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Abstract

Mendelian Randomization analysis is a popular method to infer causal relation-
ships between exposures and outcomes, utilizing data from genome-wide association
studies (GWAS) to overcome limitations of observational research by treating ge-
netic variants as instrumental variables. This study focuses on a specific problem
setting, where causal signals may exist among a series of correlated traits, but the
exposures of interest, such as biological functions or lower-dimensional latent fac-
tors that regulate the observable traits, are not directly observable. We propose a
Bayesian Mendelian randomization analysis framework that allows joint analysis of
the causal effects of multiple latent exposures on a disease outcome leveraging GWAS
summary-level association statistics for traits co-regulated by the exposures. We con-
duct simulation studies to show the validity and superiority of the method in terms
of type I error control and power due to a more flexible modeling framework and a
more stable algorithm compared to an alternative approach and traditional single-
and multi-exposure analysis approaches not specifically designed for the problem.
We have also applied the method to reveal evidence of the causal effects of psychi-
atric factors, including compulsive, psychotic, neurodevelopmental, and internalizing
factors, on neurodegenerative, autoimmune, digestive, and cardiometabolic diseases.

Keywords— Bayesian modeling, Latent exposures, Multivariable Mendelian randomization,
Psychiatric disorders
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1 Introduction

Mendelian randomization (MR) is a widely implemented tool for causal inference utilizing ob-

servational data from genome-wide association studies (GWAS) when performing a randomized

controlled trial is not practical (12; 29). As a type of instrumental variable (IV) analysis, MR

employs genetic variants, typically single nucleotide polymorphisms (SNPs), as IVs to infer causal

relationships between exposures and outcomes in the presence of unmeasured confounding. As

the availability of summary data from GWAS continues to increase, replacing the reliance on

individual-level data, recent studies have focused on exploiting the GWAS summary-level data

to perform MR (6; 40), providing valuable insight into the mechanisms across a wide spectrum

of human traits and diseases. Extensive methodological advancements have been made in relax-

ing the classic MR assumptions and proposing more robust analysis approaches. Traditionally,

three assumptions are required for an IV to be valid: it must be truly associated with the expo-

sure, it only affects the outcome through the exposure (no horizontal pleiotropy), and it is not

associated with confounders of the association between the exposure and the outcome (“exchange-

ability”) (6; 15; 33). These assumptions, however, are over-stringent and often hard to verify.

The widely implemented two-sample MR (39), with outcome and exposure data coming from

two non-overlapping GWAS, can mitigate the violation of the exchangeability assumption to a

reasonable degree. Endeavors toward developing robust and powerful methods include accounting

for uncorrelated and correlated horizontal pleiotropy (37; 9; 41), correcting for weak instrumental

bias(45; 10; 32), and adjusting for population stratification and batch effects (3; 10; 19), among

others. Recent work also started to explore MR frameworks for high-dimensional exposures in

the contexts of multi-omic and medical imaging (7; 24; 34; 26) research.

While current MR analyses focus on well-defined exposures for which GWAS can be directly

conducted, the underlying causal factors may be some lower-dimensional latent features that reg-

ulate the observed biomarker traits. Such a latent exposure setting is quite common: we often

encounter scenarios where the latent exposures of interest may not be directly observable, may

lack measurement techniques universally used by researchers, or have no available GWAS data.
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Examples of latent exposures include known biological mechanisms/concepts, such as chronic

inflammation, organ functions, stress, and intelligence level, and unknown underlying processes,

for example, some latent factors that are believed to cause different subtypes of psychiatric disor-

ders, functions of gene pathways/modules, and neurological functions in different brain regions.

Generally, there are two types of scenarios that often involve latent exposures. First, while data

for multiple biomarkers (e.g., inflammation biomarkers like C-reactive protein and cytokines) are

available, the actual exposure of interest is some factor that is known to regulate the biomarkers

(e.g., chronic inflammation). The other scenario is that, while some observed traits (e.g., metabo-

lites) may pose signals of effects on the outcome, there is evidence that there may be unknown

latent features (e.g., lifestyles, diet) underlying the traits that are likely the true risk factors of

disease progression. Investigating causal pathways among these latent exposures beyond the level

of observable traits may thus yield new findings on causal mechanisms among human traits and

diseases.

MR analysis on latent exposures was recently highlighted and investigated(25). To test for the

causal effect of a latent exposure on an outcome, one typically relies on GWAS summary statistics

for observed traits that are regulated by the exposure. A naive approach is to conduct MR analysis

on each single trait and combine evidence of causality across traits. Relying on correlated traits,

however, can lead to bias and a loss in power for the analysis due to the effects of horizontal

pleiotropy, as the selected IVs may not be truly associated with the latent exposure of interest

but only affect the observed traits. For example, the significance and identified direction of

causal effect may be inconsistent between different traits. MRLE, the first MR analysis approach

designed for latent exposures (25), was recently proposed to improve the validity and power of

the analysis by accounting for such pleiotropy between traits. MRLE involves developing a set

of estimating functions based on the second-order moments of GWAS summary statistics for the

observed traits and the outcome within a structural equation modeling (SEM) framework. In this

model, genetic variants are assumed to have indirect effects through latent exposure or possible

direct effects on the traits, which allows for the consideration of pleiotropic effects among the

traits. Being the first MR analysis approach developed for latent exposures, MRLE has some
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methodological and computational limitations. First, it is designed for the analysis of a single

latent exposure. In many cases, however, we will encounter multiple latent factors behind the

observed traits that are potentially correlated, where we will need a flexible approach analogous

to multivariable MR that allows us to jointly analyze the direct effects of these latent exposures

while accounting for horizontal pleiotropy across these exposures. The SEM framework in MRLE

would become overly complex if extended to more complex pleiotropy settings involving multiple

correlated latent exposures. Furthermore, we have identified potential convergence issues of the

regularized Newton-Raphson’s algorithm for the implementation of MRLE.

