1	Risk of Severe Outcomes From COVID-19 in
2	Immunocompromised People During the Omicron Era:
3	A Systematic Review and Meta-Analysis
4	Akvile Chapman, MSc ¹ ; Francis Berenbaum, MD, PhD ² ; Giuseppe Curigliano, MD,
5	PhD ^{3,4} ; Triantafyllos Pliakas, MSc ^{5,6} ; Aziz Sheikh, OBE, FRSE, FMedSci ⁷ ; Sultan
6	Abduljawad, DPhil ⁸
7	¹ Maverex Market Access, Newcastle upon Tyne, UK ; ² Department of
8	Rheumatology, Sorbonne Université, INSERM CRSA, Saint-Antoine Hospital AP-
9	HP, Paris, France; ³ Istituto Europeo di Oncologia, IRCCS, Milan, Italy; ⁴ Department
10	of Oncology and Hemato-Oncology, University of Milano, Milan, Italy; ⁵ BioNTech SE
11	Mainz, Germany; ⁶ Impact Epilysis, Thessaloniki, Greece; ⁷ Nuffield Department of
12	Primary Care Health Sciences, University of Oxford, Oxford, UK; ⁸ BioNTech UK Ltd.
13	London, UK
14	Running header: Risk of severe COVID-19 outcomes: Immunocompromised SLR
15	and MA
16	Correspondence to: Sultan Abduljawad, BioNTech UK Ltd., London, UK.
17	sultan.abduljawad@biontech.co.uk

It is made available under a CC-BY-NC-ND 4.0 International licer Risk of severe COVID-19 outcomes: Immunocompromised SLR and MA

18 Key Points

- 19 **Question:** What are the risks of severe outcomes from COVID-19 in people with
- 20 immunocompromising/immunosuppressive (IC/IS) conditions in the Omicron era?
- 21 **Findings:** This systematic review and meta-analysis found increased risk of severe
- 22 outcomes for people with IC/IS conditions (e.g., autoimmunity, cancer, liver disease,
- renal disease, transplant) compared with people without the respective conditions.
- 24 Of all meta-analyzed conditions, transplant recipients had the highest risk of severe
- 25 COVID-19 outcomes, compared with non-transplant recipients or the general
- 26 population.
- 27 **Meaning:** People with IC/IS conditions remain at increased risk of severe outcomes
- from COVID-19 during the Omicron era; continued preventative measures and
- 29 personalized care are crucial.

30 Abstract

Importance: This is the first meta-analysis to investigate the risk of severe outcomes
for individuals with immunocompromising/immunosuppressive (IC/IS) conditions
specifically in the Omicron era.

Objective: To assess the risk of mortality and hospitalization from COVID-19 in
people with IC/IS conditions compared with people without IC/IS conditions during
the Omicron era.

37 Data Sources: A systematic search of Embase, MEDLINE, PubMed, Europe PMC,

38 Latin American and Caribbean Health Sciences Literature, Cochrane COVID-19

39 Study Register, and WHO COVID-19 Database was performed to identify studies

40 published between 1 January 2022 and 13 March 2024.

41 **Study Selection:** Inclusion criteria were observational studies that included people

42 (all ages) with at least 1 of the following conditions: IC/IS unspecified groups,

43 transplant (solid organ, stem cells, or bone marrow), any malignancy, autoimmune

44 diseases, any liver diseases, chronic or end-stage kidney disease, and

45 advanced/untreated HIV. In total, 72 studies were included in the review, of which 66

46 were included in the meta-analysis.

47 Data Extraction and Synthesis: Data were extracted by one reviewer and verified
48 by a second. Studies were synthesized quantitively (meta-analysis) using random49 effect models. PRISMA guidelines were followed.

50 Main Outcomes and Measures: Evaluated outcomes were risks of death,
 51 hospitalization, intensive care unit (ICU) admission, and any combination of these

perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Risk of severe COVID-19 outcomes: Immunocompromised SLR and MA

- 52 outcomes. Odds ratios, hazard ratios, and rate ratios were extracted; pooled relative
- 53 risk (RR) and 95% confidence intervals (CI) were calculated.
- 54 **Results:** Minimum numbers of participants per IC/IS condition ranged from 12 634
- to 3 287 816. Risks of all outcomes were increased in people with all meta-analyzed
- 56 IC/IS conditions compared with people without the respective conditions. Of all meta-
- 57 analyzed IC/IS conditions, transplant recipients had the highest risk of death (RR,
- 58 6.78; 95% CI, 4.41-10.43; *P*<.001), hospitalization (RR, 6.75; 95% CI, 3.41-13.37;
- 59 *P*<.001), and combined outcomes (RR, 8.65; 95% CI, 4.01-18.65; *P*<.001), while
- 60 participants in the unspecified IC/IS group had the highest risk of ICU admission
- 61 (RR, 3.38; 95% CI, 2.37-4.83; *P*<.001) compared with participants without the
- 62 respective IC/IS conditions or general population.
- 63 Conclusions: In the Omicron era, people with IC/IS conditions have a substantially
 64 higher risk of death and hospitalization from COVID-19 than people without these
 65 conditions.
- 66 Key Words: SARS-CoV-2, COVID-19, Omicron, immunocompromised,
- 67 immunosuppressed, primary immunodeficiency disease, HIV, solid organ
- 68 transplantation, hematopoietic stem cell transplantation, autoimmune disease, liver
- 69 disease, kidney disease

It is made available under a CC-BY-NC-ND 4.0 International licens Risk of severe COVID-19 outcomes: Immunocompromised SLR and MA

70 Introduction

- 71 SARS-CoV-2, the virus causing COVID-19, emerged in 2019 and was declared a
- 72 pandemic in March 2020 by the World Health Organization (WHO).^{1,2} In November
- 73 2021, the Omicron variant was identified and designated a variant of concern,³
- 74 displaying higher transmissibility but fewer severe outcomes than Delta.⁴⁻⁸ To date,
- 75 there are over 7 million deaths worldwide,⁹ and although COVID-19 is no longer
- 76 designated a global health emergency, it remains a threat due to evolving Omicron
- 577 subvariants causing spikes in infections and fatalities.^{10,11}

78 Despite effective preventative measures, COVID-19 still imposes a high burden 79 on immunocompromised people. Immunocompromising or immunosuppressive 80 (IC/IS) conditions vary in type and severity (i.e., moderate to severe), and negatively 81 impact the ability of the immune system to combat pathogens, such as SARS-CoV-2.¹²⁻¹⁴ IC/IS conditions may be genetically acquired, caused directly by a disease 82 83 (HIV/AIDS), or result from immunosuppressive therapies (e.g., medications for 84 transplant recipients or autoimmune diseases).¹⁵ Though often used interchangeably 85 in the literature, the term "immunocompromised" is used here to describe people with 86 an impaired immune system due to a health condition, while "immunosuppression" is 87 considered a result of treatment or medication.

People with IC/IS conditions may experience persistent SARS-CoV-2 infection,
which can drive the evolution of new variants.^{16,17} Additionally, previous studies show
that people with IC/IS conditions tend to have a higher risk of severe COVID-19 and
death than people without IC/IS conditions.^{14,15,18} The ability to clear the virus and

Risk of severe COVID-19 outcomes: Immunocompromised SLR and MA

- the level of risk for severe outcomes can vary widely depending on the IC/IS etiology
 and severity.¹⁶
- 94 The continuous evolution and global circulation of Omicron subvariants remains
- 95 a significant threat to the IC/IS population.^{14,19} Thus, developing a comprehensive
- 96 understanding of the burden of Omicron subvariants on people with IC/IS conditions
- 97 is crucial for improving prevention, treatment methods, and public health policy. This
- 98 systematic literature review (SLR) and meta-analysis aimed to assess the risk of
- 99 hospitalization and mortality from COVID-19 in people with IC/IS conditions
- 100 compared with people without IC/IS conditions in the Omicron era.

Risk of severe COVID-19 outcomes: Immunocompromised SLR and MA

101 Methods

- 102 The SLR protocol is registered with PROSPERO (CRD42024501163). This SLR and
- 103 meta-analysis adheres to the Preferred Reporting Items for Systematic Reviews and
- 104 Meta-Analysis guidelines (PRISMA).

105 Search Strategy

- 106 The following databases were searched: Embase, MEDLINE, PubMed, Europe PMC
- 107 (including medRix and bioRxiv preprints), Latin American and Caribbean Health
- 108 Sciences Literature, the Cochrane COVID-19 Study Register, and the WHO COVID-
- 109 19 Database. Search strategies were structured using terms related to COVID-19
- 110 infection, risk, and burden of illness (**eMethods**).

111 Eligibility Criteria

- 112 Inclusion criteria for studies are detailed in **eTable 1**. Participants (all ages) were
- 113 included in the review if they were (i) defined as 'IC/IS' by the study authors (for
- 114 clarity, referred as "IC/IS unspecified" thereafter), (ii) taking immunosuppressive
- 115 drugs, (iii) receiving radiotherapy treatment, or (iv) had multiple
- immunocompromising conditions, including transplant (solid organ, stem cell, or
- 117 bone marrow), any malignancy, liver disease, kidney disease (chronic or end-stage),
- 118 or advanced/untreated HIV.
- Individuals without the respective IC/IS condition or the general population (as
 defined by study authors) were used as a comparator group. Evaluated outcomes
 were the risk of hospitalization (for any reason), intensive care unit (ICU) admission

perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Risk of severe COVID-19 outcomes: Immunocompromised SLR and MA

- 122 (for any reason, with or without ventilatory support), or death. Additionally, a
- 123 combined outcome was evaluated, which was defined as a combination of any of the
- above outcomes. COVID-19 outcomes were determined by including studies where
- 125 either all patients had COVID-19 at the start of the study or all deaths and
- 126 hospitalizations were related to COVID-19 (defined by the studies).
- 127 Included studies were observational (cohort, case-control, cross-sectional),
- 128 published between 1 January 2022 and 13 March 2024, and had full texts published
- 129 in English.
- 130 Data Synthesis and Analysis

131 Qualitative Data Synthesis

- 132 All studies included in the review were assessed qualitatively to identify which
- 133 studies could be combined in a meta-analysis.

134 Statistical Analysis

For the primary analysis, pairwise meta-analyses were performed for the risk of death, hospitalization, ICU admission, and the combined outcome for each IC/IS condition, using the most adjusted reported outcome estimates. The robustness of the results was assessed using 'Leave-1-out',²⁰ 'Least adjusted', 'Only adjusted', and 'Excluding studies for population overlap' sensitivity analyses. Further details are available in the **eMethods**.

- 141 Subgroup analyses were conducted for the 'Hospitalized' or 'General'
- 142 populations, which included only people who were or were not already hospitalized

Risk of severe COVID-19 outcomes: Immunocompromised SLR and MA

- 143 when they started the study, respectively. Additional subgroup analyses are
- 144 described in **Section 1.5.2** of the **eMethods**.
- 145 All statistical analyses were performed in R version 4.1.1 (R Foundation for
- 146 Statistical Computing) using the meta package. A statistically significant (P < 0.05)
- 147 result is referred to as significant thereafter.

Risk of severe COVID-19 outcomes: Immunocompromised SLR and MA

148 **Results**

- In total, 21 937 records were identified through searches and 1 study was identified
 via reference checking. Following elimination of duplicates, 11 593 remaining studies
 underwent title and abstract screening, of which, 3 123 studies were assessed in full
 text screening. A total of 72 studies were selected for inclusion in the review, 66 of
- 153 which were included in the meta-analyses (**Figure 1**).

154 Study Characteristics

155 Studies were performed in 25 different countries, primarily in European countries 156 (n = 20), China (n = 13), and the USA (n = 11). Most were retrospective cohort 157 studies (n = 55), followed by prospective cohort (n = 8), cross-sectional (n = 6), and 158 case-control studies (n = 3) (**Table 1**). The 'Death', 'Hospitalization', 'ICU', and 159 'Combined' outcomes were reported in 43, 22, 16, and 19 studies, respectively. Most 160 studies did not report Omicron subvariants, but for those that did (n = 20), BA.1 was 161 the most common (Table 1). The Omicron period for each study is shown in eTable 2. 162

163 Participant Characteristics

Most studies (n = 37) included a 'Hospitalized Population', which refers to people who were already hospitalized at the start of the study. The rest of the studies (n = 35) included a 'General Population' (not hospitalized at the start of the study) (**Table 2**). Minimum numbers of participants included in the analyses for each IC/IS condition are reported in **Table 3**. People with renal disease were the most commonly reported group (n = 48 studies), and people with HIV were the least

10

Risk of severe COVID-19 outcomes: Immunocompromised SLR and MA

- 170 commonly reported (n = 5 studies) (**Table 3**). Though 16 studies did not report
- 171 vaccination status, the majority of studies (>50%) that reported vaccination status
- 172 included fully vaccinated people (defined as those who received the initial
- 173 vaccination).

174 Risk of Bias

- 175 Risk of bias (**eTable 3**) was assessed in all included studies (n = 72) and was low or
- 176 medium in 59 and 12 studies, respectively. One study was assessed as high risk of
- 177 bias and excluded from the analyses.²¹ Three additional studies were excluded from
- the analyses due to not reporting confidence intervals ([CI] n = 1),²² a likely mistake
- in the publication (n = 1),²³ and conflicting interpretation of the results (n = 1).²⁴ Two
- 180 studies were only summarized qualitatively as they only reported on IC/IS conditions
- 181 that had insufficient data to conduct meta-analyses.^{25,26}

182 Meta-Analyses

- 183 A total of 66 studies were included in the meta-analyses. Individuals with the
- 184 following IC/IS conditions were included in the analyses: autoimmune diseases,
- 185 cancer, HIV, IC/IS unspecified, liver disease, renal disease, and transplant
- 186 recipients. Conditions that could not be meta-analyzed are discussed in Section 2.1
- 187 of the **eResults**.

188 Risk of Death

- 189 For all assessed IC/IS conditions (autoimmune diseases, cancer, liver disease, renal
- 190 diseases, IC/IS unspecified or transplant), people with the condition had a

It is made available under a CC-BY-NC-ND 4.0 International li Risk of severe COVID-19 outcomes: Immunocompromised SLR and MA

191	significantly increased risk of death (Figure 2A) in comparison with people without
192	the condition. Statistical heterogeneity ranged from considerable to substantial for all
193	IC/IS conditions (Figure 2A). Publication bias, as evidenced by the statistical results,
194	was present in the renal disease and transplant groups (eTable 4).
195	All sensitivity analyses results had the same degree of significance and direction

- 196 of effect as the main analysis for the risk of death (**eTable 4**), indicating the
- 197 robustness of the main analysis results. In subgroup analyses (eResults, Section
- 198 **2.2**), people with advanced renal disease (i.e., chronic kidney disease [CKD] stage 5,
- 199 renal failure, end-stage kidney disease, and renal replacement therapy subgroups)
- had a much higher risk of death (RR, 3.57; 95% CI, 2.06-6.19) than people with
- 201 'CKD stage 3' (RR, 1.38; 95% CI, 1.17-1.64) (**eTable 5**).

