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Abstract  
Purpose: Aphasia rehabilitation is a learning process that unfolds over time. Previous work has 

examined aphasia treatment response using pre- to post-treatment comparison, largely ignoring 

the unfolding learning response that occurs session-to-session. We aimed to: (1) characterize the 

shape of learning while individuals with aphasia received intensive anomia intervention, and (2) 

identify the cognitive predictors of this learning response.   

 

Method: Individuals (n=39) with chronic post-stroke aphasia received intensive semantic feature 

analysis (SFA). Naming accuracy for trained and semantically-related, untrained words was 

probed daily. We used Bayesian generalized linear mixed effects models to estimate the shape of 

learning during SFA treatment, and to measure the influence of key cognitive functions on 

treatment response.  

 

Results: Most treatment gains appeared early during treatment, after the first four hours of 

intervention. Verbal recognition and visuospatial memory were associated with the magnitude of 

those early treatment gains, favoring strong cognitive performers. Treatment generalization to 

untrained targets was present but modest, with some evidence suggesting that visuospatial recall 

performance may be associated with treatment generalization.  

 

Conclusions: Monitoring SFA treatment response early could help inform clinicians whether 

patients will respond optimally to intervention. Verbal recognition and visuospatial recall support 

learning during treatment, helping elucidate cognitive underpinnings of learning during aphasia 

rehabilitation.   
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Introduction 

The language and cognitive deficit profiles of individuals with post-stroke aphasia are 

heterogeneous. However, all individuals with aphasia experience anomia, or word-retrieval 

difficulty (Laine & Martin, 2006). Because anomia is a pervasive consequence of aphasia and 

has significant detrimental impact on individuals’ ability to communicate, many speech language 

pathologists (SLPs) dedicate a substantial amount of treatment time to restoring word-retrieval 

abilities by implementing established anomia treatment protocols (Tierney-Hendricks et al., 

2022). Similarly, many clinical trials aimed at investigating aphasia treatment efficacy have 

focused specifically on examining efficacies of anomia treatments, such as Semantic Feature 

Analysis (SFA; Boyle & Coelho, 1995; Massaro & Tompkins, 1992; Quique et al., 2019). 

However, treatment response in people with aphasia is highly variable, and predicting which 

patients will respond optimally to SFA or to other widely used aphasia treatments remains a 

significant challenge faced by the field (Doogan et al., 2018). Given that SFA is the most widely 

used anomia treatment in clinical speech and language pathology (Raymer & Roitsch, 2023a; 

Tierney-Hendricks et al., 2022), it is uniquely worthy of detailed study to better understand 

variability in patient outcomes.  

To measure treatment response, majority of group studies have historically presented 

measures of pre- to post-treatment changes to estimate therapy-driven language improvements 

(Breitenstein et al., 2017; Edmonds et al., 2014; Kendall et al., 2015; Kristinsson et al., 2021; 

Stockbridge et al., 2023). In a traditional pre-to-post treatment contrast, performance on a desired 

outcome measure before treatment is compared to performance on the same measure gathered 

after treatment. Ideally, at the end of treatment, participants with aphasia will demonstrate a 

robust and reliable increase or gain in their performance on the desired outcome measure. These 
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pre-post comparisons may involve tests of performance on standardized assessments at a single 

timepoint before and after treatment in randomized control trials (Brady et al., 2016; Robey, 

1998) or they may involve performance on a targeted behavior at multiple timepoints before (at 

baseline), during, and after treatment (during follow-up) in single-subject experimental designs 

(Beeson & Robey, 2006).  

Using such pre-to-post comparisons, many studies have identified sources of treatment 

response variability by accounting for contributions of person-specific variables on treatment 

outcomes. For example, multiple findings indicate that lesion size and site (Hope et al., 2013; 

Kiran & Thompson, 2019; Plowman et al., 2012; Watila & Balarabe, 2015) and initial aphasia 

severity (Lazar et al., 2010; Watila & Balarabe, 2015), among other variables, predict the 

magnitude of change in language function from pre- to post-treatment. Findings from these 

investigations usefully demonstrate treatment efficacy. However, they do not account for the 

gradual re-learning process that unfolds during aphasia rehabilitation. Directly examining this 

relatively less-studied incremental learning process may shed important and novel light on 

diversity of aphasia treatment responses.  

Recently, a handful of investigations among the large aphasia treatment literature have 

used naming performance gathered during anomia intervention to consider how within-treatment 

performance predicts long term patient outcomes. For instance, in a study by Dignam et al. 

(2023), participants with chronic aphasia engaged in intensive anomia treatment and were probed 

on their abilities to name trained (i.e. directly treated) and untrained (i.e. never treated) target 

words after every 3 hours of intervention. The investigators found that performance on the very 

first naming probe significantly predicted word-retrieval abilities of trained and untrained items, 

both at the end of treatment and at a follow-up visit that occurred 1 month later. Consistent with 
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these findings, Simic et al. (2020) found that early improvements in anomia treatment, measured 

via daily naming probes, strongly predicted naming outcomes at the end of treatment. These 

limited though consistent results suggest that early treatment response predicts anomia treatment 

outcomes, and that factoring in how treatment response unfolds over time may usefully account 

for sources of variability in outcomes. Specifically, it appears that rapid treatment responders are 

more likely to benefit from treatment while slow or absent responders are less likely.  

 A possible explanation for this advantage is that rapid treatment responders may also be 

strong learners who are capable of retaining treatment effects in the long-term. Increasingly, 

aphasia rehabilitation is viewed as a re-learning process (Ferguson, 1999; Hopper & Holland, 

2005; Nunn et al., 2023; Raymer et al., 2008) and learning abilities can become impaired in some 

individuals after stroke, which may predispose them to benefit less from language intervention 

(Martin & Saffran, 1999; Vallila-Rohter & Kiran, 2013). Learning in the context of aphasia 

treatment is different from acquisition of novel information, such as learning novel words. 

Instead of targeting novel information or concepts, aphasia treatment protocols aim to restore 

access to pre-existing linguistic knowledge through repeated and structured practice. This 

process requires individuals with aphasia to learn procedural features of the treatment protocol 

being used, but more importantly also elicits re-learning of their ability to access representations 

that are inconsistently available for language use (Mirman & Britt, 2014). Although novel 

learning and the language re-learning are distinct processes, the ability to learn new information 

after stroke is predictive of aphasia treatment success (Dignam et al., 2016; Tuomiranta et al., 

2014). This suggests shared overlapping cognitive substrates (Peñaloza et al., 2022). 

Learning ability is a dynamic and complex cognitive skill that relies on synergies of 

multiple domain-specific non-language cognitive functions, such as memory, attention, and 
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executive functions – cognitive functions that are commonly affected by stroke and have been 

associated with aphasia treatment outcomes (Diedrichs et al., 2022; Dignam et al., 2017; Gilmore 

et al., 2019; Lambon Ralph et al., 2010; Seniów et al., 2009). Multiple studies have reported that 

performance on cognitive tasks – including tasks that measure verbal short-term memory, 

visuospatial recall, sustained attention, and executive function – predict  magnitude of aphasia 

treatment response (Diedrichs et al., 2022). Specifically, individuals with higher scores on 

domain-specific cognitive-linguistic measures (indicative of stronger and relatively spared 

cognitive function) tend to make greater language rehabilitation gains. The cognitive functions 

that appear to support aphasia treatment success are the same prerequisite cognitive skills 

required for successful learning of new information, despite these forms of learning representing 

distinctive processes (Peñaloza et al., 2022).  