In this study, we propose a novel approach for Causal analysis of Latent exposures using

Mendelian Randomization (CaLMR). CaLMR adopts a two-sample MR framework and conducts

Bayesian modeling based on the likelihood of the estimated SNP-trait associations from summary-

level data of the outcome and the observable biomarkers associated with the latent exposures

from separate GWAS. CaLMR allows simultaneous testing of the direct causal effects of multiple

correlated latent exposures on an outcome, i.e., CaLMR (Multi), with an alternative version,

CaLMR (Uni), for analyzing a single latent exposure. In the multiple-exposure scenario, if the

exposure-biomarker matchings are known, then we can directly conduct MR analysis based on the

known causal diagram. But if we believe there are multiple latent factors that regulate different

subgroups of biomarkers, we propose to first conduct a factor analysis using algorithms like

genomicSEM(17; 16) to identify the latent factors and learn the underlying exposure-biomarker

relationships, based on which we can then apply our MR analysis framework. We show by

simulations the validity and efficiency of CaLMR in different data scenarios, where CaLMR

(Uni) successfully addresses the convergence issue of the MRLE algorithm in the single-exposure

setting, while CaLMR (Multi) effectively identifies the direct causal effects on the outcome among

multiple correlated latent exposures and can handle the scenario in which some biomarkers are

associated with multiple latent exposures. We also demonstrate the superiority of CaLMR (Uni)

to the MRLE algorithm in terms of computational stability, as well as the relative superiority

of CaLMR (Multi) to CaLMR (Uni), MRLE, and simple multivariable MR approaches, MVMR-

PRESSO and MVMR-IVW, in terms of power and type I error control in the multiple-exposure
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setting. We further employ CaLMR (Uni) and CaLMR (Multi) to assess the causal effects of four

broad psychiatric factors, each indicating shared risk for several related psychiatric disorders, on

various autoimmune, digestive, cardiometabolic, or neurodevelopmental diseases. We show that

CaLMR can be used to help explain the complexity of the relationship between several psychiatric

illnesses regarding their potentially causal effects on numerous other diseases.

2 Results

2.1 Method Overview

We introduce CaLMR, a Bayesian MR approach to testing the direct causal effect of latent expo-

sures. CaLMR infers the direction and existence of causal effects of unobserved, latent exposures

on an outcome leveraging GWAS summary data for the outcome and a series of measurable traits

or biomarkers known or hypothesized to be co-regulated by the exposures. Suppose we are inter-

ested in analyzing the causal effects of L unobserved, latent exposures, X1, X2, . . . , XL, on a dis-

ease outcome Y utilizing GWAS summary statistics on M selected genetic IVs (G1, G2, . . . , GM )

for Y and K observed traits, B1, B2, . . . , BK . The causal diagram in Figure 1(a) describes the

assumed relationship between these different variables in the L = 2 latent exposure case. The

biomarker is deemed valid if (1) it is regulated by at least one of the exposures, and (2) conditional

on the exposures, it does not affect the outcome, typically referred to as a “pure surrogate”. We

assume the following models for the individual-level data:

Y =

L∑
l=1

θlXl + εy, εy ∼ N(0, σ2εy) (1)

Xl =

M∑
j=1

βxl,jGj + εxl , εxl ∼ N(0, σ2εxl
) (2)

Bk =

L∑
l=1

θklXl +

M∑
j=1

γk,jGj + εBk
, εBk

∼ N(0, σ2εBk
), (3)

5

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted November 27, 2024. ; https://doi.org/10.1101/2024.11.25.24317939doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.25.24317939


where θls are the direct effects of the latent exposures Xls on the outcome, of which we are

interested in the significance and signs (positive or negative effects). The rationale of proposing

Figure 1: Causal diagrams illustrating the causal links between the outcome (Y ), latent
exposures (X1 and X2), observable traits (Bk), and genetic IVs (Gj). a. An example causal
diagram describing the general relationship between variables assumed by CaLMR in the
two-exposure scenario. θ1 and θ2 are the parameters of interests, which are the causal
effects of the latent exposures on Y . The red dashed line that links the two exposures
indicates a potential between-exposure correlation. Ak denotes the set of SNPs associated
with Bk and Al

0 the set of SNPs associated with latent exposure Xl. γk,js and βxl,js are
the direct SNP effects on the observable traits and latent exposures, respectively. The
existence of θ31 and θ32 reflects the case where some traits (B3) are regulated by multiple
exposures. b. A causal diagram describing the single-exposure simulation setting assuming
a total of K = 6 observable traits. c. An illustration of the multiple-exposure simulation
setting assuming a total of eight observable traits co-regulated by two correlated latent
exposures (correlation: κ = −0.5), among which two (B4 and B5) are regulated by both
exposures.

CaLMR (Multi) for jointly analyzing multiple latent exposures is similar to that of the multi-
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variable MR (MVMR) (5; 44; 43), which is to tackle the issue of horizontal pleiotropy between

exposures and increase the testing power. For a set of independent exposures, which, in the

MVMR setting, is referred to as “causally independent” exposures(5), implementing CaLMR will

be analogous to applying the single-exposure MRLE simultaneously to each of the exposures but

will further allow the incorporation of pleiotropic IVs, i.e., IVs that have horizontal pleiotropy

between exposures, which could yield better inference. In the case of correlated (i.e., “causally

dependent”) latent exposures (Figure 1(a), with the red dashed line), however, univariate MR

analysis of each exposure will examine not the direct effect of each exposure on the outcome but

“total” causal effect θ∗l = θl +
∑

l′ 6=l κl,l′θ
∗
l , the sum of its direct effect and the indirect effect

through its association with other causal exposures, where κl,l′ denotes the correlation between

exposures l and l′, 1 ≤ l, l′ ≤ L. This may lead to inflated false discoveries on noncausal exposures

due to correlations with other exposures. Like MVMR methods, CaLMR (Multi) is designed to

provide unbiased estimates of the direct causal effects of the latent exposures θls by accounting

for between-exposure correlations. Note that the CaLMR (Multi) method will reduce to CaLMR

(Uni) in the case of L = 1.