202 Risk of Hospitalization

For all assessed IC/IS conditions (autoimmune diseases, cancer, renal diseases,
IC/IS unspecified and transplant), people with the condition had a significantly
increased risk of hospitalization (Figure 2B). Statistical heterogeneity was
considerable (>90%) across all IC/IS conditions (Figure 2B). Publication bias was
not detected in any of the groups, but could not be assessed in studies of people
with autoimmune diseases or transplant recipients due to a low number of studies
(eTable 6).

All sensitivity analyses results had the same degree of significance as the main analysis for the risk of hospitalization (**eTable 6**), indicating the robustness of the

212 main analysis results. All subgroup analyses were consistent with the main analysis

213 (**eTable 7**).

214 Risk of ICU Admission

- 215 For all assessed IC/IS conditions (cancer, liver diseases, renal diseases or IC/IS
- 216 unspecified), people with the condition had a significantly increased risk of ICU
- 217 admission (Figure 2C). Statistical heterogeneity ranged from substantial to
- 218 considerable across the IC/IS conditions (Figure 2C). Publication bias was not

219 detected for studies of people with renal disease but could not be assessed for other

- conditions due to a low number of studies (**eTable 8**).
- 221 Nearly all sensitivity analyses resulted in the same degree of significance as the

222 main analysis (eTable 8). Subgroup analyses are discussed in the eResults

223 (Section 2.3 and eTable 9).

224 Risk of Any Combination of Outcomes (Death, Hospitalization, or ICU

225 Admission)

- 226 For all assessed IC/IS conditions (autoimmune diseases, cancer, liver disease, renal
- diseases, IC/IS unspecified or transplant), people with the condition had a
- significantly increased risk of the 'Combined' outcome (Figure 2D). All sensitivity
- analyses resulted in the same significance and direction of effect as the main
- analyses, indicating the robustness of the results (**eTable 10**). All subgroup analyses
- resulted in the same direction of effect as the main analyses; those that resulted in
- the loss of significance are described in the **eResults** (**eTable 11**).

It is made available under a CC-BY-NC-ND 4.0 International licens Risk of severe COVID-19 outcomes: Immunocompromised SLR and MA

233 Discussion

234 This SLR and meta-analysis found that people with IC/IS conditions had a 235 significantly higher risk of severe outcomes from COVID-19 during the Omicron era 236 compared with people without the respective conditions. Individuals with cancer, 237 IC/IS unspecified, and renal disease were at least twice as likely to die, become 238 hospitalized, or be admitted to the ICU. Individuals who had received transplants 239 (including solid organ, stem cells, or bone marrow) were at least six times more likely 240 to die (pooled RR, 6.78; 95% CI, 4.41-10.43), become hospitalized (pooled RR, 6.75; 241 95% CI, 3.41-13.37), or experience a combined outcome (pooled RR, 8.65; 95% CI, 242 4.01-18.65) during the Omicron era. People included in the IC/IS unspecified group 243 had the highest risk of ICU admission (pooled RR, 3.38; 95% CI, 2.37-4.83]).

244 Generally, people with IC/IS conditions had a lower risk of any outcome if they 245 were included in the 'Hospitalized' subgroup, compared with the risk observed in the 246 main analysis. People with autoimmune or liver diseases had no significant risk of 247 'Death' or 'Combined' outcomes. Additionally, people with cancer or renal diseases 248 had no significant risk of ICU admission. This may be due to the lower number of 249 studies included in these sub-analyses. Alternatively, these people may have been 250 protected from more severe COVID-19 outcomes due to already receiving hospital 251 care and treatments.

Several pre-Omicron analyses have shown an increased risk of severe
outcomes in people with autoimmune conditions,²⁷ cancer,^{28,29} general IC/IS
conditions,³⁰ renal disease,³¹ and transplant recipients.³² Immunosuppressive
therapies for such IC/IS conditions downregulate the immune response, increasing

14

perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Risk of severe COVID-19 outcomes: Immunocompromised SLR and MA

256 the risk of infection and severe outcomes without further preventative measures.³³⁻³⁶

257 Specific mechanisms for individual IC/IS conditions are discussed below.

258 Autoimmune Diseases

259 Studies showed an increased risk of developing an autoimmune disease, such as inflammatory arthritis/rheumatoid arthritis (RA), after COVID-19.37,38 This indicates a 260 261 potential positive feedback loop between autoimmunity and COVID-19. Additionally, 262 people with autoimmune diseases may have a higher risk of severe COVID-19 due 263 to comorbidities, use of immunosuppressive medications, or cytokine 264 storm/hyperinflammation.^{39,40} Comorbidities may independently contribute to severe 265 outcomes, as one study found that people with autoimmune diseases did not have 266 significantly higher risks when adjusting for smoking and comorbidities.³⁹ The 267 balance of disease-specific therapies and level of inflammation can also lead to 268 divergent outcomes. For example, rituximab use in people with RA was associated 269 with an increased risk of COVID-19-related hospitalization, ICU admission, and 270 invasive ventilation.⁴¹ Alternatively, anti-tumor necrosis factor and anti-interleukin 271 (IL)-6 have been tested as medications to prevent severe outcomes from COVID-272 19.⁴² The observed increased risk of mortality in autoimmune diseases may relate to 273 cytokine storm, enhanced by the disease or its treatment. However, some therapies, 274 such as the RA drug baricitinib,⁴³ could potentially offer protection, though this has 275 not vet been proven.

perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Risk of severe COVID-19 outcomes: Immunocompromised SLR and MA

276 **Cancer**

277 One study suggested that the risk of COVID-19-related death for people with cancer 278 is lower in the Omicron era than in the prior waves, though they are still at higher risk 279 of severe outcomes, particularly if unvaccinated.⁴⁴ Early pandemic reports indicated 280 that people with cancer may be at higher risk of severe COVID-19-associated outcomes due to nosocomial exposure⁴⁵ and reduced access to treatment and 281 follow-ups.²⁹ Additional risk factors include upregulation of proteins facilitating viral 282 283 infection (TMPRSS2 in prostate cancer), immunosuppressive effects of the tumor or 284 therapies, or cytokine storms exacerbated by cancer therapies and SARS-CoV-2 285 infection.⁴⁶ SARS-CoV-2 can also cause indirect damage to organs by exacerbating 286 cancer-associated, hypoxia-mediated systemic inflammation injury via upregulated 287 IL-6.⁴⁷ Notably, people with hematological malignancies have a significantly higher 288 risk of COVID-19-related mortality compared with people with solid tumors, possibly due to a weaker immune system or an increased risk of thrombosis.⁴⁸ 289

290 *Immunocompromised/Immunosuppressed*

291 A pre-Omicron SLR and meta-analysis indicated that immunosuppression and

immunodeficiency were associated with an increased risk of severe COVID-19;

293 however, unlike the analysis described here, the results were not significant.³⁰

294 Omicron-era studies found that individuals with IC/IS had 4.3 to 23 times greater risk

of hospitalization upon first COVID-19 diagnosis and a significantly increased risk of

296 in-hospital mortality compared with people without IC/IS conditions.^{13,49}

perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Risk of severe COVID-19 outcomes: Immunocompromised SLR and MA

297 Renal Diseases

- 298 People with renal diseases may experience an increased risk of severe COVID-19
- 299 outcomes due to immune system dysfunction, chronic systemic inflammation
- 300 associated with kidney impairment, and CKD-associated comorbidities (e.g.,
- 301 cardiovascular disease, anemia, vitamin D deficiency, etc.).^{50,51} Additionally, SARS-
- 302 CoV-2 can cause acute kidney injury through direct infection of tissues in the kidneys
- 303 and by inducing chronic inflammation,⁵¹ which could further exacerbate existing
- 304 kidney issues. Worsening CKD stage and comorbidities are independent risk factors
- 305 for COVID-19-associated hospitalization and death in people with renal disease.^{52,53}

306 Transplant

- 307 Transplant recipients are at higher risk of severe COVID-19 outcomes due to
- 308 immunosuppressive drugs downregulating innate and adaptive immunity, ^{54,55}
- 309 comorbidities, and suboptimal organ function.⁵⁶ Moreover, solid-organ transplant
- 310 recipients have lower response rates to SARS-CoV-2 vaccines³⁵ highlighting the
- 311 need for enhanced protective measures including additional doses.

312 **HIV**

Systematic reviews before the Omicron era reported a higher risk of mortality⁵⁷ and
hospitalization⁵⁸ from COVID-19 for people with HIV compared with people without
HIV. However, some studies suggested no difference in COVID-19 mortality rates for
people with well-controlled HIV compared with HIV-negative individuals. Among
people with HIV, those with low CD4+ T cell counts or uncontrolled viral loads are
more susceptible to severe COVID-19 outcomes.^{57,59} Understanding the risk of

17

It is made available under a CC-BY-NC-ND 4.0 International lic Risk of severe COVID-19 outcomes: Immunocompromised SLR and MA

severe COVID-19 outcomes for people with HIV is complicated by variations in
disease control, immunosuppression, and antiretroviral use.^{57,58} The lack of highquality prospective studies on COVID-19 outcomes for people with HIV stratified by
antiretroviral use and disease severity, presents an unmet need for this population.

323 Quality of Evidence

324 Strengths

To our knowledge, this is the first comprehensive SLR and meta-analysis to assess severe outcomes from COVID-19 in people with IC/IS conditions during the Omicron period. Most of the sensitivity analyses showed no change in significance from the main analyses, indicating robust pooled estimates. Additionally, most of the results included in the meta-analyses were adjusted for age and comorbidities, increasing confidence in the findings.

331 Limitations

332 Several limitations were identified in this analysis. High clinical and statistical 333 heterogeneity existed between studies due to variations in outcome definitions and 334 adjustments (e.g. vaccination rates and comorbidities). Heterogeneity in vaccination 335 status and confounding adjustments prevented subgroup analyses by vaccination 336 status. The studies mainly covered earlier Omicron variants; however, it was not 337 possible to stratify by subvariants. Additionally, many studies on disease flares 338 following COVID-19 or vaccination were excluded as they did not directly address 339 the research question.

perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Risk of severe COVID-19 outcomes: Immunocompromised SLR and MA

340 Implications for Practice and Future Research

341 This analysis demonstrates that the COVID-19 burden remains high in populations 342 with IC/IS conditions, necessitating continuous adaptation of public health strategies 343 to protect these individuals as SARS-CoV-2 evolves. Vaccination remains the most 344 effective defense against severe outcomes from COVID-19, especially for people 345 with IC/IS conditions, whereby a 3-dose primary series (as opposed to 2 doses) and additional booster doses are recommended.^{60,61} Carefully timing vaccine doses or 346 347 temporarily adjusting immunosuppressive therapies post-vaccination may offer 348 benefits.^{62,63} However, this should be tailored to each patient's specific disease 349 status and therapy regimen, balancing the benefits against potential risks.⁶²⁻⁶⁴ Given 350 that people with IC/IS conditions often have multiple comorbidities and differing 351 treatments, a personalized and multi-disciplinary approach to disease management 352 and COVID-19 prevention is advantageous.⁶⁵ 353 This study identified a dearth of high-quality prospective research on severe

outcomes from COVID-19 in people living with HIV, indicating a need for additional studies in this population. Additionally, given there are disparities in COVID-19 testing, vaccination, and outpatient therapeutics access based on race and ethnicity;⁶⁶⁻⁶⁸ further research into how these disparities impact people with IC/IS conditions is warranted. Future research should also investigate the impact of age, Omicron subvariant, vaccination status, and geographical region on people with IC/IS conditions.

19

Risk of severe COVID-19 outcomes: Immunocompromised SLR and MA

Conclusions 361

- 362 This SLR and meta-analysis demonstrated that people with IC/IS conditions are at
- 363 an increased risk of severe outcomes from COVID-19 during the Omicron era. Of the
- 364 meta-analyzed IC/IS conditions, transplant recipients were at the highest risk for
- 365 hospitalization, death, and combined outcomes. Our study highlights the need for
- 366 continued enhanced preventative measures for IC/IS populations, and a
- 367 personalized multi-disciplinary approach to care.

It is made available under a CC-BY-NC-ND 4.0 International licer Risk of severe COVID-19 outcomes: Immunocompromised SLR and MA

368 Acknowledgements

369 The authors would like to thank the individuals, their families, and all investigators 370 involved in this study.

371 Guidance through the review process as well as contributions to systematic review 372 processes, such as screening, risk of bias assessment, and data extraction, were

373 provided by Nick Pooley, PhD (Maverex Ltd), Masoumeh Kisomi, PhD (Maverex

374 Ltd), and Megha Garg, MD (Maverex Ltd). Statistical support, including the design

and running of the meta-analyses, was provided by Medha Shrivastava, MSc

376 (Maverex Ltd). Kate Misso, MSc/MCLIP (Maverex Ltd), designed and performed the

377 electronic searches in this systematic review.

378 Medical writing support, including assisting authors with development of the outline

and initial draft, incorporation of comments, figure preparation, referencing, and data

380 checking was provided by Ashley Knox, PhD, and editorial support, including

381 formatting, proofreading, and submission was provided by Michelle Seddon, Dip

382 Psychol, all of Paragon (a division of Prime, Knutsford, UK). The study was

383 supported by BioNTech SE, Mainz, Germany, according to Good Publication

384 Practice guidelines (Link). The sponsor was involved in the study design, analysis

385 and interpretation of data in the manuscript as well as data checking of information

386 provided in the manuscript. However, ultimate responsibility for opinions,

387 conclusions, and data interpretation lies with the authors.

perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Risk of severe COVID-19 outcomes: Immunocompromised SLR and MA

388 Conflicts of Interest Disclosures

- 389 AC is an employee of Maverex Ltd., who received consulting fees from BioNTech
- 390 SE.
- 391 FB has no conflicts to disclose.
- 392 GC has been an advisory board member for Roche, Novartis, Lilly, Pfizer, Astra
- 393 Zeneca, Daichii Sankyo, Ellipsis, Veracyte, Exact Science, Celcuity, Merck, BMS,
- 394 Gilead, Sanofi, and Menarini.
- 395 TP receives consulting fees from BioNTech SE, GlaxoSmithKline, UNAIDS, and
- 396 USAID.
- 397 SA is an employee of BioNTech SE.
- 398 Funding
- 399 This study was funded by BioNTech SE, Mainz, Germany.

