkers (yellow: binary, purple: non-binary categorical, red: continuous, blue: SVM).  683 
Lighter coloring indicates models which only have a single pathology assessment, while 684 
darker coloring indicates models which have Ab, tau, and neurodegeneration 685 
biomarkers.  Gold stars indicate a significant improvement in accuracy relative to the 686 
topmost model.  Gray stars and bars highlight significant pairwise differences between 687 
individual models.  Statistical results are derived from Nadeau-Bengio t-tests with 688 
correction for multiple comparisons (*p<0.05, **p<0.01, ***p<0.001). 689 

 690 

 691 

 692 

 693 
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 694 

Figure 3:  Feature importance analysis.  A. Pie charts showing which biomarkers were selected 695 
as the best performing from cross-validation (100 training fold instances).  Biomarkers shown with 696 
gray coloring were not selected in any iteration.  B.  Coefficients for the Aβ, tau, and 697 
neurodegeneration predictor in cross-validated linear models.  Values are taken from 100 698 
instances of the all binary (ABIN/TBIN/NBIN) and all continuous (ACON/TCON/NCON) models.   C.  Brain 699 
maps showing average regional feature importance derived from the ASVM/TSVM/NSVM model.   700 
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 701 

Figure 4.  Estimated cutoffs for Aβ- and tau-PET binarization.  A.  The kernel density 702 
estimation of selected cutoffs for Aβ (100 cross-validation iterations) is shown in 703 
maroon, with the mean value (1.256) highlighted with the bold vertical line.  B.  Same as 704 
A., but for tau and shown in green (mean value: 1.435).  In both panels, other vertical 705 
lines show other pre-defined cutoff values that were tested. 706 
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 719 
Figure 5.  Boxplots comparing accuracy cognition predictions using image-based (solid) 720 
and CSF-based (hatched) biomarkers.  Values are RMSEs taken from 100 cross-721 
validation instances.  Colors are used to indicated the variable type of included 722 
biomarkers (yellow: binary, purple: non-binary categorical, red: continuous).  Gold stars 723 
indicate a significant improvement in accuracy relative to the baseline model (only 724 
covariates).  Gray stars and bars highlight significant pairwise differences between 725 
individual models.  Statistical results are derived from Nadeau-Bengio t-tests with 726 
correction for multiple comparisons (*p<0.05, **p<0.01, ***p<0.001). 727 
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