We assume that the selected genetic IVs (Gjs) may have direct effects on both the exposures

(βxl,j) and the observed traits (γk,j). We assume independence between βxl,j and γk,j , i.e.,

uncorrelated pleiotropy, in the prior distributions for these parameters. But it has previously

been shown that the modeling framework is robust to correlated pleiotropy between these traits.

We propose a strict criterion for the selection of IVs used in the analysis. Adopting the IV

selection procedures established for MRLE and MVMR, we select SNPs that are significantly

associated with at least two constituent biomarkers for each exposure and then take the union of

these SNP sets across all exposures. This is to ensure a high chance of selecting the SNPs that are

truly associated with the exposures. Our current model assumes no direct effect of IVs on Y , i.e.,

no horizontal pleiotropy between the exposures and the outcome. Such horizontal pleiotropy can

be easily accounted for by directly incorporating a recently developed approach into our Bayesian

modeling framework (9). The stringent IV selection criterion with a genome-wide significance

threshold (p=5e-8) may lead to insufficient or, sometimes, no IVs selected for the analysis. To
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ensure a sufficient amount of IVs are included in the analysis, we propose a data-driven approach

for IV selection. Specifically, we initially set the significance threshold to p0 = 5 × 10−8. The

selection process iterates, with the significance threshold doubled at each step until the number

of IVs selected for each exposure reaches 15Kxl , where Kxl denotes the number of observable

traits associated with exposure l.

To infer the direction of the causal effects θls, CaLMR requires that the signs of θk,ls (the

exposure-biomarker associations) are known. This is a reasonable assumption: for the well-

defined latent exposures, the directions of the effect of exposures (e.g., kidney function) on the

observed traits (kidney function biomarkers) are well-known or documented in the literature,

while for the unknown latent exposure, algorithms like genomicSEM can provide an estimate of

such directions. We want to note that if the signs of exposure-trait associations are unknown,

then CaLMR can still provide a hypothesis testing result on the existence of causal effects but

without inference on their directions. CaLMR conducts inference on the parameters based on

a Markov chain Monte Carlo (MCMC) algorithm with Gibbs sampling. Details of the Bayesian

inference and the MCMC algorithms for CaLMR (Uni) and CaLMR (Multi) are provided in the

Methods section. Derivation of the MCMC algorithms and discussion on identifiability of the

inferred signs of the causla effects and between-exposure correlations are provided in Section 1 of

the Supplementary Materials.

2.2 Simulation Studies

In the single-exposure setting, we showed by simulation that CaLMR (Uni) and MRLE had

comparable powers in detecting the causal effect of the exposure, which is expected because the

two approaches utilize the same data information. Using p = 5e−4 and 5e−5 as the significance

threshold for IV selection leads to well-controlled type I error rates at similar levels around

α = 0.05 for CaLMR (Uni), suggesting that CaLMR (Uni) is robust to the significance threshold

for IV selection (Figure 2a, Supplementary Table 1). When GWAS sample size is relatively

small, CaLMR (Uni) tends to have a higher power when using a less stringent (but reasonable)
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significance threshold for IV selection to include more IVs in the analysis. We also compared

CaLMR with two standard MR methods for observable exposures, MR-PRESSO(52) and MR-

IVW. Since MR-PRESSO and MR-IVW are not designed for analysis on latent exposures, we

apply them to conduct a test on each observed trait with an adjusted p-value significance threshold

at 1−(1−0.05)1/K and concluded that the latent exposure had a significant effect on the outcome

if any of the tests had a significant result. Results suggested that MR-PRESSO and MR-IVW

lacked sufficient power to identify the causal latent exposure, which is consistent with the findings

reported in the paper for MRLE (25).

Figure 2: Simulation results under the single-exposure (a) and multiple-exposure (b) sce-
narios assuming a GWAS sample size for each trait and the outcome N = 60K, 80K, or
100K. Results are summarized across 1000 simulations per setting. a. type I error con-
trol and power comparison between CaLMR (Uni), MRLE, MR-PRESSO, and MR-IVW
under the single exposure setting. The significance threshold for IV selection is equal to
p = 5 × 10−4. We assume the heritability of X is 0.2, and the total heritability of each
biomarker H2

B,total
= 0.2 (top panel) or 0.3 (bottom panel). b. type I error control and

power comparison between CaLMR (Multi), CaLMR (Uni), MRLE, MV MR-PRESSO,
and MVMR-IVW in the setting of two correlated latent exposures.

Our simulation results also showed the superiority and robustness of CaLMR (Multi) com-
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pared to alternative methods in the multiple-exposure settings. We assumed there were two latent

factors X1 and X2 with a correlation -0.5. We generated summary statistics for K biomarkers

and the outcome based on models (1-3) assumed by CaLMR (details are summarized in the

Methods section). We applied the data-driven approach described in Section 2.1 to select IVs.

We compared CaLMR (Multi) with four alternative methods, including CaLMR (Uni), MRLE,

MVMR-PRESSO, and MVMR-IVW. The latter two methods are the multivariable versions of

MR-PRESSO and MR-IVW implemented in our simulations for the single-exposure setting which

were implemented by an ad hoc approach (see Methods). When implementing CaLMR (Uni) and

MRLE, we applied the test to each exposure using SNPs associated with that exposure and tested

the effects of each exposure separately. We used the union set of IVs selected for the two exposures

for the implementation of CaLMR (Multi), MVMR-PRESSO, and MVMR-IVW. To control the

family-wise error rate (FWER) at 0.05 for each exposure, when implementing MVMR-PRESSO

and MVMR-IVW, we used the adjusted p-value at 1−(1−0.05)1/Kxl given the multiple hypothe-

ses tests performed. We examined the performance of the various methods in three scenarios: (1)

no causal effect from either biomarker, i.e., θ1 = θ2 = 0, (2) exposure one was causal and exposure

two was not, with θ1 = 0 and θ2 = 0.1, and (3) both exposures were causal, with θ1 = θ2 = 0.1.