400 Author Contributions

Term	Credit (contributor roles taxonomy) definition	Author initials		
Conceptualization	Ideas; formulation or evolution of overarching research goals and aims	AC, SA		
Methodology	Development or design of methodology; creation of models	AC		

Software	Programming, software development; designing computer programs; implementation of the computer code and supporting algorithms; testing of existing code components	AC
Validation	Verification, whether as a part of the activity or separate, of the overall replication/reproducibility of results/experiments and other research outputs	AC, TP
Formal analysis	Application of statistical, mathematical, computational, or other formal techniques to analyze or synthesize study data	AC
Investigation	Conducting a research and investigation process, specifically performing the experiments, or data/evidence collection	AC
Resources	Provision of study materials, reagents, materials, patients, laboratory samples, animals, instrumentation, computing resources, or other analysis tools	AC
Data curation	Management activities to annotate (produce metadata), scrub data and maintain research data (including software code, where it is necessary for interpreting the data itself) for initial use and later reuse	AC
Writing – original draft	Preparation, creation and/or presentation of the published work, specifically writing the initial draft	AC, AS, FB, GC, SA, TP

	Preparation, creation and/or presentation of the	AC, AS, FB, GC, SA,
Writing – review &	published work by those from the original research	ТР
editing	group, specifically critical review, commentary, or	
	revision – including pre-or post-publication stages	
	Preparation, creation and/or presentation of the	AC, TP
Visualization	published work, specifically visualization/data	
	presentation	
	Oversight and leadership responsibility for the	SA, TP
Supervision	research activity planning and execution, including	
	mentorship external to the core team	
Project	Management and coordination responsibility for the	SA, TP
administration	research activity planning and execution	
	Acquisition of the financial support for the project	SA
Funding acquisition	leading to this publication	

401

402 **Data Sharing**

- 403 The datasets generated during and/or analyzed during the current study are
- 404 available from the corresponding author on reasonable request.

References 405

406	1.	World Health Organization. WHO Director-General's statement on IHR
407		Emergency Committee on Novel Coronavirus (2019-nCoV). Updated January
408		30, 2020.https://www.who.int/director-general/speeches/detail/who-director-
409		general-s-statement-on-ihr-emergency-committee-on-novel-coronavirus-
410		(2019-ncov)). Accessed July 3, 2024.
411	2.	World Health Organization. Coronavirus disease 2019 (COVID-19) Situation
412		Report – 51. Updated March 11, 2020. <u>https://www.who.int/docs/default-</u>
413		source/coronaviruse/situation-reports/20200311-sitrep-51-covid-
414		19.pdf?sfvrsn=1ba62e57 10. Accessed July 3, 2024.
415	3.	World Health Organization. Classification of Omicron (B.1.1.529): SARS-CoV-
416		2 variant of concern. Updated November 26,
417		2021 https://www.who.int/news/item/26-11-2021-classification-of-omicron-
418		(b.1.1.529)-sars-cov-2-variant-of-concern. Accessed July 3, 2024.
419	4.	Petrone D, Mateo-Urdiales A, Sacco C, et al. Reduction of the risk of severe
420		COVID-19 due to Omicron compared to Delta variant in Italy (November 2021
421		- February 2022). Int J Infect Dis. 2023;129:135-141.
422	5.	Bager P, Wohlfahrt J, Bhatt S, et al. Risk of hospitalisation associated with
423		infection with SARS-CoV-2 omicron variant versus delta variant in Denmark:
424		an observational cohort study. <i>Lancet Infect Dis</i> . 2022;22(7):967-976.
425	6.	Nyberg T, Ferguson NM, Nash SG, et al. Comparative analysis of the risks of
426		hospitalisation and death associated with SARS-CoV-2 omicron (B.1.1.529)
427		and delta (B.1.617.2) variants in England: a cohort study. <i>Lancet</i> .
428		2022;399(10332):1303-1312.
429	7.	Veneti L, Boas H, Brathen Kristoffersen A, et al. Reduced risk of
430		hospitalisation among reported COVID-19 cases infected with the SARS-CoV-
431		2 Omicron BA.1 variant compared with the Delta variant, Norway, December
432		2021 to January 2022. <i>Euro Surveill</i> . 2022;27(4):pii=2200077.
433	8.	Sheikh A, Kerr S, Woolhouse M, et al. Severity of omicron variant of concern
434		and effectiveness of vaccine boosters against symptomatic disease in
435		Scotland (EAVE II): a national cohort study with nested test-negative design.
436		Lancet Infect Dis. 2022:959-966.
437	9.	World Health Organization. WHO COVID-19 Dashboard.
438		https://data.who.int/dashboards/covid19/. Accessed August 16, 2024.
439	10.	World Health Organization. WHO Director-General's opening remarks at the
440		media briefing – 5 May 2023. <u>https://www.who.int/news-</u>
441		room/speeches/item/who-director-general-s-opening-remarks-at-the-media-
442		briefing5-may-2023
443	11.	Centers for Disease Control and Prevention. COVID-19 can surge throughout
444		the year. Updated July 3, 2024. <u>https://www.cdc.gov/ncird/whats-new/covid-</u>
445		<u>19-can-surge-throughout-the-year.html</u> . Accessed August 16, 2024.
446	12.	Belsky JA, Tullius BP, Lamb MG, et al. COVID-19 in immunocompromised
447		patients: a systematic review of cancer, hematopoietic cell and solid organ
448		transplant patients. J Infect. 2021;82(3):329-338.
449		

450	13.	Turtle L, Thorpe M, Drake TM, et al. Outcome of COVID-19 in hospitalised
451		immunocompromised patients: an analysis of the WHO ISARIC CCP-UK
452 453	14.	prospective cohort study. <i>PLoS Med</i> . 2023;20(1):e1004086. Evans RA, Dube S, Lu Y, et al. Impact of COVID-19 on immunocompromised
453 454	14.	populations during the Omicron era: insights from the observational
455		population-based INFORM study. <i>Lancet Reg Health Eur.</i> 2023;35:100747.
456	15.	Antinori A, Bausch-Jurken M. The burden of COVID-19 in the
457		immunocompromised patient: implications for vaccination and needs for the
458		future. J Infect Dis. 2023;228(Suppl 1):S4-S12.
459	16.	Li Y, Choudhary MC, Regan J, et al. SARS-CoV-2 viral clearance and
460		evolution varies by type and severity of immunodeficiency. <i>Sci Transl Med</i> .
461	. –	2024;16(731):eadk1599.
462	17.	Hogan JI, Duerr R, Dimartino D, et al. Remdesivir resistance in transplant
463		recipients with persistent Coronavirus Disease 2019. <i>Clin Infect Dis</i> .
464 465	18.	2023;76(2):342-345. Fung M, Babik JM. COVID-19 in immunocompromised hosts: what we know
465	10.	so far. <i>Clin Infect Dis.</i> 2021;72(2):340-350.
467	19.	Nab L, Parker EPK, Andrews CD, et al. Changes in COVID-19-related
468	10.	mortality across key demographic and clinical subgroups in England from
469		2020 to 2022: a retrospective cohort study using the OpenSAFELY platform.
470		Lancet Public Health. 2023;8(5):e364-e377.
471	20.	Viechtbauer W. Conducting meta-analyses in R with the metafor package. J
472		Stat Softw. 2010;36(3):1-48.
473	21.	Shakor ASaA, Samsudin EZ, Chen XW, Ghazali MH. Factors associated with
474		COVID-19 brought-in deaths: a data-linkage comparative cross-sectional
475	~~	study. J Infect Public Health. 2023;16(12):2068-2078.
476	22.	Morris CP, Eldesouki RE, Sachithanandham J, et al. Omicron subvariants:
477 478		clinical, laboratory, and cell culture characterization. <i>Clin Infect Dis</i> . 2023;76(7):1276-1284.
478 479	23.	Xing Y, Sun Y, Tang M, et al. Variables associated with 30-day mortality in
480	23.	very elderly COVID-19 patients. <i>Clin Interv Aging</i> . 2023;18:1155-1162.
481	24.	Bao S, Lu G, Kang Y, et al. A diagnostic model for serious COVID-19 infection
482		among older adults in Shanghai during the Omicron wave. Front Med
483		(Lausanne). 2022;9:1018516.
484	25.	Puyat JH, Fowokan A, Wilton J, et al. Risk of COVID-19 hospitalization in
485		people living with HIV and HIV-negative individuals and the role of COVID-19
486		vaccination: a retrospective cohort study. Int J Infect Dis. 2023;135:49-56.
487	26.	Rasmussen LD, Cowan S, Gerstoft J, et al. Outcomes following severe acute
488		respiratory syndrome coronavirus 2 infection among individuals with and
489	07	without HIV in Denmark. <i>AIDS</i> . 2023;37(2):311-321.
490 401	27.	Yang H, Xu J, Shi L, Duan G, Wang Y. Correspondence on 'Prevalence and
491 492		clinical outcomes of COVID-19 in patients with autoimmune diseases: a systematic review and meta-analysis'. <i>Ann Rheum Dis</i> . 2023;82(4):e79.
492 493	28.	Han S, Zhuang Q, Chiang J, et al. Impact of cancer diagnoses on the
493	20.	outcomes of patients with COVID-19: a systematic review and meta-analysis.
495		<i>BMJ Open</i> . 2022;12(2):e044661.

perpetuity. It is made available under a CC-BY-NO-ND 4.0 International license .

Risk of severe COVID-19 outcomes: Immunocompromised SLR and MA

- 496 29. Di Felice G, Visci G, Teglia F, Angelini M, Boffetta P. Effect of cancer on 497 outcome of COVID-19 patients: a systematic review and meta-analysis of 498 studies of unvaccinated patients. Elife. 2022;11:e74634. 499 Gao Y, Chen Y, Liu M, Shi S, Tian J. Impacts of immunosuppression and 30. 500 immunodeficiency on COVID-19: a systematic review and meta-analysis. J 501 Infect. 2020;81(2):e93-e95. 502 31. Lin YC, Lai TS, Lin SL, et al. Outcomes of coronavirus 2019 infection in
- 502 **31.** Lin YC, Lai TS, Lin SL, et al. Outcomes of coronavirus 2019 infection in 503 patients with chronic kidney disease: a systematic review and meta-analysis. 504 *Ther Adv Chronic Dis*. 2021;12:2040622321998860.
- Ao G, Wang Y, Qi X, et al. The association between severe or death COVIDand solid organ transplantation: a systematic review and meta-analysis. *Transplant Rev (Orlando)*. 2021;35(3):100628.
- 508 33. Liao SY, Gerber AN, Zelarney P, Make B, Wechsler ME. Impaired SARS509 CoV-2 mRNA vaccine antibody response in chronic medical conditions: a
 510 real-world analysis. *Chest*. 2022;161(6):1490-1493.
- 51134.Liu H, Aviszus K, Zelarney P, et al. Vaccine-elicited B- and T-cell immunity to512SARS-CoV-2 is impaired in chronic lung disease patients. *ERJ Open Res.*5132023;9(5):00400-02023.
- 51435.Galmiche S, Luong Nguyen LB, Tartour E, et al. Immunological and clinical515efficacy of COVID-19 vaccines in immunocompromised populations: a516systematic review. Clin Microbiol Infect. 2022;28(2):163-177.
- 517 36. Prendecki M, Clarke C, Edwards H, et al. Humoral and T-cell responses to
 518 SARS-CoV-2 vaccination in patients receiving immunosuppression. Ann
 519 Rheum Dis. 2021;80(10):1322-1329.
- 520 37. Lim SH, Ju HJ, Han JH, et al. Autoimmune and autoinflammatory connective
 521 tissue disorders following COVID-19. *JAMA Netw Open*.
 522 2023;6(10):e2336120.
- 523**38.**Marin JS, Mazenett-Granados EA, Salazar-Uribe JC, et al. Increased524incidence of rheumatoid arthritis after COVID-19. Autoimmun Rev.5252023;22(10):103409.
- 526 39. Faye AS, Lee KE, Laszkowska M, et al. Risk of adverse outcomes in
 527 hospitalized patients with autoimmune disease and COVID-19: a matched
 528 cohort study from New York City. *J Rheumatol.* 2021;48(3):454-462.
- 529 **40.** Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. *Lancet*. 2020;395(10229):1033-1034.
- 531 41. Singh N, Madhira V, Hu C, et al. Rituximab is associated with worse COVID532 19 outcomes in patients with rheumatoid arthritis: a retrospective, nationally
 533 sampled cohort study from the U.S. National COVID Cohort Collaborative
 534 (N3C). Semin Arthritis Rheum. 2023;58:152149.
- 535 **42.** Knight JS, Caricchio R, Casanova JL, et al. The intersection of COVID-19 and autoimmunity. *J Clin Invest*. 2021;131(24):e154886.
- 537 43. Sun J, Wang S, Ma X, et al. Efficacy and safety of baricitinib for the treatment
 538 of hospitalized adults with COVID-19: a systematic review and meta-analysis.
 539 *Eur J Med Res.* 2023;28(1):536.
- 44. Pinato DJ, Aguilar-Company J, Ferrante D, et al. Outcomes of the SARS-CoV-2 omicron (B.1.1.529) variant outbreak among vaccinated and unvaccinated patients with cancer in Europe: results from the retrospective, multicentre, OnCovid registry study. *Lancet Oncol.* 2022;23(7):865-875.

