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Abstract

The recurrence of epidemic waves has been a hall-
mark of infectious disease outbreaks. Repeated
surges in infections pose significant challenges to
public health systems, yet the mechanisms that
drive these waves remain insufficiently understood.
Most prior models attribute epidemic waves to ex-
ogenous factors, such as transmission seasonality,
viral mutations, or implementation of public health
interventions. We show that epidemic waves can
emerge autonomously from the feedback loop be-
tween infection dynamics and human behavior. Our
results are based on a behavioral framework in which
individuals continuously adjust their level of risk
mitigation subject to their perceived risk of infec-
tion, which depends on information availability and
disease severity. We show that delayed behavioral
responses alone can lead to the emergence of multi-
ple epidemic waves. The magnitude and frequency
of these waves depend on the interplay between
behavioral factors (delay, severity, and sensitivity
of responses) and disease factors (transmission and
recovery rates). Notably, if the response is either
too prompt or excessively delayed, multiple waves
cannot emerge. Our results further align with previ-
ous observations that adaptive human behavior can
produce non-monotonic final epidemic sizes, shaped
by the trade-offs between various biological and be-
havioral factors–namely, risk sensitivity, response
stringency, and disease generation time. Interest-
ingly, we found that the minimal final epidemic
size occurs on regimes that exhibit a few damped
oscillations. Altogether, our results emphasize the
importance of integrating social and operational
factors into infectious disease models, in order to
capture the joint evolution of adaptive behavioral
responses and epidemic dynamics.

Significance statement

We develop a behavioral-epidemiological framework
in which individuals adjust their level of risk mitiga-
tion (e.g., social distancing, mask-wearing) based on
both the available information and their perceived
risk of infection. We show that the feedback loop
between infectious disease dynamics and human be-
havior can autonomously produce multiple epidemic
waves. The disease dynamics are strongly influenced
by the interplay between the timing, severity and
sensitivity of behavioral responses, as well as trans-
mission and recovery rates. Moreover, our results
confirm that adaptive human behavior can produce
non-monotonic final epidemic sizes, which we show
is due to oscillatory epidemic dynamics. Interest-
ingly, we found that in the absence of interventions,
the minimal final epidemic size occurs on regimes
exhibiting a few damped oscillations.
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Introduction1

The recurrence of epidemic waves has been a defining characteristic of various infectious disease outbreaks2

throughout history. Notable examples of epidemics exhibiting multi-wave dynamics include the 19183

H1N1 “Spanish Flu” pandemic, influenza pandemics and more recent occurrences such as the 20094

H1N1 pandemic and the COVID-19 pandemic [1–3]. Repeated surges in new infections pose significant5

challenges to public health systems, calling for a deeper understanding of the underlying mechanisms6

driving such contagion waves. A key question persists: what causes the emergence of multiple waves7

during epidemics, and how can these waves be predicted and mitigated?8

Compartmental models have been foundational in the study of infectious disease dynamics [4, 5],9

and numerous modifications have been introduced in an effort to understand and predict multi-wave10

dynamics. There is an extensive literature on epidemiological models that exhibit oscillatory dynamics.11

Some models emphasize the impact of biological factors, such as seasonal transmissibility, human12

immune response heterogeneity, spatial scale, population mobility, and viral mutation, in driving multi-13

wave epidemics [6–12]. Nonetheless, recent pandemics highlighted the shortcomings of these models,14

demonstrating that transmission dynamics both drive and are driven by individuals’ behavioral responses.15

Behaviors, including social distancing, mask-wearing, and changes in mobility, dynamically evolve in16

response to perceived infection risk, media coverage, and public health policies [12–17].17

Recent studies using disease-behavior interaction models have shown that social dynamics can also18

induce oscillatory and even chaotic epidemic dynamics. Examples of social factors driving such dynamics19

include the ‘stickiness effect’ (resistance to behavioral changes) in compliance with nonpharmaceutical20

interventions (NPIs), early relaxation of control measures, and pandemic fatigue [18–27]. Numerous21

studies incorporate human behavior driven by awareness, economic incentives, and risk factors, which22

act at both the individual and population level [28–31]. Game theoretic approaches are also commonly23

used to incorporate individual behavioral choices [32–37]. These modeling approaches aim to capture the24

coevolution of the epidemic process and behavioral adaptations, usually assuming availability of complete,25

accurate and immediate information. For instance, depending on the severity of an infectious disease26

outbreak, people make behavioral decisions about how strictly they adhere to mask-wearing guidelines,27

mobility or meeting restrictions. These choices influence the spread of infection, affecting the success of28

interventions and even altering the trajectory of epidemics [38–41].29

Despite improvement on understanding the complex dynamics between human behavioral responses30

during epidemics, less attention has been given to modeling the impact of information delays on31

the decision-making process. Some models assume that disease awareness simultaneously spreads32

over the population as a dual social contagion, which implicitly leads to heterogeneous behavioral33

responses [19, 42, 43]. However, the accuracy and availability of information depend on the identification34

of transmission through epidemiological monitoring systems, which may face operational constraints, such35

as limited resources [44,45]. Delayed behavioral responses are well-documented in epidemiological studies.36

