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Abstract 20 

Background: Patient no-shows significantly disrupt pediatric healthcare delivery, highlighting the 21 

necessity for precise predictive models, especially during the dynamic shifts caused by the SARS-22 

CoV-2 pandemic. In outpatient settings, these no-shows result in medical resource underutilization, 23 

increased healthcare costs, reduced access to care, and lower clinic efficiency and productivity. 24 

Methods: The objective is to develop a predictive model for patient no-shows using data-driven 25 

techniques. We analyzed five years of historical data retrieved from both a scheduling system and 26 

electronic health records from a general pediatrics clinic within the WVU Health systems. This 27 

dataset comprises a total of 209,408 visits from 2015 to 2018, 82,925 visits in 2019, and 58,820 visits 28 

in 2020, spanning both pre-pandemic and pandemic periods. The data includes variables such as 29 

patient demographics, appointment details, timing, hospital characteristics, appointment types, and 30 

environmental factors. 31 

Results: Our XGBoost model demonstrated robust predictive capabilities, notably outperforming 32 

traditional "no-show rate" metrics. Precision and recall metrics for all features were 0.82 and 0.88, 33 

respectively. Receiver Operator Characteristic (ROC) analysis yielded AUCs of 0.90 for all features 34 

and 0.88 for the top 5 predictors when evaluated on the 2019 cohort. Furthermore, model 35 

generalization across racial/ethnic groups was also observed. Evaluation on 2020 telehealth data 36 

reaffirmed model efficacy (AUC: 0.90), with consistent top predictive features. 37 

Conclusions: Our study presents a sophisticated predictive model for pediatric no-show rates, 38 

offering insights into nuanced factors influencing attendance behavior. The model's adaptability to 39 

evolving healthcare landscapes, including telehealth, underscores its potential for enhancing clinical 40 

practice and resource allocation.  41 
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Introduction 42 

Patient no-shows, defined as a patient failing to attend a scheduled appointment without prior 43 

notification, vary widely across healthcare settings, ranging from 12% to 80% (Marbouh et al., 44 

2020). No-shows are a major logistical and economic challenge for clinics and hospital systems, 45 

leading to significant revenue losses. No-shows cost the U.S. healthcare system more than $150 46 

billion a year and individual physicians an average of $200 per unused time slot (Gier, 2017). 47 

Whether patients show up or not, healthcare organizations and medical practices must still pay their 48 

staff and cover expenses of resources/facilities. For the provider, no-showed appointments decrease 49 

the volume of medical care that can be given. For patients, the increasing lengths of time needed to 50 

schedule follow-up appointments can be prohibitive of receiving proper care (Ansell et al., 2017). 51 

Patients who failed to keep an appointment were up to 70% more likely not to return within 18 52 

months, with older patients experiencing more chronic illnesses and more likely not to return to their 53 

physicians’ offices after missing just one appointment (Hayhurst, 2019). 54 

Several studies have modeled strategies for reducing patient wait times for clinic appointments 55 

through artificial intelligence (AI)-enabled technologies and solutions (Salazar et al., 2022). These 56 

machine and deep learning approaches have utilized random forest (Qureshi et al., 2021;Salazar et 57 

al., 2021), logistic regression (Moharram et al., 2021;Qureshi et al., 2021), gradient boosting 58 

(Daghistani et al., 2020;Fan et al., 2021), ensemble-based models (Ahmadi et al., 2019;Alshammari 59 

et al., 2021), deep neural networks (Alshammari et al., 2020;Srinivas and Salah, 2021), and various 60 

other approaches to predict patient no-shows. Studies have also examined the type of visit, whether 61 

primary care or specialty clinic, and varying demographic populations (e.g., United States, Saudi 62 