The exact characterization of re-learning in the context of aphasia treatment is undefined 

and must be specified more precisely (Nunn et al., 2023). The current study examines this 

incremental process directly, modeling changes over time during treatment to identify important 

patterns in the session-to-session variability seen in word re-learning among individuals with 

chronic post-stroke aphasia.  

 

Study Aims 

The current study had two aims: (i) to characterize the course of word re-learning while 

individuals with aphasia engage in SFA and (ii) to determine how non-language cognitive 

function influences the course of re-learning during treatment. The first aim focused on session-

by-session learning, and addressed the following research question:  
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1. As people with aphasia actively engage in SFA, what is the shape of the learning curve for 

trained and untrained target words during treatment? 

Based on findings from Dignam et al. (2023) and Simic et al. (2020), we hypothesized that 

individuals with aphasia would, on average, show rapid improvements in their ability to name 

trained and untrained target words early in the course of SFA. Additionally, those improvements 

would be greater for directly trained items than for untrained (Aim 1). 

The second aim examined the non-language cognitive predictors of the shape of the 

learning curve for trained and untrained target words during treatment, addressing the following 

research question:  

2. As people with aphasia actively engage in SFA, which non-language cognitive factors are 

associated with the shape of the learning curve for trained and untrained target words during 

treatment? 

We hypothesized that verbal short term memory, sustained attention, and visuospatial recall 

abilities would be associated with better re-learning throughout treatment (Diedrichs et al., 2022; 

Majerus, 2013; Peñaloza et al., 2022; Rodríguez-Fornells et al., 2009; Ullman, 2004; Varkanitsa 

et al., 2023; Yu & Smith, 2007). Specifically, better treatment responders (individuals either with 

greater level change over baseline slope or steeper slope change compared to baseline slope) 

would also be strong performers on these measures of cognitive functions, whereas less robust 

treatment responders (individuals either with small level change over baseline slope or less steep 

slope changes compared to baseline slope) would also be weak performers on cognitive 

measures.  

 

Methods 
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The present study is a retrospective analysis of existing data. Methods supporting data 

collection and analyses received approval from the Veterans Administration Pittsburgh 

Healthcare System Institutional Review Board. Participants or their legally authorized 

representatives provided written informed and verbal consent. Study methods are described 

comprehensively in Evans et al. (2021) and Gravier et al. (2018).  

 

Participants 

Study investigators enrolled 44 individuals with chronic (>6 months post-onset) aphasia 

following unilateral, left hemisphere stroke. Participants with recurrent stroke and known 

comorbid neurologic disease other than stroke were excluded. Using the Comprehensive Aphasia 

Test (CAT; Swinburn et al., 2012), investigators measured language abilities across modalities 

and aphasia severity to confirm aphasia status and inform study inclusion. Specifically, we 

generated a CAT modality mean T-score by averaging T scores for the following subtests: 

spoken and written comprehension, repetition, naming, and reading aloud. Participants with CAT 

naming modality T-scores of 40 or above were eligible to participate.  

While 44 total patients were eligible and completed the study in its entirety, the protocol 

for the first five research participants deviated from the protocol for the remaining 39 

individuals. Specifically, the first five participants were treated on more word lists for longer 

periods of time. Therefore, we excluded the first five participants to improve internal validity and 

make analogous comparisons regarding treatment effects, resulting in a final sample of 39 

individuals with chronic aphasia (see Evans et al., 2021 for separate analyses of data drawn from 

the same sample of participants). Table 1 offers a summary of demographic information for the 
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39-person sample. Means and standard deviations of the sample’s performance on language and 

non-language cognitive evaluations are also listed in Table 1.  

Table 1 
Summary of demographic information and breakdown of language and non-language cognitive 
scores for study sample (N=39).  
 

Sample Demographics  

Demographic Summary Statistic Range 

Age (years) 61.8±12.2 24-78 

Education (years) 14.8±3.04 10-25 

Months Post Onset 59±56.2 6-245 

Sex Female: 4 

Male: 35 

NA 

 

Handedness Left: 3 

Right: 36 

NA 

Race African American: 6 

Hispanic: 1 

White: 32 

NA 

Sample Cognitive Performance  

Measure Mean and SD Total Max Possible 

Score 

Range 

CAT Modality Mean T-Score 52.8±4.74 NA 44.3-64.2 

 

Camden Verbal Memory Test: 

Paired Associate Learning 

Subtest 

20.8±4.09 25 10-25 

Rey Figure Copy: Immediate 

Delay 

13.3±6.43 36 0-30 

Note. CAT = Comprehensive Aphasia Test.  
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Study Timeline 

Once determined eligible for inclusion, individuals in our sample engaged in 3 distinct 

phases of the study: (1) Baseline Testing, (2) Treatment Period, and (3) Post-Treatment 

Maintenance Period. The baseline testing occurred over several days. The active SFA 

treatment period lasted 4 weeks. Immediately following the four-week period of intervention, 

participants repeated select language measures at the onset of the post-treatment maintenance 

period. Because they are not relevant to the current study, post-treatment maintenance 

procedures will not be discussed further here. Relevant to the current study are the baseline 

testing and treatment period phases, which are detailed below.  

 

Phase 1: Baseline Testing & Stimulus Development 

Immediately prior to intensive SFA treatment, all participants completed an extensive 

battery that assessed language and non-language cognitive abilities. Language abilities were 

measured using the CAT and a large 194-item naming battery. All 194 items were named 2 or 3 

times during the baseline evaluation phase. Research participants also completed several non-

language cognitive measures including the Camden Memory Test (Warrington, 1996), Rey 

Figure Copy and Immediate Recall (Meyers & Meyers, 1995), and the Test of Everyday 

Attention (TEA; Robertson et al., 1994). Informed by findings reported in Dignam et al. (2017), 

Gilmore et al. (2019), Lambon Ralph et al. (2010), Seniów et al. (2009), and Simic et al. (2019), 

we identified three key non-language cognitive variables of interest, which we used to examine 

the influence of domain-specific cognitive functions on anomia treatment response: (1) verbal 

recognition memory, (2) visuospatial recall memory, and (3) selective attention. The 
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standardized test and associated subtest that we used to represent language and non-language 

cognitive functions are listed in Table 2. 

Table 2 
Measures used to gauge specific language and non-language cognitive functions of interest.  
 
Cognitive Function Measure 

Language 

 

• CAT Modality Mean T-Score 

• 196-item naming battery 

 

Verbal Recognition Memory • Camden Verbal Memory Test: Paired Associate 

Learning Subtest 

 

Visuospatial Recall • Rey Figure Copy: Immediate Delay 

 

Sustained Attention • TEA: Elevator Count with Distraction 

 

Treatment stimuli were selected using individual performance on the repeated 194-item 

naming battery. Specifically, words that a participant named incorrectly on at least 2 of 3 

baseline naming battery administrations were identified as potential targets and guided treatment 

list generation. Three treatment lists were created for every participant, and each list contained 

10 words belonging to one of 8 possible semantic categories (animals, birds, fruits & vegetables, 

musical instruments, occupations, sports equipment, tools, and transportation). If participants 

incorrectly named multiple nouns across more than 3 semantic categories, their preferences were 

considered when creating the treatment lists. Each treatment list contained 5 semantically-related 

words that would be directly targeted during intensive SFA (trained items), and 5 semantically-

related words that would never be treated during SFA sessions (untrained items), which were 

included to monitor response generalization. 
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Phase 2: Treatment Period  

 Participants engaged in individually delivered, intensive SFA treatment for four weeks. 