The delays may fluctuate due to a number of social and operational factors. For instance, individuals37

often take time to perceive the severity of an outbreak and adjust their behaviors accordingly [46–48].38

On the other side, limited surveillance systems or misinformation may jeopardize individuals’ behavioral39

choices [45,49].40

Together, the intertwined dynamics between information, behavioral changes and disease transmission,41

create a series of feedback loops that shape infectious disease dynamics. Consequently, understanding42

the joint dynamics of behavioral adaptations and disease transmission requires to unveil the role of43

information availability, as behavioral-driven waves can emerge from endogenous incentives without the44

need for exogenous shocks. In this study, we use a behavioral-epidemiological model to examine the45

trade-off between disease progression, information delays, and the stringency of behavioral responses46

in generating oscillatory dynamics. Our modeling approach builds on the classical awareness-based47

models by incorporating a lagged response of the population to the infection prevalence [50–52]. We48

model behavioral changes as adjustments in social interactions, which ultimately affect the population’s49

likelihood of infection. That is, individuals choose their level of daily social interactions, given their50

understanding of infection risks driven by information availability. In this way, behavioral responses51

depend on the current or the recent state of the epidemic.52
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Our findings show that behavioral responses driven by immediate information reduce the peak size53

relative to the standard, “behavior-free” model, and avoid oscillatory dynamics. On the other hand, we54

show that delayed information can produce multi-wave dynamics, where the number and intensity of the55

waves are modulated by the trade-off between the behavioral response stringency, the information delay,56

and the disease generation time. Moreover, delayed behavioral responses can produce non-monotonic57

final epidemic sizes. The minimal final epidemic size occurs during information-behavioral regimes that58

produce a few damped epidemic waves. In other words, our results suggest that neither single peak59

scenarios nor sustained multi-wave dynamics minimize the final epidemic size.60

Methods61

In this section, we present how a standard SIR-type infectious disease model can be adapted to account62

for average, population-wide behavioral adaptations that depend on the disease prevalence. The model is63

designed to capture the dynamic interplay between infection spread and collective behavior, highlighting64

the potential for such reactions to influence the progression and recurrence of waves during an epidemic.65

In this study, we envision contact reduction as the set of behavioral changes aimed at lowering the66

effective transmission of the disease. Individuals’ behavioral responses represent actions to minimize67

their exposure risk. For instance for respiratory infectious diseases, these include practicing social68

distancing, wearing masks, and increasing hygiene practices. Unlike standard SIR models where the69

contact rate remains fixed, our model accounts for dynamic adjustments based on perceived infection risk.70

This adaptive behavior directly modifies the transmission rate based on the available–possibly delayed–71

information about the prevalence of infection. This nuanced representation of behavioral changes allows72

us to simulate real-world scenarios where the timing and intensity of behavioral responses play a critical73

role in determining the trajectory and potential waves of epidemics.74

Model description75

The standard SIR model divides the population into three key compartments: susceptible (S), infected76

(I), and recovered (R). The progression of the epidemic is modeled using differential equations that77

describe the processes of infection and recovery. To capture the influence of behavioral responses during78

an outbreak, we extend this model by incorporating a population-wide contact reduction factor, driven79

by perceived risk. Let r(I/N) ∈ [0, 1] represent the average population-wide behavioral response. While80

individual risk perceptions vary, it is reasonable to assume that, at the population level, risk mitigation81

increases as the number of infected individuals rises, i.e., dr/dI > 0. This leads to the following system82

of (delay) differential equations, which forms the basis of our analysis:83

dS

dt
= − (1− r (I (t− τ) /N))β

SI

N
,

dI

dt
= (1− r (I (t− τ) /N))β

SI

N
− γI,

dR

dt
= γI.

(1)

Here, β is the transmission rate, γ is the recovery rate, and N(= S + I + R) represents the total84

population. Note that, by design, the model dynamics do not depend on the choice of N. The contact85

reduction factor, r(I(t− τ)/N), evolves over time in response to the prevalence level (i.e., the number of86

active cases), with τ capturing the delay in data reporting and the population’s decision-making process.87

Since the specific form of the response function is unknown and varies based on a pathogen’s perceived88

risk, we explore two functional forms, each defined by two key parameters:89

Hill function: rh(I/N) = 1− 1

1 +
(

log10(c)
log10(I/N)

)kh
, (2)
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Figure 1. Delayed behavioral responses can induce epidemic waves. (A) Linear-scaled logistic functions
(solid green line) and log-scaled Hill functions (dotted lines) can both describe the disease prevalence-
dependent behavioral response. The behavioral response midpoint for all exemplary functions is fixed at
c = 2%, while the sensitivity parameter (kh, kl, respectively) varies. (B) Disease prevalence, (C) effective
reproduction number, and (D) contact reduction over time, and for different behavioral responses: none
as in the standard SIR model (dashed black lines), immediate (τ = 0; solid red lines), delayed (τ = 5;
solid blue lines). (E) Trajectory of the prevalence and contact reduction under an immediate (red) and
delayed (blue) behavioral response. The arrows indicate the direction of the change over time. (B-E) All
non-specified parameters are at their default values listed in Table 1. Specifically, c = 2% and kh = 16.