544	45.	Yu J, Ouyang W, Chua MLK, Xie C. SARS-CoV-2 transmission in patients
545		with cancer at a tertiary care hospital in Wuhan, China. JAMA Oncol.
546		2020;6(7):1108-1110.
547	46.	Sinha S, Kundu CN. Cancer and COVID-19: why are cancer patients more
548		susceptible to COVID-19? Med Oncol. 2021;38(9):101.
549	47.	Leyfman Y, Emmanuel N, Menon GP, et al. Cancer and COVID-19:
550		unravelling the immunological interplay with a review of promising therapies
551		against severe SARS-CoV-2 for cancer patients. J Hematol Oncol.
552		2023;16(1):39.
553	48.	Hardy N, Vegivinti CTR, Mehta M, et al. Mortality of COVID-19 in patients with
554		hematological malignancies versus solid tumors: a systematic literature
555		review and meta-analysis. Clin Exp Med. 2023;23(6):1945-1959.
556	49.	Ketkar A, Willey V, Glasser L, et al. Assessing the burden and cost of COVID-
557		19 across variants in commercially insured immunocompromised populations
558		in the United States: updated results and trends from the ongoing EPOCH-US
559		study. Adv Ther. 2024;41(3):1075-1102.
560	50.	D'Marco L, Puchades MJ, Romero-Parra M, et al. Coronavirus disease 2019
561		in chronic kidney disease. <i>Clin Kidney J</i> . 2020;13(3):297-306.
562	51.	Rai V. COVID-19 and kidney: the importance of follow-up and long-term
563		screening. <i>Life (Basel</i>). 2023;13(11):2137.
564	52.	Artborg A, Caldinelli A, Wijkstrom J, et al. Risk factors for COVID-19
565		hospitalization and mortality in patients with chronic kidney disease: a
566		nationwide cohort study. <i>Clin Kidney J</i> . 2024;17(1):sfad283.
567	53.	Gur E, Levy D, Topaz G, et al. Disease severity and renal outcomes of
568		patients with chronic kidney disease infected with COVID-19. <i>Clin Exp</i>
569		Nephrol. 2022;26(5):445-452.
570	54.	Rinaldi M, Bartoletti M, Bussini L, et al. COVID-19 in solid organ transplant
571		recipients: no difference in survival compared to general population. <i>Transpl</i>
572		Infect Dis. 2021;23(1):e13421.
573	55.	Caillard S, Chavarot N, Francois H, et al. Is COVID-19 infection more severe
574		in kidney transplant recipients? <i>Am J Transplant</i> . 2021;21(3):1295-1303.
575	56.	Coll E, Fernandez-Ruiz M, Sanchez-Alvarez JE, et al. COVID-19 in transplant
576		recipients: the Spanish experience. <i>Am J Transplant</i> . 2021;21(5):1825-1837.
577	57.	Ssentongo P, Heilbrunn ES, Ssentongo AE, et al. Epidemiology and
578		outcomes of COVID-19 in HIV-infected individuals: a systematic review and
579		meta-analysis. <i>Sci Rep</i> . 2021;11(1):6283.
580	58.	Danwang C, Noubiap JJ, Robert A, Yombi JC. Outcomes of patients with HIV
581		and COVID-19 co-infection: a systematic review and meta-analysis. AIDS Res
582		Ther. 2022;19(1):3.
583	59.	Boffito M, Waters L. More evidence for worse COVID-19 outcomes in people
584		with HIV. <i>Lancet HIV</i> . 2021;8(11):e661-e662.
585	60.	Centers for Disease Control and Prevention. Vaccines for Moderately to
586		Severely Immunocompromised People. Updated August 30,
587		2024. <u>https://www.cdc.gov/covid/vaccines/immunocompromised-people.html</u> .
588		Accessed 1 October 2024.
589	61.	Paranilam J, Arcioni F, Franco A, et al. Delphi panel consensus statement
590		generation: COVID-19 vaccination recommendations for

591 592		immunocompromised populations in the European Union. <i>Infect Dis Ther</i> . 2024;13(11):2227-2253.
593 594	62.	Serra Lopez-Matencio JM, Vicente-Rabaneda EF, Alanon E, et al. COVID-19 vaccination and immunosuppressive therapy in immune-mediated
595		inflammatory diseases. Vaccines (Basel). 2023;11(12):1813.
596	63.	Curtis JR, Johnson SR, Anthony DD, et al. American College of
597		Rheumatology guidance for COVID-19 vaccination in patients with rheumatic
598		and musculoskeletal diseases: Version 5. Arthritis Rheumatol. 2023;75(1):E1-
599		E16.
600	64.	Curigliano G, Banerjee S, Cervantes A, et al. Managing cancer patients
601		during the COVID-19 pandemic: an ESMO multidisciplinary expert consensus.
602		Ann Oncol. 2020;31(10):1320-1335.
603	65.	Russell CD, Lone NI, Baillie JK. Comorbidities, multimorbidity and COVID-19.
604		Nat Med. 2023;29(2):334-343.
605	66.	Rader B, Gertz A, Iuliano AD, et al. Use of at-home COVID-19 tests - United
606		States, August 23, 2021-March 12, 2022. MMWR Morb Mortal Wkly Rep.
607		2022;71(13):489-494.
608	67.	Pingali C, Meghani M, Razzaghi H, et al. COVID-19 vaccination coverage
609		among insured persons aged >/=16 years, by race/ethnicity and other
610		selected characteristics - eight integrated health care organizations, United
611		States, December 14, 2020-May 15, 2021. MMWR Morb Mortal Wkly Rep.
612	<u> </u>	2021;70(28):985-990.
613	68.	Wiltz JL, Feehan AK, Molinari NM, et al. Racial and ethnic disparities in
614		receipt of medications for treatment of COVID-19 - United States, March
615	<u>co</u>	2020-August 2021. MMWR Morb Mortal Wkly Rep. 2022;71(3):96-102.
616 617	69.	Agrawal U, Bedston S, McCowan C, et al. Severe COVID-19 outcomes after
618		full vaccination of primary schedule and initial boosters: pooled analysis of
619		national prospective cohort studies of 30 million individuals in England, Northern Ireland, Scotland, and Wales. <i>Lancet</i> . 2022;400(10360):1305-1320.
620	70.	AlBahrani S, AlBarrak A, Al-Musawi T, et al. COVID-19 vaccine had a
621	70.	significant positive impact on patients with SARS-COV-2 during the third
622		(Omicron) wave in Saudi Arabia. J Infect Public Health. 2022;15(11):1169-
623		1174.
624	71.	Arbel R, Sergienko R, Friger M, et al. Effectiveness of a second BNT162b2
625		booster vaccine against hospitalization and death from COVID-19 in adults
626		aged over 60 years. <i>Nat Med</i> . 2022;28(7):1486-1490.
627	72.	Arbel R, Peretz A, Sergienko R, et al. Effectiveness of a bivalent mRNA
628		vaccine booster dose to prevent severe COVID-19 outcomes: a retrospective
629		cohort study. Lancet Infect Dis. 2023;23(8):914-921.
630	73.	Bahremand T, Yao JA, Mill C, et al. COVID-19 hospitalisations in
631		immunocompromised individuals in the Omicron era: a population-based
632		observational study using surveillance data in British Columbia, Canada.
633		Lancet Reg Health Am. 2023;20:100461.
634	74.	Bedston S, Almaghrabi F, Patterson L, et al. Risk of severe COVID-19
635		outcomes after autumn 2022 COVID-19 booster vaccinations: a pooled
636		analysis of national prospective cohort studies involving 7.4 million adults in
637		England, Northern Ireland, Scotland and Wales. Lancet Reg Health Eur.
638		2024;37:100816.

perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license .

Risk of severe COVID-19 outcomes: Immunocompromised SLR and MA

639 75. Benites-Godínez V, Mendoza-Cano O, Trujillo X, et al. Survival analysis and 640 contributing factors among PCR-confirmed adult inpatients during the endemic phase of COVID-19. Diseases. 2023;11(3):119. 641 642 76. Beppu H, Fukuda T, Otsubo N, et al. Comparative outcomes of hemodialysis 643 patients facing pre-Omicron and Omicron COVID-19 epidemics. Ther Apher 644 Dial. 2024;28(1):51-60. 645 77. Beraud G, Bouetard L, Civljak R, et al. Impact of vaccination on the presence 646 and severity of symptoms in hospitalized patients with an infection of the 647 Omicron variant (B.1.1.529) of the SARS-CoV-2 (subvariant BA.1). Clin 648 Microbiol Infect. 2023;29(5):642-650. 649 78. Bournia V-K, Fragoulis GE, Mitrou P, et al. Outcomes of COVID-19 Omicron 650 variant in patients with rheumatoid arthritis: a nationwide Greek cohort study. 651 Rheumatology. 2023;63(4):1130-1138. 652 Briciu V, Topan A, Calin M, et al. Comparison of COVID-19 severity in 79. 653 vaccinated and unvaccinated patients during the Delta and Omicron wave of 654 the pandemic in a Romanian tertiary infectious diseases hospital. *Healthcare*. 655 2023;11(3):373. 656 80. Brosh-Nissimov T. Hussein K. Wiener-Well Y. et al. Hospitalized patients with 657 severe coronavirus disease 2019 during the Omicron wave in Israel: benefits 658 of a fourth vaccine dose. Clin Infect Dis. 2022;76(3):e234-e239. 659 81. Chen Z, Tian F, Zeng Y. Polypharmacy, potentially inappropriate medications, 660 and drug-drug interactions in older COVID-19 inpatients. BMC Geriatrics. 2023;23(1):774. 661 662 82. Chen CL, Teng CK, Chen WC, et al. Clinical characteristics and treatment 663 outcomes among the hospitalized elderly patients with COVID-19 during the 664 late pandemic phase in central Taiwan. J Microbiol Immunol Infect. 665 2024;57(2):257-268. 666 83. Choi S-H, Choi JH, Lee JK, et al. Clinical characteristics and outcomes of 667 children with SARS-CoV-2 infection during the Delta and Omicron variantdominant periods in Korea. J Korean Med Sci. 2023:38(9):e65. 668 669 84. de Prost N, Audureau E, Heming N, et al. Clinical phenotypes and outcomes 670 associated with SARS-CoV-2 variant Omicron in critically ill French patients 671 with COVID-19. Nat Commun. 2022;13(1):6025. 672 85. de Prost N, Audureau E, Préau S, et al. Clinical phenotypes and outcomes 673 associated with SARS-CoV-2 Omicron variants BA.2, BA.5 and BQ.1.1 in 674 critically ill patients with COVID-19: a prospective, multicenter cohort study. 675 Intensive Care Med Exp. 2023;11(1):48. 676 Drummond PD, de Salles DB, de Souza NSH, et al. Profile and outcomes of 86. 677 hospitalized COVID-19 patients during the prevalence of the Omicron variant 678 according to the Brazilian regions: a retrospective cohort study from 2022. 679 Vaccines. 2023;11(10):1568. 680 87. Elamin MY, Maslamani YA, Alsheikh FA, et al. Impact of vaccination on 681 morbidity and mortality in adults hospitalized with COVID-19 during the 682 omicron wave in the Jazan Region, Saudi Arabia. Saudi Med J. 683 2024:45(2):179-187. 684 Ellis RJ, Moffatt CR, Aaron LT, et al. Factors associated with hospitalisations 88. 685 and deaths of residential aged care residents with COVID-19 during the 686 Omicron (BA.1) wave in Queensland. Med J Aust. 2023;218(4):174-179.

perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license .

Risk of severe COVID-19 outcomes: Immunocompromised SLR and MA

- 687 89. Favia G, Barile G, Tempesta A, et al. Relationship between oral lesions and
 688 severe SARS-CoV-2 infection in intensive care unit patients. *Oral Dis.*689 2024;30(3):1296-1303.
- Flacco ME, Acuti Martellucci C, Soldato G, et al. Predictors of SARS-CoV-2
 infection and severe and lethal COVID-19 after three years of follow-up: a
 population-wide study. *Viruses*. 2023;15(9):1794.
- 693 91. Gazit S, Saciuk Y, Perez G, et al. Short term, relative effectiveness of four
 694 doses versus three doses of BNT162b2 vaccine in people aged 60 years and
 695 older in Israel: retrospective, test negative, case-control study. *BMJ*.
 696 2022;377:e071113.
- 697 92. Griggs EP, Mitchell PK, Lazariu V, et al. Clinical epidemiology and risk factors
 698 for critical outcomes among vaccinated and unvaccinated adults hospitalized
 699 with COVID-19-VISION Network, 10 states, June 2021-March 2023. *Clin*700 *Infect Dis.* 2024;78(2):338-348.
- 93. Guo Y, Guo Y, Ying H, et al. In-hospital adverse outcomes and risk factors among chronic kidney disease patients infected with the omicron variant of SARS-CoV-2: a single-center retrospective study. *BMC Infect Dis*. 2023;23(1):698.
- Helmy MA, Milad LM, Hasanin AM, et al. Parasternal intercostal thickening at hospital admission: a promising indicator for mechanical ventilation risk in subjects with severe COVID-19. *J Clin Monit Comput*. 2023;37(5):1287-1293.
- 95. Hippisley-Cox J, Khunti K, Sheikh A, Nguyen-Van-Tam JS, Coupland CAC.
 Risk prediction of covid-19 related death or hospital admission in adults
 testing positive for SARS-CoV-2 infection during the omicron wave in England
 (QCOVID4): cohort study. *BMJ*. 2023;381:e072976.
- Jamaati H, Karimi S, Ghorbani F, et al. Effectiveness of different vaccine
 platforms in reducing mortality and length of ICU stay in severe and critical
 cases of COVID-19 in the Omicron variant era: a national cohort study in Iran. *J Med Virol*. 2023;95(3):e28607.
- 716 97. Kang J-M, Kang M, Kim Y-E, et al. Severe coronavirus disease 2019 in pediatric solid organ transplant recipients: big data convergence study in Korea (K-COV-N cohort). *Int J Infect Dis*. 2023;134:220-227.
- 719 98. Karageorgou V, Papaioannou AI, Kallieri M, et al. Patients hospitalized for
 720 COVID-19 in the periods of Delta and Omicron variant dominance in Greece:
 721 determinants of severity and mortality. *J Clin Med*. 2023;12(18):5904.
- 722 **99.** Kim SH, Kim T, Choi H, Shin TR, Sim YS. Clinical outcome and prognosis of a nosocomial outbreak of COVID-19. *J Clin Med*. 2023;12(6):2279.
- 100. Klein EY, Fall A, Norton JM, et al. Severity outcomes associated with SARS CoV-2 XBB variants, an observational analysis. *J Clin Virol*.
 2023;165:105500.
- 101. Konermann FM, Gessler N, Wohlmuth P, et al. High in-hospital mortality in
 SARS-CoV-2-infected patients with active cancer disease during Omicron
 phase of the pandemic: insights from the CORONA Germany study. Oncol
 Res Treat. 2023;46(5):201-210.
- 102. Lee CM, Kim M, Park SW, et al. Clinical outcomes and immunological
 features of COVID-19 patients receiving B-cell depletion therapy during the
 Omicron era. *Infect Dis (Lond)*. 2024;56(2):116-127.