We assumed there were a total of K = 8 biomarkers and Kx1 = Kx2 = 5, implying two of

them were regulated by two exposures simultaneously. CaLMR (Multi), MVMR-PRESSO, and

MVMR-IVW controlled the type I error rate sharply (Figure 2b). However, MVMR-PRESSO

and MVMR-IVW had extremely low power compared to CaLMR (Multi) for detecting causal

exposures in all three scenarios. As the GWAS sample size increased, their power went slightly

upward, but they were still overly conservative in identifying causality from the exposures. When

there was no causal exposure, CaLMR (Uni) could control the type I error rate well, while MRLE

sometimes had a slightly inflated type I error rate, which was due to some convergence issues

we previously discussed (See Supplementary Materials). However, when only one of the two

exposures was causal, CaLMR (Uni) and MRLE could have a largely inflated type I error rate

for the non-causal exposure in the presence of a causal exposure. MRLE tended to have higher

inflation in type I error rate than CaLMR (Uni). The inflation persisted as the GWAS sample
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sizes increased. CaLMR (Uni) and MRLE also had lower power than CaLMR (Multi) when both

exposures were associated with the outcome. This is because the negative correlation between the

exposures undermined the power of detecting true causal effects when analyzing them marginally.

We have shown previously that MRLE is robust to correlated pleiotropy between the observable

traits, which suggests that CaLMR, having the same model assumptions, should have similar

performance as MRLE in these pleiotropy settings. We have also conducted simulations assuming

alternative data scenarios and have summarized the results in Section 2 of the Supplementary

Materials.

2.3 Analyzing the Causal Effect of Psychiatric Factors on Disease

Risks

Severe mental illness has been linked with higher risks of a wide range of chronic physical con-

ditions (47). Studies have shown evidence of causal links between different types of psychiatric

disorders on different types of diseases. For example, epidemiological studies have reported the

association of a range of psychiatric disorders, such as schizophrenia and psychosis, with genetic

markers of the immune system, various immune alterations, and autoimmune diseases, such as

systemic lupus erythematosis and multiple sclerosis (MS), in different organs (23; 2). Addition-

ally, some recent studies have revealed shared mechanisms across a series of major psychiatric and

neurodegenerative diseases, providing insights into alternative early treatment and therapeutic

development for late-life neurodegenerative diseases (13; 53; 42). The possible causal link between

psychological disorders and digestive disorders have been identified in various studies, which may

be explained by functional abnormalities in the brain-gut axis and the increasingly recognized

impact of psychological distress on the systemic and gut immunity(54; 14; 14; 31). Studies have

also consistently shown an increased risk of cardiovascular and cardiometabolic diseases associated

with depression, schizophrenia, and other severe mental illnesses (20; 1; 38).

Given this evidence and recent research interest in the potential causal effects of psychiatric

illnesses (and of disorders afflicting the brain more generally) on various other health outcomes,
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we have conducted a systematic investigation on the causal signals involving eleven psychiatric

disorders on eighteen neurodegenerative, cardiometabolic, digestive, and autoimmune disease out-

comes. these relationships systematically (36). We have collected GWAS summary statistics for

problematic alcohol use (ALCH), post-traumatic stress disorder (PTSD), anorexia nervosa (AN),

and obsessive-compulsive disorder (OCD) from FinnGen(28) and attention-deficit/hyperactivity

disorder (ADHD), autism spectrum disorder (AUT), anxiety (ANX), bipolar (BIP), major depres-

sion disorder(MDD), obsessive-compulsive disorder (OCD), schizophrenia (SCZ), and Tourette

syndrome (TS) from the Psychiatric Genomics Consortium (PGC)(49), totaling K = 11 major

psychiatric disorders. Figure 3(a) shows the genetic correlation among these psychiatric disorders

estimated by LD score regression (LDSC) (4).

We derived four broad latent psychiatric factors from the eleven disorders using genomic

Structral Equation Modeling (genomicSEM)(17) that explain both shared and unique genetic

risks across these disorders (18) (Figure 3b). These four factors align well with the four subtypes

of psychiatric disorders: compulsive, psychotic, neurodevelopmental, and internalizing disorders

(Figure 3b). We thus believe they influence various biobehavioral traits and brain functions and

may offer insights into the underpinnings of their associated psychiatric disorders (see Section 3

of the Supplementary Materials).

Following our modeling framework, we treated the psychiatric factors as latent exposures and

the set of specific psychiatric disorders associated with each factor as their “biomarkers”. In

total, there are K = 11 biomarkers across L = 4 latent factors, with some biomarkers being

associated with more than one latent factor. We applied both the CaLMR (Uni) and CaLMR

(Multi) methods, along with MRLE, MVMR-PRESSO, and MVMR-IVW. When applying MRLE

and CaLMR (Uni) in a single-exposure setting, a different IV selection threshold was used for

each psychiatric factor. This was done to ensure that there were a sufficient number of IVs used

for each factor. Specifically, p-value thresholds of 5 × 10−3, 5 × 10−6, 5 × 10−4, and 5 × 10−3

were employed for factors 1, 2, 3, and 4, respectively, that correspond to compulsive, psychiotic,

neurodevelopmental, and internalizing disorders. For CaLMR (Multi), MVMR-PRESSO, and

MVMR-IVW, IVs were selected at a liberal p-value threshold of 5× 10−3 across all four factors.
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Figure 3: The genetic architecture and identified latent factor structures among eleven psy-
chiatric disorders. a. Genetic correlation structure of the eleven disorders estimated using
LDSC. b. Four latent psychiatric factors underlying the 11 disorders and their associations
with the disorders inferred by genomicSEM. The four factors align well with four subtypes
of psychiatric disorders, including compulsive, psychotic, neurodevelopmental, and inter-
nalizing disorders. The values on the dashed lines connecting each pair of factors are the
between-factor correlations estimated by CaLMR (Multi). The signs near the solid lines
linking factors with the observed disorders indicate the estimated signs of genetic correla-
tions derived from genomicSEM. The signs reflect our known directions of the exposure-
trait associations and will be used to determine the direction of the exposure-outcome
effects. Abbreviations: AN (anorexia nervosa), OCD (obsessive-compulsive disorder), TS
(Tourette syndrome), SCZ (schizophrenia), BIP (bipolar disorder), ALCH (problematic al-
cohol use), ADHD (attention-deficit/hyperactivity disorder), AUT (autism spectrum dis-
order), PTSD (post-traumatic stress disorder), MDD (major depressive disorder), ANX
(anxiety).