90

logistic function: rl(I/N) =
1

1 + e−kl(I/N−c)
. (3)

In these equations, c represents the prevalence threshold at which contacts are reduced by exactly91

50%, and we refer to this parameter as the “behavioral response midpoint”. The parameters kh, kl govern92

the sensitivity of the behavioral response, modulating how quickly the adaptation occurs as the number93

of cases increases. Figure 1A illustrates examples of both Hill and logistic functions. When the prevalence94

of the disease is low, individuals remain unaware of the outbreak, and contact reduction is minimal (i.e.,95

r(I) ≈ 0 for small I). As the prevalence increases, contact reduction eventually approaches 100%, akin to96

a complete lockdown. Due to the logarithmic scaling in the Hill function, contact reduction increases97

more gradually at higher case numbers compared to the logistic function. As shown in Figure 1A, when98

the behavioral response midpoint is set to c = 2%, a Hill function with kh = 16 closely matches a logistic99

function with kl = 250 at prevalence levels around 1.5-2%, while a Hill function with kh = 24 better100

matches the same logistic function at higher prevalence levels. This is due to the different scaling in the101

Hill (log-scaled) and logistic (linear-scaled) function.102
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Table 1. Model parameters

Parameter Description Default value
β transmission rate 0.4
γ recovery rate 0.2
c behavioral response midpoint 2% of population
kh Hill behavioral response sensitivity 16
kl logistic behavioral response sensitivity 250
τ delay in response 5 days

Effective reproduction number103

The effective reproduction number, Reff(t), quantifies the expected number of secondary infections caused104

by an infected individual at a specific time t [53,54]. Unlike the basic reproduction number, R0 = β/γ,105

which assumes that the entire population is susceptible (except for an arbitrarily small number of initially106

infected individuals), Reff(t) varies over the course of an outbreak. This variation occurs due to factors107

such as the depletion of the susceptible population or behavioral changes in response to perceived risk.108

In this study, Reff(t) plays a key role in explaining the impact of incorporating information delays, which109

leads to the emergence of epidemic waves driven by changes in population-wide contact levels as the110

disease prevalence fluctuates. The rate of change in the number of infected individuals can be expressed111

as112

dI(t)

dt
=

(
(1− r(I(t− τ)/N))

β

γ

S(t)

N
− 1

)
γI(t).

The effective reproduction number with information delay τ is then given by113

Reff(t; τ) := (1− r(I(t− τ)/N))R0
S(t)

N
.

Note that the disease prevalence increases (i.e., dI(t)
dt > 0) if and only if Reff(t; τ) > 1.114

Simulation115

We employed the fourth-order Runge-Kutta method (RK4) to simulate the model dynamics with a time116

step of ∆t = 0.1 [55, 56]. The RK4 method provides a computationally efficient approach for solving117

ordinary differential equations (ODEs) by evaluating the derivatives at intermediate points between time118

steps and taking a weighted average of these derivatives. The use of the high-performance Python compiler119

Numba substantially improved the compute time [57]. To account for a delay of τ in the reporting of120

cases and subsequent decision-making, we track the history of the number of infected individuals I over121

time in the array Ihistory. The values of Ihistory represent the number of infected individuals at previous122

time points, which is necessary for simulating delayed effects on the response function in the model. To123

ensure the simulation starts with a consistent history, the initial values of Ihistory are all set to the initial124

number of infections, I(0). Throughout, we used I(0) = 0.02%. That is,125

Ihistory(t) =

{
I(0) t < τ

I(t− τ) t ≥ τ
(4)

This history tracking method enables an accurate modeling of delays without introducing substantial126

computational cost. Table 1 describes all model parameters and their default values that are used127

throughout unless otherwise stated. All simulations were conducted using Python 3.11.5.128

Counting waves in disease dynamics129

To quantify the number of waves in the model dynamics, we define a wave as a significant peak (i.e., local130

maximum) in the number of infected individuals over time. We counted peaks using the find peaks131
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algorithm from the Python library scipy.signal. Each peak possesses a prominence value, which132

quantifies the least drop in height necessary in order to get from the peak to any point with even higher133

value. We used a prominence threshold of 0.2% to ensure that only notable peaks in the number of134

infected individuals are counted as independent waves, filtering out minor fluctuations. The total number135

of waves is then defined as the number of peaks in the prevalence function over time. Note that the136

minimal number of waves is one, as long as the number of initially infected individuals is greater than137

the prominence threshold of 0.2%.138

Results139

Immediate behavioral adjustment in response to an infectious disease outbreak140

The standard SIR model (Eq. 1 with r ≡ 0) possesses two parameters: the transmission rate β and the141

recovery rate γ. From these parameters, we can derive the basic reproduction number R0 = β/γ, which142

describes the expected number of secondary infections caused by the first infected person when everyone143

else is still susceptible. Here, we assume β = 0.4, γ = 0.2 so that R0 = 2. Since R0 > 1, the number144

of infected individuals increases over time until the number of susceptibles has been depleted by 1/R0,145

corresponding to Reff(t) = 1 (Fig. 1B,C). Beyond this peak, the disease prevalence decreases. While146