Arabia, Brazil, etc.) (Salazar et al., 2022). While outpatient scheduling with a healthcare provider is 63 

traditionally thought to be the largest percentage of no-showed appointments, the use of no-show 64 

algorithms could also predict patient readmissions (Shameer et al., 2017) and attrition from 65 
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diagnostic visits (i.e., imaging and laboratory studies) (Chong et al., 2020). These individualized 66 

approaches boost patient/provider satisfaction (Mohammadi et al., 2018) and allow for a more 67 

efficient model of healthcare. 68 

The factors affecting patient no-shows can vary slightly between studied populations but can be 69 

generalized into three major categories: 1) modifiable and unmodifiable patient characteristics (e.g., 70 

age, sex, race/ethnicity, BMI), 2) type of appointment scheduled (i.e. primary care or specialty 71 

clinic), and 3) patient behavior (e.g., previous no-show rate, time-to-appointment, travel distance, 72 

weather, etc.) (Salazar et al., 2022). Previous research indicates patients who miss appointments tend 73 

to be of lower socioeconomic status, often have a history of failed/no-show appointments, 74 

government-provided health benefits, and psychosocial problems who are less likely to understand 75 

the purpose of the appointment (Ellis et al., 2017;Daghistani et al., 2020;Marbouh et al., 2020). In 76 

addition to forgetting appointments, issues such as trouble getting off work, finding childcare, 77 

transportation, and cost can also limit patient compliance for an appointment. No-show rates also 78 

increase with increasing time between scheduling and the actual appointment (Festinger et al., 2002). 79 

In pediatrics, few studies have examined how no-show rates can be predicted using machine learning 80 

(Chen et al., 2020;Liu et al., 2022), with no pediatric studies exploring how the SARS-CoV-2 81 

pandemic affects the ability of no-show rates to handle virtual appointments. 82 

Our study, assess the ability of a machine learning model to predict no-show rates in a pediatric 83 

population both before and during the SARS-CoV-2 pandemic. We utilized electronic medical record 84 

(EMR) data for patients, including features related to modifiable and unmodifiable patient 85 

characteristics, appointment type, and patient behavior. We build our model on pre-pandemic 86 

outpatient appointment data and utilized pre-pandemic and pandemic derived external validation sets. 87 

We were able to effectively predict pediatric no-show rates in our validation sets and further explored 88 

the role of race/ethnicity in no-show rate prediction.  89 
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Methods 90 

Ethical Approval  91 

The study was approved by West Virginia University Institutional Review Board. 92 

 93 

Study Population & Data Preprocessing 94 

Data from medical appointments were gathered from an outpatient clinic within a prominent 95 

academic pediatric hospital (West Virginia University Hospitals), aimed at enhancing quality 96 

improvement efforts. This dataset encompasses appointments across all clinic departments on main 97 

campus and satellite, outreach locations and visit types, including information on healthcare 98 

providers and weather/environmental conditions. To facilitate analysis, categorical data were 99 

transformed into multiple binary variables. For instance, the original "day of the week of the 100 

appointment" feature, ranging from 1 to 7 (representing Sunday to Saturday), was converted into 101 

seven binary indicators, each indicating the appointment's occurrence on a specific day. Numerical 102 

features were normalized to a range of 0 to 1. The labels indicating appointment outcomes were 103 

binary, with 1 indicating a no-show and 0 denoting attendance. Notably, a single patient may have 104 

multiple records due to multiple appointments. The patient demographic largely comprises children, 105 

often accompanied by their parents or caregivers to appointments. 106 

 107 

Machine Learning Algorithm Development 108 

Our current model leverages pediatric appointments from 2015-2018 (training/testing), 2019 109 

(validation), and 2020 (external holdout) that were scheduled at West Virginia University Outpatient 110 

Clinics under the West Virginia University Hospital Systems in Morgantown, West Virginia. The 111 

datasets consist of 209,408 (2015-2018), 82,925 (2019), and 58,820 (2020) patient appointments. A 112 

total of 46 features were collected that included demographic factors, time of appointment, hospital 113 

variables, type of appointment scheduled, and environmental conditions. 114 
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Our machine learning model relies on a XGBoost framework that allows for adaptable weighting of 115 

variables and hyperparameter optimization [30]. To predict patient no-shows, we implemented the 116 

XGBoost algorithm using the XGBClassifier, chosen for its robust performance on complex datasets. 117 