This was done to ensure all four factors had a sufficient number of significant IVs selected for

the joint analysis so that the results would not be biased towards any of the factors. We selected

independent IVs by performing linkage disequilibrium (LD) clumping on the remaining SNPs

using a 0.5 MB window and an r2 threshold of 0.005, implemented in PLINK. For each method,

we tested the null hypothesis of no significant causal effect from the latent factor on the outcome

at the α = 0.05 significance level. We also compared the p-values to the adjusted significance

threshold of α′ = 1 − (1 − 0.05)1/72 ≈ 0.0007 as there were in total 72 tests conducted for each

method.

Figure 3 illustrates the resulting p-values from our analyses. In all scenarios, CaLMR (Uni)
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Figure 4: Analysis of Causal Effects of Psychiatric Factors on Various Disease
Outcomes. We report the − log10 p-values associated with testing the causal effects
of four latent psychiatric factors on 18 disease outcomes using five methods, including
MVMR-IVW, MVMR-PRESSO, MRLE, CaLMR (Uni), and CaLMR (Multi). Upward-
pointing triangles represent positive causal estimates, whereas downward-pointing triangles
represent negative estimates. The gray dashed line marks α = 0.05, and the black dashed
line marks the adjusted significance level α′ = 0.0007. Results are summarized by factor for
Factor 1 (aligned with compulsive disorders, a), Factor 2 (aligned with psychotic disorders,
b), Factor 3 (aligned with neurodevelopmental disorders, c, and Factor 4 (aligned with
internalizing disorders, d. The eighteen disease outcomes include various autoimmune,
digestive, cardiometabolic, and neurodegenerative disorders as indicated by the brackets
on the y-axis.
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and CaLMR (Multi) performed the best at identifying potential causal effects. We found that

the MRLE method had a much higher significance than other methods, particularly when testing

the effects of factors 3 and 4 (16 and 15 out of the 18 tests produced p < 10−5, respectively),

which may indicate highly inflated false positive rates. Comparatively, CaLMR (Uni) produced

significant results for two outcomes related to factor 3, while the CaLMR (Multi) rejected the

null for one outcome when testing factor 3 after adjusting for the effects of the other factors.

Additionally, CaLMR (Uni) showed a significant result for only one outcome when testing the

direct causal effect of factor 4, whereas the CaLMR (Multi) detected no causal effect of factor

4 on any of the outcomes. In comparison, the MVMR-PRESSO and MVMR-IVW both appear

to be conservative, which is consistent with our simulation results where they showed low power.

Between both methods and for all four factors, the only significant causal effect detected was from

factor 3 on ALS using MVMR-IVW, which could be a false discovery given the high false positive

rates typically associated with the IVW test. This agrees with the results of our simulation

studies, where both MVMR-PRESSO and MVMR-IVW appeared to have exceedingly low power

while MRLE suffered from an inflated type I error.

The superior control of type I error by the CaLMR (Uni) method, compared to the MRLE

method when testing for causal effects from factors 3 and 4, may be attributed to the fact that

these two factors are tested with K > 3 biomarkers. Specifically, factor 3 has K3 = 6 biomarkers,

while factor 4 has K4 = 4 biomarkers. For these two factors, the MRLE method required

substantially more time to complete the analysis and frequently issued warning messages related

to the singularity of some asymptotic covariance matrix. In contrast, CaLMR (Uni) took only

marginally more time to analyze factors 3 and 4 compared to factors 1 and 2, and did not exhibit

any performance issues during these analyses.

In addition to the testing on factors 3 and 4, CaLMR (Uni) detected causal effects from factor

2 on 8 out of 18 outcomes, while CaLMR (Multi) detected causal effects on 4 outcomes from factor

2. This difference in causal detections likely stems from the use of relatively weak instruments by

CaLMR (Multi) given the less stringent p-value threshold used for IV selection. Another potential

reason for the apparently lower significance of CaLMR (Multi) relative to CaLMR (Uni) is that it
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uses the union set of all IVs valid for each individual latent factor, of which only a small portion

are valid for factor 2; this pattern was also observed in our simulations. Factor 2 indicates general

psychotic disorder and has K = 3 associated biomarkers which are Schizophrenia (SCZ), Bipolar

Disorder (BIP), and ALCH. The other latent factors studied describe compulsive disorders (factor

1), neurodevelopmental disorders (factor 3), and internalizing disorders (factor 4). An individual

prone to psychotic disorder is especially concerning compared to other types of disorders because

they may lose touch with reality entirely. This can severely impact their social life, career, and

ability to manage their health, among other aspects, leading to further destabilization in their life

(30). It should also be noted that antipsychotic drugs can be particularly toxic and disrupt many

bodily functions (48). Thus, researchers might reasonably anticipate that psychotic disorders, by

their nature, increase the likelihood of developing other disorders in affected individuals.

Among the eight outcomes determined to be causally affected by factor 2, five were classified

as autoimmune disorders, while the remaining three belonged to each one of the other outcome

categories. We caution that there may have been issues concerning identifiability as among the

significant causal estimates, those estimates for Irritable Bowel Syndrome (IBS), Type 1 Diabetes

(T1D), Psoriasis, and Myasthenia gravis were positive while estimates for ALS, Multiple Sclerosis

(MS), Type 2 Diabetes (T2D), and Lupus were negative. It is plausible that the causal effect

on ALS from factor 2 would be negative since ALS is believed to be partially characterized

by a dopaminergic deficit while psychotic illness is characterized by a dopaminergic excess (51)

(22). However, negative causal effects on MS, T2D, and Lupus contradict the existing literature

concerning the relative comorbidity of SCZ with these diseases (50) (55).