R0 = Reff(0) is constant, the effective reproduction number Reff(t) decreases over time as the number of147

remaining susceptibles declines (Fig. 1C). This yields a single, prominent epidemic peak.148

In reality, individuals decrease their effective contacts (through social distancing, mask wearing, etc.)149

in response to a severe infectious disease outbreak, as exemplified by the recent COVID-19 pandemic [58].150

Aggregated individual-level behavior gives rise to a population-wide effective contact reduction, which151

depends on the current or recent level of disease prevalence and can be qualitatively captured by both152

Hill functions (Eq. 2) and logistic functions (Eq. 3; Fig. 1A). Prior to awareness and media attention, a153

population does not engage in outbreak-related risk mitigation measures (i.e., r(I/N = 0) = 0). As the154

prevalence of an infectious disease rises, an increasing number of individuals fear getting infected, and155

more risk mitigation policies are put in place (i.e., dr/dI > 0), both at the individual and the societal156

level. We hypothesized, in the absence of data, that the population-wide reduction in effective contacts157

likely follows a logarithmic scale, which means that a change in prevalence from, e.g., 1% to 2% would158

result in the same change in behavioral response as a change from 2% to 4%. Accordingly, we used a159

log-scaled Hill function to model this response in our main results. For comparison, results based on a160

linear-scaled logistic function, which yielded qualitatively similar outcomes (Fig. S1 and Fig. S2), are161

presented in the supplement.162

The Hill functional response is characterized by two parameters: the behavioral response midpoint c,163

at which contacts are reduced by exactly 50%, and the parameter kh, which describes the sensitivity of164

the behavioral response to changes in disease prevalence. In the absence of data, we fixed c = 2% and165

kh = 16 and varied these parameters in later sensitivity analyses. In reality, these parameters will depend166

on the severity of the disease. For example, people will engage in higher levels of risk mitigation (i.e., c is167

lower) during an Ebola outbreak (characterized by high hospitalization and mortality rates) versus a168

seasonal flu outbreak. In the scenario where contact levels depend on current disease prevalence (i.e., no169

delay (τ = 0) in case-reporting and decision-making), disease dynamics differ substantially from standard170

SIR dynamics: the effective reproduction number decreases to 1 much faster – before 1/R0 of individuals171

have become infected (Fig. 1B,C). This is due to the prevalence-dependent reduction in effective contacts,172

driven by the immediate and sustained transmission-reducing behavioral adaptation (Fig. 1D). The173

effective reproduction number then stabilizes for an extended period of time at values just below 1.174

During this period, the overall activity level of the population gradually increases, while the disease175

prevalence and the number of susceptible individuals both steadily but slowly decline. Eventually, Reff176

drops markedly below 1, quickly leading to an end of the outbreak. While the shape of the epidemic177

curve is very different, an immediate contact reduction (i.e., τ = 0) only yields one, albeit prolonged178

epidemic wave.179
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Figure 2. Disease dynamics and population-wide contact reduction for a variety of delays and Hill
response functions. Given a delay of τ days and a population-wide contact reduction function, parametrized
by the behavioral response midpoint c and the sensitivity kh, the (A,C,E) disease prevalence and (B,D,F)
population-wide contact reduction is plotted over time for several (A,B) τ -values, (C,D) c-values and
(E,F) kh-values. All non-specified parameters are at their default values listed in Table 1. In all sub
panels, the solid black line depicts the dynamics for τ = 5, c = 2%, kh = 16.

Delayed behavioral adjustment in response to an infectious disease outbreak180

We next investigated the effect of delay in behavior adjustment on the shape of epidemic curves. In181

reality, the delay is always positive because information on new infections first requires diagnosis and then182

reporting. The detrimental impact of delays in diagnosis on individual disease progression, disease spread,183

and economic outcomes has been extensively studied for many infectious diseases, e.g., COVID-19 [46],184

African viral hemorrhagic fever [47] and foot-and-mouth disease [59]. Here, we explore the effect of185

delays on inducing epidemic waves. Assuming a constant delay of τ = 5 days, the initial outbreak size186

increases quickly due to the unawareness of the population. Once contacts are reduced in response to187

the large outbreak, the effective reproduction number drops quickly below 1 giving rise to a first peak188

in disease prevalence (Fig. 1B-D). Following the drop in prevalence, the population-wide activity level189

increases again after a delay of τ = 5 days. This rise leads to Reff > 1 and the emergence of a second190

epidemic peak, which is less prominent than the first due to the reduced number of remaining susceptible191

individuals. This pattern repeats a few more times, with each subsequent peak exhibiting a smaller192

amplitude in prevalence (Fig. 1E). Eventually, the effective reproduction number stabilizes just below193