The classifier was configured with a gradient boosting 'gbtree' booster and a base score of 0.5. We set 118 

the learning rate to 0.3 and the maximum depth of trees to 6, ensuring the model was sufficiently 119 

detailed yet avoided overfitting. Each tree node considered all features due to a subsample rate and 120 

colsample parameters set to 1. The model utilized 100 estimators, with the optimization objective set 121 

to binary logistic, tailored for binary classification tasks.  122 

For regularization, which helps reduce model complexity and enhance performance, we used 123 

a lambda value of 1 and an alpha value of 0. Handling missing values automatically, the model 124 

treated missing data points as NaNs, allowing for flexibility in dealing with incomplete records. The 125 

model operated under a binary logistic objective, focusing on the probability of no-show events. A 126 

total of four parallel jobs were run (n_jobs set to 4), exploiting multi-core processing to expedite 127 

computation. The random state was anchored at 0 to ensure consistency and reproducibility across 128 

model runs. We employed an automatic predictor setting, which optimally selected the most efficient 129 

prediction method based on the data structure. The tuning of hyperparameters like max_depth, 130 

min_child_weight, subsample, and colsample_bytree was conducted through a methodical grid 131 

search to identify the optimal balance, enhancing model effectiveness without overfitting. This 132 

methodological approach was geared towards developing a robust predictive model that could 133 

effectively forecast patient no-show probabilities in pediatric outpatient settings, considering various 134 

patient and environmental factors. 135 

 136 

Performance Evaluation Metrics 137 

The model's performance was evaluated using standard metrics: accuracy, precision, recall, and area 138 

under the ROC curve (AUROC). The ROC curve plots the true positive rate (sensitivity) against the 139 
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false positive rate (1-specificity) at different thresholds ranging from 0 to 1. The prediction scores 140 

(i.e., the predicted probabilities of no-shows) are compared at each threshold. A higher AUROC 141 

value (closer to 1) indicates better prediction quality. Similarly, the precision-recall curve (PRC) and 142 

area under the PRC (AUPRC) were calculated. Precision measures the accuracy of positive 143 

predictions, while recall measures the model's ability to identify all actual positives. These metrics 144 

collectively provide insights into the model's predictive accuracy and effectiveness. 145 

 146 

SHAP Feature Analysis 147 

We employed SHAP (SHapley Additive exPlanations) feature analysis to interpret the predictive 148 

model's behavior and understand the importance of each feature in making predictions. SHAP values 149 

provide insights into how individual features contribute to the model's output. By decomposing the 150 

model's output for each prediction, SHAP enables us to understand the impact of each feature on the 151 

prediction outcome. Particularly, SHAP summary plots was generated to visualize the overall feature 152 

importance and understand the relationship between specific features and the predicted outcome. 153 

Positive SHAP values indicate a feature that contributes to increasing the prediction, while negative 154 

values suggest a feature that decreases the prediction. 155 

 156 

Intellectual Property/Data Availability 157 

Our machine learning algorithm is covered by a provisional patient filed between Aspirations LLC 158 

and West Virginia University. This is distinctly unique from other filed patients, including 159 

US0150242819A1 [2015] – utilizing advanced statistical techniques with no indication of accuracy 160 

or performance of the models. US20110208674A1[ 2010] – a similar concept but within a ticket 161 

booking system. WO2018058189A1 [2016] – describes a supervised learning module that targets 162 

overbooking strategies, rather than uniquely identifying patients who are at risk of no-showing their 163 
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appointment. Due to confidentiality agreements and the proprietary nature of the technology, the 164 

underlying data supporting this work is not publicly available. 165 

 166 

Statistics 167 

Baseline characteristics of the dataset were analyzed to provide insights into the demographic, clinic-168 

based, insurance and appointment-related attributes of the patient population. Descriptive statistics, 169 

including measures of central tendency and dispersion, were computed for numerical variables such 170 

as age and appointment duration etc. Categorical variables, such as gender and appointment type, 171 

were summarized using frequency distributions.  172 

 To identify factors influencing the likelihood of patient no-shows, univariate and multivariate 173 

analyses were conducted. Univariate analyses involved assessing the association between each 174 

individual predictor variable and the outcome variable (completed vs. show) using appropriate 175 

statistical tests such as chi-square tests for categorical variables and t-tests or ANOVA for continuous 176 

variables. 177 

 178 

Results 179 

Baseline Characteristics and Influence of Variables on No-show Rates. 180 

We retrospectively collected records from 161,822 hospital appointments made by 19,450 patients 181 

between January 1st, 2015 and December 31st, 2019 at pediatric clinics of all specialties in West 182 

