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ABSTRACT 

Aims/hypothesis 
Although genome-wide association studies (GWAS) have identified loci associated with Type 1 
diabetes (T1D), the specific pathways and regulatory networks linking these loci to disease 
pathology remain largely unknown. We hypothesized that T1D genetic risk factors disrupt 
tissue-specific biological pathways and gene networks that ultimately lead to beta cell loss. 

Methods 
We conducted a multitissue multiomics analysis that integrates human GWAS data for T1D with 
tissue-specific regulatory data on gene expression and gene network models across relevant 
tissues to highlight key pathways and key driver genes contributing to T1D pathogenesis. Key 
driver genes were validated using islet-specific gene expression and protein data from non-obese 
diabetic (NOD) mice compared to non-T1D mouse models. Drug repositioning predictions were 
generated using the L1000 and PharmOmics platforms. 

Results 
Our integrative genomics approach identified known immune pathways across multiple tissues, 
such as adaptive immune responses, cytokine-mediated inflammation, primary 
immunodeficiency, and interactions between lymphoid and non-lymphoid cells. Tissue-specific 
signals included genes related to type 2 diabetes in lymphocytes, viral response pathways in 
macrophages and monocytes, and Notch signaling in adipose and immune cells. In pancreatic 
islet analysis, we observed significant enrichment for T1D and type 2 diabetes gene sets 
alongside immune-related pathways, including antigen processing, systemic lupus 
erythematosus, and interferon signaling. Removing HLA genes from the analysis revealed 
additional immune pathways, such as RIG-I/MDA5 induction of interferons, along with 
melanogenesis, steroid hormone synthesis, and iron transport. Network modeling highlighted the 
autoimmune basis of disease with key drivers such as FYN, TAP1, WAS, and HLA-B/C/G, as 
well as further immunomodulatory genes such as LCK, LCP2, EMR1, and GC. These key 
drivers were further supported by gene and protein expression data from NOD mice. We 
additionally highlight various drug classes that target the T1D genetic networks and may be 
useful to delay T1D development. 

Conclusions/interpretation 
Our multitissue multiomics approach provides a detailed landscape of the tissue-specific genetic 
networks and regulators underlying T1D. This analysis confirms the roles of known immune 
pathways while uncovering additional regulatory elements and disease-associated networks, thus 
expanding our understanding of T1D pathogenesis. The identification of potential drug 
candidates through network analysis offers potential therapeutic strategies for targeting disease 
pathways and holds promise for delaying or preventing T1D progression. 

Keywords: Drug repositioning; Gene Networks; Genome Wide Association Studies; Key 

Drivers; Multiomics; Type 1 diabetes 

  

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 28, 2024. ; https://doi.org/10.1101/2024.11.25.24317912doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.25.24317912
http://creativecommons.org/licenses/by/4.0/


3 
      

INTRODUCTION 

Type 1 diabetes (T1D) is characterized as the autoimmune loss of pancreatic beta cells 

and resultant impairment of glucose homeostasis. Currently, T1D affects ~8.5 million people 

globally, representing 5-10% of the total diabetic population with an annual incidence increase of 

2-3%. (1–3). Risk of developing T1D is increased by approximately 5.6% and 50% with an 

affected parent or diseased monozygotic twin, respectively, when compared to the general 

population. Parental heritability estimates predict that diabetic fathers confer an increased risk of 

T1D development of about 12% while mothers at around 6% (4). Thus, there is a genetic 

component predisposing T1D pathogenesis. However, T1D is not usually present in individuals 

with a family history, with only around 10% of patients having a first/second-degree relative 

with the disease, thus also suggesting a significant environmental contribution (5). Interestingly, 

there seems to be an increased disposition for developing T1D if one lives in regions of Northern 

Europe, independent of genetic background, highlighted by an increase in T1D incidence for 

migrants living within these regions (6,7). This environmental contribution has several potential 

manifestations such as alterations in gut microbiota (8) or pre- and post-natal dietary factors, 

including early exposure to gluten (9) and Vitamin D deficiency (10). Furthermore, a 

longstanding hypothesis predicts that the exposure to viral infection may also be a causal factor 

(11), particularly enteroviruses (12) which seem to target pancreatic islet cells (13). Therefore, 

both genetic and environmental components contribute to T1D incidence and progression, yet a 

large gap exists in understanding the complex genetic and environmental architectures as well as 

the interaction between the two. It is plausible that genetic risks represent first hits, and 

environmental factors act as second hits to interact with genetic predisposition to trigger T1D 

development (14–16). 

On the genetic front, genome wide association studies (GWAS) have uncovered over 60 

T1D genetic risk loci. The main genes predisposing T1D patients are located within the HLA 

region on chromosome 6, encoding the major histocompatibility complex (MHC), which is 

critical for adaptive immunity. While HLA-encoding genes have the strongest association and 

account for up to 50% of the total genetic T1D risk (17,18), loci outside of the HLA region 

including protein tyrosine phosphatase, non-receptor type 22 (PTPN22), interleukin 2 receptor 

alpha (IL2RA), insulin gene (INS), and cytotoxic T-lymphocyte-associated protein 4 (CTLA4), 

have also been associated with disease development (19). However, these top loci at genome-
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wide significance cannot fully explain the total genetic heritability of T1D. Moreover, the 

dominance of the HLA effect may overshadow additional unknown and important processes 

contributing to T1D pathogenesis with or without interactions with environmental factors. 

Identifying the missing genetic risks, or the “dark matter”, is important to gain a full 

understanding of the genetic underpinnings of T1D pathogenesis. In addition, growing lines of 

evidence support an “omnigenic” disease model (20), which states that a large proportion of 

genes of the genome may contribute to disease development through gene-gene interactions in 

networks within and between tissues, and key network regulators likely play more central roles 

than other peripheral disease associated genes in the networks. In support of this, top GWAS loci 

for complex diseases have been found to be more concentrated in the periphery of gene networks 

and are less likely to be network regulators. Therefore, simply focusing on the top GWAS hits 

will likely miss crucial regulatory genes. We hypothesized that T1D genetic risks with a wide 

spectrum of effect sizes (strong, moderate, or subtle) interact and perturb tissue-specific gene 

networks through a select set of regulatory genes, resulting in variations in T1D susceptibility. 

Integration of GWAS data with functional genomics information such as tissue-specific 

expression quantitative trait loci (eQTLs) and gene networks has proven to be a powerful tool to 

pinpoint causal genes and their associated pathogenic mechanisms and regulators within the 

context of specific tissues (21–32). In this study, we use a computational pipeline, Mergeomics 

(Figure 1) (25,30) to integrate T1D GWAS studies with tissue-specific functional information, 

such as genetics of gene expression and gene regulatory networks from a broad range of T1D 

relevant tissues or cell types including blood, lymphocyte, macrophage, monocyte, pancreas, 

islet, subcutaneous adipose, and visceral omentum adipose (33–42). Our analysis not only 

confirmed the importance of immune pathways across various tissues, but revealed numerous 

tissue-specific pathways, networks and regulators. By understanding how T1D genetic risks 

affect gene networks within and across tissues and identifying causal key regulators, our study 

offers comprehensive insights into T1D pathogenesis and helps prioritize regulators and potential 

therapeutic strategies.   
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RESULTS 

Overview of study design 

As depicted in Figure 1, we first assessed which biological pathways were enriched for 

T1D GWAS signals based on GWAS data from the JDRF/Wellcome Diabetes and Inflammation 

Laboratory at the University of Oxford (43). The T1D and control individuals were partitioned 

into two independent cohorts based on the genotyping platforms (i.e., Illumina or Affymetrix) 

between cases and controls. Cohort 1 was comprised of 1930 T1D patients and 4830 Controls, 

and the Affymetrix platform was used. Cohort 2 had 3983 T1D patients and 3999 Controls, and 

the Illumina platform was used. Standard GWAS analysis was carried out for each cohort 

separately and we used the full GWAS summary statistics from these two independent cohorts.  