1. From this point forward, disease prevalence gradually declines, resembling the trend observed in the194

absence of a delay. The shape of the epidemic curve depends strongly on the delay parameter. When the195

delay is short (e.g., τ = 2 days), the disease dynamics resembles the case of no delay, characterized by a196

single, prolonged low-prevalence epidemic (Fig. 2A). After population-wide effective contacts are reduced197

by about 1/R0, activity levels begin to slowly increase as the prevalence level decreases (Fig. 2B). On the198

other hand, when the delay is very long (e.g., τ = 18 days), the disease dynamics resembles the standard199

SIR model, characterized by one high prevalence peak. With long delays, the population-wide behavior200

adjustment starts too late during the outbreak and can only slightly lower peak prevalence levels.201

We explore the impact of varying the response function shape (parametrized by the behavioral202

response midpoint c and the sensitivity parameter kh), to represent diverse expected population-wide203

behavioral response. Higher c-values imply that contacts are reduced less strongly, leading to a larger204
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Figure 3. Two-dimensional sensitivity analysis. The number of epidemic waves is shown for a range of
values for the delay parameter (τ , x-axis) and another model parameter (y-axis): (A) behavioral response
midpoint c, (B) behavioral response sensitivity kh, (C) transmission rate β, (D) recovery rate γ. White
lines connect the highest (in A,D) or lowest (in B,C) model parameter value and associated delay value
that yields a specific number of multiple waves. All non-specified parameters are at their default values
listed in Table 1.

first epidemic peak (Fig. 2C,D). This increased outbreak causes a larger reduction in the number of205

susceptibles, which explains why higher c-values are associated with fewer epidemic peaks and disease206

prevalence that begins more rapidly to drop steadily towards zero, as in the case of no delay (Fig. 1B-E).207

If the contact reduction is less sensitive to the prevalence level (i.e., low kh-values), the contact reduction208

begins at lower prevalence levels (see Fig. 1A), leading to a lower first epidemic peak (Fig. 2E,F). The209

lower sensitivity also implies that the level of contact reduction does not change dramatically as the first210

wave of infections declines, yielding just one more faint peak in prevalence numbers. On the contrary,211

high kh-values (e.g., kh = 32) imply nearly complete lockdowns and relaxations between each epidemic212

wave, characterized by close to 100% and 0% population-wide effective contact reduction, respectively.213

A more sensitive behavioral response function (i.e., high kh-values) induces more epidemic waves. This214

cannot be explained by variation in the number of susceptibles, which declines basically at the same speed215

for all kh-values (indicated by the comparable area under the prevalence curves in Fig. 2E). Interestingly,216

the periodicity of the epidemic waves appears to solely depend on the delay parameter τ but not on the217

midpoint or the sensitivity of the behavioral response function.218

To further explore the connection between the number of epidemic waves and parameter choices,219

we varied the delay τ between 0 and 20 days in addition to one of the model parameters: behavioral220

response midpoint c, behavioral response sensitivity kh, transmission rate β, and recovery rate γ (Fig. 3).221

These two-dimensional sensitivity analyses expand the previous findings. Whenever the delay is very222

small, there exists only one wave, as seen in Fig. 1B-E for the boundary case of τ = 0. Irrespective of223
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A B

C

Figure 4. Four-dimensional sensitivity analysis. (A) The delay causing the maximal number of waves
(color) and the corresponding number of waves (numbers in each cell) are shown for different basic
reproduction numbers R0 (x-axis), different disease generation times modulated by the transmission
rate β (y-axis), as well as for four different shapes of the population-wide behavioral response function,
parametrized by the behavioral response midpoint c and the sensitivity kh. Gray cells indicate that the
model behaves as the standard SIR model and exhibits only a single epidemic wave, irrespective of the
delay parameter. (B,C) For a fixed R0 value and fixed behavioral response function (c = 2%, kh = 16),
the wave-maximizing delay (y-axis) is inversely proportional to (B) the transmission rate β and thus
directly proportional to (C) the disease generation time. For each R0 value, the line only extends across
those x-values that yield the respective maximal number of waves, which is indicated in the legend in (B).
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the specific delay, lower c-values generally induce more waves, which can be explained by the earlier224

onset of behavioral response and subsequent smaller reduction in susceptibles per wave (Fig. 3A). For225

a fixed behavioral response function (i.e., fixed c), most waves occur at a delay of 5-7 days, with the226

wave-maximizing delay decreasing slowly as c increases. A more sensitive behavioral response function227

generally yields more waves (Fig. 3B). The wave-maximizing delay depends strongly on the behavioral228

response sensitivity. At high kh-values (e.g., kh = 36), a delay of 2.25 days suffices to induce nine waves,229

while this delay causes only a single wave when kh < 14.3. At lower kh-values, a longer delay is required230

for multiple waves to emerge.231

Occurrence of epidemic waves depends on the interplay between delay in232

behavior adjustment and disease generation time233

In all results thus far, the basic reproduction number R0 = β/γ was 2, assuming a transmission rate234

of β = 0.4 and recovery rate γ = 0.2. At higher transmission rates (and thus higher reproduction235