Treatment sessions occurred twice a day, 4-5 days per week, and lasted 120 minutes each. Thus, 

it is estimated that participants engaged in approximately 4 treatment hours per day. Licensed 

SLPs delivered SFA treatment using a computer program designed by Winans-Mitrik and 

colleagues (2013). For each trial, SLPs showed participants a picture of a trained item and 

participants attempted to name the item. Participants then generated a minimum of 3 physical 

properties, actions, and locations, and 1 category and personal association per trial. While 

participants generated features, the treating clinician recorded responses using a computerized 

SFA visual organizer (Figure 1), which was visible to the participant.  

Figure 1 
 
Example of the visual organizer that the clinician and research participant worked through for 
each SFA trial (Gravier et al., 2018).  
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If participants had trouble generating features, SLPs implemented a cueing hierarchy. 

After 10 seconds if no feature was generated, SLPs provided an open-ended and targeted cue 

(e.g. “what does it feel like?”). If participants continued to struggle with feature generation, the 

SLP presented binary forced-choice questions (e.g. “is this hard or soft?”). After completing 

feature generation across category, physical properties, actions, locations, and personal 

association for a given trained item, the participant attempted to name the target word again. 

Erroneous or absent responses prompted the clinician to model target word production, eliciting 

repetition from the participant. Additional details regarding specific decisions made during 

treatment are outlined in Gravier et al. (2018).  

 Prior to each treatment session, participants completed a 10-item naming probe. Figure 2 

depicts the schedule before, during, and after treatment. These daily naming probes measured 

naming accuracy of the 5 trained and 5 untrained items comprising the list being actively 

targeted. When participants achieved 80% naming accuracy or greater on 3 consecutive daily 

naming probes, treatment of that list was discontinued and intervention for a new list containing 

items belonging to a new semantic category initiated. If this criterion was not achieved after 8 

consecutive days of intervention, treatment of a new list began to prevent participants from 

receiving treatment on a single list of words. Once participants advanced to a new treatment list, 

intervention for previously treated items ceased. This individualized nature of the treatment 

protocol resulted in some participants only receiving SFA treatment for 2 treatment lists (i.e., 

participants who never reached the criterion for advancement), with others receiving SFA 

treatment for 3 treatment lists (i.e. participants who showed rapid improvements on daily naming 

probes). 
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Figure 2 

Depiction of study timeline including pre- and post-treatment evaluation and the daily probe naming schedule throughout SFA 
treatment.  
 

 

Note. All participants were treated on each list for at minimum 4 days, at maximum 8 days. Green (list 1), purple ( list 2) and blue (list 
3) arrow gradients reflect this variability over time.
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Every 4 days, a master 30-item naming probe was collected in place of the daily 10-item 

probe. The 30-item probe contained trained (5 items) and untrained (5 items) target items for all 

3 treatment lists (see Figure 2). Depending on how far into the 4-week intensive treatment 

participants were, this 30-item master naming probe allowed us to monitor naming accuracy for 

currently treated, yet-to-be treated, and previously treated items. For example, in the early phase 

of intervention, the 30-item probe allowed investigators to periodically continue probing baseline 

naming accuracy of yet-to-be treated words (e.g. from treatment lists 2 and 3, while list 1 was 

actively being treated). In the middle phase of intervention, when treatment of the first list was 

finished and treatment of a second list was occurring, the 30-item probe allowed investigators to 

periodically monitor how well individuals retained treatment effects of previously targeted words 

while continuing to gather pre-treatment baseline performance on yet-to-be treated words. In the 

later phase of intervention, when 1 or 2 lists had been treated, the 30-item probe allowed 

investigators to continue periodically monitoring retention of treatment effects for previously 

targeted words while treatment was still ongoing. This study design granted us the opportunity to 

monitor day-to-day changes in naming accuracy of actively treated words. 

 

Analyses 

 To estimate change in naming accuracy during daily naming probe performance, we used 

item-level generalized linear mixed-effects models. These models followed an established 

interrupted time series approach for multiple baseline designs (Huitema & Mckean, 2000). The 

models use generalized linear mixed effects models to test whether changes in performance 

across treatment phases (e.g. during treatment compared to baseline, or after treatment has been 

withdrawn) are statistically robust. They thus provide a statistically rigorous complement to 
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effect-size-based tools like proportion of non-overlap or Tau-U, which have been criticized 

(Pustejovsky, 2019). ITS models have recently been applied to aphasia research to examine both 

unfolding aphasia treatment response and person-level predictors of such response (Evans, 

Cavanaugh, Quique, et al., 2021; Quique et al., 2022; Robinaugh et al., 2024; Sandberg et al., 

2023; Swiderski et al., 2021). For a tutorial and additional information see Cavanaugh et al. 

(2023). 

There are three key parameters in the standard interrupted time series model – (1) 

baseline slope, (2) level change, and (3) slope change. The baseline slope parameter models the 

average rate of change in item-level naming accuracy prior to treatment onset. The level change 

parameter is an estimate of the difference between performance on the first probe measured after 

the first unit of treatment predicted by baseline slope compared to performance on the first probe 

measured after the first unit of treatment predicted by the slope change. The slope change 

parameter models the average rate of change in performance during active intervention, relative 

to the trend estimated by the baseline slope parameter. The intercept estimate for our generalized 

linear mixed effects models represents naming performance of trained targets immediately 

before the first baseline observation. This interrupted time series approach was applied within a 

Bayesian framework, implemented in R via the brms package with a binomial probability 

distribution and a logistic link function (Bürkner, 2017, 2018, 2021) using ‘cmdstan’ (J. Gabry et 

al., 2024). For each model, the dependent variable was item-level naming performance (correct, 

incorrect). Model structures are presented in Supplemental Table 1.  

The first aim of the study examined the shape of the learning curve for trained and 

untrained target items during intensive SFA and the influence of non-language cognitive 

functions on this learning (Aim 2). For Aim 1, population-level effects (i.e., fixed-effects in a 
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frequentist framework) included simple effects of time series variables (baseline slope, level 

change, and slope change) and their interactions with word type (trained [reference], untrained 

but semantically related). Additionally, aphasia severity (z-transformed CAT mean T-scores) 

was included as a covariate to account for variability in language deficit severity among 

individuals in the study sample (Gravier et al., 2018). Group-level effects (i.e., random-effects in 

a frequentist framework) included intercepts and slopes for the key time series parameters by 

participant, and a group-level intercept for item. It is worth noting that treating list as a group-

level effect, rather than a simple effect, entails that the model ignores effects of list order. This 

allowed us to handle unbalanced probe structures, multiple list and semantic categories, and the 

variable duration of treatment for each list within and across each participant. To address Aim 2, 

we evaluated the extent to which verbal recognition memory, visuospatial recall, and selective 

attention moderated treatment response as defined by time series variables (baseline slope, level 

change, and slope change) in separate, parallel models. Specifically, we added z-transformed 

cognitive scores as a third interaction term to the model used in Aim 1.  

Prior distributions that supported our models were informed by our knowledge of the 

stimuli selection process and previous work using Bayesian statistical modeling in anomia 

treatments for aphasia (Boyle et al., 2023; Cavanaugh et al., 2022, 2023; Evans, Cavanaugh, 

Quique, et al., 2021). See Supplemental Material for additional information.  

 

Results 

When estimating change in performance after level change, we used 4 treatment sessions, as this 

was the minimum number of treatment sessions that could have occurred before participants 

advanced to new lists and is the most conservative estimate. Model fixed effect estimates are 
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discussed in terms of percent accuracy (i.e. percentage points), estimated from logit coefficients 

(see the markdown file included in Supplemental Material). 