To identify tissue-specific pathways associated with T1D GWAS single nucleotide 

polymorphisms (SNPs), we utilized tissue-specific eQTLs to guide SNP-to-gene mapping. This 

analysis included a total of 18 eQTL sets, with 13 from the GTEx database (44,45) covering 

subcutaneous adipose, visceral omentum adipose, blood, brain, colon, heart, liver, lymphocyte, 

muscle, pancreas, pituitary, spleen, and stomach tissues, along with macrophage and monocyte 

eQTL sets from the Cardiogenics Consortium (29), immune cell eQTLs (including lymphocytes) 

from the DICE study (46), and pancreatic islet-specific eQTLs (5). The genes mapped to the 

GWAS SNPs through each tissue-specific eQTL set were analyzed against biological pathways 

based on literature-based functional categories and tissue-specific gene coexpression network 

modules which define data-driven functional genes sets using Marker Dependency Filtering 

(MDF) and Marker Set Enrichment Analysis (MSEA) from Mergeomics (25,30). The literature-

driven pathways were taken from Reactome (Version 45) (23), Biocarta (47), and the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) databases (48). The gene coexpression modules 

were derived using the Weighted Gene Correlation Network Analysis (WGCNA) approach (49) 

to construct networks from tissue-specific transcriptomics datasets from GTEx (44). This 

approach identifies functionally related gene sets based on gene expression patterns and has 

previously helped derive novel biological insights into various diseases (26–28,31,50–52). 

Integration of T1D GWAS, tissue-specific eQTLs, and pathways and coexpression modules 

together using MSEA reveal pathways and modules enriched for stronger genetic associations 

with T1D compared to random gene sets. Following MSEA, we next carried out a Meta-MSEA 

to meta-analyze the two independent GWAS datasets to look for shared pathways/modules, 
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which we further simplified into independent “supersets” to reduce redundancy between similar 

pathways/modules. Integrating these supersets with gene regulatory networks (GRNs) and 

protein-protein interaction networks (PPI), we carried out a key driver analysis (KDA) to identify 

key drivers (KDs), which are central network genes whose network neighbors are highly 

enriched for genes in the T1D pathways/modules. These KDs were then visualized in tissue-

specific networks. We further carried out in silico validation using curated islet gene expression 

and protein data from eight strains of mice to highlight if our KDs were significantly and 

uniquely changing in a T1D mouse model. Lastly, we used our KDs as input into L1000 and 

PharmOmics to highlight potential drug candidates for T1D treatment. 

 

Identification of consistent and divergent canonical pathways and gene co-expression 

modules associated with T1D across cohorts and tissues 

We assessed which knowledge-based biological (canonical) pathways and data-driven 

gene co-expression modules were enriched for T1D GWAS signals. The use of tissue-specific 

eQTLs served to guide SNP-to-gene mapping, allowing us to capture tissue specific results. 

From the 18 eQTLs sets used, we found the following seven tissues to be the most informative in 

terms of how many significant pathways were identified: blood, lymphocyte, macrophage, 

monocyte, pancreas, subcutaneous adipose, and visceral omentum adipose. We therefore focused 

on reporting the results from these seven informative tissues only, with other tissues serving to 

supplement the main results.  

Out of the 1827 curated canonical pathways, we identified 187 pathways enriched for 

T1D GWAS association from Cohort 1 at an FDR < 5% in at least one of the seven chosen 

tissues (blood, macrophage, monocyte, lymphocyte, pancreas, subcutaneous adipose and visceral 

adipose; Supplement Table 1A). From Cohort 2 we found a total of 143 pathways enriched for 

T1D GWAS association at an FDR < 5% (Supplement Table 1B). Between Cohort 1 and 

Cohort 2, we found 121 pathways significant in both, 66 unique to Cohort 1 and 22 unique to 

Cohort 2 (Figure 2A). The shared pathways were mainly related to immune processes and the 

T1D positive control gene set containing top T1D hits from the GWAS catalog. Unique 

pathways for Cohort 1 included Influenza/HIV infection, nuclear envelope breakdown, transport 

of mature mRNA. Unique pathways for Cohort 2 included purine metabolism, inositol phosphate 

metabolism, and RNA degradation.  
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Using WGCNA (49), we generated 272 data-driven gene coexpression modules from 

individual tissues from the GTEx transcriptomic database (44), with which we integrated our 

Cohort 1 and Cohort 2 T1D GWAS data sets separately. Cohort 1 showed enrichment in a total 

of 36 unique modules (FDR < 5%) in at least one tissue (Supplement Table 3A), while Cohort 2 

showed significance in 38 modules (FDR < 5%) (Supplement Table 3B). Between the two 

cohorts, we found 31 overlapping modules associated with immune pathways, such as interferon 

signaling and cytokine signaling. We also identified 5 unique modules from Cohort 1 (e.g., AKT 

signaling, complement pathway, and ion transport) and 7 unique modules from Cohort 2 (e.g., 

cytosine production/response, mTOR pathways, extracellular matrix or ECM organization) 

(Figure 2B).  

In addition to the main findings from the seven tissues, we found largely confirmatory 

results with the other tissue types tested across both cohorts, with adrenal gland, liver, and spleen 

revealing largely immune related signals and pituitary gland showing significance in Wnt 

signaling and insulin receptor signaling (Supplement Table 4A for Cohort 1, Supplement 

Table 4B for Cohort 2).  

 

Merging of pathways and coexpression modules into independent supersets 

We focused on the shared 152 significant gene sets uncovered in our meta-analysis between 

Cohort 1 and Cohort 2 (31 coexpression modules and 121 canonical pathways) as they reflected 

reproducible signals for T1D genetic association (Figure 2A, Figure 2B). As the coexpression 

modules and pathways were obtained from various sources, the gene sets had the potential to 

share a high number of overlapping gene members. We found that 92 out of the 152 significant 

gene sets shared gene members with at least one other gene set. To reduce the redundancy, we 

merged the 92 overlapping gene sets into 13 independent supersets (Table 1). Interestingly, 

canonical pathways tended to merge with canonical pathways, and coexpression modules tended 

to merge with coexpression modules, suggesting the two types of gene sets exhibited different 

biological properties. The supersets represented diverse biological pathways, including adaptive 

immune system, complement cascade, cell cycle, viral infection, protein folding, RNA 

Polymerase I/III, signaling by GPCR, signaling by NOTCH, activation of GABA B receptor, B-

cell receptor (BCR) signaling, and tRNA aminoacylation. The other 60 non-overlapping gene 

sets were kept intact, producing a total of 73 non-overlapping supersets. After using our merging 
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algorithm of similar pathways, we ran a second round of MSEA to confirm whether our merged 

modules retained significance for T1D association. From the 73 non-overlapping supersets, we 

confirmed 44 supersets that were derived from canonical pathways (Figure 3A; Supplement 

Table 5) and 29 from coexpression modules (Figure 3B) to show statistical significance in our 

combined Cohort 1 and Cohort 2 datasets. Across the studied tissues, immune and cell cycle 

related processes were consistently enriched, particularly in monocytes, macrophages, 

lymphocytes, blood, adipose, and pancreas.  