734	103.	Li H, Jia X, Wang Y, et al. Differences in the severity and mortality risk factors
735		for patients hospitalized for COVID-19 pneumonia between the early wave
736		and the very late stage of the pandemic. <i>Front Med (Lausanne)</i> .
737		2023;10:1238713.
738	104.	Li D-J, Zhou C-C, Huang F, Shen F-M, Li Y-C. Clinical features of omicron
739		SARS-CoV-2 variants infection associated with co-infection and ICU-acquired
740		infection in ICU patients. Front Public Health. 2024;11:1320340.
741	105.	Liu Y, Qi Z, Bai M, et al. Combination of chest computed tomography value
742		and clinical laboratory data for the prognostic risk evaluation of patients with
743		COVID-19. Int J Gen Med. 2023;16:3829-3842.
744	106.	Lu G, Zhang Y, Zhang H, et al. Geriatric risk and protective factors for serious
745		COVID-19 outcomes among older adults in Shanghai Omicron wave. <i>Emerg</i>
746		Microbes Infect. 2022;11(1):2045-2054.
747	107.	Mayer C, Woo MS, Brehm TT, et al. History of cerebrovascular disease but
748		not dementia increases the risk for secondary vascular events during SARS-
749		CoV-2 infection with presumed Omicron variant: a retrospective observational
750		study. <i>Eur J Neurol</i> . 2023;30(8):2297-2304.
751	108.	Mendoza-Cano O, Trujillo X, Ríos-Silva M, et al. Association between
752		vaccination status for COVID-19 and the risk of severe symptoms during the
753	400	endemic phase of the disease. Vaccines. 2023;11(10):1512.
754	109.	Mizrahi Reuveni M, Kertes J, Shapiro Ben David S, et al. Risk stratification
755		model for severe COVID-19 disease: a retrospective cohort study.
756		Biomedicines. 2023;11(3):767.
757	110.	Nevejan L, Ombelet S, Laenen L, et al. Severity of COVID-19 among
758		hospitalized patients: Omicron remains a severe threat for
759		immunocompromised hosts. <i>Viruses</i> . 2022;14(12):2736.
760	111.	O'Leary AL, Wattengel BA, Carter MT, Drye AF, Mergenhagen KA. Risk
761		factors associated with mortality in hospitalized patients with laboratory
762		confirmed SARS-CoV-2 infection during the period of omicron (B.1.1.529)
763	440	variant predominance. Am J Infect Control. 2023;51(6):603-606.
764 765	112.	Overvad M, Koch A, Jespersen B, et al. Outcomes following SARS-CoV-2
766		infection in individuals with and without solid organ transplantation-A Danish nationwide cohort study. <i>Am J Transplant</i> . 2022;22(11):2627-2636.
767	113.	Parajuli P, Sabo R, Alsaadawi R, et al. Fibrosis-4 (FIB-4) index as a predictor
768	115.	for mechanical ventilation and 30-day mortality across COVID-19 variants. J
769		Clin Transl Sci. 2023;7(1):e213.
770	114.	Parra-Bracamonte GM, Lopez-Villalobos N, Velazquez MA, et al.
771	114.	Comparative analysis of risk factors for COVID-19 mortality before, during and
772		after the vaccination programme in Mexico. <i>Public Health</i> . 2023;215:94-99.
773	115.	Patton MJ, Orihuela CJ, Harrod KS, et al. COVID-19 bacteremic co-infection
774	110.	is a major risk factor for mortality, ICU admission, and mechanical ventilation.
775		Crit Care. 2023;27(1):34.
776	116.	Radhakrishnan N, Liu M, Idowu B, et al. Comparison of the clinical
777		characteristics of SARS-CoV-2 Delta (B.1.617.2) and Omicron (B.1.1.529)
778		infected patients from a single hospitalist service. BMC Infect Dis.
779		2023;23(1):747.
780	117.	Risk M, Hayek SS, Schiopu E, et al. COVID-19 vaccine effectiveness against
781		omicron (B.1.1.529) variant infection and hospitalisation in patients taking
· - ·		· · · · · · · · · · · · · · · · · · ·

782		immunosuppressive medications: a retrospective cohort study. Lancet
783		Rheumatol. 2022;4(11):e775-e784.
784	118.	Russell SL, Klaver BRA, Harrigan SP, et al. Clinical severity of Omicron
785		subvariants BA.1, BA.2, and BA.5 in a population-based cohort study in
786		British Columbia, Canada. <i>J Med Virol</i> . 2023;95(1):e28423.
787	119.	Shi HJ, Yang J, Eom JS, et al. Clinical characteristics and risk factors for
788		mortality in critical COVID-19 patients aged 50 years or younger during
789		Omicron wave in Korea: comparison with patients older than 50 years of age.
790		J Korean Med Sci. 2023;38(28):e217.
791	120.	Simmons AE, Amoako A, Grima AA, et al. Vaccine effectiveness against
792		hospitalization among adolescent and pediatric SARS-CoV-2 cases between
793		May 2021 and January 2022 in Ontario, Canada: a retrospective cohort study.
794		PLoS One. 2023;18(3):e0283715.
795	121.	Skarbinski J, Wood MS, Chervo TC, et al. Risk of severe clinical outcomes
796		among persons with SARS-CoV-2 infection with differing levels of vaccination
797		during widespread Omicron (B.1.1.529) and Delta (B.1.617.2) variant
798		circulation in Northern California: a retrospective cohort study. Lancet Reg
799		Health Am. 2022;12:100297.
800	122.	Starkey T, Ionescu MC, Tilby M, et al. A population-scale temporal case–
801		control evaluation of COVID-19 disease phenotype and related outcome rates
802		in patients with cancer in England (UKCCP). <i>Sci Rep</i> . 2023;13(1):11327.
803	123.	Svensson ALL, Emborg H-D, Bartels LE, et al. Outcomes following SARS-
804		CoV-2 infection in individuals with and without inflammatory rheumatic
805		diseases: a Danish nationwide cohort study. Ann Rheum Dis.
806		2023;82(10):1359-1367.
807	124.	Tsujimoto Y, Kobayashi M, Oku T, et al. Outcomes in novel hospital-at-home
808		model for patients with COVID-19: a multicentre retrospective cohort study.
809		<i>Fam Pract</i> . 2023;40(5-6):662-670.
810	125.	Vo AD, La J, Wu JT, et al. Factors associated with severe COVID-19 among
811		vaccinated adults treated in US veterans affairs hospitals. JAMA Netw Open.
812		2022;5(10):e2240037.
813	126.	Wang X, Zein J, Ji X, Lin DY. Impact of vaccination, prior infection, and
814		therapy on Omicron infection and mortality. <i>J Infect Dis</i> . 2023;227(8):970-976.
815	127.	Ward IL, Robertson C, Agrawal U, et al. Risk of COVID-19 death in adults
816		who received booster COVID-19 vaccinations in England. <i>Nat Commun</i> .
817		2024;15(1):398.
818	128.	Xin S, Chen W, Yu Q, Gao L, Lu G. Effect of the number of coronavirus
819		disease 2019 (COVID-19) vaccination shots on the occurrence of pneumonia,
820		severe pneumonia, and death in SARS-CoV-2-infected patients. <i>Front Public</i>
821		<i>Health</i> . 2024;11:1330106.
822	129.	Yang H, Wang Z, Zhang Y, et al. Clinical characteristics and factors for
823		serious outcomes among outpatients infected with the Omicron subvariant
824		BF.7. J Med Virol. 2023;95(8):e28977.
825	130.	Zhang Y, Han J, Sun F, et al. A practical scoring model to predict the
826		occurrence of critical illness in hospitalized patients with SARS-CoV-2
827		omicron infection. Front Microbiol. 2022;13:1031231.

perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license .

Risk of severe COVID-19 outcomes: Immunocompromised SLR and MA

- **131.** Zhao Q, Zheng B, Han B, et al. Is azvudine comparable to nirmatrelvir ritonavir in real-world efficacy and safety for hospitalized patients with COVID-
- 830 19? a retrospective cohort study. *Infect Dis Ther*. 2023;12(8):2087-2102.
- **132.** Zhu Z, Cai J, Tang Q, et al. Circulating eosinophils associated with
- responsiveness to COVID-19 vaccine and the disease severity in patients with SARS-CoV-2 omicron variant infection. *BMC Pulm Med*. 2023;23(1):177.

834

835 Tables and Figures

836 **Table 1.** Characteristics of the Included Studies

Study	Country	Study design	Study setting	Data source	Study duration	Omicron period	Omicron subvariant
Agrawal 2022 ⁶⁹	UK	Prospective cohort study	Healthcare database	Nationwide healthcare datasets	December 2021 - February 2022	Omicron was dominant after 14 December 2021 (20 December 2021 - 28 February 2022)	NR
AlBahrani 2022 ⁷⁰	Saudi Arabia	Retrospective cohort study	Single center	NR	December 2021 - February 2022	25 December 2021 - 28 February 2022	NR
Arbel 2022 ⁷¹	Israel	Retrospective cohort study	Healthcare database	Electronic medical records in Clalit Health Services	January 2022 - February 2022	3 January - 20 February 2022	B.1.1.529
Arbel 2023 ⁷²	Israel	Retrospective cohort study	Healthcare database	Electronic medical records in Clalit Health Services	September 2022 - January 2023	Omicron predominant period (27 September 2022 - 25 January 2023)	BA.5 and BQ.1

Study	Country	Study design	Study setting	Data source	Study duration	Omicron period	Omicron subvariant
Bahremand 2023 ⁷³	Canada	Retrospective cohort study	Healthcare database	British Columbia Regional Health Authority COVID-19 Case Linelist Database	January 2022 - March 2022	Omicron era (January - March 2022)	NR
Bao 2022 ^{24a}	China	Cross-sectional study	Single center	Shanghai Ninth People's Hospital	April 2022 - May 2022	Shanghai Omicron pandemic (April - May 2022)	BA.2
Bedston 2024 ⁷⁴	UK	Prospective cohort study	Multi-center	Secure Trusted Research Environment of the UK's four nations ^b	September 2022 - December 2022	September - December 2022	NR
Benites-Godínez 2023 ⁷⁵	Mexico	Retrospective cohort study	Healthcare database	SINOLAVE (the system derives data from patients' medical records and death certificates)	May 2023 - July 2023	Omicron predominant period (5 May - 26 July 2023)	NR
Beppu 2024 ⁷⁶	Japan	Retrospective cohort study	Single center	Electronic medical records	April 2020 - March 2023	Omicron strain endemic period (January 2022 - March 2023)	NR
Beraud 2023 ⁷⁷	Bulgaria, Croatia, France, Turkey	Retrospective cohort study	Multi-center	14 hospitals	December 2021 - March 2022	Omicron was the only circulating variant during the study period (1 December	B.1.1.529 (subvariant BA.1)

Study	Country	Study design	Study setting	Data source	Study duration	Omicron period	Omicron subvariant
						2021 - 3 March 2022)	
Bournia 2023 ⁷⁸	Greece	Retrospective cohort study	Healthcare database	Nationwide electronic prescription database and national COVID-19 digital registries	January 2022 - June 2022	January - June 2022	NR
Briciu 2023 ⁷⁹	Romania	Retrospective cohort study	Single center	The Clinical Hospital of Infectious Diseases Cluj- Napoca	September 2021 - May 2022	Omicron Wave 5 (16 January - 31 May 2022)	NR
Brosh-Nissimov 2023 ⁸⁰	Israel	Retrospective cohort study	Multi-center	14 hospitals in Israel			NR
Chen 2023 ⁸¹	China	Cross-sectional study	Single center	Hospital Sichuan University (West China)	December 2022 - January 2023	December 2022 - January 2023	NR
Chen 2024 ⁸²	Taiwan	Retrospective cohort study	Single center	China Medical University Hospital	January 2022 - August 2022	Omicron was prevalent variant during the study period (January - August 2022)	NR

Study	Country	Study design	Study setting	Data source	Study duration	Omicron period	Omicron subvariant
Choi 2023 ⁸³	South Korea	Retrospective cohort study	Multi-center	Medical charts from 5 hospitals	August 2021 - March 2022	Omicron variants accounted for >90% of sequenced isolates (January - March 2022)	NR
de Prost 2022 ⁸⁴	France	Prospective cohort study	Multi-center	Clinical records from 20 ICUs	December 2021 - May 2022	Omicron predominant period (January - May 2022)	BA.1, BA.1.1, BA.2
de Prost 2023 ⁸⁵	France	Prospective cohort study	Multi-center	Clinical records from 20 ICUs	February 2022 - December 2022	Omicron predominant period (4 February - 15 December 2022)	BA.2, BA.4/BA.5, BQ.1.1 group
Drummond 2023 ⁸⁶	Brazil	Retrospective cohort study	Healthcare database	SIVEP-Gripe database	January 2022 - April 2023	Omicron and subvariants (January - December 2022)	BA.4/BA.5
Elamin 2024 ⁸⁷	Saudi Arabia	Retrospective cohort study	Multi-center	Electronic medical records from 22 government and private hospitals	January - June 2022	Peak period for omicron wave in Jazan Region (January - June 2022)	NR

Study	Country	Study design	Study setting	Data source	Study duration	Omicron period	Omicron subvariant
Ellis 2023 ⁸⁸			Multi-center	Metro South Public Health Unit	December 2021 - January 2022	Omicron dominant period (December 2021 - January 2022)	BA.1 (predominant)
Evans 2023 ¹⁴	England	Retrospective cohort study	Healthcare database	De-identified routinely collected electronic healthcare record data from primary and secondary care in England ^c	January 2017 - December 2022	Omicron era (January - December 2022)	NR
Favia 2023 ⁸⁹	Italy	Prospective cohort study	Single center	Maxi-Emergencies Hospital, University Hospital Policlinic of Bari (Italy)	January 2022 - March 2022	Omicron-1 variant period (January - March 2022)	NR
Flacco 2023 ⁹⁰	Italy	Retrospective cohort study	Healthcare database	National Healthcare System datasets, the Italian Institute of Health	February 2020 - February 2023	Omicron predominant period (1 January 2022 - 15 February 2023)	NR
Gazit 2022 ⁹¹	Israel	Case-control study	Healthcare database	Maccabi Healthcare Services centralized computerized database	January 2022 - March 2022	10 January - 13 March 2022	NR
Griggs 2024 ⁹²	USA	Retrospective cohort study	Healthcare database	VISION network	June 2021 - March 2023	16 December 2021- 29 March 2023	BA.1, BA.2, BA.4, BA.5, and Post- BA.4/BA.5

Study	Country	Study design	Study setting	Data source	Study duration	Omicron period	Omicron subvariant
Guo 2023 ⁹³	China	Retrospective cohort study	Single center	Baoshan Branch of Huashan Hospital	March - May 2022	29 March - 17 May 2022	NR
Helmy 2023 ⁹⁴	Egypt	Prospective cohort study	Single center	NR	NR NR NF		NR
Hippisley-Cox 2023 ⁹⁵	cohort study database (version 47) 2021 - June 2022		11 December 2021 - March 2022	NR			
Jamaati 2023 ⁹⁶	Iran	Retrospective cohort study	Multi-center			21 January - 11 April 2022	NR
Kang 2023 ⁹⁷	South Korea	Case-control study	Healthcare database	K-COV-N cohort ^e	NR	15 January - 30 March 2022	NR
Karageorgou 2023 ⁹⁸	Greece	Retrospective cohort study	Multi-center	Patients' medical files	November 2021 - June 2022	16 January - 8 June 2022	NR
Kim 2023 ⁹⁹	cohort study university teaching hospital 20		November 2021 - April 2022	November 2021 - April 2022	NR		
Klein 2023 ¹⁰⁰	cohort study System 20		September 2022 - February 2023	September 2022 - February 2023	XBB or XBB.1.5		
Konermann 2023 ¹⁰¹	Germany	Prospective cohort study	Multi-center	45 hospitals across Germany	March 2020 - July 2022	1 January - 20 July 2022	NR