 

Aim 1: Shape of Learning During Intensive SFA Intervention 

Findings relevant to Aim 1 for both trained and untrained items are visualized in Figure 

3. Aim 1 model output is located in Supplemental Table 2.  The model-estimated average 

accuracy was 15.37% (95%CI [11.56%, 19.78%]) on treated items at the first baseline session.  

For trained items, there was a small baseline trend which corresponded to an increase in 

estimated average naming accuracy from 15.4% at the first baseline session to 16.5% (D=1.1%, 

95% CI[0.4%, 1.9%]) at the final baseline session. There was a large positive effect of level 

change, which was associated with an average increase from 16.5% to 58.8% (D=42.3%, 95% 

CI[35.9%, 48.3%]) on treated items following the first 4 hours of intensive SFA treatment. There 

was a slightly positive effect of slope change (the rate of change in naming accuracy during 

treatment relative to baseline rate) for trained items. Model-estimated accuracy for naming of 

trained items increased from 61.7% to 69.8% (D=8.1%, 95% CI[4.7%, 11.6%]) after four days of 

intensive SFA. 

When comparing naming accuracy of untrained but semantically related items to trained 

items, there was evidence of a positive interaction of word type and baseline slope. Although the 

95% credible interval (CI) of this effect overlapped 0 (Supplemental Table 2), 97.8% of the 

posterior distribution was greater than 0, suggesting a high probability the effect was greater than 

0. The average estimated naming accuracy of untrained items increased from 14.3% at the first 

baseline session to 16.0% (D=1.7%, 95% CI[0.1%, 25.5%]) at the final baseline session. There 

was a negative interaction between level change and word type consistent with a smaller positive 
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effect of the introduction of treatment on untreated but semantically related items than on trained 

items. Average accuracy on untreated items increased from 16.0% to 24.0% (D=8.0%, 95% 

CI[3.8%, 12.6%] after the first 4 hours of intensive SFA treatment. There was also a negative 

interaction between slope change and word type. The rate of change in naming accuracy during 

treatment for untrained items was less positive than for trained items, and essentially the same as 

the small positive rate of change during baseline for untrained items. By the end of the 4th 

treatment session, the estimated average naming accuracy on untrained items increased from 

25.1% to 28.5% (D=3.4%, 95% CI[0.0%, 6.7%], PD=100%).  

Figure 3 

Rate of change in naming accuracy for trained (orange circle) and untrained (blue triangle) target 
items from the baseline to treatment phases (separated by dashed line). 
 

 

Note. Performance is estimated for 3 baseline sessions and 4 treatment sessions. This reflects the 
maximum potential number of baseline observations and minimum number of treatment sessions 
that the study design allowed for. 
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Aim 2: Influence of Cognitive Function on Shape of Learning During Intensive SFA Intervention  

Verbal Recognition Memory 

Supplemental Table 3 includes model output associated with verbal recognition memory, 

and Supplemental Table 4 presents estimated naming accuracy of trained and untrained items 

across baseline, level change, and treatment slope phases for individuals with verbal recognition 

memory scores that fell 1 standard deviation or greater above the sample mean (hereafter “above 

average”) and for individuals with verbal recognition memory scores that fell 1 standard 

deviation or greater below the sample mean (hereafter “below average”).  

For trained items, there was a positive two-way interaction between level change and 

verbal recognition memory score. The 95% CI of this effect overlaps 0, however 96.6% of the 

posterior distribution was greater than 0, suggesting a high probability the effect was greater than 

0. Participants with above average verbal recognition memory scores increased their naming 

accuracy of trained items from 17.6% to 66.4% (D=48.8%, 95% CI[41.2%, 55.7%]) after the first 

four hours of treatment. In comparison, participants with below average verbal recognition 

memory scores increased their naming accuracy from 15.6% to 50.2% (D=34.6%, 95% 

CI[25.8%, 43.2%]). There was weak (probability of direction [PD]=91.1%) evidence for a small 

effect of the two-way interaction between verbal recognition memory and slope change, which 

favored participants with above average verbal recognition memory abilities.  

When examining the influence of verbal recognition memory on the difference in naming 

accuracy for untrained compared to trained items across the three time series variables, 

evidence supporting all three-way interaction effects was weak (all PDs < 74%) and the 

directions of each interaction effect were variable (see model outputs in supplemental material).  
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Visuospatial Memory 

Supplemental Table 5 includes model output associated with visuospatial memory, and 

Supplemental Table 6 presents estimated naming accuracy of trained and untrained items across 

baseline, level change, and slope change phases for individuals with above average visuospatial 

recall scores and for individuals with below average visuospatial recall scores. 

 For trained items, there was a positive two-way interaction between visuospatial recall 

score and baseline slope. The rate of change in naming accuracy across baseline observations for 

trained items was marginally more positive for participants with above average visuospatial 

recall scores compared to participants with below average scores. The 95% CI of this effect 

overlaps with 0 (see Supplemental Table 5), however 95.7% of the posterior distribution was 

greater than 0. There was a strong and positive two-way interaction between visuospatial recall 

score and level change. Participants with above average visuospatial recall scores increased their 

naming accuracy of trained items from 15.4% to 66.2% (D=50.8%, 95% CI[42.7%, 58.1%]) at 

the level change. Comparatively, participants with below average visuospatial recall scores 

increased from 17.7% to 50.3% (D=32.6%, 95% CI[24.2%, 40.8%]) at the level change. There 

was no evidence supporting a two-way interaction between visuospatial recall and slope change 

(PD = 59.7%). 

The three-way interaction between untrained targets compared to trained targets for 

participants with above and below average visuospatial recall scores revealed a small negative 

trend (PD=98.6%) in the baseline slope, suggesting that individuals with above average 

visuospatial memory scores improved more on treated than untreated words during the baseline 

phase. The three-way interaction between level change, word type, and visuospatial recall 

yielded a negative effect (PD=96.6%) This suggests that participants with below average 
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visuospatial recall scores experienced more comparable level change effects for trained and 

untrained items, whereas individuals with above average visuospatial recall scores showed much 

larger level change effect for trained compared to untrained items. There was no evidence 

supporting the three-way interaction between slope change, word type, and visuospatial recall 

score, and the direction of the effect was unclear (PD=66.5%). 

 

Sustained Attention 

Supplemental Table 7 includes model output associated with visuospatial memory, and 

Supplemental Table 8 presents estimated naming accuracy of trained and untrained items across 

baseline, level change, and treatment slope phases for individuals with above average sustained 

attention scores and for individuals with below average sustained attention scores. 

For trained items, there was no evidence for two-way interactions between sustained 

attention score and baseline slope (PD = 79.9%) or level change (PD = 69.9%). There was weak 

evidence supporting a two-way interaction between sustained attention score and slope change 

(PD=98.0%), suggesting that rate of change in percentage points for trained items was slightly 

more positive for those with above-average sustained attention scores than those with below-

average scores. There were no reliable 3-way interactions for sustained attention (all PDs <78%; 

see model outputs in the supplemental R-Markdown files).  

 

Discussion 

 In this study, we aimed to model the shape of learning that occurs during the time course 

of treatment while individuals with post-stroke aphasia engage in SFA (Aim 1), an anomia 

intervention that is commonly used in both clinical practice and research (Efstratiadou et al., 
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2018; Raymer & Roitsch, 2023b). Additionally, we aimed to determine which cognitive 

functions were associated with learning during treatment (Aim 2).   