 

Pathways and Coexpression Modules based on pancreatic islet eQTLs were highly 

consistent between the two cohorts 

With the pancreatic islet being the primary site of destruction in T1D pathogenesis, we 

investigated this tissue region separately to capture the unique perturbed pathways. From the 

1827 canonical pathways and the 272 coexpression modules we evaluated, we found a total of 8 

pathways significant in Cohort 1 (Supplement Table 6A) and 16 pathways significant in Cohort 

2 (Supplement Table 6B). The 8 pathways uncovered in Cohort 1 consisted of antigen 

presentation, calcium signaling, metabolism, transcriptional control and the T1D positive control 

gene set. All of these pathways were significant in Cohort 2 and displayed a stronger statistical 

significance. The 8 pathways unique to Cohort 2 include genes associated with coronary heart 

disease (CHD), immune pathways, height, and insulin receptor signaling. Given the smaller 

population size of Cohort 1 and the limited availability of islet eQTL expression data which 

reduce statistical power, we kept all 16 pathways uncovered in Cohort 2 (including the 8 

pathways replicated in Cohort 1) in our downstream analysis (Figure 4A).  

   

Removal of HLA genes from biological pathways and modules 

As most of the known biology involved in T1D pathogenesis is concerned with the MHC 

region, specifically the class I and II (HLA) genes, we hypothesized that these genes may 

overshadow additional important processes involved in disease pathology and performed an 

additional MSEA analysis excluding the HLA genes from the 1872 canonical pathways and 272 

coexpression modules.  

We first examined the non-HLA MSEA results for pancreatic islets in Cohort 1 and 

Cohort 2 separately, identifying 9 significant pathways/modules in Cohort 1 (Supplement Table 
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7A) and 5 significant pathways/modules in Cohort 2 (Supplement Table 7B), with 3 

overlapping ones between cohorts including the positive control gene set for T1D, metabolism of 

lipids, and antigen processing and presentation (Figure 4B). Other significant pathways in 

Cohort 1 included apoptosis, cell cycle, and immune related pathways (e.g., HIV pathway, 

cytokine receptor interaction, and chemokine receptor binding). The other two unique pathways 

in Cohort 2 are systematic lupus erythematosus and pathogenic E. coli infection.  

We then focused our non-HLA MSEA analysis on the other seven informative tissues 

(blood, lymphocyte, macrophage, monocyte, pancreas, subcutaneous adipose, and visceral 

omentum adipose). We found a total of 166 gene sets to be significant (FDR<5%) in both Cohort 

1 (Supplement Table 7A) and Cohort 2 (Supplement Table 7B), which were also significant in 

meta MSEA across both cohorts. After using our merging algorithm to reduce redundancy, we 

discovered a total of 64 non-overlapping supersets (Supplement Table 8). Comparing these 

supersets to the 73 non-overlapping supersets in our results from the HLA-inclusion analysis 

above, we noticed that 39 supersets were preserved when HLA genes were removed. These 

include immune pathways (e.g., adaptive immune system, cytokine signaling and signaling by B 

Cell receptors), insulin signaling, tRNA aminoacylation, apoptosis, viral infection, protein 

folding and complement cascade.  

Importantly, removal of HLA genes uncovered 25 unique supersets absent in our HLA-

inclusion results (Supplement Table 8). These supersets included immune related pathways 

such as antigen processing and RIG-I/MDA5 induction of IFN pathways, along with more 

diverse pathways including melanogenesis, steroid hormone biosynthesis, iron uptake and 

transport, and mitochondria in apoptotic signaling (Figure 5).  

 

Identification of central regulators for T1D via a key driver analysis  

 To identify central regulatory genes, or key drivers (KDs) whose network neighbors are 

enriched for genes within the T1D associated supersets uncovered by MSEA, we performed a 

key driver analysis (KDA) on the T1D-associated gene sets uncovered above using protein-

protein interaction (PPI) and tissue-specific Bayesian gene regulatory networks (GRNs) (53,54) 

(Figure 6, Supplement Figure 1).  
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Gene regulatory networks 

  In our islet Bayesian network, we utilized two approaches, one using islet eQTL mapped 

genes as input to our KDA and another using a combination of islet and hypothalamic eQTL 

(due to their similarity in expression patterns to the islet) mapped genes to increase power (55). 

We found that the islet specific network was sparser as expected but highlighted interesting KD 

candidates including TREM2, LY86, and C1QC under antigen processing and presentation and 

PARP14 and PSMB8, which were related to interferon signaling. All of these KDs were also 

present in the combined hypothalamic/islet network but in addition we found KDs such as CTSS 

involved in inflammation and antigen presentation, CFB associated to the complement and 

coagulation cascade, and RTP4 under antigen processing and presentation (Supplement Figure 

1A). 

 Next, focusing on the most informative tissues outside of the islet, we found a total of 

348 unique KDs from our Bayesian network across adipose, blood, macrophage, monocyte, 

lymphocyte, and pancreas networks at an FDR < 5% (Supplement Table 9A). To focus on the 

most central regulators, we chose the top five ranked KDs satisfying an FDR < 5% for each 

superset in each tissue-specific network. Among these, 17 were shared among at least 2 supersets 

and two KDs (RPS29 and RPS18) were shared across the adipose, blood, lymphocyte, monocyte, 

and macrophage networks. Among the tissue networks, the adipose network revealed the largest 

number of 47 KDs (Supplement Figure 1B), of which 10 were shared with KDs uncovered in 

blood, lymphocyte, monocyte and macrophage networks (Figure 6A). The KDs uncovered are 

related to cell cycle, metabolism, and immune pathways. Notably, many of the KDs (e.g., 

RPS29, RPLP2, CD19, IFIH1, and PTPN6) have been found to be involved in viral infections, 

autoimmune and childhood onset disease, all of which are associated with T1D (56–58).  

Protein-protein interaction (PPI) networks  

 To complement the results from using GRNs and to expand our search for KDs, we 

performed a KDA using the tissue-specific T1D pathways and PPI networks from the STRING 

database (59). Using the islet pathways, we identified top KDs such as SMAD2, CD74, LCK, 

FYN, SHC1, EGFR, PIK3R2, TAP1, and HLA-DRA (Figure 6B, Supplement Table 9B). For 

adipose, blood, lymphocyte, monocyte, macrophage and pancreatic tissues (Supplement Table 

9C), we found a total of 134 KDs, with 7 specific to lymphocytes (ITGAM, IGF1R, SOS1, CBL, 
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and STAT5A) (Figure 6C), 5 specific to adipose (CASP9, FLNA, BRF1, CD74, and HLA-DRA), 

2 specific to blood (PTPRC and MYC), and 2 specific for macrophage (POLR2G and PROS1). 

When comparing KDs from the PPI network with those from the Bayesian GRN 

networks, we find 26 overlapping KDs for tissue specific networks (24 for adipose, 2 consistent 

in blood and other tissues). The top 5 shared KDs (FDR<5%) from both types of networks are 

LCK, VAV1, and PTPN6 for Natural Killer Cell Cytotoxicity as well as F2 and PLG for 

Complement and Coagulation pathways. Other KDs include complement related genes such as 

CD19 and CD74, DNA replication genes such as MCM2 and MCM6, as well as those linked to 

autoimmunity such as STAT1, SERPING1, and GZMB.  

Identification of Key Drivers of non-HLA specific supersets using PPI network 

 As the 20 additional pathways gained from the HLA-excluded analysis were found to be 

significant collectively across numerous tissues, we chose to perform a KDA using a PPI 

network rather than utilizing a tissue specific analysis through Bayesian networks (Supplement 

Figure 1C). We found a total of 33 unique KDs, some of which have previously been linked to 

T1D including CASP3 and CASP9 as KDs for the Role of Mitochondria in Apoptotic Signaling 

pathway, as well as TBP for the Transcription pathway. Several KD genes have also been studied 

in relation to type 2 diabetes and insulin resistance, including AKT1 and FGFR1 for the 

Signaling by Insulin Receptor pathway, CTNNB1 for the Hedgehog signaling and Melanogenesis 

pathway, IKBKB for RIG-I/MDA5 induction of IFN pathways, and CHUK for the Cytosolic 

Sensors of Pathogen-associated DNA pathway. Additional KDs of interest include RNF11 for 

Antigen Processing along with RAF1 and EGFR for Melanogenesis.  