These significant results are consistent with the existing literature on the relationship between

psychotic and autoimmune disorders. Previous research has suggested that a family history of

psychotic disorders is linked to a higher risk of developing autoimmune diseases, and the reverse

also appears to be true (23). Additionally, inflammatory markers have been found at elevated

levels in the blood and cerebrospinal fluid (CSF) of individuals with psychosis, with particularly

high concentrations in cases of first-episode psychosis. Furthermore, a recent meta-analysis has

suggested that the risk of developing an autoimmune disease was 55% greater in individuals with
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a previous diagnosis of a psychotic disorder (11). The results produced from our CaLMR (Uni)

method should help to clarify the nature of the relationship between psychotic and autoimmune

diseases.

3 Discussion

We introduce CaLMR as a new method that jointly tests for the causal effects of latent expo-

sures on an outcome. Compared to MRLE, the single-exposure method for latent exposure, the

single-exposure version of our method, CaLMR (Uni), can accurately detect causal effects at a

similar level of power while offering faster computation time and controlling type I error much

better, particularly in cases where the number of traits associated with the exposure is more

than three. Our results show that strictly selecting IVs associated with at least two observable

traits corresponding to each latent exposure is sufficient in determining causal effects. When

testing for effects of multiple latent exposures simultaneously, existing ad-hoc approaches, i.e.,

combining signals from trait-specific MR analyses, had very low power due to the inefficient way

of information integration and reliance on the union of the set of valid IVs for each exposure

tested. We showed that CaLMR (Multi) did not suffer nearly as much of a reduction in power

when compared to these methods. Additionally, CaLMR (Multi) is robust in scenarios in which

there are many latent exposures and relatively few IVs in comparison.

We studied the causal effects of four latent psychiatric factors on various disease outcomes

using CaLMR and alternative MR methods. CaLMR (Uni) detected causal effects from the la-

tent psychotic factor on five out of seven autoimmune disorder outcomes. While these significant

causal effects corroborate recent research, we stress the need to consider possible confounding

in these results. To adjust for residual confounding, we excluded SNPs associated with poten-

tial confounders—including sleep disorders, obesity, and pro-inflammatory cytokines—based on

GWASs obtained from the UK Biobank, applying a significance threshold of 5 × 10−6. Too few

SNPs were removed to make a discernible difference in the results and we further acknowledge

the inability to adjust for certain confounders like medication use.
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One thing to note is that correct identification of the direction of the causal effects by CaLMR

requires correct specification of all biomarker-exposure association directions in the analysis.

While the directions of these associations are frequently known and can be easily obtained from

publicly available literature, issues may arise as the number of latent exposures and associated

biomarkers grows. Nevertheless, CalMR still provides more reliable conclusions on the direction

of the effects than traditional approaches that may not be able to draw solid conclusions on

the direction of the effect with opposite directions of the trait-outcome relationship detected on

different traits, and CaLMR (Multi) further refine the analysis by reducing potential bias due

to horizontal pleiotropy and correlation among the latent exposures. This could also explain the

smaller number of discoveries by CaLMR (Multi) than CaLMR (Uni) in our results. As with any

MR method, low p-values of the CaLMR tests are not to be regarded as necessarily proving the

existence of causal effect(s) from the latent exposure(s) on the outcome but rather as suggesting

a possible causal signal that warrants further investigation. Such results could be influenced by

confounding, other types of pleiotropy that are not accounted for, or instrument strength, and

therefore, further attention must be directed toward assessing and mitigating these influences

before drawing solid conclusions about causal relationships. Some extensions of CaLMR can be

considered to further improve the testing power. We currently only incorporate independent IVs

as in a standard MR framework, but CaLMR can further incorporate correlated SNPs as IVs by

accounting for LD among significant SNPs in the likelihood for GWAS summary statistics (9).

This could reduce weak instrument bias and improve power by incorporating more significant

GWAS signals with a more stringent significance threshold for IV selection. This extension

can be quite useful, especially when the GWAS sample sizes for exposures are relatively small

and the GWAS signals are relatively weak. CaLMR currently does not account for horizontal

pleiotropy between the latent exposures and outcome, but such pleiotropy can be accounted for

by directly incorporating a recent approach to dealing with correlated pleiotropy (9) into our

modeling framework.

Looking ahead to future research, we stress the growing interest in causal inference within the

context of integrative multi-omics analysis, which has garnered increasing attention, especially
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in recent years(46; 35; 21; 7; 27). The growing availability of public multi-omic data sources on

genomics, metabolomics, proteomics, and other molecular datasets poses valuable opportunities

for us to uncover causal biological processes underlying disease progression and discover new drug

targets. While a few MR methods have been proposed for jointly analyzing the causal effects

of proteins and metabolomics(8; 7), MR integrating GWAS information on high-dimensional

exposures is still an understudied but critical topic. The extension of our CaLMR framework to

the high-dimensional-biomarker setting could contribute to the field by revealing potential lower-

dimensional latent causal pathways beyond the level of observed, high-dimensional biomarkers.
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Methods

Model setup

CaLMR (Uni) for the Single-Exposure Case

In the one latent exposure setting, Models (1 - 3) can be simplified to:

Y = θX + εy, εy ∼ N(0, σ2εy)

X =

M∑
j=1

βx,jGj + εx, εxl ∼ N(0, σ2εxl
)

Bk = θkX +
M∑
j=1

γk,jGj + εBk
, εBk

∼ N(0, σ2εBk
),

where we assume a direct effect of genetic IV Gj on X with a prior βx,j
iid∼ N(0, h2x), with h2x

denoting the per-SNP heritability of X. Each observable trait Bk is assumed to be explained by

both X and Gjs, with the direct effect from Gj following a prior distribution γk,j ∼ N(0, h2γk),
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j = 1, . . . ,M , k = 1, . . . ,K.

CaLMR (Uni) conducts inference under a Bayesian modeling framework using an MCMC

algorithm with Gibbs sampling on model parameters, ϑ = {θ, θk,βx,γk, h2γk , k = 1, . . . ,K}.