 

Study Aim 1: Shape of Learning During Aphasia Treatment 

 The present study found: (1) a small increase in naming accuracy across baseline 

observations (i.e. baseline slope) which was greater for untrained than trained target words; (2) a 

large, positive increase in naming accuracy after the first four hours of SFA treatment (i.e. at the 

level change) which was greater for trained than untrained words; and (3) a slightly positive 

change in naming accuracy across treatment sessions compared to baseline (i.e. slope change), 

which was again greater for trained than untrained target words.  

The rising baseline slope reported in this investigation is consistent with findings from 

other (limited) studies that have used interrupted time series models to examine aphasia 

treatment response (Evans, Cavanaugh, Quique, et al., 2021; Swiderski et al., 2021). 

Specifically, individuals with aphasia demonstrate slight improvements in production of trained 

and untrained target items from one baseline session to the next, in the absence of direct 

intervention. The rising baseline slope for trained and untrained target items could represent an 

effect of repeated exposure, where repeatedly viewing a stimulus over the course of 1-2 days 

facilitates slightly increased likelihood for successful retrieval (Creet et al., 2019). However, it is 

worth remarking that the improvements made throughout the baseline phase were clinically 

unremarkable, translating to total increases of 2% or less across the baseline phase for trained 

and untrained targets.  

Among the three interrupted time series variables in our model, the effect of level change 

yielded the largest percentage point change. On average, individuals in our sample attained the 
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majority of SFA-related naming improvements early into treatment, after the first four hours. We 

also found a positive though small effect of slope change for trained target items, indicating that 

participants continued to improve incrementally in naming trained items from session to session 

at a faster rate during treatment than during the baseline phase. Taken together, the level change 

and slope change findings are consistent with our hypotheses. We anticipated that, much like 

results by Dignam et al. (2023) and Simic et al. (2020), individuals with aphasia would exhibit 

rapidly emerging SFA treatment gains, with most of the benefit of SFA intervention being 

observed after the first 4 hours of SFA. These results corroborate the importance of early 

treatment response as a potential indicator of an individual’s potential to benefit from an 

intervention (Dignam et al., 2023).  

 The relative magnitude of the level change and slope change results observed is also 

consistent with findings from the small number of studies that have used interrupted time series 

models to examine aphasia treatment response (Evans, Cavanaugh, Quique, et al., 2021; 

Sandberg et al., 2023; Swiderski et al., 2021). Swiderski and colleagues (2021) used interrupted 

time series models in a meta-analysis of single-subject design studies examining treatment 

effects for Treatment of Underlying Forms (TUF), a widely-researched sentence-level treatment 

(Thompson & Shapiro, 2005). They reported a level change effect for trained stimuli (b=2.46) 

that was much greater than the slope change effect (b=0.51). Evans et al. (2021) paired anomia 

treatment (semantic feature verification) with an intervention aimed at targeting speed accuracy 

tradeoffs and used interrupted time series models to gauge the effect of their novel treatment 

pairing on naming accuracy of trained and untrained targets. The investigators reported a large 

level change effect for trained items (b=0.56) with a positive yet modest slope change effect 

(b=.03). Sandberg et al. (2023) used interrupted time series models in a meta-analysis of single-
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subject design studies of another semantically-focused anomia treatment, Abstract Semantic 

Associative Network Training (AbSANT: Sandberg & Gray, 2020). They also reported large 

level change effects for trained targets (b=.80) and a positive but modest slope change effect 

(b=.03).   

These studies using interrupted time series models to examine aphasia treatment efficacy 

consistently report an early and substantial effect of treatment - one that is captured via the level 

change parameter. This suggests that across anomia and sentence-level interventions, most of the 

re-learning in aphasia treatment tends to occur within the first few hours of treatment. ITS 

models directly capture this feature of aphasia treatment response, drawing attention to a pattern 

that has previously gone unnoticed in the majority of group aphasia treatment studies, in part 

because they have tended to focus on comparisons of pre- and post-treatment behaviors using 

effect size measures (Beeson & Robey, 2006). This early phase of treatment has also been 

associated with longer-term maintenance of therapy gains (Dignam et al., 2023; Simic et al., 

2020). Thus, early improvement in aphasia treatment is a person-specific factor that may be used 

to predict patient outcomes and inform rehabilitation planning.  

In comparison to trained items, participants in our sample demonstrated less robust 

improvements in naming accuracy for untrained items, both at the level change and throughout 

treatment (i.e., smaller slope change effects). We anticipated that treatment-driven improvements 

would be more positive for trained items; thus, this result is generally consistent with our 

hypothesis. The percentage point increases in naming accuracy of semantically-related untrained 

target words at the level change do not provide strong evidence of generalization of treatment 

effects over the course of intensive SFA. Other studies investigating generalization of treatment 

effects to untrained target words among individuals with aphasia have also reported limited 
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generalization to untrained stimuli (Nickels, 2002; Wisenburn & Mahoney, 2009; Estratiadou et 

al., 2018). Our findings are hence consistent with this pattern of relatively weak response 

generalization for anomia treatment, i.e., limited treatment-related changes for untrained targets.  

However, the current findings do suggest that the relatively small changes detected for 

untreated semantically-related words are likely due to SFA treatment, and not simply the 

opportunity to name the untreated items repeatedly. Creet et al. (2019) showed that repeated 

naming attempts may result in positive changes in word retrieval for at least some people with 

aphasia, and Gravier et al. (2018), Rider et al. (2008), and Wambaugh et al. (2013) speculated 

that such exposure effects may be behind apparent response generalization effects for SFA. 

However, the current findings revealed that the majority of improvements made in naming of 

untrained semantically-related items occurred at the level change, rather than being distributed 

evenly across the course of treatment, as would be expected if these improvements were due to 

exposure. Instead, gains in naming accuracy for untrained items were largest in magnitude after 

the first four hours of SFA treatment, compared to slight changes noted during baseline and later 

treatment sessions. These findings indicate that the shape of SFA response generalization mirrors 

the shape of learning for trained targets, but with smaller-magnitude changes.  

 

Aim 2: Cognitive Predictors of Learning During Aphasia Treatment 

Aphasia rehabilitation is increasingly viewed as a re-learning process (Dignam et al., 

2016; Helm-Estabrooks, 2002; Nunn et al., 2023; Peñaloza et al., 2022), and an individual’s 

potential for learning may serve as a person-specific predictor of rehabilitation outcomes 

(Vallila-Rohter, 2017). Learning is a complex cognitive capacity that is interdependent on 

multiple domain specific cognitive functions, including memory and attention. To date, multiple 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 28, 2024. ; https://doi.org/10.1101/2024.11.25.24317903doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.25.24317903


 27 

prior studies have reported that relatively stronger verbal memory, visuospatial recall, and 

sustained attention scores are associated with robust aphasia treatment outcomes (Diedrichs et 

al., 2022; Dignam et al., 2017; Gilmore et al., 2019; Lambon Ralph et al., 2010; Seniów et al., 

2009). These empirical studies have examined therapy gains by comparing pre- and post-

treatment language outcomes, without characterizing the learning process that occurs as 

treatment unfolds. 

In the current study, verbal recognition memory and visuospatial recall both emerged as 

moderators of changes in trained word naming accuracy over the treatment time series. 

Specifically, above-average verbal recognition memory and visuospatial recall abilities were 

associated with larger increases in trained naming accuracy at the first treatment probe (Aim 1). 