 

In silico validation of the Islet Key Drivers 

To cross-validate the KDs for specific relevance to T1D, we examined the islet RNA 

sequencing and proteomics profiles from the Attie Lab Diabetes Database, where eight founder 

strains of mice, such as the B6 strain and the NOD mouse (a T1D model) were profiled (60). 

Among the islet PPI KDs, most were upregulated in NOD mice compared to the other seven 

non-diabetic mouse strains (Figure 7A-F, Supplement Figure 2A-F), except SOS1 which 

showed downregulation (Figure 7G). Additionally, in female NOD mice, which are more 

susceptible to T1D, KD genes such as WAS, TRAF1, LCP2, FYN, LCK, CD74, and others 

showed higher gene expression in islet profiles. Furthermore, at the protein level KDs CD74 and 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 28, 2024. ; https://doi.org/10.1101/2024.11.25.24317912doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.25.24317912
http://creativecommons.org/licenses/by/4.0/


12 
      

TAP1 exhibited significantly higher protein expression in NOD mice compared to the other non-

diabetic strains (Figure 7H, I). Within the islet Bayesian network, a majority of the 12 KDs, 

including CTSS, MPEG1, PSMB8, C1QB, FSCN1, and GPB4, were found to be significantly 

upregulated in NOD mice (Supplement Figure 2G-L). Therefore, the specificity of the network 

KDs to T1D was confirmed in independent mouse model data. 

 

Drug Repositioning 

 Utilizing our KD genes from individual tissues as an input into the drug repositioning 

tool LINCS 1000 as well as PharmOmics (61,62), we identified drugs that could be repositioned 

to target gene networks associated with T1D. For results from LINCS 1000, we filtered the drugs 

that pass a median Tau threshold of +/-90 as we cannot infer directionality from our input genes 

(Figure 8A; Supplement Table 10). From PharmOmics, we selected the significant drugs that 

ranked within the top 100 in each tissue and appeared at least five times in any of the screened 

tissues (Figure 8B; Supplement Table 11). We found of particular interest three main 

categories of drugs: Histone deacetylase (HDAC) inhibitors, Glycogen synthase kinase-3β 

(GSK-3β) inhibitors, and IκB Kinase (IKK) inhibitors.  

First, for HDAC inhibitors, we found Apicidin, Etinostat, Merck60, Droxinostat, and 

Vorinostat, all selective inhibitors mainly targeting HDAC1, HDAC3, HDAC6, and HDAC9 to 

be top hits in our drug search across various tissues in both our PPI and Bayesian T1D networks.  

Second, GSK-3β inhibitors, including kenpaullone and indirubin, were significant hits in 

our lymphocyte and pancreas networks, which agrees with previous literature that inhibition of 

GSK-3β showed protection against pancreatic beta-cell death (63). Kenpaullone is not only 

involved in GSK-3β inhibition, but also is a CDK inhibitor as well as a Src inhibitor, which may 

provide further protection to beta cells. Additionally, mTOR inhibitor Sirolimus and PI3K 

inhibitor LY-294002, which were significant drugs using adipose, macrophage, and monocyte 

network KDs, also indirectly regulate GSK-3β via the PI3K-AKT-mTOR signaling axis (64).  

Finally, IKK inhibitors (TPCA-1, BMS-345541, BX-795, parthenolide, and IKK2-

Inhibitor-V) were the third major drug class identified in our analysis of islet, lymphocyte, 

adipose, non-HLA and blood network KDs. IKK inhibitors have been found to be important 

targets in various autoimmune diseases such as rheumatoid arthritis, lupus erythematosus, 
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multiple sclerosis, and irritable bowel disease, through their modulation of NFkB signaling, 

which is also known to be a key pathway in T1D (65).  

Drugs of interest that only targeted the islet network KDs included tenofovir, PKCβ -

inhibitors, and YM-976. All of these have been indicated for treatment of various immune and 

autoimmune diseases. Reverse transcriptase inhibitor tenofovir, administered as part of a 

Truvada tablet (HIV medication), was shown to improve hereditary autoimmune inflammation 

thought to be caused by retroelement cDNA buildup in mice (66).  

Levonorgestrel, a progesterone receptor agonist and glucocorticoid receptor antagonist, 

was found to match with our lymphocyte key drivers. Increasing progesterone levels has been 

found to be protective against rheumatoid arthritis and multiple sclerosis; reducing stress 

hormones has been shown to reduce inflammation (67). Additionally, the top two hits in 

PharmOmics analysis, Benzbromarone and Allopurinol, play roles in reducing uric acid and 

lowering incidence of diabetes mellitus (68,69).  
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DISCUSSION 

Previous genetic studies have uncovered at least 60 loci linked with T1D development, 

yet our understanding of the intricate mechanisms underlying these associations and GWAS-

based intervention approaches remain limited. To this end, we utilized a multi-omics integrative 

approach to advance our understanding of T1D etiology and prioritize potential therapeutic 

targets among the large number of disease-associated signals. The dysregulated pathways and 

key regulators of T1D etiology were elucidated by the combined analysis of the full summary 

statistics of T1D GWAS datasets (not just top genome-wide significant signals as typically 

studied), functional genomics data (tissue-specific eQTLs), knowledge-driven pathways, and 

data-driven gene coexpression and regulatory networks.  

Our multiomics computational strategy confirmed known genes and biological pathways 

in T1D and revealed novel genes and their corresponding networks and biological processes. We 

identified a significant number of networks involved in immune and apoptosis related processes 

which have previously been implicated in T1D (70). We also found several pathways previously 

less associated with the genetic contribution of T1D such as viral infection, NOTCH signaling, 

amino acid degradation, and IGF-1 and insulin signaling pathways (71–73). Our tissue specific 

analyses revealed a consistent enrichment of antigen processing/presentation, natural killer cell 

cytotoxicity, and IFN-α/β/γ signaling across multiple tissues, supporting the immune origin of 

T1D highlighted in literature and emphasizing the presence of systemic dysregulation of immune 

function beyond insulitis (74).  

As mentioned, beyond the classic immune components, we identified several pathways 

which imply a pathogenic change in the molecular machinery coordinating protein production 

and processing, including spliceosome in monocytes, mRNA metabolism in blood, macrophage, 

and monocytes, tRNA aminoacylation in macrophage, monocytes, and subcutaneous adipose, 

and proteasome in blood, macrophage, and monocytes. Kracht et al. reported the production of 

non-conventional products due to mRNA processing errors results in a polypeptide that is 

detected by T cells and generates an autoimmune response in T1D patients (75). It is also 

predicted that the formation of hybrid insulin peptides within beta cells activates CD4 T cells in 

NOD mice (76), thus further supporting the association between T1D and the failure of proteins 

to be processed correctly. It is plausible that variations within genes governing mRNA 

processing as well as protein formation and processing components induce antigenic protein 
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products within the pancreatic tissue itself or within immune cells, which results in the activation 

of an autoimmune response, beta cell death, and development of T1D.  