We use conjugate priors for parameters, which enable us to derive the closed form of the full

conditional distributions of the parameters and conduct Gibbs sampling with slight adjustments

on some of the steps to approximate the joint posterior distribution. Throughout the text, we

conduct inference on the standardized scale, i.e., Gjs, X, Bks, and Y are standardized to have

a zero mean and unit variance. We develop CaLMR (Uni) with the following assumptions: (a)

independent IVs, (b) no horizontal pleiotropy between the exposure and the outcome, and (c)

small K setting. The Regression with Summary Statistics (RSS) Likelihood of the M genetic

IVs,

{{
β̂Bk

, σ̂2
Bk

}K
k=1

, β̂Y , σ̂
2
Y

}
, is:

LRSS(ϑ; {β̂Bk
}Kk=1, β̂Y , {σ̂2

Bk
}Kk=1, σ̂

2
Y )

= N
(


θ1βx + γ1

· · ·

θKβx + γK

θβx


,



diag(σ̂2
B1

) · · · c1,K 0

· · · · · · · · · · · ·

c1,K · · · diag(σ̂2
BK

) 0

0 · · · 0 diag(σ̂2
Y )


)

= N
(
Aθβx +Bγ ,Ωσ2

)
,

where ck,k′ = ρ̂k,k′σ̂B1σ̂
T
BK

, Aθ = [diag(θ1), · · · ,diag(θK), diag(θ)]T , Bγ = [γ1, · · · ,γK ,0]T , and

ρ̂j,l denotes the estimated genetic correlation between biomarker Bj and Bl from the intercept

in bivariate LD score regressions. We assume the following conjugate priors for the parameters:

βx ∼ N (0, diag(h2
x)),γj = (γ1,j , . . . , γK,j)

T ∼ N
(
0, diag(τ21 , . . . , τ

2
K)
)
, τ2k ∼ IG(α0

k, β
0
k), where τ2k

is the prior variance of h2γk , and a non-informative prior for ηθ = (θ1, . . . , θK , θ)
T .
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CaLMR (Multi) for the Multiple-Exposure Case

In practice, there may be multiple latent factors underlying the observed traits, and CaLMR

(Uni) can be extended to the multiple-exposure settings, which we refer to as CaLMR (Multi),

to conduct joint analysis accounting for potential horizontal pleiotropy and correlation between

the exposures. First, for the latent exposure Xl, l = 1, . . . , L, assume it regulates Kl different

biomarkers. Like the assumptions we made in CaLMR (Uni), we suggest the SNPs Gjs, the

biomarkers Bks, the latent exposures Xls, and the outcome Y are all standardized. Recall the

three proposed models are

Y =

L∑
l=1

θlXl + εy, εy ∼ N(0, σ2εy)

Xl =
M∑
j=1

βxl,jGj + εxl , εxl ∼ N(0, σ2εxl
)

Bk =

L∑
l=1

θklXl +

M∑
j=1

γk,jGj + εBk
, εBk

∼ N(0, σ2εBk
).

Without loss of generality, cov(σ2εy , σ
2
εxl

) 6= 0 and cov(σ2εy , σ
2
εBk

) 6= 0 due to the existence of

potential confounders. The prior for the direct effect of genetic IV Gj on Xl is βxl,j ∼ N(0, h2xl),

with h2xl represents the per-SNP heritability of exposure Xl. The genetic variability of each

observable trait Bk is assumed to be explained by its associated latent exposures and genetic

variants Gjs. We assume the direct effect from Gj has prior γk,j ∼ N(0, h2γk).

CaLMR (Multi) is also implemented under the Bayesian framework using an MCMC algorithm

to generate posterior samples of the model parameters ϑ = {θl, θkl,βxl ,γk, h2γk}, l = 1, · · · , L, k =

1, . . . ,K. The full conditional distributions of these parameters are derived using conjugate priors,

and we generate posterior samples using Gibbs sampling approach. Under the same assumptions

as CaLMR (Uni), we derive the Regression with Summary Statistics (RSS) Likelihood of the M
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genetic variants,

{{
β̂Bk

, σ̂2
Bk

}K
k=1

, β̂Y , σ̂
2
Y

}
, as

LRSS(ϑ; {β̂Bk
}, β̂Y , {σ̂2

Bk
}, σ̂2

Y )

= N
(


θ11βx1 + . . .+ θ1LβxL + γ1

θ21βx1 + . . .+ θ2LβxL + γ2

· · ·

θK1βx1 + . . .+ θKLβxL + γK

θ1βx1 + . . .+ θLβxL


,Ωσ2 =



diag(σ̂2
1) · · · c1,K 0

· · · · · · · · · · · ·

c1,K · · · diag(σ̂2
K) 0

0 · · · 0 diag(σ̂2
Y )


)

= N
( L∑
l=1

Alβxl +Bγ ,Ωσ2

)
,

where ck,k′ = ρ̂k,k′σ̂B1σ̂
T
BK

, Al = [diag(θ1l), · · · ,diag(θKl), diag(θl)]
T , Bγ = [γ1, · · · ,γK ,0]T ,

and ρ̂j,l denotes the estimated genetic correlation between biomarker Bj and Bl from the in-

tercept in bivariate LD score regressions. We assume the conjugate priors for the param-

eter: βj = (βx1,j , . . . , βxL,j)
T ∼ N (0,H),H ∼ W−1(diag(h2x1 , . . . , h

2
xL

), ν = L + 1),γj =

(γ1,j , . . . , γK,j)
T ∼ N

(
0, diag(τ21 , . . . , τ

2
K)
)
, τ2k ∼ IG(α0

k, β
0
k), where τ2k is the prior variance of

h2γk , and non-informative priors for θkl and θls.

Generating GWAS Summary Statistics in the Simulation Studies

Single-Exposure Setting

In the simulation studies, we generated the GWAS summary-level statistics directly to work on.