This suggests individuals with relatively strong memory abilities are advantaged to benefit early 

in the course of treatment, a crucial phase that may be predictive of long-term outcomes (Dignam 

et al., 2023; Simic et al., 2020). Verbal short-term memory and visuospatial recall serving as 

significant moderators of the magnitude of improvements for trained items at the level change is 

consistent with findings from studies that compared pre- and post-treatment naming performance 

(Diedrichs et al., 2022; Dignam et al., 2017; Gilmore et al., 2019; Goldenberg et al., 1994; 

Lambon Ralph et al., 2010), suggesting these cognitive functions as potential pillars supporting 

aphasia treatment success, including incremental learning during aphasia treatment.  

The memory measures that were predictive of anomia treatment outcomes, both in the 

current study and previous studies, merit further discussion. We measured verbal recognition 

memory via the Paired Associate Learning subtest of the Camden Memory Test, which requires 

test-takers to associate pairs of unrelated words presented orthographically, broadly gauging 

ability to encode and immediately retrieve verbal information. Previous studies have also found 
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performance on the Camden Memory Test to be predictive of anomia treatment outcomes (e.g., 

Gilmore et al., 2019; Lambon Ralph et al., 2010). Performance in this verbal paired-associate 

learning task benefits from having relatively rich semantic representations that can be exploited 

for successfully associating unrelated words and recalling that ad-hoc semantic association. This 

feature of this paired-associate task offers a natural explanation for why individuals with aphasia 

who are relatively good at the verbal paired associate task are more likely to benefit from SFA, a 

semantically-oriented intervention that leverages lexical semantic knowledge and connections. 

Of note, the paired-associate learning task only measures short-term encoding of information 

without placing demands on long-term recall, another crucial cognitive capacity supportive of 

learning potential. Thus, our findings in combination with others (Dignam et al., 2016), underline 

the importance of short-term verbal encoding as a predictor of early anomia treatment response, 

leaving the role of long-term memory abilities largely unexplored.  

The relationship between visuospatial recall (measured using immediate recall of the Rey 

Complex Figure) and aphasia rehabilitation outcomes may not be as straightforward or obvious 

as the connection to verbal recognition memory. Several previous investigations have also 

identified Rey Complex Figure Copy performance as a predictor of aphasia treatment outcomes 

(Gilmore et al., 2019; Goldenberg et al., 1994; Lambon Ralph et al., 2010), while others have not 

(Conroy & Scowcroft, 2012; Diedrichs et al., 2022; Fillingham et al., 2006; Rose et al., 2013; 

Votruba et al., 2013). An inherent advantage to characterizing the relationship between 

visuospatial recall and aphasia treatment is its lack of reliance on linguistic processing: this 

feature of these tasks may be especially advantageous for examining the association of memory 

capacity with treatment outcomes in the absence of language-processing demands that may be 

problematic in a language impaired population (Dignam et al., 2017; Goldenberg et al., 1994).  
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Beyond measuring memory capacity using non-linguistic means, visuospatial processing 

and recall abilities may be important for the organization of semantic or conceptual 

representations. For example, Viganò et al. (2021) found that healthy individuals activated brain 

regions that were used during visuospatial tasks (i.e. entorhinal cortex within hippocampus) 

while making semantic judgments about recently learned novel words. These novel words varied 

along two dimensions of semantic representation (pitch and size), and the investigators reported 

that the organization of such semantic representations in relevant sensory cortices and entorhinal 

cortex had similar grid-like structure to visuospatial representations. Viganò et al.’s findings 

suggest that visuospatial and semantic conceptual representations may be supported by the same 

neurocognitive systems. If so, individuals with better visuospatial processing and memory might 

also be expected to have better conceptual processing (Bottini & Doeller, 2020; Constantinescu 

et al., 2016; Epstein et al., 2017; Viganò et al., 2021). In addition, Diedrichs et al. (2022) discuss 

how visuospatial recall fundamentally supports higher order cognitive abilities such as executive 

functioning that are important for learning and have been associated with aphasia treatment 

outcomes (Simic et al., 2019), which may help explain its influence in the context of the present 

findings.  

There was less clear evidence regarding which non-language cognitive factors influenced 

changes in naming of untrained target words (i.e. response generalization) over the course of 

SFA treatment. Evidence for the influence of verbal recognition memory and sustained attention 

on untrained-item changes was weak. However, there was a small effect of visuospatial recall 

such that individuals in our sample with relatively stronger visuospatial recall performance were 

more likely to generalize treatment effects to untrained items at the level change - the point of 

greatest treatment-related change in naming performance. Response generalization for 
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semantically-based anomia treatment is hypothesized to involve successful activation of relevant 

semantic/conceptual representations (Boyle, 2010; Foygel & Dell, 2000; Kiran & Bassetto, 

2008). The positive relationship between visuospatial recall and SFA-related changes for 

untrained items may be because visuospatial and semantic/conceptual processing appear to be 

related, as noted above (Viganò et al., 2021). Individuals with better visuospatial processing and 

recall may have better access to or better organization of semantic/conceptual representations, 

supporting response generalization to untrained but semantically-related items. This possibility 

would be consistent with the account suggested above for the positive effect of visuospatial 

processing ability on changes for trained items. Together with the inconsistent previous findings 

regarding the influence of visuospatial recall on aphasia treatment outcomes (Gilmore et al., 

2019; Goldenberg et al., 1994; Lambon Ralph et al., 2010); (Conroy & Scowcroft, 2012; 

Diedrichs et al., 2022; Fillingham et al., 2006; Rose et al., 2013; Votruba et al., 2013), the 

current findings underline the need for further work aimed at uncovering the cognitive 

mechanisms behind this interesting relationship.  

The lack of influence of attention scores on the unfolding treatment response, both for 

trained and untrained target items, is consistent with several other findings (Yeung & Law, 

2010). Although sustained attention is crucial for focus in the therapy room, perhaps it is less 

pivotal in supporting learning capacity than the memory sub-domains that yielded significant 

findings in our investigation. The robust contributions of memory abilities to SFA treatment 

response found here ground these effects in explicit learning of declarative (e.g. verbal) content, 

which resembles learning that occurs in language treatment sessions over the course of anomia 

rehabilitation. Memory and learning require successful encoding, consolidation, and retrieval of 

learned information. Disruptions at any of these crucial learning stages may lead to suboptimal 
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treatment response. The memory measures used in this study, as well as in the majority of other 

studies examining cognitive predictors of aphasia treatment outcomes, use immediate recall to 

gauge verbal or visuospatial memory capacities. These measures likely inform us about how well 

the individuals in our samples can encode and temporarily store information, but they do not 

offer insight into how well the information becomes consolidated and retrieved long-term (across 

days, weeks, or months). To fully understand the learning process that occurs during anomia 

treatment, which could provide further insight into the neural and cognitive systems that support 

aphasia treatment response, these underexplored components of learning must be systematically 

investigated.  

 

Clinical Implications 

Variability in aphasia treatment response presents a barrier to the clinical management of 

post-stroke aphasia. Accounting for this individual variability is key to delivering precise 

intervention to people with aphasia, and integral to optimizing language therapy outcomes. 