Virginia University Hospitals [WVUH]. From our experience the main factors driving the no-show 183 

rate were the days until the scheduled appointments. The longer the interval, the less likelihood of the 184 

appointment being completed. We also noted that same day appointments had low likelihood of 185 

patient no-shows.  If the appointment was canceled or rescheduled that was another important 186 

predictive factor resulting in the no-shows. Interestingly full-time employment status of the parent 187 

had a positive impact on the adherence to the appointment in our pediatric clinics. Thos with 188 
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previous history of no-shows tend to have more chances of missing future appointments.  Though it 189 

was not a major factor? but we noted that some pediatric specialties had higher chances of 190 

completing appointments for example Cardiology, Nephrology while others had higher chances of 191 

experiencing patient no-shows for example Hematology, Neurology, Gastroenterology.  192 

Gender, weather, race or ethnicity, language preference were not significantly impacting the status of 193 

a no-show for a scheduled appointment.  194 

 195 

Performance of model predictions of no-shows 196 

The machine learning model developed the no-show prediction probabilities. Table 2 197 

highlights the superior prediction capacity of patient no-shows when using all 46 features collected 198 

(Precision: 0.82, Recall: 0.88) as well as the top 5 predictive features (Precision: 0.81, Recall: 0.84) 199 

in the validation dataset. This is further captured by the Receiver Operator Characteristic (ROC) Area 200 

Under the Curve (AUC) for all features (AUC: 0.90) and top 5 features (AUC: 0.88) (Figure 1). 201 

Additionally, we used the basic “no-show rate” alone to compute the likelihood of a patient being 202 

compliant with their visit (AUC: 0.64) (Figure 1). This “no-show rate” is a simple frequency: (total 203 

visits the patient has no-showed) / (total visits the patient has attended + total visits the patient has 204 

no-showed). This frequency is commonly employed by EMR systems to provide a baseline 205 

estimation if double booking or other alternative scheduling procedures should be enacted. To test if 206 

our algorithm can provide unbiased predictions across racial/ethnic groups, we subset the data. While 207 

Caucasians make up the primary patient population, our algorithm can efficiently generalize to other 208 

racial and ethnic populations, even when underrepresented (Table 3). From our analyses in the 209 

pediatric population, the no-show rate alone was insufficient to effectively predict patient compliance 210 

with their appointment. Additionally, features that were most important to the construction of the 211 

model were not within a single category, highlighting the complexity in interpretating of patient no-212 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 26, 2024. ; https://doi.org/10.1101/2024.11.23.24317836doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.23.24317836


 
10 

shows (Figure 2). The top five most predictive features extended across demographic factors, time of 213 

the appointment, hospital variables, and type of appointment. 214 

 215 

Evaluation of Model Generalizability and Adaptability to unknown Healthcare Needs 216 

We also wanted to understand if our model was adaptable to the changing dynamics of 217 

healthcare needs and initiatives, such as those driven by the Coronavirus Disease 2019 (COVID-19), 218 

which created an increase of no-contact telehealth appointments. The evaluation of our holdout 219 

dataset (2020), which contained 35% telehealth visits, revealed that our model provided superior 220 

predictions across all features (AUC: 0.90) and the topmost predictive features (AUC: 0.88) (Figure 221 

3). Again, we showed that the traditional “no-show rate” computed in the EMR system was 222 

significantly inferior to our integrative approach (AUC: 0.62). We further evaluated the top 5 features 223 

in the model, which revealed the same features as seen in the validation dataset (i.e., Demographics-224 

8, Time-3, Hospital-5, Appointment-11, and Appointment-10) (Data Not Shown). Model robustness 225 

on the 2020 pediatric telemedicine dataset and the shared top features between the validation and 226 

external holdout dataset highlight the persistence of our machine learning model to generate accurate 227 

predictions of patient no-shows. Additionally, the preliminary data is from pediatric appointments, 228 

highlighting our algorithm’s ability to predict the no-show rate of the patient based primarily on 229 

external factors, such as transportation by the guardian/caregiver. 230 

 231 

For our system at WVU, we learned that strategic double booking might be a solution. Most of our 232 

clinics had 20 minutes visit slots, so for a 4 hours clinic session, our proposed double booking was 233 

focused towards the middle of the session with a limit of 2 per 4 hours and 3 for 8 hours. Some of our 234 

specialists had 30 minutes for a return visit and 1 hour for a new patient visit. For those schedules our 235 

strategy was to overbook a follow up visit in the new patient visit slot with a new patient who had 236 