numbers), the number of waves increases and the wave-maximizing delay decreases (Fig. 3C). Similarly,236

when assuming slower recovery rates (and thus higher reproduction numbers), the number of epidemic237

waves increases as well (Fig. 3D). While increasing transmission rates and decreasing recovery rates both238

modulate the basic reproduction number in the same way, there exists a major difference between the239

two approaches, which is captured by the disease generation time–the average time between the infection240

of a person and the onward transmission by this person [60]. This key epidemiological metric (which is241

often approximated by the serial interval) is crucial for understanding how quickly a disease can spread242

within a population. Fast-spreading diseases such as COVID-19 have a short disease generation time and243

are characterized by comparably high transmission and recovery rates, while slow-spreading pathogens244

such as HIV-1 possess the opposite: long disease generation times and comparably low transmission and245

recovery rates (an infected person may even never naturally recover from some slow-spreading diseases).246

For instance, setting β = 0.8, γ = 0.2 or β = 0.4, γ = 0.1 both yields R0 = 4. The disease generation time247

in the latter case is, however, twice as long. For a fixed behavioral response function, both parameter248

choices can give rise to a maximum of nine waves (Fig. 3C,D). If β = 0.8, γ = 0.2, this maximal number249

of waves occurs at a delay τ = 3. On the other hand, if β = 0.4, γ = 0.1, the wave-maximizing delay is250

exactly twice as high with τ = 6.251

To further investigate the relationship between the disease generation time and the wave-maximizing252

delay, we performed a four-dimensional sensitivity analysis. We modulated a given R0-value by a253

combination of transmission and recovery rates and counted the maximal number of waves and the254

wave-maximizing delay for four different behavioral response functions, characterized by two values for255

the midpoint c and two values for the sensitivity parameter kh (Fig. 4A). Higher R0-values generally256

caused more waves, which can likely be explained by the stronger initial outbreak and a subsequent257

stronger behavioral response, followed by waves of restriction and relaxation that decrease in amplitude.258

For any R0, the maximal number of waves did not differ much when varying the disease generation259

time by an order of magnitude. The two parameters governing the shape of the behavioral response260

function exhibited the trends already observed in Fig. 2 and Fig. 3A,B: a highly sensitive behavioral261

response function that initiates behavior modification at low prevalence levels generally yields more waves.262

Irrespective of the shape of the behavioral response function, slower-spreading diseases exhibited the263

maximal number of waves at longer delays, providing further evidence for a strong association between264

the disease generation time and the wave-maximizing delay. For a fixed R0, the wave-maximizing delay265

proved inversely proportional to the transmission rate (Fig. 4B) and thus also to the recovery rate. Since266

the disease generation time is the reciprocal of the recovery rate, the wave-maximizing delay is directly267

proportional to the disease generation time (Fig. 4C).268
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A C

B D
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Figure 5. Disease and behavior-related parameters affect the final epidemic size non-monotonically.
(A-D) The final epidemic size is shown for a range of values for the delay parameter (τ , x-axis) and
another model parameter (y-axis): (A) behavioral response point c, (B) behavioral response sensitivity
kh, (C) transmission rate β, (D) recovery rate γ. (E,F) The absolute reduction in final epidemic size is
shown for a range of delays (x-axis) compared to the maximal value observed for a fixed (E) transmission
rate or (F) recovery rate. (A-F) White lines depict the thresholds where the number of waves changes, as
shown in Fig. 3. All non-specified parameters are at their default values listed in Table 1.

Population-wide behavioral adjustments non-trivially affect the final epidemic269

size270

In a standard SIR model (e.g., without reinfection and demographics), the final epidemic size describes271

the proportion of the total population that has been infected by the time the epidemic ends. For the272

standard SIR model (Eq. 1 with r ≡ 0), there exists a one-to-one correspondence between the final273

epidemic size R∞ and the basic reproduction number R0, implicitly described by274

R∞ = 1− e−R0R∞. (5)

If β = 0.4, γ = 0.2, as assumed by default here, R0 = 2 yielding R∞ = 79.7%. Across a wide range275

of delay parameters and shapes of the behavioral response function (parametrized by c and kh), the276

final epidemic size varied between 52% and 71% (Fig. 5A,B). This highlights that a population-wide277

prevalence-dependent behavioral response generally reduces R∞, despite resulting in potentially multiple278

epidemic waves. Higher behavioral response midpoints c and sensitivity values kh are generally associated279

with higher R∞-values. However, this trend is far from monotonic. Parameter choices close to the280

threshold where the number of epidemic waves changes give rise to lower final epidemic sizes. Higher281

c-values or a longer delay in population-wide behavioral response both yield an initial epidemic wave282

that is more severe, associated with a higher peak prevalence level and more infections during the first283

wave (Fig. S3). The increased depletion of the pool of susceptibles can however lead to the avoidance of284

a second wave (if persistently Reff < 1) and thus to a final epidemic size that is lower than in the case of285

two smaller waves of infections.286

As expected, higher transmission rates and lower recovery rates, both associated with higher R0-values,287

generally cause a larger total number of infections over the course of the epidemic (Fig. 5C,D). However,288

the just-described phenomenon is also evident for variation in these parameters: Specifically at the289

transition from one to two waves, the final epidemic size can be substantially lower (Fig. 5E,F). In other290

words, when accounting for delayed population-wide behavioral adjustment, a higher basic reproduction291