Results related to the first study aim revealed that most gains in trained and untrained naming 

accuracy occurred early in the course of treatment, after just the first four hours of SFA. The 

clinical significance of the robust level change effect is best contextualized when also 

considering results reported by Simic et al. (2020) and Dignam et al. (2023). Both Simic et al. 

and Dignam et al. reported that early treatment response was predictive of ultimate treatment 

outcomes, such that patients who demonstrated rapid response to treatment made the most 

improvements by the end of intervention and later (at one month follow up). Treatment-related 

changes within the first several hours of intervention also represent the largest proportion of 

naming improvement across the time course of treatment, and they may serve as a person-
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specific prognostic indicator for aphasia therapy success (Dignam et al., 2023). Given this, it will 

be beneficial for speech language pathologists to monitor early SFA treatment response to gauge 

the prognosis for treatment outcomes and modify their treatment plans accordingly: limited 

response following those initial hours of treatment may indicate that both additional gains and 

ultimate outcomes are likely to be limited, suggesting a change in treatment approach may be 

warranted. Although it appears from our findings that the majority of treatment gains are made 

within the first four hours of SFA intervention, this does not suggest that therapy should be 

delivered for only that amount of time. After the robust level change, individuals continued to 

demonstrate modest increases in their naming accuracy of trained target words from one 

treatment session to the next. Thus, intervention for people with aphasia (both SFA and other 

treatments) requires time, repetition, practice, and individualization.  

 Consistent with findings from multiple other studies (Dignam et al., 2016, 2017; Gilmore 

et al., 2019; Lambon Ralph et al., 2010), our results implicate memory function as a key 

cognitive pillar supporting word relearning during anomia treatment. A benefit of determining 

which cognitive factors predict outcomes for particular aphasia treatments is that those cognitive 

abilities can be evaluated at the pre-treatment diagnostic phase of aphasia service delivery. Such 

pre-treatment evaluations can allow clinicians to efficiently determine poor and strong “fits” for 

specific treatment protocols before treatment is initiated, optimizing use of limited therapy visits 

covered by insurance companies. Clinicians may consider including measures of linguistic and 

non-linguistic memory and learning into their diagnostic batteries to inform treatment planning.  

 

Limitations 
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 Participants advanced from one treatment list to the next at different rates, based on their 

daily naming probe performance. Although individualized treatment lists and variable time spent 

training those lists serve as strengths highlighting the importance of tailoring anomia treatment to 

the individual, they also pose as challenges in analyzing these data at the group level. Findings 

presented here represent group averages that may overlook inter-individual variability over the 

course of treatment. Treatment duration in this investigation was long (2 hours per session), 

which is not representative of duration of language therapy sessions in clinical practice. 

Additionally, all participants in our sample were recruited at the chronic phases of their aphasia 

recovery trajectories, to control for potential effects of spontaneous recovery on treatment-related 

changes in performance. It is therefore unclear whether and how our findings generalize to the 

acute and subacute phases of recovery. 

 

Conclusions 

The current study carefully examined incremental learning during aphasia treatment to dissect 

the unfolding SFA treatment response. The findings revealed that the bulk of treatment gains 

come early in the time course, even more so for individuals with cognitive strengths in verbal 

recognition memory. These findings can inform current clinical practice for anomia treatment, 

and they point to the important but overlooked role of learning-related processes and 

mechanisms in aphasia treatment, paying the groundwork for future investigations.   
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Supplemental Material 
 
Supplemental Table 1 
Model structures used to address all study aims via the brms package in R Studio. 

Sub-Aim Brms Model Structure 
Aim 1 Accuracy ~ 0 + Intercept + Baseline Slope*Word Type + Level Change*Word Type + Slope 

Change*Word Type + z-scored CAT + (1 + Baseline Slope + Level Change + Slope Change | 
Participant) + (1 | Semantic Category/Item) 
 

Aim 2a: Verbal 
Recognition Memory 

Accuracy ~ 0 + Intercept + Baseline Slope*Word Type*Camden + Level Change*Word Type*Camden 
+ Slope Change*Word Type*Camden + z-scored CAT + (1 + Baseline Slope + Level Change + Slope 
Change | Participant) + (1 | Semantic Category/Item) 
 

Aim 2b: Visuospatial 
Recall 

Accuracy ~ 0 + Intercept + Baseline Slope*Word Type*Rey + Level Change*Word Type*Rey + Slope 
Change*Word Type*Rey + z-scored CAT + (1 + Baseline Slope + Level Change + Slope Change | 
Participant) + (1 | Semantic Category/Item) 
 

Aim 2c: Sustained 
Attention 

Accuracy ~ 0 + Intercept + Baseline Slope*Word Type*TEA + Level Change*Word Type*TEA + Slope 
Change*Word Type*TEA + z-scored CAT + (1 + Baseline Slope + Level Change + Slope Change | 
Participant) + (1 | Semantic Category/Item) 
 

 

  

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 28, 2024. ; https://doi.org/10.1101/2024.11.25.24317903doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.25.24317903


 49 

Supplemental Table 2  
Aim 1 model coefficients 
  

Coefficient Estimate Est. Error Lower 95% CI Upper 95% CI Rhat Bulk ESS Tail ESS 

Intercept -1.76 0.16 -2.08 -1.44 1.00 3307 4387 

Baseline Slope 0.04 0.01 0.02 0.07 1.00 5923 5933 

Type (U) -0.11 0.11 -0.32 0.11 1.00 9838 6056 

Level Change -1.95 0.13 1.69 2.21 1.00 6561 6678 

Slope Change 0.08 0.03 0.02 0.14 1.00 7495 6300 

Z-scored CAT 0.68 0.14 0.42 0.98 1.00 2425 3330 

Baseline Slope:Type (U) 0.02 0.01 0.00 0.05 1.00 10388 6004 

Level Change: Type (U) -1.51 0.14 -1.78 -1.24 1.00 11139 6809 

Slope Change: Type (U) -0.09 0.03 -0.15 -0.03 1.00 11468 7028 

Note: The intercept is interpreted for the reference category of Type, which is trained target words. (U) = untrained but semantically-
related target words. Model coefficients are presented in logits.  
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Supplemental Table 3.  

Aim 2 model coefficients with z-transformed Camden Verbal Memory score as the cognitive variable of interest.  
 
Coefficient Estimate Est. Error Lower 95% CI Upper 95% CI Rhat Bulk ESS Tail ESS 

Intercept -1.76 0.16 -2.08 -1.44 1.00 3198 4892 

Baseline Slope 0.04 0.01 0.02 0.07 1.00 5576 5411 

Type (U) -0.11 0.11 -0.32 0.11 1.00 10106 6398 

Z-scored Camden 0.01 0.14 -0.28 0.29 1.00 3829 4791 

Level Change 1.94 0.13 1.69 2.19 1.00 6463 6099 

Slope Change 0.08 0.03 0.03 0.14 1.00 7083 6114 

Z-scored CAT 0.67 0.14 0.41 0.96 1.00 2422 4174 

Baseline Slope:Type (U) 0.02 0.01 0.00 0.05 1.00 10454 6317 

Baseline Slope: Z-scored Camden 0.02 0.01 -0.01 0.05 1.00 5430 5508 

Type (U): Z-scored Camden 0.09 0.11 -0.12 0.30 1.00 10657 6380 

Type (U): Level Change -1.49 0.14 -1.76 -1.22 1.00 10041 6396 

Z-scored Camden: Level Change 0.25 0.13 -0.02 0.51 1.00 6542 5663 

Type (U): Slope Change -0.09 0.03 -0.15 -0.03 1.00 10967 6574 
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Z-scored Camden: Slope Change 0.04 0.03 -0.02 0.10 1.00 6940 7022 

Baseline Slope: Type (U): Z-

scored Camden 

-0.01 0.01 -0.03 0.02 1.00 9328 6623 

Level Change: Type (U): Z-

scored Camden 

-0.08 0.15 -0.37 0.21 1.00 9603 6477 

Slope Change: Type (U): Z-

scored Camden 

-0.02 0.03 -0.09 0.05 1.00 9062 5655 
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Supplemental Table 4 

Estimated naming accuracy of trained and untrained items for individuals with above average (top) and below average (bottom) verbal 
recognition memory scores.  
 