Importantly, within our tissue specific networks we were able to capture and highlight 

numerous previously implicated contributors to T1D, either as hub genes such as IFIH1, HLA-C, 

SLC15A3, RAD51 (77) or peripheral genes CTLA4, PTPN22, INS, INSR, HLA-DQA. Of note, 

within the expected T1D immune pathways such as cytokine signaling, we uncover KD genes 

that are not well recognized for their specific role in T1D but consistent across tissues and are 

connected to well-known T1D GWAS hits. For example, FYN, a KD in both our lymphocyte 

(Figure 6C) and islet PPI networks (Figure 6B), was connected to important T1D associated 

GWAS loci (CTLA4, INSR, CD226, PTPN11). Furthermore, our in-silico validation showcased 

that FYN is upregulated uniquely in the NOD mouse model (Figure 7). This gene is essential in 

T cell signaling and interacts with ZAP-70 (78) and VAV1 (79,80), both of which are key 

components of T cell mediated immune response and are connected to FYN in our lymphocyte 

and islet PPI networks. In a similar fashion, we also highlight the KD LCK in ? network, which 

has also been previously shown to inhibit autoimmune responses through its interaction with 

DUSP22 as a negative regulator of T-cell activation (81). LCK showed increased expression 

specifically in NOD mouse islets compared to non-T1D mouse models (Figure 7).  

Interestingly, in the less well studied tissues for T1D such as adipose, we were able to 

capture previously documented T1D genes such as SLC15A3 and IFIH1. SLC15A3 is a T1D 

GWAS hit but limited knowledge exists for in its mechanistic connection to T1D pathogenesis. 

Our network analysis suggests a role of SLC15A3 in signal transduction in adipose, including the 

regulation of inflammatory signals (82). Additionally, IFIH1, known to play a role in the innate 

immune response, is triggered by viral infections and has been shown to be a regulator of the 

diabetogenic T-cell response (83).  

Viral infection (84) and its association with T1D have been suggested as the potential 

causal environmental trigger, particularly regarding antenatal maternal infection and subsequent 

incidence of T1D. In additional support of this, we found several pathways associated with HIV 

and influenza virus infection across multiple tissues tested. Given that these pathways are 

genetically perturbed as informed by our T1D GWAS datasets, our finding implies that genetic 

variants in genes involved in viral infection may confer vulnerability to infections and/or 

promote over-reactive viral response that induces autoimmunity, which may explain how viral 
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infection trigger T1D pathogenesis. Moreover, we also find numerous KD genes known for their 

link with viruses but with limited evidence for direct genetic association with T1D such as IFIT1, 

which has been shown to be induced in NOD mice after rotavirus infection (85); OAS2, an innate 

immune activated antiviral enzyme (86); and ISG15, an antiviral effector linked with an anti-

apoptotic effect in MIN6 cells (87). These genes were found to be within our blood and 

lymphocyte GRNs under the biological process interferon signaling and were key drivers in our 

T1D adipose tissue network. Additional KDs identified in our network analysis that are involved 

in susceptibility to viral perturbation include CD3G in adipose tissues (88), PIK3R2 in 

lymphocytes and islets (89), and IFI6 in lymphocytes. 

To capture additional biology and KDs that may have been overshadowed by the “HLA 

effect”, we ran our pathway and network analysis after removing HLA-related genes. We 

recapitulated many key immune related processes showcasing the overarching and fundamental 

contribution of the immune system; these processes included antigen processing, NFkB and 

TLR4 cascades. More importantly, by removing HLA genes, we captured many pathways that 

may contribute to T1D through gene-environment interactions, such as viral infection pathways 

including RIG-I/MDA5 induction, IFIH1-related genes, and cytosolic sensors of pathogen-

associated DNA; bacterial infection pathways such as epithelial cell signaling in H. pylori 

infection; melanogenesis, which may provide the link with a lack of Vitamin D and T1D 

development; and insulin receptor signaling which may interact with any or mixture of the above 

factors.  

Our in silico validation of islet KDs highlights their significant role in the NOD mouse 

model of T1D. The upregulation of key drivers like CTSS, which degrades antigenic proteins 

(90), CFB, which contributes to complement activation (91), and PSMB8, induced by gamma 

interferon (92), underscores their potential involvement in T1D pathogenesis. The observed 

gender-specific expression, especially in female NOD mice, further supports the role of these 

KDs in the heightened susceptibility to T1D development in females in this model. The elevated 

protein expression of immune-related KD genes CD74 and TAP1 in NOD mice compared to 

other strains could indicate a more pronounced immune response, which aligns with the 

autoimmune nature of T1D. These findings contribute to a deeper understanding of the molecular 

underpinnings of T1D and may inform future therapeutic strategies.  
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Collectively taking into account all the T1D associated pathways and their corresponding 

networks, KDs, and tissues, we next aimed to find compounds that could be utilized to target 

these dysfunctional gene networks using the LINCS 1000 drug repositioning tool and 

PharmOmics gene-network-based drug repositioning tool (61,62). This exploratory analysis 

revealed numerous potential drug categories such as IKK inhibitors, GSK-3β inhibitors, and 

HDAC inhibitors. Additional interesting drugs included Benzbromarone, Allopurinol, and 

Omeprazole. Among our predicted drugs, HDAC inhibitors have been investigated previously 

with respect to T1D, particularly suberoylanilide hydroxamic acid (SAHA) and Trichostatin A 

(TSA), which were shown to prevent cytokine-induced beta cell toxicity in both primary rat 

islets and INS-1 cells but failed to produce normal insulin release upon glucose stimulation (93). 

ITF2357, another HDAC inhibitor, was shown to increase islet cell viability, reduce apoptotic 

cells and increase insulin secretion in STZ-induced T1D mice (94). A second class of drugs 

among our predictions is GSK-3β inhibitors such as alsterpaullone, which have been found to 

increase beta cell viability in cell culture in a dose-dependent manner by increasing ATP levels 

and reducing caspase 3 activity, which is important in apoptosis (95). In addition, it has been 

found that a selective GSK-3β inhibitor lithium chloride increased ATP levels but couldn’t 

reduce caspase 3 activity in the presence of cytokines. Our drug predictions also find 

kenpaullone, which acts as both a CDK inhibitor and a GSK-3β inhibitor and also targets 

additional genes within our networks, including LCK (96,97). Finally, we predicted IKK 

inhibitors like BMS-345541 as potential therapeutic options. IKK complex plays a key role in 

activating the NFkB pathway, and inhibition of this complex enhances beta-cell regeneration and 

could potentially slow down the rate of beta cell death (98). Therefore, plausible drugs were 

derived from our T1D GWAS-based pathway and network analysis.  

Overall, our multitissue multiomics integrative analysis recapitulates previously known 

pathways, processes and genes associated with T1D pathogenesis, primarily components of the 

immune system, confirming the validity of the approach. We additionally uncover novel 

pathways and key genes involving multiple tissues that potentially contribute to T1D 

development through genetic perturbations, including those that can interact with environmental 

factors such as viral infections. These findings offer comprehensive understanding of T1D 

pathogenesis based on genetic evidence and through an omnigenic network lens. The drugs and 

KDs prioritized through our comprehensive integrative analyses may serve as putative T1D 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 28, 2024. ; https://doi.org/10.1101/2024.11.25.24317912doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.25.24317912
http://creativecommons.org/licenses/by/4.0/


18 
      

targets for therapies, which if experimentally validated in future studies may help reduce or 

prevent T1D progression.  
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METHODS 

Overview of study design 

We utilized an integrative genomics approach that leverages multiple large-scale human 

genetic and genomic datasets to elucidate the genetic networks and regulators of T1D 

pathogenesis (Figure 1). The datasets utilized included T1D GWAS from two independent 

cohorts, tissue specific eQTLs from diverse human tissues or cell types, various network models 

including gene coexpression networks, Bayesian gene regulatory networks and protein-protein 

interaction (PPI) networks, and biological pathway information (detailed in subsequent sections). 