Study	Country	Study design	Study setting	Data source	Study duration	Omicron period	Omicron subvariant
Lee 2024 ¹⁰²	South Korea	Retrospective cohort study	Single center	Data from Seoul National University Hospital	February 2022 - January 2023	February 2022 - January 2023	BA.1, BA.5
Li 2023 ¹⁰³	China	Cross-sectional study	Single center	Xi'an People's Hospital	December 2022 - January 2023	8 December 2022 - 31 January 2023	NR
Li 2024 ¹⁰⁴	China	Retrospective cohort study	Single center	Shanghai Municipal Centre for Disease Control and Prevention	April 2020 - March 2023	April 2022 - May 2022	NR
Liu 2023 ¹⁰⁵	China	Retrospective cohort study	Single center	Xiamen University	December 2022 - January 2023	December 2022 - January 2023	NR
Lu 2022 ¹⁰⁶	China	Cross-sectional study	Multi-center	Shanghai Ninth People's Hospital, Huashan Hospital, and Shanghai Sixth People's Hospital	April 2022 - May 2022	April - May 2022	NR
Mayer 2023 ¹⁰⁷	Germany	Retrospective cohort study	Single center	University Medical Centre Hamburg	December 2021 - August 2022	20 December 2021 - 15 August 2022	NR
Mendoza-Cano 2023 ¹⁰⁸	Mexico	Retrospective cohort study	Healthcare database	SINOLAVE	May 2023 - August 2023	May - August 2023	NR

Study	Country	Study design	Study setting	Data source	Study duration	Omicron period	Omicron subvariant
Mizrahi Reuveni 2023 ¹⁰⁹	Israel	Retrospective cohort study	Healthcare database	Maccabi Healthcare Services database	November 2021 - January 2022	26 November 2021 - 18 January 2022	NR
Morris 2023 ^{22a}	USA	cohort study System 2021 - July 2022		1 December 2021 - 17 July 2022	BA.1, BA.1.1, BA.2, BA.2.12.1, BA.4, BA.5		
Nab 2023 ¹⁹	England	cohort study database August 2022 2		15 December 2021 - 3 August 2022	B.1.1.529		
Nevejan 2022 ¹¹⁰	Belgium	Retrospective cohort study	Multi-center	University and 4 general hospitals in BelgiumDecember2021 - February 2022		13 December 2021 - 13 February 2022	BA.1 and BA.2
O'Leary 2023 ¹¹¹	USA	Retrospective cohort study	Healthcare database	Corporate Data Warehouse	December 2021 - February 2022	25 December 2021 - 2 February 2022	NR
Overvad 2022 ¹¹²	Denmark	Retrospective cohort study	Healthcare database	lealthcare Statens Serum Institut, Ma		January - May 2022	NR
Parajuli 2023 ¹¹³	USA	Retrospective cohort study	Healthcare database	National COVID-19 Cohort Collaborative	April 2020 - June 2022	20 December 2021 - 25 June 2022	NR
Parra-Bracamonte 2023 ¹¹⁴	Mexico	Retrospective cohort study	Healthcare database	Epidemiologic Surveillance Source of Respiratory Viral Diseases	January 2020 - October 2022	24 December 2021 - 24 October 2022	NR

Study	Country	Study design	Study setting	Data source	Study duration	Omicron period	Omicron subvariant
Patton 2023 ¹¹⁵	USA	Retrospective cohort study	Multi-center	University of Alabama at Birmingham Health System and Ochsner Louisiana State University Health- Shreveport records	January 2020 - March 2022	February - March 2022	NR
Puyat 2023 ^{25a}	Canada	Retrospective cohort study	Healthcare database	British Columbia COVID-19 Cohort dataset, British Columbia Centre for Disease Control, Provincial Heath Services Authority and Regional Health Authority data sources	December 2020 - October 2022	8 January - 31 October 2022	NR
Radhakrishnan 2023 ¹¹⁶	USA	Retrospective cohort study	Single center	Hospitalist Service at the University of Florida Shands Hospital	December 2021 - February 2022	8 January - 15 February 2022	BA.1
Rasmussen 2023 ^{26a}	Denmark	Prospective cohort study	Healthcare database	Danish HIV Cohort Study, Danish Civil Registration System, Danish National Hospital Registry, Danish Vaccination Registry and national COVID-19 surveillance system	March 2020 - May 2022	December 2021 - May 2022	NR
Risk 2022 ¹¹⁷	2 ¹¹⁷ USA Retrospective cohort study Healthcare database Electronic health records at Michigan Medicine, D		December 2021 - March 2022	16 December 2021 - 4 March 2022	NR		

Study	Country	Study design	Study setting	Data source	Study duration	Omicron period	Omicron subvariant
				and chart-reviewed COVID- 19 hospitalization data			
Russell 2023 ¹¹⁸	Canada	Retrospective cohort study	Multi-center	Laboratory diagnostic data, provincial immunization registry, epidemiological data from an ongoing provincial SARS-CoV-2 surveillance program, and administrative health datasets provided by the British Columbia Ministry of Health's chronic disease registry	December 2021 - August 2022	23 December 2021 - 31 August 2022	BA.1, BA.2, or BA.5
Shakor 2023 ^{21a}	Malaysia	Cross-sectional study	Healthcare database	Selangor State Health Department mortality investigation reports and GitHub-MOH, Socioeconomic Data and Applications Centre, OpenStreetMap	February 2022 - March 2023	14 February 2022 - 31 March 2023	NR
Shi 2023 ¹¹⁹	South Korea	Retrospective cohort study	Multi-center	Nine hospitals in South Korea	February 2022 - April 2022	February - April 2022	NR
Simmons 2023 ¹²⁰	Canada	Retrospective cohort study	Healthcare database	Ontario's Public Health Case and Contact Management Solution and COVaxON database	May 2021 - January 2022	23 December 2021 - 9 January 2022	NR

Study	Country	Study design	Study setting	Data source	Study duration	Omicron period	Omicron subvariant
Skarbinski 2022 ¹²¹	USA	Retrospective cohort study	Healthcare database	Kaiser Permanente Northern California Virtual Data Warehouse	July 2021 - January 2022	December 18, 2021 - 7 January 2022	B.1.1.529
Starkey 2023 ¹²²	England	Case-control study	Healthcare database	Second-generation surveillance system, Secondary Use Statistics datasets, National Immunisation Management Service	November 2020 - August 2022	December 2021 - August 2022	NR
Svensson 2023 ¹²³	Denmark	Retrospective cohort study	Healthcare database	Statens Serum Institut, Danish Vaccination Register, and Danish National Patient Register	March 2020 - January 2023	January 2022 - January 2023	NR
Tsujimoto 2023 ¹²⁴	Japan	Retrospective cohort study	Multi-center	10 different clinics located in Osaka city	January 2022 - March 2022	January - March 2022	BA.2
Vo 2022 ¹²⁵	USA	Retrospective cohort study	Healthcare database	Veterans Affairs Healthcare System COVID-19 shared data resource and the Corporate Data Warehouse	December 2020 - February 2022	16 December 2021 - 8 February 2023	NR
Wang 2023 ¹²⁶	USA	Retrospective cohort study	Healthcare database	COVID-19 registry database in the Cleveland Clinic Health System	October 2021 - January 2022	19 December 2021 - 31 January 2022	NR
Ward 2024 ¹²⁷	Vard 2024 ¹²⁷ England Retrospective cohort study Healthcare database Office for National Statistics S		September 2022 - April 2023	1 September 2022 - 11 April 2023	NR		

Study	Country	Study design	Study setting	Data source	Study duration	Omicron period	Omicron subvariant
				Practice Extraction Service data for Pandemic Planning and Research version 4			
Xin 2024 ¹²⁸	China	Retrospective cohort study	Single center	Electronic medical records, SaaS Yunjinmiao vaccination system	December 2022 - March 2023	5 December 2022 - 31 March 2023	NR
Xing 2023 ^{23a}	China	Retrospective cohort study	Single center	Geriatric Department of Beijing Friendship Hospital	December 2022 - January 2023	3 December 2022 - 3 January 2023	NR
Yang 2023 ¹²⁹	China	Retrospective cohort study	Single center	NR	December 2022 - January 2023	19 December 2022 - 5 January 2023	BF.7
Zhang 2022 ¹³⁰	China	Retrospective cohort study	Single center	Huashan Hospital of Fudan University	March - May 2022	23 March - 26 May 2022	NR
Zhao 2023 ¹³¹	China	Retrospective cohort study	Single center	Zhejiang Province	December 2022 - February 2023	20 December 2022 - 31 January 2023	NR
Zhu 2023 ¹³²	China	Cross-sectional study	Multi-center	Tongji Hospital and Shanghai Public Health Clinical Centre in Shanghai	February 2022 - May 2022	20 February - 10 May 2022	BA.2

837 Abbreviations: ICU, intensive care unit; NR, not reported.

^aNot included in the meta-analysis.

^bOxford-Royal College of General Practitioners Research and Surveillance Centre database, National Health Authority Information System and Patient Administration System,

838 839 840 841 842 843 Early Pandemic Evaluation and Enhanced Surveillance of COVID-19, Scottish Morbidity Record 01 and Rapid Preliminary Inpatient Data, Turas Vaccination Management Tool, and National Records of Scotland, Secure Anonymised Information Linkage.

°Datasets used included: General Practice Extraction Service Data for Pandemic Planning and Research, COVID-19 Second Generation Surveillance System (SGSS) from

Pillar 1 and Pillar 2, COVID-19 vaccination status data, Hospital Episode Statistics (HES), NHS Business Service Authority (BSA) dispensing data, Office of National Statistics

- 844 845 846 (ONS) data, and Personal Demographics Service (PDS) data. ^dAssumed to be corresponding to Omicron period based on ethical approval and publication date. ^eK-COV-N cohort data were derived from Korea Disease Control and Prevention Agency-COVID-19-National Health Insurance Service (KDCA-COVID-19-NHIS).

Table 2. Patient Characteristics of the Included Studies

Study	Country	Population description (hospitalized or general)	Sub-population for reported patient characteristics	Ν	Age in years	Female, %	At least had initial COVID-19 vaccination
Agrawal	UK	General	Boosted	13 836 390ª	18-49 years: 40.9%	52.8	100.0%
2022 ⁶⁹					50-54 years: 9.8%		
					55-59 years: 10.3%		
					60-64 years: 9.2%		
					65-69 years: 8%		
					70-74 years: 8.0%		
					75-79 years: 6.0%		
					≥80 years: 7.8%		
AlBahrani 2022 ⁷⁰	Saudi Arabia	General	All	400	Mean (SD): 36.34 (16.47)	45.5	NR

Study	Country	Population description (hospitalized or general)	Sub-population for reported patient characteristics	Ν	Age in years	Female, %	At least had initial COVID-19 vaccination
Arbel 2022 ⁷¹	Israel	General	Second booster	328 597	Mean (SD): 74.4 (8.4)	56.0	100.0%
Arbel 2023 ⁷²	Israel	General	Booster non-recipients	435 304	Mean (SD): 74.7 (7.4)	56.0	100.0%
Bahremand	Canada	General	Booster recipients CEV group 1 ^b	134 215 14 941	Mean (SD): 76.9 (7.5) Median (IQR): 64.0 (23)	52.0 47.0	CEV: 80.0%ª; GP: 56.0%
2023 ⁷³			CEV group 2 ^c	122 202	Median (IQR): 64.0 (30)	62.0	
			General population	4 081 457	Median (IQR): 45.0 (31)	51.0	
Bao 2022 ^{24d}	China	Hospitalized	All	595	Median (IQR): 75.0 (69-85)	50.9	30.1%
Bedston 2024 ⁷⁴	UK	General	All	7 451 890	18-49 years: 12.3% 50-64 years: 37.1%	54.2	100.0%

Study	Country	Population description (hospitalized or general)	Sub-population for reported patient characteristics	Ν	Age in years	Female, %	At least had initial COVID-19 vaccination
					65-79 years: 37.0% ≥80 years: 13.5%		
Benites- Godínez 2023 ⁷⁵	Mexico	Hospitalized	Recovery Death	127 25	Median (IQR): 62.0 (42-76) Median (IQR): 68.0 (59-81)	59.1 40.0	~19.7ª
Beppu 2024 ⁷⁶	Japan	Hospitalized	With hemodialysis Without hemodialysis	183 561	Mean (SD): 71.2 (14.6) Mean (SD): 75.2 (18.2)	35.0 52.0	~20.0% ^a
Beraud 2023 ⁷⁷	Bulgaria, Croatia, France, Turkey	Hospitalized	Vaccinated Unvaccinated	746 469	Median (IQR): 74.0 (57.3- 85.0) Median (IQR): 71.0 (55.0- 83.0)	45.6 53.7	61.4%

Study	Country	Population description (hospitalized or general)	Sub-population for reported patient characteristics	Ν	Age in years	Female, %	At least had initial COVID-19 vaccination
Bournia 2023 ⁷⁸	Greece	General	RA patients with SARS- CoV-2 infection	5569	Median (IQR): 63.5 (53.1- 73.2)	80.5	83.2%
			General population with SARS-CoV-2 infection	23 729	Median (IQR): 63.0 (52.6- 72.9)	80.2	78.0%
Briciu 2023 ⁷⁹	Romania	Hospitalized	Unvaccinated	449	Median (IQR): 74.0 (60-83)	61.9	100.0%
2023			Vaccinated	431	Median (IQR): 67.0 (44.5- 76.5)	57.1	
Brosh- Nissimov	Israel	Hospitalized	All patients	1049	Median (IQR): 80.0 (69–87)	49.0	GP ~61.6%ª
2023 ⁸⁰			Unvaccinated (0/1 dose)	403	Median (IQR): 78.0 (67-86)	53.0	
			Received 3 doses	386	Median (IQR): 81.0 (70-88)	47.0	

Study	Country	Population description (hospitalized or general)	Sub-population for reported patient characteristics	Ν	Age in years	Female, %	At least had initial COVID-19 vaccination
			Received 4 doses	88	Median (IQR): 83.0 (74-88)	44.0	
Chen 2023 ⁸¹	China	Hospitalized	All	206	Median (IQR): 84.0 (76-90)	31.1	NR
Chen 2024 ⁸²	Taiwan	Hospitalized	All	797	Median (IQR): 79.1 (71.3- 85.3)	43.9	55.1%
Choi 2023 ⁸³	South Korea	Hospitalized	All	401	Median (IQR): 2.1 (0.6-8.1)	52.9	32.0%
de Prost 2022 ⁸⁴	France	Hospitalized	Omicron subgroup	148	Mean (SD): 63.9 (10.8)	28.4	60.1%
de Prost 2023 ⁸⁵	France	Hospitalized	All	158	Mean (SD): 67.4 (13.9)	31.6	75.8%
Drummond 2023 ⁸⁶	Brazil	Hospitalized	All	115 638	18-39 years: 10.1% 40-59 years: 16.7%	NR	All: 78.0%ª North region ~68.0%ª; Northeast ~79.2%ª;