11/24

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 26, 2024. ; https://doi.org/10.1101/2024.11.23.24317838doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.23.24317838
http://creativecommons.org/licenses/by-nc-nd/4.0/


number, modulated by higher β or lower γ values, does not necessarily result in a higher total number292

of infections. Instead, the final epidemic size depends on the length of the delay in case-reporting and293

decision-making.294

Discussion295

Using a simple yet insightful behavioral-epidemiological model, we examined the impact of information296

delay on both the generation of oscillatory epidemic dynamics and consequently on the final epidemic297

size. We explored the trade-offs between different stringency levels of behavioral responses, information298

time lags, and pathogen characteristics (specifically, the disease generation time). Our results show299

that immediate risk-based behavioral adaptation effectively avoids high prevalence levels by distributing300

infections over time. Delays in information availability and decision-making can greatly impact the shape301

of infectious disease dynamics. Delayed behavioral responses can induce oscillatory dynamics and produce302

non-monotonic final epidemic sizes. The emergence of these phenomena is modulated by the interplay303

between information availability, response stringency, and disease generation time. Particularly, our304

results show that (i) adaptive human behavior shapes the amplitude and frequency of epidemic waves;305

(ii) the final epidemic size exhibits non-monotonic changes as a function of several behavior or disease306

parameters, where the minimal final epidemic size is attained on regimes that exhibit a few damped307

oscillations (i.e., when the number of epidemic waves changes).308

Our findings indicate that the emergence of epidemic waves is heavily influenced by the feedback309

between the timing, severity and sensitivity of the behavioral response, as well as transmission and310

recovery rates. Notably, if the response is either too prompt or excessively delayed, multiple waves do311

not emerge. Significantly delayed responses may come too late, missing the peak of new infections and312

depleting the susceptible population, resulting in fewer or no subsequent waves. Conversely, hardly313

delayed responses yield a prolonged, low-prevalence first wave and lower the susceptible pool before any314

decline in cases, preventing the formation of additional waves. Interestingly, the range of information315

time lags that yields multi-wave dynamics depends on the disease generation time, which proved to be316

directly proportional to the wave-maximizing delay.317

Moreover, our results confirm previous observations by Qiu et. al. and Morsky et. al. about the318

non-monotonic final epidemic size [18,19]. In contrast to these studies, we show that the incorporation of319

a continuous reaction space prevents discontinuities in the final epidemic size, avoiding the emergence of320

threshold points. It is known that the timing and intensity of behavioral responses are not uniform across321

populations. Variations in awareness, risk perception, age, socioeconomic status, cultural background, and322

adherence to protective measures contribute to a gradual and uneven shift in collective behavior [25,31,61].323

Our model partly captures this variability, avoiding rigid step-wise behavioral regimes and instead allowing324

for smooth transitions in effective contact reduction, capturing the average population-wide behavior.325

It is worth to notice that our results focus on the final epidemic size in the absence of centralized326

interventions. Future research could consider more complex models that explore the interplay between327

potential centralized and decentralized interventions available to contain epidemics.328

In this study, we assumed that behavioral responses are exclusively driven by the disease prevalence329

and do not vary due to factors such as “epidemic fatigue” or economic constraints, which would limit the330

frequency and action space of behavioral choices [62–65]. The recent COVID-19 pandemic highlighted331

that human behavior adapts over time. Epidemic fatigue was observed throughout the world, which332

implies that the behavioral response midpoint will likely increase over the course of an outbreak. Similarly,333

the delays in information availability will likely fluctuate. Delays in case-reporting will decrease as334

testing capacities increase. On the contrary, media coverage frequency will generally decrease, leading335

to potentially longer delays in risk awareness and decision-making. Further, we considered only the336

population-wide behavioral response, which we assumed aggregates all individual decision-making. That337

is, we ignored heterogeneities in compliance, risk perception, and vulnerability among different subgroups,338

as well as seasonality or pathogen importation/mutations [24,30,66–72]. Moreover, we assumed individuals339

are naive to the impact their decisions impose on others: we did not incorporate costs and benefits that340

behavior would have on others, missing the impact of empathy or social group affinities in structured341
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populations.342

The relative simplicity of our model enabled a comprehensive model analysis. To show that the main343

finding - adaptive human behavior and delays in information availability suffice for epidemic waves to344

emerge - is qualitatively insensitive to the specific choice of compartmental model, we analyzed the345

dynamics of an SEIR model, in which individuals upon infection first transition through a latency period346

before being infectious and counted in the disease prevalence. We found that oscillatory dynamics347

still emerged and the main findings were preserved (Fig. S4), although a longer latency period yielded348

fewer epidemic waves for a fixed delay in information availability (Fig. S5). A detailed analysis of more349

complicated behavioral-compartmental models constitutes an interesting avenue for future study.350