To address reproducibility, we ran the integrative analysis on each GWAS study independently 

and then focused on the findings that were consistent between the two cohorts. For each GWAS, 

we mapped the single nucleotide polymorphisms (SNPs) to genes using tissue/cell-specific 

eQTL data with Marker Dependency Filtering (MDF) (25,30). The use of eQTLs helped inform 

on the most likely genes affected by GWAS SNPs based on functional evidence. Next, we 

grouped the genes based on whether they belonged to the same biological pathways or showed 

coexpression, which indicated functional relevance, in data-driven gene coexpression networks. 

We then assessed which pathways or gene coexpression modules (a module contains genes that 

show coexpression patterns) demonstrated stronger genetic associations with T1D compared to 

randomly generated gene sets using Marker Set Enrichment Analysis (MSEA) (25,30). After 

carrying out the MSEA process for each T1D GWAS dataset, we subsequently used a Meta-

MSEA to meta-analyze the two independent GWAS data sets to look for shared 

pathways/modules that showed significant T1D associations, which we further simplified into 

independent “supersets” to reduce redundancy between pathways/modules. Integrating these 

T1D supersets with gene regulatory networks (Bayesian) and protein-protein interaction 

networks, we carried out the weighted key driver analysis (wKDA) to identify key drivers (KDs), 

which are central network genes whose network neighborhoods are highly enriched for genes in 

the T1D pathways and coexpression modules. These KDs were then visualized in tissue-specific 

networks. Furthermore, we carried out in silico validation to determine if these key drivers are 

linked with T1D. Lastly, drug repositioning were done to predict the potential drugs for treating 

T1D using LINCS 1000 and PharmOmics.  

 

T1D GWAS datasets 
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 The summary statistics of GWAS for T1D was obtained from the JDRF/Wellcome 

Diabetes and Inflammation Laboratory, University of Oxford (43,99).  

 The study is comprised of 5913 T1D individuals of European descent (43,99), among 

which 3983 were genotyped using Illumina HumanHap550v3 (550k) Infinium Beadchip from 

the UK GRID and 1930 T1D individuals genotyped using Affymetrix 500K from the WTCCC. 

There were a total 8828 Controls, with 3999 genotyped using Illumina HumanHap550v3 (550k) 

Infinium Beadchip from the 1958 Birth Cohort (1958BC), 1490 genotyped using Affymetrix 

500K (1958BC), 1455 genotyped using Affymetrix 500k from the UK Blood Services (UKBS), 

and 1884 genotyped using Affymetrix 500K from a cohort of bipolar disorders. 

 Inclusion criteria for the UK GRID are: T1D diagnosed between 6 months to 16 years of 

age, insulin dependent for greater than 6 months, a UK resident and self-identified as white 

European (average diagnosis age = 7.8 years of age, SD = 3.9, 47% female). Inclusion criteria 

for the WTCCC are: T1D diagnosed less than 17 years of age, insulin dependent for greater than 

6 months and self-identified white European (average diagnosis age = 7.2 years of age, SD = 3.8, 

49% female). Control inclusion criteria for UKBS and 1958BC included being residents in the 

UK and self-identified white Europeans. For the Bipolar cohort, control individuals greater than 

16 years old and resident in the UK and of European descent were included.  

 The above T1D and control individuals were partitioned into two independent cohorts 

based on matching genotyping platforms (i.e., Illumina or Affymetrix) between cases and 

controls. Cohort 1 (Affymetrix) was comprised of 1930 T1D patients and 4830 Controls. Cohort 

2 (Illumina) was comprised of 3983 T1D patients and 3999 Controls.  

 SNP genotypes were imputed to ~10 million SNPs (1000 Genomes Phase III) using 

IMPUTE2, and routine quality controls were conducted as described in Cooper et al. (43). 

Statistical association between SNPs and T1D was carried out using a Bayesian analysis. All 

statistical association p-values for all imputed SNPs that passed quality control, regardless of 

significance level for T1D association, were used in our downstream analyses. 

 

Mapping SNPs to genes 

To link GWAS SNPs to their potential target genes, tissue-specific eQTLs were used as 

they can provide functional insight for the role of SNPs in gene expression regulation within a 

given tissue. Thirteen eQTL sets were obtained from the GTEx database including subcutaneous 
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adipose, visceral omentum adipose, blood, brain, colon, heart, liver, lymphocyte, muscle, 

pancreas, pituitary, spleen, and stomach (44,45). Additionally, we obtained macrophage and 

monocyte eQTLs from the Cardiogenics Consortium (29), pancreatic islet eQTLs from various 

sources (5), and immune cell eQTLs including lymphocytes from the DICE study (46). A 

broader spectrum of tissues was considered at this step to help objectively infer which tissues 

might be more informative for T1D association. GWAS was mapped to each tissue eQTL set 

separately to derive individual SNP-gene mapping sets reflecting tissue origins to allow 

assessment of tissue-specific signals. 

A high degree of linkage disequilibrium (LD) was observed in the eQTL data, which may 

cause biases in the downstream analysis. For this reason, we removed redundant SNPs that had 

LD of r2 >0.7 with a chosen SNP. Briefly, a GWAS SNP was compared against other SNPs for 

LD and T1D association. If the SNP was in LD of r2 >0.7 with other SNPs, the one with the 

strongest T1D associations was chosen. This process was repeated until all remaining SNPs were 

not in LD based on the r2 >0.7 cut-off. These non-redundant SNPs were used for downstream 

analyses.  

 

Data-driven modules of co-expressed genes 

In order to assess whether T1D GWAS signals are enriched in specific gene subnetworks, 

we derived gene coexpression networks using tissue-specific transcriptomic datasets from the 

GTEx portal, including subcutaneous adipose, visceral omentum adipose, blood, and pancreas 

(25,30,44). These tissues were chosen due to their relevance to T1D (33,34,36). The WGCNA 

(Weighted Gene Correlation Network Analysis) package was used to reconstruct coexpression 

networks based on gene expression profiles (49). Each tissue network contains multiple 

“modules”, and each module is comprised of tens to hundreds or thousands of genes that show 

coexpression. A total of 272 coexpression modules were curated. 

 

Knowledge-based biological pathways 

 We used a total of 1827 canonical pathways from Reactome (Version 45) (23), Biocarta 

(47), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases (48). In addition to 

the knowledge-based pathways, we constructed a T1D positive control gene set based on 

candidate causal genes curated in GWAS catalog (p<5.0e-8) (100). Similar control gene sets for 
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coronary heart disease (CHD), type 2 diabetes (T2D), and height were also constructed to 

compare with the T1D positive control set. Non-HLA specific pathways included all 1827 

canonical pathways with HLA genes removed.  

 

Marker Set Enrichment Analysis (MSEA) 

 To identify coexpression modules and pathways that show evidence for genetic 

association with T1D, we applied MSEA from the Mergeomics package (25,30) on each of the 

GWAS cohorts separately in conjunction with the eQTL sources. MSEA employs a chi-square-

like statistic with multiple quantile thresholds to assess whether a coexpression module or 

pathway shows enrichment of functional disease SNPs (i.e., those likely regulate gene expression 

as captured in eQTLs) compared to random chance. 10,000 permuted gene sets were generated 

for each coexpression module and pathway. As detailed in Shu et al., the enrichment statistics 

from the permutations were used to approximate a Gaussian distribution from which enrichment 

p-values were determined (30). Benjamini-Hochberg (BH) false discovery rate (FDR) was 

estimated across all coexpression modules and pathways tested for each GWAS. Gene sets were 

statistically significant if FDR < 5% in at least one SNP-gene mapping set. To evaluate gene sets 

across both GWAS studies, we followed up with a meta-analysis at the module/pathway level 

using the meta-MSEA function in Mergeomics, to retrieve robust gene sets across both cohorts. 