Study	Country	Population description (hospitalized or general)	Sub-population for reported patient	Ν	Age in years	Female, %	At least had initial COVID-19 vaccination
			characteristics				
					60-79 years: 39.9%		Southeast ~84.5% ^a ; South ~86.0% ^a ;
					≥80 years: 33.3%		Midwest ~83.4%ª
Elamin 2024 ⁸⁷	Saudi Arabia	Hospitalized	All	634	Mean (SD): 62.4 (22.8)	50.0	52.4%
Ellis 2023 ⁸⁸	Australia	General	All	1071	NR	NR	NR
			Not admitted to hospital	920	Median (IQR): 84.0 (78-90)	57.0	84.0% ^a
			Admitted to hospital	151	Median (IQR): 84.0 (78-89)	46.0	73.0%ª
			Not died	945	Median (IQR): 83.0 (77-89)	58.0	85.0% ^a
			Died	126	Median (IQR): 87.0 (82-91)	40.0	66.0% ^a
Evans 2023 ¹⁴	England	General	All	11 990 730	Mean (SD): 45.2 (20.7)	50.3	71.0%

Study	Country	Population description (hospitalized or general)	Sub-population for reported patient characteristics	N	Age in years	Female, %	At least had initial COVID-19 vaccination
Favia 2023 ⁸⁹	Italy	Hospitalized	All	103	Mean (SD): 69.9 (10.99)	46.6	49.3%
Flacco 2023 ⁹⁰	Italy	General	All	300 079	Mean (SD): 49.1 (20.9)	51.2	78.2%
Gazit 2022 ⁹¹	Israel	General	All	97 499	Mean (SD): 70.8 (8.02)	54.7	100.0%
Griggs 2024 ⁹²	USA	Hospitalized	BA.1	14 869	Median (IQR): 67.0 (55-78)	48.0	~40.0%
			BA.2	3549	Median (IQR): 75.0 (63-83)	49.7	~70.0%
			BA.4/BA.5	8655	Median (IQR): 74.0 (63-83)	50.2	~68.0%
			Post-BA.4/ BA.5	9499	Median (IQR): 75.0 (65-84)	50.7	~70.0%ª
Guo 2023 ⁹³	China	Hospitalized	Non-CKD group	1508	Median (IQR): 62.0 (47-71)	54.6	30.7%

Study	Country	Population description (hospitalized or general)	Sub-population for reported patient characteristics	Ν	Age in years	Female, %	At least had initial COVID-19 vaccination
			CKD group	470	Median (IQR): 73.0 (64-86)	43.4	4.9%
Helmy 2023 ⁹⁴	Egypt	Hospitalized	All	50	Mean (SD): 54.8 (14.4)	46.0	NR
Hippisley- Cox 2023 ⁹⁵	England	General	All	9 526 580	Mean (SD): 47.22 (18.57)	49.9	78.9%
Jamaati 2023 ⁹⁶	Iran	Hospitalized	All	24 016	 18-25 years: 2.0% 25-35 years: 4.4% 35-45 years: 6.4% 45-55 years: 8.7% 55-65 years: 15.6% ≥65 years: 62.9% 	45.4	56.3%

Study	Country	Population description (hospitalized or general)	Sub-population for reported patient characteristics	N	Age in years	Female, %	At least had initial COVID-19 vaccination
Kang 2023 ⁹⁷	South Korea	General	Pediatric SOT group: before matching	206	Mean (SD): 10.65 (3.7)	52.4	~23.1%ª
			Non-SOT group: before matching	20 600	Mean (SD): 9.54 (4.4)	46.4	
			Pediatric SOT group: after propensity score matching	205	Mean (SD): 10.66 (3.7)	52.2	
			Non-SOT group: after propensity score matching	803	Mean (SD): 10.69 (3.7)	51.9	
Karageorgo u 2023 ⁹⁸	Greece	Hospitalized	Omicron group	546	Median (IQR): 70.0 (55-83)	44.0	44.9%
Kim 2023 ⁹⁹	South Korea	Hospitalized	All	167	Median (IQR): 69.0 (57-81)	37.0	73.7%

Study	Country	Population description (hospitalized or general)	Sub-population for reported patient characteristics	Ν	Age in years	Female, %	At least had initial COVID-19 vaccination
Klein 2023 ¹⁰⁰	USA	General	All	2189	0-17 years: 25.7% 18-44 years: 27.7% 45-64 years: 20.8% 65-79 years: 16.2% ≥80 years: 9.6%	54.9	51.8%
Konermann 2023 ¹⁰¹	Germany	Hospitalized	No cancer History of cancer Active cancer	9914 416 736	Median (IQR): 72.0 (53-83) Median (IQR): 79.0 (70-85) Median (IQR): 74.0 (64-81)	51.0 49.0 38.0	NR
Lee 2024 ¹⁰²	South Korea	Hospitalized	BCDT group Non-BCDT group	93 145	Median (IQR): 61.0 (52-70) Median (IQR): 61.0 (50-69)	43.0 37.2	~72.0% ^a

Study	Country	Population description (hospitalized or general)	Sub-population for reported patient characteristics	N	Age in years	Female, %	At least had initial COVID-19 vaccination
Li 2023 ¹⁰³	China	Hospitalized	All	223	Median (IQR): 75.0 (60-85)	32.7	NR
Li 2024 ¹⁰⁴	China	Hospitalized	All	47	Median (IQR): 79.72 (74-89)	38.3	NR
Liu 2023 ¹⁰⁵	China	Hospitalized	Survival group	307	≤60 years: 23.8% >60 years: 76.2%	39.1	55.7%
			Death group	86	≤60 years: 4.7% >60 years: 95.3%	18.6	34.9%
Lu 2022 ¹⁰⁶	China	Hospitalized	All	1377	Median (IQR): 76.0 (69-84)	53.4	~26.3%
	Germany	Hospitalized	No CeVD	372	Mean (SD): 64.8 (18.6)	36.6	59.9%

Study	Country	Population description (hospitalized or general)	Sub-population for reported patient characteristics	N	Age in years	Female, %	At least had initial COVID-19 vaccination
Mayer 2023 ¹⁰⁷			CeVD	93	Mean (SD): 64.8 (18.6)	35.5	60.2%
2023			No dementia	144	Mean (SD): 66.4 (19.7)	61.1	NR
			All-cause dementia	36	Mean (SD): 67.0 (34.4)	58.3	NR
Mendoza-	Mexico	General	Severe COVID-19	34	Median (IQR): 68.0 (59-76)	41.2	38.2%
Cano 2023 ¹⁰⁸			Non-severe COVID-19	612	Median (IQR): 43.0 (28-58)	63.7	
Mizrahi	Israel	General	All	409 693	<18 years: 31.4%	54.9	3-4 doses: 65 430
Reuveni 2023 ¹⁰⁹					18-29 years: 16.7%		(50.3%)ª
					30-44 years: 20.4%		
					45-59 years: 19.0%		
					60-74 years: 7.5%		

Study	Country	Population description (hospitalized or general)	Sub-population for reported patient characteristics	Ν	Age in years	Female, %	At least had initial COVID-19 vaccination
					≥75 years: 2.0%		
			Trial cohort (1/3rd of original)	130 000	<18 years: 44 709 (34.4%) 18-29 years: 16.8% 30-44 years: 20.4% 45-59 years: 18.9% 60-74 years: 7.5% ≥75 years: 2.0% ^a	54.7	
Morris	USA	General	BA.1	3285	Mean: 37.7	NR	~42.0% ^a
2023 ^{22d}			BA.1.1	637	Mean: 37.9		
			BA.2	1038	Mean: 39.7		
			BA.2.12.1	1234	Mean: 38.7		
			BA.4	166	Mean: 36.2		

Study	Country	Population description (hospitalized or general)	Sub-population for reported patient characteristics	N	Age in years	Female, %	At least had initial COVID-19 vaccination
			BA.5	337	Mean: 43.6		
Nab 2023 ¹⁹	England	General	Wave 4: Omicron from December 15, 2021 to April 29, 2022	19 097 970	18-39: 35.1% 40-49: 16.2% 50-59: 17.4% 60-69: 13.8% 70-79: 11.2% ≥80: 6.3%	50.1	NR
			Wave 5: Omicron from June 24 to August 3, 2022	19 226 475	18-39: 35.3% 40-49: 16.2% 50-59: 17.2% 60-69: 13.9% 70-79: 11.2% ≥80: 6.3%	50.1	
	Belgium	Hospitalized	All patients (adults)	1291	Median (IQR): 69.0 (50-83)	NR	72.5%

Study	Country	Population description (hospitalized or general)	Sub-population for reported patient characteristics	Ν	Age in years	Female, %	At least had initial COVID-19 vaccination
Nevejan 2022 ¹¹⁰			Moderate/severe/critical /fatal COVID-19	538	Median (IQR): 70.0 (59-82)		
			ICU admission due to COVID-19	129	Median (IQR): 63.0 (53-72)		
			In-hospital mortality related to COVID-19	99	Median (IQR): 78.0 (68-86)		
			All patients (children)	210	Median (IQR): 1.0 (1-6)		
			Moderate/severe/critical /fatal COVID-19	50	Median (IQR): 1.0 (1-5)		
			ICU admission due to COVID-19	8	Median (IQR): 1.0 (1-1)		
	USA	Hospitalized	Death within 14 days	563	Mean (SD): 76.9 (10.03)	2.5	~54.0%ª

Study	Country	Population description (hospitalized or general)	Sub-population for reported patient characteristics	Ν	Age in years	Female, %	At least had initial COVID-19 vaccination
O'Leary 2023 ¹¹¹			Survival	12 373	Mean (SD): 68.1 (13.8)	6.1	
Overvad 2022 ¹¹²	Denmark	General	Total SOTR	5184	Median (IQR): 55.9 (45.4- 65.4)	39.0	Total SOTR: 96.3%
			SOTR (kidney)	3640	Median (IQR): 55.4 (45.4- 65.4)	39.0	
			SOTR (heart/lung)	839	Median (IQR): 58.9 (48.1- 66.2)	37.0	
			SOTR (liver)	705	Median (IQR): 53.9 (42.6- 63.9)	46.0	
			Control population	41 472	Median (IQR): 55.9 (45.4- 65.4)	39.0	

Study	Country	Population description (hospitalized or general)	Sub-population for reported patient characteristics	Ν	Age in years	Female, %	At least had initial COVID-19 vaccination
Parajuli 2023 ¹¹³	USA	Hospitalized	Initial Omicron Subsequent Omicron	34 871 6915	Mean (SD): 60.14 (17.91) Mean (SD): 62.93 (18.91)	48.7 50.4	NR
Parra- Bracamont e 2023 ¹¹⁴	Mexico	General	All	2 948 695	0-4 years: 1.25% 5-9 years: 1.69% 10-14 years: 2.66% 15-19 years: 3.44% 20-24 years: 9.78% 25-29 years: 12.89% 30-34 years: 12.79% 35-39 years: 11.36%	56.9	NR

Study	Country	Population description (hospitalized or general)	Sub-population for reported patient characteristics	N	Age in years	Female, %	At least had initial COVID-19 vaccination
					40-44 years: 10.38%		
					45-49 years: 9.71%		
					50-54 years: 8.14%		
					55-59 years: 5.91%		
					60-64 years: 3.73%		
					65-69 years: 2.39%		
					70-74 years: 1.56%		
					75-79 years: 1.04%		
					80-84 years: 0.66%		
					>84 years: 0.63%		

Study	Country	Population description (hospitalized or general)	Sub-population for reported patient characteristics	Ν	Age in years	Female, %	At least had initial COVID-19 vaccination
Patton 2023 ¹¹⁵	USA	Hospitalized	All	13 781	Mean (SD): 60.0 (17)	51.0	NR
Puyat 2023 ^{25d}	Canada	General	People with HIV HIV-negative individuals	658 252 471	Median (IQR): 50.0 (19.0) Median (IQR): 42.0 (28.0)	33.6 54.0	37.4%
Radhakrish nan 2023 ¹¹⁶	USA	Hospitalized	Omicron infected patients	364	20-39 years: 11.3% 40-69 years: 48.9% ≥70 years: 39.8%	55.5	37.3%
Rasmussen 2023 ^{26d}	Denmark	General	People with HIV	5276	Median (IQR): 51.7 (43.0- 59.2)	26.7	91.0% ^a

Study	Country	Population description (hospitalized or general)	Sub-population for reported patient characteristics	Ν	Age in years	Female, %	At least had initial COVID-19 vaccination
			Controls	42 208	Median (IQR): 51.7 (43.0- 59.2)	26.7	
Risk 2022 ¹¹⁷	USA	General	Immunocompetent unvaccinated	34 430	Median (IQR): 39.0 (28-54)	57.0	79.1%
			Immunocompetent vaccinated	128 375	Median (IQR): 51.0 (35-65)	58.0	
			Immunosuppressed unvaccinated	746	Median (IQR): 48.0 (35-59)	62.0	
			Immunosuppressed vaccinated	4863	Median (IQR): 59.0 (44-69)	63.0	
			All	168 414	Median (IQR): 49.0 (33-63)	58.0	

Study	Country	Population description (hospitalized or general)	Sub-population for reported patient characteristics	N	Age in years	Female, %	At least had initial COVID-19 vaccination
Russell 2023 ¹¹⁸	Canada	General	BA.1 Omicron subvariant BA.2 Omicron	19 096 15 764	Mean (SD): 40.9 (23.6) Mean (SD): 54.0 (26.5)	56.5 59.0	80.0%ª
			subvariant BA.5 Omicron subvariant	4377	Mean (SD): 57.5 (27.2)	56.1	
Shakor 2023 ^{21d}	Malaysia	General	All	488	NR	39.8	72.1%
			COVID-19 IPD	244	<18 years n (%): 6.0 (66.7) ≥18 years: n (%): 238 (49.7%)	52.1	
			COVID-19 BID	244	<18 years: n (%): 3.0 (33.3)	47.9	69

Study	Country	Population description (hospitalized or general)	Sub-population for reported patient characteristics	Ν	Age in years	Female, %	At least had initial COVID-19 vaccination
					≥18 years: n (%): 241 (50.3%)		
Shi 2023 ¹¹⁹	South Korea	Hospitalized	Age >50 years group	142	Mean (SD): 73.9 (10.56)	42.3	57.0%ª
			Age ≤50 years group	71	Mean (SD): 39.5 (8.92)	49.3	
Simmons 2023 ¹²⁰	Canada	General	Hospitalized population	62	 4-5 years: 8.1% 6-7 years: 9.7% 8-9 years: 8.1% 10-11 years: 6.5% 12-13 years: 16.1% 14-15 years: 16.1% 16-17 years: 35.5% 	51.6	16.1%
			Non-hospitalized	27 674	4-5 years: 7.6% 6-7 years: 9.4% 8-9 years: 10.9%	50.3	40.5%