 Baseline 1 Baseline 2 Baseline 3 Level Change Tx Slope 1 Tx Slope 2 Tx Slope 3 Tx Slope 4 

Above Average (+1SD) Verbal Recognition Memory Score 

Trained Items 16.0% 16.8% 17.8% 66.5% 70.5% 74.2% 77.6% 80.6% 

Untrained 

Items 

15.9% 17.0% 18.2% 30.7% 32.7% 34.6% 36.7% 38.8% 

Below Average (-1SD) Verbal Recognition Memory Score 

Trained Items 15.0% 15.3% 15.6% 50.2% 51.8% 53.4% 55.1% 56.7% 

Untrained 

Items 

13.0% 13.6% 14.2% 18.9% 19.3% 19.6% 20.1% 20.5% 
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Supplemental Table 5.  

Aim 2 model coefficients with z-transformed Rey Visuospatial Recall score as the cognitive variable of interest.  
 
Coefficient Estimate Est. Error Lower 95% CI Upper 95% CI Rhat Bulk ESS Tail ESS 

Intercept -1.77 0.17 -2.11 -1.44 1.00 3355 4907 

Baseline Slope 0.05 0.01 0.02 0.07 1.00 7288 6802 

Type (U) -0.11 0.11 -0.32 0.11 1.00 11884 6908 

Z-scored Rey -0.15 0.13 -0.41 0.11 1.00 4677 5445 

Level Change 1.94 0.13 1.68 2.19 1.00 7995 6062 

Slope Change 0.09 0.03 0.03 0.15 1.00 8766 6612 

Z-scored CAT 0.70 0.15 0.42 1.00 1.00 2613 4441 

Baseline Slope:Type (U) 0.02 0.01 -0.00 0.04 1.00 12987 6165 

Baseline Slope: Z-scored Rey 0.02 0.01 -0.00 0.05 1.00 7626 6442 

Type (U): Z-scored Rey 0.10 0.10 -0.10 0.30 1.00 13908 6754 

Type (U): Level Change -1.44 0.14 -1.73 -1.17 1.00 12065 6283 

Z-scored Rey: Level Change 0.40 0.12 0.15 0.64 1.00 7871 6844 

Type (U): Slope Change -0.11 0.03 -0.17 -0.04 1.00 13383 7032 
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Z-scored Rey: Slope Change -0.01 0.03 -0.07 0.06 1.00 8382 6628 

Baseline Slope: Type (U): Z-

scored Rey 

-0.03 0.01 -0.05 -0.00 1.00 11842 6841 

Level Change: Type (U): Z-

scored Rey 

-0.25 0.14 -0.52 0.02 1.00 11527 6703 

Slope Change: Type (U): Z-

scored Rey 

0.01 0.03 -0.05 0.08 1.00 11531 7099 
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Supplemental Table 6  
Estimated naming accuracy of trained and untrained items for individuals with above average (top) and below average (bottom) 
visuospatial recall scores.  
 

 Baseline 1 Baseline 2 Baseline 3 Level Change Tx Slope 1 Tx Slope 2 Tx Slope 3 Tx Slope 4 

Above Average (+1SD) Visuospatial Recall Score 

Trained Items 13.7% 14.5% 15.3% 66.2% 69.4% 72.4% 75.2% 77.8% 

Untrained Items 13.5% 14.2% 15.0% 26.2% 27.2% 28.2% 29.3% 30.3% 

Below Average (-1SD) Visuospatial Recall Score 

Trained Items 17.2% 17.5% 17.8% 50.5% 53.4% 56.3% 59.2% 62.0% 

Untrained Items 15.0% 15.8% 16.8% 23.3% 24.1% 24.9% 25.8% 26.7% 
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Supplemental Table 7.  

Aim 2 model coefficients with z-transformed TEA score as the cognitive variable of interest.  
 
Coefficient Estimate Est. Error Lower 95% CI Upper 95% CI Rhat Bulk ESS Tail ESS 

Intercept -1.76 0.16 -2.08 -1.44 1.00 2621 4669 

Baseline Slope 0.04 0.01 0.01 0.07 1.00 5048 5447 

Type (U) -0.11 0.11 -0.33 0.10 1.00 7694 6700 

Z-scored TEA 0.02 0.14 -0.24 0.29 1.00 3513 4788 

Level Change 1.96 0.13 1.71 2.22 1.00 5162 5813 

Slope Change 0.08 0.03 0.02 0.13 1.00 6140 6301 

Z-scored CAT 0.66 0.14 0.40 0.95 1.00 2113 3727 

Baseline Slope:Type (U) 0.03 0.01 0.00 0.05 1.00 8257 6226 

Baseline Slope: Z-scored TEA -0.01 0.01 -0.04 0.02 1.00 4431 4744 

Type (U): Z-scored TEA 0.12 0.11 -0.08 0.33 1.00 8146 6066 

Type (U): Level Change -1.54 0.14 -1.81 -1.27 1.00 8332 7022 

Z-scored TEA: Level Change 0.07 0.13 -0.19 0.34 1.00 5187 5450 

Type (U): Slope Change -0.09 0.03 -0.15 -0.02 1.00 8401 6784 

Z-scored TEA: Slope Change 0.06 0.03 0.00 0.12 1.00 6322 6079 
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Baseline Slope: Type (U): Z-

scored TEA 

0.01 0.01 -0.02 0.03 1.00 6822 6204 

Level Change: Type (U): Z-

scored TEA 

0.11 0.14 -0.17 0.39 1.00 8832 6215 

Slope Change: Type (U): Z-

scored TEA 

-0.01 0.04 -0.08 0.06 1.00 8781 6659 
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Supplemental Table 8 

Estimated naming accuracy of trained and untrained items for individuals with above average (top) and below average (bottom) 
sustained attention scores.  
 

 Baseline 1 Baseline 2 Baseline 3 Level Change Tx Slope 1 Tx Slope 2 Tx Slope 3 Tx Slope 4 

Above Average (+1SD) Sustained Attention Score 

Trained Items 15.6% 16.1% 16.5% 60.3% 64.2% 67.9% 71.4% 74.6% 

Untrained Items 16.2% 17.1% 18.1% 29.9% 32.1% 34.4% 36.7% 39.1% 

Below Average (-1SD) Sustained Attention Score 

Trained Items 15.3% 15.9% 16.7% 57.8% 59.5% 61.1% 62.8% 64.3% 

Untrained Items 12.6% 13.4% 14.2% 18.5% 18.7% 18.8% 19.0% 19.2% 
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Supplemental description of Bayesian prior selection.  

The prior distribution implemented in our models used a mean of zero and standard 

deviation of 2.5 logits for the time series variables (baseline slope, level change, and slope 

change), given that we expected the parameter was highly likely to fall within ±5 logits of the 

mean (Cavanaugh et al., 2022). We included a prior distribution on the intercept using a mean of 

-1 and SD of 2.5 logits. The intercept prior represents our prior knowledge of likely naming 

accuracy at the onset of the study baseline based on the stimuli selection criteria consistent with 

low pre-baseline naming performance (<30% accurate) without tight constraint of the estimate of 

the intercept. Additional justification supporting the selection of these prior distributions can be 

found in Cavanaugh et al. (2022) and Evans et al. (2021), where identical prior distributions were 

implemented. An R-Markdown file detailing model construction and output is provided in the 

Supplemental Materials. 
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