Stouffer’s Z score method was used to calculate meta p-values based on the p-values from the 

multiple MSEA runs. Meta-FDR was calculated using the Benjamini-Hochberg method, as 

described above.  

 

Merging overlapping pathways into supersets 

The curated pathways and gene coexpression modules may carry redundant information. 

For example, a KEGG pathway “insulin signaling” can have largely overlapping genes with a 

Reactome pathway “insulin receptor signaling”. To reduce redundancy, we compared the 

significant modules and pathways associated with T1D at FDR <5% and merged the overlapping 

ones using a merging algorithm in Mergeomics to produce independent, non-overlapping 

“supersets” (25,30). The algorithm employs an overlap ratio r between two gene sets A and B as 

r = (rAB x rBA)0.5, where rAB is the proportion of genes in A that are also present in B and rBA is the 

proportion of genes in B which are also in A. The overlap ratio cut-off was set to r >= 0.33 and 
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Fisher’s exact test was used for assessing the statistical significance of gene overlap between 

modules/pathways. BH FDR < 5% was considered significant. Resultant supersets containing 

more than 500 genes were trimmed down to contain core genes shared among the overlapping 

gene sets. 

 

Tissue-specific gene regulatory networks and key driver analysis (KDA) 

Tissue-specific Bayesian gene regulatory networks of adipose, blood, and pancreas tissue 

(25,30) as well as protein-protein interaction (PPI) networks were obtained from the Human 

Protein Reference Database (53). We chose to focus on these tissue networks due to our MSEA 

results showing the strongest statistical significance for these tissues. With these networks, we 

performed a key driver analysis using a KDA algorithm in Mergeomics to identify potential key 

drivers (KDs) whose network neighbors are enriched for genes within the T1D associated 

supersets uncovered by MSEA. The algorithm employed a chi-square like statistic similar to that 

described for MSEA, and FDR < 5% was used to focus on top robust KDs.  

 

In silico validation of KDs 

To determine the relevance of the KDs to T1D, we examined the islet RNA sequencing 

and proteomics profiles from the Attie Lab Diabetes Database (http://diabetes.wisc.edu) (60). It 

is a searchable database with gene expression and proteomics profiles of different mouse strains, 

including NOD, a mouse model that spontaneously develops autoimmune diabetes. We then 

performed Student’s t-test on the RNA and protein expression levels for multiple genes between 

the NOD mice and B6 mice to look for significant differences.  

 

Drug Repositioning 

We utilized the online web tool LINCS 1000 to match the best compounds and drugs 

based on the key driver genes of our given tissues and non-HLA related key drivers (62). We 

collected all compounds and drugs from each tissue and then calculated the absolute mean across 

blood (which includes macrophage and monocyte), lymphocyte, pancreas, pancreatic islet and 

non-HLA for the median tau score to list the drugs/compounds whose gene signatures best match 

each of our key driver networks. 
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We used PharmOmics web server for drug repurposing, focusing on the key drivers of 

the tissues, including islet, adipose, blood, lymphocyte, macrophage, monocyte, and pancreas 

(61). After obtaining the results, we filtered the drugs by significance (p-value < 0.05) and 

independently selected the top 100 drugs for each tissue. These selections were made according 

to how well the drug signatures matched the key drivers.  
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TABLE 

Table 1. Top pathways associated with T1D identified across multiple tissues at an FDR 

<5%. 1: Blood, 2: Macrophage, 3: Monocyte, 4. Pancreas, 5: Subcutaneous Adipose, 6: Visceral 

Omentum Adipose, 7: Lymphocyte.  

Supersets 

Superset 

Gene 

Number 

Tissues Pathways 

T1D positive control 60 1, 2, 3, 4, 5, 6, 7 Positive control gene set for T1DM 

S1: Complement Cascade 75 1,2,3,4,6,7 
Complement Cascade; Initial triggering of 

complement 

S2: HIV Infection 222 2, 3,4,6 HIV Infection; Host Interactions of HIV factors 

S3: Signaling by NOTCH 122 
1,2,3,6,7 

  

Signaling by NOTCH; Pre-NOTCH 

Transcription and Translation; Pre-NOTCH 

Expression and Processing 

S4: Protein folding 53 1,2,4,5,6,7 

Protein folding; Chaperon-mediated protein 

folding; Association of TriC/CCT with target 

proteins during biosynthesis 

S5:  Signaling by B Cell 

Receptor (BCR) 
170 

3,4,6,7 

  

Signaling by the B Cell Receptor (BCR); 

Downstream Signaling Events of B Cell 

Receptor (BCR) 

S6:  RNA Polymerase I, 

RNA Polymerase III, and 

Mitochondrial 

Transcription 

95 3, 4,6 

RNA Polymerase I, RNA Polymerase III, and 

Mitochondrial Transcription; RNA Polymerase I 

Transcription; RNA Polymerase I Promoter 

Clearance; RNA Polymerase I Chain Elongation 

S7: RNA Polymerase II 

Transcription Elongation 
43 3,4 

RNA Polymerase II Transcription Elongation; 

Tat-mediated elongation of the HIV-1 transcript; 

Formation of HIV elongation complex in the 

absence of HIV Tat; Formation of HIV-1 

elongation complex containing HIV-1 Tat; 

Formation of RNA Pol II elongation complex  
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S8:  Adaptive Immune 

System 
197 

1,3,4,6,7 

  

Adaptive Immune System; Class I MHC 

mediated antigen processing & presentation 

S9: tRNA Aminoacylation 46 
1,2,3,4,5,7 

  

tRNA Aminoacylation; Aminoacyl-tRNA 

biosynthesis; Mitochondrial tRNA 

aminoacylation 

S10:  M Phase 161 3,4 

Mitotic M-M/G1 phases; Mitotic Metaphase and 

Anaphase; Cell Cycle; Cell Cycle, Mitotic; M 

Phase; Mitotic Anaphase 

S11: Signaling by GPCR 230 2,4,6 

Signaling by GPCR; GPCR downstream 

signaling 

GPCR ligand binding 

S12: GABA Receptor 

activation 
54 1,2,4,6 

GABA receptor activation; Activation of GABA 

B receptors; Activation of GABA B receptors 

S13: S Phase 156 2,3,4,6,7 

S Phase, Mitotic G1-G1/S phases; Cell Cycle 

Checkpoints; DNA Replication, G1/S 

Transition; Synthesis of DNA, M/G1 Transition; 

DNA Replication Pre-Initiation; Regulation of 

mitotic cell cycle; APC/C-mediated degradation 

of cell cycle proteins; Regulation of APC/C 

activators between G1/S and early anaphase 
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FIGURE LEGEND 

Figure 1: Overview of Study. We integrated the following datasets using Mergeomics: 1) 

Collect and process T1D GWAS SNPs. 2)  Map SNP to genes using tissue specific eQTLs. 3) 

Genes found from step 2 are then linked to canonical pathways and co-expression modules. 4) 

Implement wKDA using both protein-protein interaction (PPI) and Bayesian networks 

independently for key driver gene identification. 5) Conduct in silico validation of key drivers. 6) 

Perform drug repositioning using PharmOmics and LINCS L1000.  

 

Figure 2: Venn Diagram of enriched canonical pathways and co-expression modules for 

both T1D GWAS cohorts. A) The independent and overlapping knowledge-driven biological 

pathways for both cohorts (FDR <5%). B) The independent and overlapping co-expression 

modules for both cohorts (FDR <5%). 