For all our analyses, we used the 1000 Genomes Phase 3 European Sample as the reference data to

conduct LD clumping to select independent IVs and used the 1.2 million SNPs in HapMap3 SNP

list to conduct the tests. Suppose there are M0 = 2 × 105 total independent SNPs representing

common variants throughout the genome. We set equal GWAS sample sizes for the outcome and

K observed traits. For any pair of biomarkers, Bk and Bl, k 6= l, we assume the overlapping sample

size is NBk,Bl
= N and the genetic correlation between the two is ρl,m = cor(Bl, Bm) = ±0.3.
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Importantly, we assume no overlapping samples between any biomarker Bk and the outcome Y to

avoid the pleiotropy situations, i.e., NBk,Y = 0, k = 1, . . . ,K. We further assumed that 1% of the

SNPs are truly associated with latent exposure X and each trait Bk. The total heritability of each

trait is established at H2
Bk.T otal

= 0.2/0.3, where 20% of them is explained by the latent exposure

X (H2
x.prop = 0.2). The effects of X on each observed trait is set equal at θk =

√
0.3, k = 1, . . . ,K.

Therefore, we derive the following equations and distributions for SNP j:

βx,j ∼ N(0, h2x), where h2x =
H2
Bk.T otal

H2
x.prop

0.01M0θ2k
;

γk,j ∼ N(0, h2γk), where h2γk =
(1−H2

x.prop)H
2
Bk.T otal

0.01M0
;

εj = (εy,j , εk,j)
T ∼ N

(
0,



1/N 0 . . . . . . 0

0 1/N ρ1,2 . . . ρ1,K

. . . . . . . . . . . . . . .

0 ρK,1 . . . ρK,K−1 1/N


)
,

where k = 1, . . . ,K. The summary coefficients for Bk and Y are β̂k = θkβx+γk+εk, k = 1, . . . ,K

and β̂y = θβx+εy; and the standard errors forBk and Y are σ̂2
k = 1

N I, k = 1, . . . ,K and σ̂2
y = 1

N I.

Multiple-Exposure Setting

In the multiple-exposure simulation, we assume there exist two correlated latent exposures un-

derlying K observed traits. We further consider the GWAS for Bks have no overlapping samples

so that ρl,m = cor(Bl, Bm) = 0, l 6= m. Similar to the single-exposure settings, we assume

M0 = 2 × 105, H2
Bk.T otal

= 0.2, and H2
xl.prop

= 0.2 for each Xl, and each latent factor Xl ex-

plains 30% of the variability of each biomarker it regulates, i.e., θkl =
√

0.3, l = 1, . . . , L, k ∈ Kl.

Additionally, we assume there exists an initial causal pathway between X1 and X2, with X2 =∑M
j=1 βx2,jGj + κX1 + εxl , where κ denotes the correlation between the two exposures (Figure

1c). Given this causal pathway, the total effect of Gj on the outcome Y that go through X2 is
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β̃x2,j = βx2,j + κβx1,j . For each SNP, we have

βxl,j ∼ N(0, h2xl), where h2xl =
H2
Bk.T otal

H2
xl.prop

0.01M0θ2k
;

γk,j ∼ N(0, h2γk), where h2γk =
(1−

∑
l∈XBk

H2
xl.prop

)H2
Bk.T otal

0.01M0
;

εj = (εy,j , εk,j)
T ∼ N

(
0,

1

N
IK+1

)
,

where j = 1, · · · , N and k = 1, . . . ,K. The summary coefficients for Bk and Y are β̂k =

θk1βx1 + θk2β̃x2 + γk + εk, k = 1, . . . ,K and β̂y = θ1βx1 + θ2β̃x2 + εy; the standard errors for Bk

and Y are σ̂2
k = 1

N I, k = 1, . . . ,K and σ̂2
y = 1

N I.

Analyzing the Causal Effects of Psychiatric Factors on Disease

Risks

We obtained GWAS summary statistics for each of the eleven psychiatric disorders primarily

from the Psychiatric Genomics Consortium (PGC), which is the largest psychiatric consortium in

existence. To ensure that the strict condition of no overlap between the biomarkers and outcomes

is satisfied, for some of the biomarkers, we rely on summary data obtained by FinnGen, which

consists of data obtained from 500,000 Finnish biobank participants. This was done for biomarkers

whose PGC samples appear to have some overlap with UK Biobank, which is unacceptable

since GWAS summary data for all 18 disease outcomes were obtained from UK Biobank. All

datasets were converted to Genome Build 37 unless they were already in that format. Additional

preprocessing steps were applied to each dataset including renaming columns to ensure common

names, removing SNPs with minimum allele frequency (MAF) below 0.01, removing multiallelic

SNPs, converting odds ratio estimates into covariate estimates, realigning all SNPs to have the

same allele order across all datasets, and calculating effective sample size if not already available.

Given that summary-level data for the 11 psychiatric disorders had overlapping samples, as all

of them are sourced either from PGC or FinnGen, we estimated the between-biomarker covariance
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by applying bivariate LDSC before conducting our analyses (Figure 3a). Furthermore, while the

original MRLE method provides p-values for testing the null hypothesis of no causal effect along

with the direction of θ, CaLMR (Uni) and CaLMR (Multi) produce a 95% credible interval for

θ. To calculate the Bayesian p-value based on posterior samples, we use the following expression:

p = 2×min

(
# of samples after burn in where θ > 0

total # of samples after burn in
,
# of samples after burn in where θ < 0

total # of samples after burn in

)
,

which estimates the probability 2×min{P (θ > 0), P (θ < 0)}.
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6 Data Availability

The 1000 Genomes Phase 3 genotype data used in our analysis can be accessed at

https://data.broadinstitute.org/alkesgroup/LDSCORE/. All GWAS summary statistics used in

this study are publicly available. GWAS summary statistics for ALCH, PTSD, AN, and OCD

can be downloaded from the FinnGen website at https://www.finngen.fi/en. GWAS summary

statistics for MDD, ADHD, BIP, ANX, AUT, and TS can be downloaded from the PGC web-

site at https://pgc.unc.edu/for-researchers/download-results/. GWAS summary statistics for the

eighteen disease outcomes and confounders were obtained from the UK Biobank and can be

downloaded from the GWAS Catalogue website at https://www.ebi.ac.uk/gwas/.

7 Code Availability

The R package “CaLMR” is available at https://github.com/yueuuy/CaLMR/.
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