The exhibited ability of epidemic waves to emerge solely due to “natural” human behavior and351

circumstances suggests that epidemic interventions should not only target the biological aspects of the352

disease but also consider the joint dynamics with the evolving behavioral responses of the population.353

The insights from our model could help explain recurrent patterns seen in real-world epidemics, such as354

early stages of the COVID-19 epidemic in the United States when behavioral responses mainly shaped355

transmission. Behavioral changes like social distancing and strategic contacts may independently sustain356

epidemic waves, highlighting the role of behavioral inertia in generating multiple peaks.357

Our results demonstrate that epidemic waves can emerge autonomously from the feedback between358

disease dynamics and human behavior, without the need for exogenous shocks like mutations or seasonal359

effects. This has significant implications for public health policy and the development of integral360

understanding of behavioral epidemiology, as it suggests that multiple waves can occur even in the361

absence of any external factors. Understanding how different types of delays—whether due to social,362

logistical, or information factors—affect disease dynamics could refine our model and yield actionable363

insights for public health strategies. Our results underscore the need to integrate the interplay between364

behavioral and infectious disease dynamics into epidemic models, as timely and adaptive interventions365

could play a critical role in mitigating the impact of subsequent outbreaks. Future work to extend366

the developed framework would explore more complex behavioral responses, such as varying levels of367

compliance within subgroups of a population, or incorporating additional factors like vaccination or368

waning immunity. Moreover, contrasting the model to empirical epidemic data from past epidemics could369

help validate its predictive power and provide insights into optimizing intervention strategies to minimize370

the impact of future outbreaks.371

In conclusion, our study fills a critical gap in the understanding of autonomous wave generation372

in epidemic models by linking human behavior and delays in information availability to the spread of373

diseases in a natural and dynamic way. By integrating behavioral responses into epidemic modeling, this374

work contributes to a deeper understanding of behavioral-epidemiological systems and highlights the375

importance of timely and sustained interventions in mitigating the effects of infectious disease outbreaks.376
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Figure S1. Two-dimensional sensitivity analysis, assuming a linear-scaled behavioral response function
(Eq. 3). The number of epidemic waves is shown for a range of values for the delay parameter (τ , x-axis)
and another model parameter (y-axis): (A) behavioral response midpoint c, (B) sensitivity of the logistic
contact reduction function kl, (c) transmission rate β, (D) recovery rate γ. White lines connect the
highest (in A,D) or lowest (in B,C) model parameter value and associated delay value that yields a
specific number of multiple waves. All non-specified parameters are at their default values listed in
Table 1.
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Figure S2. Disease and behavior-related parameters affect the final epidemic size non-monotonically,
even when assuming a linear-scaled behavioral response function (Eq. 3). (A-D) The final epidemic size
is shown for a range of values for the delay parameter (τ , x-axis) and another model parameter (y-axis):
(A) behavioral response point c, (B) logistic behavioral response sensitivity kl, (C) transmission rate β,
(D) recovery rate γ. (E,F) The absolute reduction in final epidemic size is shown for a range of delays
(x-axis) compared to the maximal value observed for a fixed (E) transmission rate or (F) recovery rate.
(A-F) White lines depict the thresholds where the number of waves changes, as shown in Fig. S1. All
non-specified parameters are at their default values listed in Table 1.
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Figure S3. Cause of the non-monotonic final epidemic sizes. Disease dynamics and population-wide
contact reduction for a variety of delays and Hill response functions. Given a delay of τ days and a
population-wide contact reduction function, parametrized by the behavioral response midpoint c and the
sensitivity kh, the (A,D) disease prevalence, (B,E) population-wide contact reduction, and (C,F) effective
reproduction numbers are plotted over time for several (A-C) c-values (here τ = 15) and (D-F) τ -values.
All non-specified parameters are at their default values listed in Table 1. In all sub panels, the dashed
black line depicts the dynamics for τ = 15, c = 2%, kh = 16.
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Figure S4. Two-dimensional sensitivity analysis, assuming SEIR-type dynamics with a latency period of
5 days. Exposed individuals are assumed to be non-infectious and not included in the prevalence, which
determines the behavioral response. The number of epidemic waves is shown for a range of values for the
delay parameter (τ , x-axis) and another model parameter (y-axis): (A) behavioral response midpoint c,
(B) behavioral response sensitivity kh, (C) transmission rate β, (D) recovery rate γ. White lines connect
the highest (in A,D) or lowest (in B,C) model parameter value and associated delay value that yields
a specific number of multiple waves. All non-specified parameters are at their default values listed in
Table 1.
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Figure S5. Effect of latency on the shape of disease dynamics. The trajectory of the prevalence and
contact reduction under an immediate (red) and 5-day delayed (blue) behavioral response is shown.
Exposed individuals are assumed to be non-infectious and not included in the prevalence, which determines
the behavioral response. The arrows indicate the direction of the change over time. All non-specified
parameters are at their default values listed in Table 1.
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