 

Figure 3: Heatmap of the tissue-specific meta-MSEA from the combined Cohort 1 and 

Cohort 2 datasets for the supersets derived from the canonical pathways and co-expression 

network modules. A) Heatmap for the statistical significance of T1D genetic association across 

the supersets derived from the Canonical pathways (FDR <5%) in the tissue-specific and cross-

tissue analyses. B) Heatmap for the statistical significance of T1D genetic association across the 

supersets derived co-expression modules (FDR <5%) in the tissue-specific and cross-tissue 

analyses. 

 

Figure 4: Bar graph for pancreatic islet MSEA results from the Cohort 1 and Cohort 2 

datasets for the canonical pathways and co-expression network modules. Bar graph for 

statistical significance of the canonical pathways and co-expression modules (FDR < 0.05) in A) 

pancreatic islet tissue-specific analyses and B) pancreatic islet non-HLA tissue-specific analyses 

for each cohort independently.  

 

Figure 5:  Graph and heatmap showcasing the number of preserved and gained pathways 

after removing the “HLA effect”. A) Bar graph denoting the number of gained versus 

preserved pathways (FDR<5%). B) Heatmap showing the gained pathways for both Cohort 1 and 
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Cohort 2 above the black line (FDR<5%) and then the pathways that were significant (FDR<5%) 

in either Cohort 1 or Cohort 2 but not collectively. 

 

Figure 6: Bayesian Gene Regulatory Networks and PPI Networks. (A) Blood, macrophage, 

monocyte, and lymphocyte combined Bayesian network. (B) Islet PPI network. (C) Lymphocyte 

PPI Network.  

 

Figure 7:  Example of in silico validation by screening for key driver gene RNA expression 

and proteomics patterns across seven non-type 1 diabetic mice with the type 1 diabetic 

NOD mouse. (A) RNA expression level of islet PPI KDs TRAF1, LCP2, WAS, FYN, TAP1, and 

LCK is significantly higher in NOD mouse. (B) RNA expression level of islet PPI KD SOS1 is 

significantly lower in NOD mouse. (C) Protein expression level of islet PPI KD CD74 and TAP1 

is significantly higher. (D) RNA expression level of islet Bayesian network KDs PSMB8, 

MPEG1, GBP4, FSCN1, CTSS, and C1QB is significantly higher in NOD mouse.  p<0.05: *; 

p<0.01: **; p<0.001: ***; p<0.0001:****.  

 

Figure 8: Drug repositioning results. A) Heatmap showcasing the top drugs repositioning 

using LINCS 1000 based on the key driver genes of each tissue/analysis. All Drugs collectively 

pass a Median Tau Threshold of 90 using the absolute mean across all groups. The highest 

median Tau score is presented in order from top to bottom. B) Heatmap of the top drug 

repositioning using Pharmomics based on key driver genes of each tissue. Only top significant 

100 drugs were included for each tissue, and common drugs with more than 5 appearances across 

all tissues were demonstrated in heatmap.  

 

Supplement Figure 1: Bayesian Gene Regulatory Networks and PPI Networks. (A) Islet 

Bayesian network. (B) Adipose Bayesian network. (C) Non-HLA Network. 
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Figure 1: Overview of Study. We integrated the following datasets using Mergeomics: 1) Collect and process T1D GWAS SNPs. 2)  Map SNP to genes 

using tissue specific eQTLs. 3) Genes found from step 2 are then linked to canonical pathways and co-expression modules. 4) Implement wKDA using 

both protein-protein interaction (PPI) and Bayesian networks independently for key driver gene identification. 5) Conduct in silico validation of key

drivers. 6) Perform drug repositioning using Pharmomics and LINCS L1000.
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Figure 2: Venn Diagram of enriched canonical pathways and co-expression modules for both T1D GWAS cohorts. A) The independent and 

overlapping knowledge-driven biological pathways for both cohorts (FDR <5%). B) The independent and overlapping co-expression modules for both 

cohorts (FDR <5%).
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A

Figure 3: Heatmap of the tissue-specific meta-MSEA from the combined Cohort 1 and Cohort 2 datasets for the supersets derived from the 

canonical pathways and co-expression network modules. A) Heatmap for the statistical significance of T1D genetic association across the supersets 

derived from the Canonical pathways (FDR <5%) in the tissue-specific and cross-tissue analyses. B) Heatmap for the statistical significance of T1D 

genetic association across the supersets derived co-expression modules (FDR <5%) in the tissue-specific and cross-tissue analyses.
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Figure 4: Bar graph for pancreatic islet MSEA results from the Cohort 1 and Cohort 2 datasets for the canonical pathways and co-expression 

network modules. Bar graph for statistical significance of the canonical pathways and co-expression modules (FDR < 0.05) in A) pancreatic islet tissue-

specific analyses and B) pancreatic islet non-HLA tissue-specfic analyses for each cohort independently.
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Figure 5:  Graph and heatmap showcasing the number of preserved and gained pathways after removing the “HLA effect”. A) Bar graph denoting 

the number of gained versus preserved pathways (FDR<5%). B) Heatmap showing the gained pathways for both Cohort 1 and Cohort 2 above the black 

line (FDR<5%) and then the pathways that were significant (FDR<5%) in either Cohort 1 or Cohort 2 but not collectively.
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Figure 6: Bayesian Gene 

Regulatory Networks and PPI 

Networks. (A) Blood,

macrophage, monocyte, and

lymphocyte combined Bayesian 

network. (B) Islet PPI network.

(C) Lymphocyte PPI Network. 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 28, 2024. ; https://doi.org/10.1101/2024.11.25.24317912doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.25.24317912
http://creativecommons.org/licenses/by/4.0/


Figure 7:  Example of in silico validation by screening for key driver gene RNA expression and proteomics patterns across seven non-type 1 

diabetic mice with the type 1 diabetic NOD mouse. (A) RNA expression levels of (A) TRAF1, (B) LCP2, (C) WAS, (D) FYN, (E) TAP1, and (F) LCK

are significantly higher in NOD mouse. RNA expression level of (G) SOS1 is significantly lower in NOD mouse. Protein expression levels of (H) TAP1 

and (I) CD74 are significantly higher. p<0.05: *; p<0.01: **; p<0.001: ***; p<0.0001:****.
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Figure 8: Drug repositioning results. A) Heatmap showcasing the top drugs repositioning using LINCS 1000 based on the key driver genes of each 

tissue/analysis. All Drugs collectively pass a Median Tau Threshold of 90 using the absolute mean across all groups. The highest median Tau score is 

presented in order from top to bottom. B) Heatmap of the top drug repositioning using Pharmomics based on key driver genes of each tissue. Only top

significant 100 drugs were included for each tissue, and common drugs with more than 5 appearances across all tissues were demonstrated in heatmap.
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Supplement Figure 1: Bayesian Gene 

Regulatory Networks and PPI 

Networks. (A) Islet Bayesian network. 

(B) Adipose Bayesian network. (C) 

Non-HLA Network.
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Supplement Figure 2:  

Example of in silico 

validation by screening for 

key driver gene RNA

expression and proteomics 

patterns across seven non-

type 1 diabetic mice with the 

type 1 diabetic NOD mouse.

RNA expression levels of (A)

EPOR, (B) WASF2, (C) TRAF2,

(D) SMURF1, (E) CD74, (F)

NCF1, (G) PSMB8, (H)

MPEG1, (I) GBP4, (J) FSCN1,

(K) CTSS, and (L) C1QB are

significantly higher in NOD

mouse. p<0.05: *; p<0.01: **;

p<0.001: ***; p<0.0001:****.
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