Study	Country	Population description	Sub-population for	Ν	Age in years	Female, %	At least had initial
		(hospitalized or general)	reported patient				COVID-19 vaccination
			characteristics				
					10-11 years: 12.0%		
					12-13 years: 17.0%		
					14-15 years: 18.4%		
					16-17 years: 24.6%		
Skarbinski 2022 ¹²¹	USA	General	Omicron period	48 101	Median (IQR): 37.0 (24-51)	57.0	75.0%
2022							
Starkey	England	General	People with cancer	198 819	18-19 years: 389.0 (0.2%)	49.5	NR
2023 ¹²²					20-29 years: 3143.0 (1.6%)		
					30-39 years: 8703.0 (4.4%)		
					40-49 years: 17 635.0		
					(8.9%)		

Study	Country	Population description (hospitalized or general)	Sub-population for reported patient characteristics	Ν	Age in years	Female, %	At least had initial COVID-19 vaccination
					50-59 years: 36 705.0 (18.5%)		
					60-69 years: 48 417.0 (24.3%)		
					70-79 years: 51 591.0 (25.9%)		
					80-89 years: 26 373.0 (13.3%)		
					90-99 years: 5788.0 (2.9%)		
			Non-cancer patients	18 188 573	≥100 years: 75.0 (0.1%) 18-19 years: 591 296.0	56.9	
					(3.2%)		

Study	Country	Population description	Sub-population for	Ν	Age in years	Female, %	At least had initial
		(hospitalized or general)	reported patient				COVID-19 vaccination
			characteristics				
					20-29 years: 3 223 020.0		
					(17.7%)		
					30-39 years: 3 781 383.0		
					(20.8%)		
					40-49 years: 3 598 039.0		
					(19.8%)		
					50-59 years: 3 200 888.0		
					(17.6%)		
					60-69 years: 1 928 813.0		
					(10.6%)		
					70-79 years: 1 088 001.0		
					(5.9%)		

Study	Country	Population description (hospitalized or general)	Sub-population for reported patient characteristics	N	Age in years	Female, %	At least had initial COVID-19 vaccination
					80-89 years: 5 590 60.0 (3.1%) 90-99 years: 2 085 61.0 (1.1%) ≥100 years: 9512.0 (0.1%)		
Svensson 2023 ¹²³	Denmark	General	Total IRD patients ANCA and necrotizing vasculitis	66 840 1948	Median (IQR): 63.1 (50.4- 73.9) Median (IQR): 65.1 (51.7- 74.3)	66.1 48.6	NR
			Rheumatoid arthritis	30 919	Median (IQR): 66.3 (55.5- 75.0)	70.8	

Study	Country	Population description (hospitalized or general)	Sub-population for reported patient characteristics	Ν	Age in years	Female, %	At least had initial COVID-19 vaccination
			Systemic lupus erythematosus	2480	Median (IQR): 52.1 (40.3- 63.8)	86.8	
			Systemic sclerosis	1569	Median (IQR): 62.3 (51.9- 71.8)	79.8	_
			Sjögren syndrome	2611	Median (IQR): 62.1 (50.6- 72.4)	90.5	-
			Giant cell arteritis	5984	Median (IQR): 75.9 (70.1- 81.2)	66.5	-
			Spondyloarthritis and psoriatic arthritis	21 329	Median (IQR): 53.9 (41.4- 65.8)	54.3	
			Total population controls	668 400	NR	66.1	-

Study	Country	Population description (hospitalized or general)	Sub-population for reported patient characteristics	N	Age in years	Female, %	At least had initial COVID-19 vaccination
Tsujimoto 2023 ¹²⁴	Japan	General	All	348	Median (IQR): 44.5 (30.5- 66)	56.0	49.0% ^a
Vo 2022 ¹²⁵	USA	General	Overall sub cohort during Omicron period	78 379	 >40 years: 10 702.0 (13.7%) 40-45 years: 4968.0 (6.3%) 45-50 years: 4963.0 (6.3%) 50-55 years: 7489.0 (9.6%) 55-60 years: 8088.0 (10.3%) 60-65 years: 9247.0 (11.8%) 65-70 years: 8441.0 (10.8%) 70-75 years: 11 485.0 (14.7%) 75-80 years: 7449.0 (9.5%) ≥80 years: 5547.0 (7.1%) 	13.1	100.0%

Study	Country	Population description (hospitalized or general)	Sub-population for reported patient characteristics	Ν	Age in years	Female, %	At least had initial COVID-19 vaccination
Wang 2023 ¹²⁶	USA	General	All	295 691	<65 years: 75.0% ≥65 years: 25.0%	59.0	60.8%ª
Ward 2024 ¹²⁷	England	General	All	14 651 440	Mean (SD): 67.9 (10.9)	53.1	100.0%
Xin 2024 ¹²⁸	China	Hospitalized	All	829	<71 years: 48.7% ≥71 years: 51.3%	45.0	NR
Xing 2023 ^{23d}	China	Hospitalized	All	181	Mean (SD): 90.8 (5.3)	19.9	NR
Yang 2023 ¹²⁹	China	General	All	770	Median (IQR): 59.0 (41-70)	50.6	72.1%
Zhang 2022 ¹³⁰	China	Hospitalized	All	1721	Median (IQR): 64.0 (49.0- 73.0)	51.8	26.4%

Study	Country	Population description (hospitalized or general)	Sub-population for reported patient	Ν	Age in years	Female, %	At least had initial COVID-19 vaccination
			characteristics				At least had initial COVID-19 vaccination NR 70.6%
Zhao	China	Hospitalized	Total population without	387	Mean (SD): 76.7 (12.83)	37.7	NR
2023 ¹³¹			missing values				
Zhu 2023 ¹³²	China	General	All	1157	Median (IQR)	46.5	70.6%
					Patients with severe COVID-		
					19 on admission: 62 (44.50-		
					72.50)		
					Patients with mild COVID-19		
					on admission: 33 (24-46)		
					Patients with asymptomatic		
					COVID-19 on admission: 30		
					(21.25-46.00)		

848 849 All numbers/percentages in the table rounded to 1 decimal place. Patient characteristics reported in this table encompass all populations of the individual studies (including subgroups of interest).

Abbreviations: ANCA, anti-neutrophil cytoplasmic antibody; BCDT, B-cell depletion therapy; BID, brought-in-dead; CEV, clinically extremely vulnerable; CeVD, pre-existing

850 851 852 cerebrovascular disease; CKD, chronic kidney disease; GP, general population; ICU, intensive care unit; IPD, in-patient death; IQR, interquartile range; IRD, inflammatory rheumatic diseases; NR, not reported; RA, rheumatoid arthritis; SD, standard deviation; SOT, solid organ transplant; SOTR, solid organ transplant recipient. ^aApproximate value, calculated by a reviewer; ^bCEV group 1: severely immunocompromised, such as those with actively treated hematological malignancies, stem cell, or solid organ transplant recipients; ^cCEV group 2: moderately immunocompromised, such as those with solid tumors, advanced HIV, or receiving certain immunosuppression therapies; ^dNot included in meta-analysis; ^eAssumed to be corresponding to Omicron period based on ethical approval and publication date.

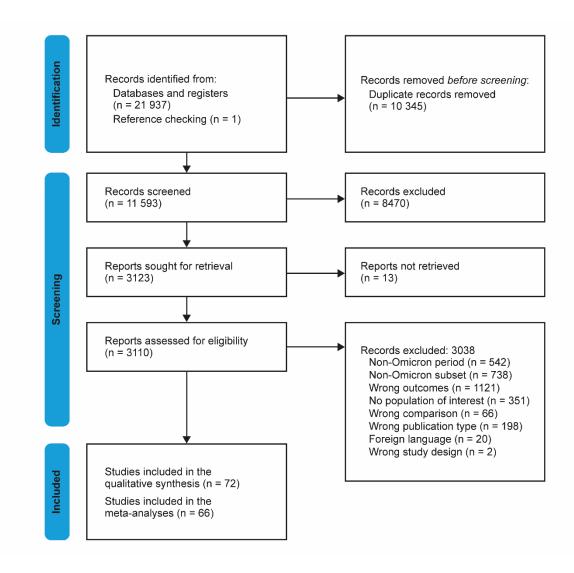
856 Table 3. Number of Studies, Subgroups, and Minimum Number of Participants Included in Each IC/IS Condition Analysis

IC/IS condition	Number of studies reporting	Number of studies		of subgroups ^a inclusion of subgroups ^a subgroups	Minimum number of		
	IC/IS condition	meta-analysis	Death	Hospitalization	ICU	Combined	participants ^ь
Autoimmune	13	13	11	8	2 ^d	5	2 557 105
Cancer	35	32	39	18	9	18	3 189 465
HIV	5	0 ^c	1 ^d	3 ^d	1 ^d	2 ^d	12 634
IC/IS unspecified	33	30	24	16	5	17	1 681 408
Liver disease	19	19	14	2 ^d	5	11	372 221
Renal disease	48	45	44	17	10	21	3 287 816
Transplant	10	9	13	8	2 ^d	5	82 955

857 Abbreviations: ICU, intensive care unit; IC/IS, immunocompromised/ immunosuppressed.

858 859 860 861 862 863 ^aSubgroups distinguish between the IC/IS conditions of interest and may contain additional information that differentiates the condition from another 1 included in the same meta-analysis by the same study (e.g. 'men who take immunosuppressants' and 'women who take immunosuppressants'). Some studies reported multiple subgroups that are

included in the same meta-analysis; for clarity, they are referred to in this report as 'subgroups'.

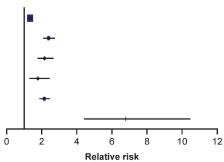

^bBreakdown of the number of participants by outcome not provided as most studies included more than 1 outcome of interest.

^cStudies with HIV were narratively described but were not included in the main analysis because there were too few studies.

^dMeta-analyses were not conducted for analyses with fewer than 5 subgroups.

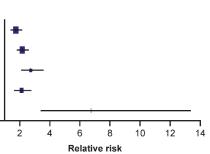
864 Darker green indicates greater number of studies, subgroups, or participants. medRxiv preprint doi: https://doi.org/10.1101/2024.11.25.24317895; this version posted November 28, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license .

Risk of severe COVID-19 outcomes: Immunocompromised SLR and MA


865

866 Figure 1. PRISMA Flow Diagram medRxiv preprint doi: https://doi.org/10.1101/2024.11.25.24317895; this version posted November 28, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license .

Risk of severe COVID-19 outcomes: Immunocompromised SLR and MA


A: Death

Cancer 2.40 (2.11-2.74) <.001 39 97%, P < .001 IC/IS unspecified 2.17 (1.77-2.66) <.001 24 97%, P < .001 Liver diseases 1.79 (1.31-2.43) <.001 14 96%, P < .001 Renal diseases 2.15 (1.88-2.46) <.001 44 98%, P < .001	IC/IS condition	RR (95% CI)	P value	No. of subgroups	Heterogeneity	
IC/IS unspecified 2.17 (1.77-2.66) < .001 24 97%, P < .001 Liver diseases 1.79 (1.31-2.43) < .001	Autoimmune diseases	1.33 (1.20-1.48)	< .001	11	65%, <i>P</i> = .00164	
Liver diseases 1.79 (1.31-2.43) < .001 14 96%, P < .001 Renal diseases 2.15 (1.88-2.46) < .001	Cancer	2.40 (2.11-2.74)	< .001	39	97%, <i>P</i> < .001	
Renal diseases 2.15 (1.88-2.46) <.001 44 98%, P < .001	IC/IS unspecified	2.17 (1.77-2.66)	< .001	24	97%, <i>P</i> < .001	
	Liver diseases	1.79 (1.31-2.43)	< .001	14	96%, <i>P</i> < .001	
Transplant 6.78 (4.41-10.43) < .001 13 80%, P < .001	Renal diseases	2.15 (1.88-2.46)	< .001	44	98%, <i>P</i> < .001	
	Transplant	6.78 (4.41-10.43)	< .001	13	80%, <i>P</i> < .001	

B: Hospitalization

		No. of	
RR (95% CI)	P value	subgroups	Heterogeneity
1.75 (1.42-2.16)	< .001	8	97%, <i>P</i> < .001
2.18 (1.82-2.61)	< .001	18	98%, <i>P</i> < .001
2.75 (2.11-3.59)	< .001	16	98%, <i>P</i> < .001
2.13 (1.64-2.76)	< .001	17	99%, <i>P</i> < .001
6.75 (3.41-13.37)	< .001	8	98%, <i>P</i> < .001
	1.75 (1.42-2.16) 2.18 (1.82-2.61) 2.75 (2.11-3.59) 2.13 (1.64-2.76)	1.75 (1.42-2.16) < .001	RR (95% Cl) P value subgroups 1.75 (1.42-2.16) < .001

C: ICU Admission

IC/IC condition		Buskus	No. of	Listere sereiter							
IC/IS condition	RR (95% CI)	P value	subgroups	Heterogeneity							
Cancer	2.09 (1.13-3.89)	.019	9	98%, <i>P</i> <.001			+				
IC/IS unspecified	3.38 (2.37-4.83)	< .001	5	79%, <i>P</i> < .001			-	+			
Liver diseases	1.27 (1.07-1.52)	.00741	5	68%, <i>P</i> = .0136		-					
Renal diseases	1.96 (1.19-3.22)	.00802	10	96%, <i>P</i> < .001		-	+				
					0	1	2	3	4	5	

Relative risk

D: Combined Outcome

IC/IS condition	RR (95% CI)	P value	No. of subgroups	Heterogeneity					
Autoimmune diseases	2.21 (1.61-3.04)	< .001	5	89%, <i>P</i> < .001					
Cancer	1.78 (1.45-2.19)	< .001	18	96%, <i>P</i> < .001	-				
IC/IS unspecified	2.04 (1.42-2.94)	< .001	17	99%, <i>P</i> < .001					
Liver diseases	1.50 (1.12-2.00)	.00678	11	97%, <i>P</i> < .001					
Renal diseases	1.86 (1.55-2.23)	< .001	21	95%, <i>P</i> < .001	-				
Transplant	8.65 (4.01-18.65)	< .001	5	97%, <i>P</i> < .001					
					2	4	6	8	_

867

Figure 2. Combined Forest Plots of the A) Death, B) Hospitalization, C) ICU 868

869 Admission, and D) Combined Outcomes by IC/IS Condition

870 CI, confidence interval; IC/IS, immunocompromised/immunosuppressed; ICU, intensive care unit; RR, risk ratio.

ר 6