waited over 3 months for the appointment as the data suggested decreased probability of patient 237 
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adherence to a scheduled appointment after 3 months wait time. We strongly recommended not 238 

overbooking at the beginning or end of a clinic session to maintain the flow of the clinic as well as 239 

considering the providers efficiency during the clinic session. As the technology improves all these 240 

measures might even become second nature in clinic patient scheduling.  241 

Discussion 242 

Our technology uses an AI-based machine-learning algorithm to predict the probability of 243 

individual patients not showing to an appointment on a given date and time. The algorithm uses a 244 

patient’s historical demographic data to proactively predict no-shows and employ strategic double 245 

booking to avoid disruptions and minimize costs to the clinic. Unlike other scheduling systems that 246 

employ advanced statistical techniques (such as logistic regression and Bayesian prediction), our 247 

platform leverages cutting-edge machine learning technology -- a scalable, distributed gradient-248 

boosted decision tree algorithm utilizing minimal feature input for easy implementation across all 249 

healthcare systems -- that continues to learn and improve, thus increasing prediction accuracy over 250 

time. 251 

Of the work that has been done to improve patient no-show prediction, many studies have 252 

failed to perform superiorly to the basic statistic of no-show rate displayed per patient [17]. Of the 253 

studies that performed better than the no-show rate basic statistic, most algorithms have not shown 254 

superior performance in predicting patient no-shows (i.e., AUC <0.85) and have also only been 255 

applied to very specific populations (i.e., a single population or visit type) [17]. While the current 256 

algorithms predicting patient no-shows reveal promise for clinical application [27, 28], there is 257 

currently no validated machine learning algorithm incorporated into an EMR to provide real-time 258 

predictions. Additionally, due to the limited scope of most no-show prediction algorithms, racial bias 259 

within the algorithm can result in up to a 30% increase in wait time for black patients [29]; 260 
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optimizing care for patients, regardless of gender, race/ethnicity, and socioeconomic status, requires a 261 

demonstration of the algorithms stability across these conditions to promote healthcare equity. 262 

 263 

Clinics currently utilize scheduling protocols that dictate how patients get scheduled for each 264 

clinic and within different specialties. There’s considerable variability per provider, per clinic, and 265 

sometimes even per site within a healthcare system. Epic Systems Corporation (Epic) Electronic 266 

Medical Record (EMR) has a basic statistic that displays the no-show rate per patient in the 267 

scheduling software, but there is little knowledge about the prospective performance of this 268 

information. However, this information is not currently utilized in improving the scheduling of 269 

appointments. 270 

While the scheduling staff can see the historic no-show rate for each patient when they call 271 

for an appointment, they have no autonomy to actively modify scheduling to reduce patient no-shows 272 

and follow the guidance of clinic protocols. As such, commonly implemented approaches to avoid 273 

no-shows include appointment reminders and no-show fines, while approaches to reduce the impact 274 

of no-shows on the providers and the healthcare system include double booking. Double booking 275 

could offer an advantage to both the patient and provider if implemented in a strategic manner, 276 

including through combination with predictive AI algorithms. However, such automated “strategic 277 

double booking” would require a machine-learning algorithm capable of dynamically updating based 278 

on each patient’s likelihood of missing an appointment. For example, at WVU, strategic double 279 

booking was observed to be an effective approach. In clinics with 20-minute visit slots, double 280 

booking was typically concentrated in the middle of 4-hour sessions, with a common limit of two 281 

patients for a 4-hour session and three for an 8-hour session. For specialists with 30-minute return 282 

visits and 1-hour new patient appointments, follow-up visit slots were often overbooked with new 283 

patients who had been waiting over 3 months, as data suggested a decrease in adherence following 284 

such delays. Additionally, overbooking at the start or end of clinic sessions was generally avoided to 285 
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maintain clinic flow and optimize provider efficiency. As the technology improves all these measures 286 

might even become second nature in clinic patient scheduling. Thus, there is an unmet need for 287 

generalizable machine-learning approaches to both predict and proactively address patient no-shows 288 

and their impact on the healthcare system. 289 

Limitations  290 

Our study looked at the clinic population in the Appalachian region of west Virginia. Even though 291 

there was financial diversity within the state was taken into consideration, there might be factors that 292 

were not obvious in our results due to limited ethnic and racial diversity in the state of West Virginia.   293 

While our study provides valuable insights, it is important to acknowledge limitations such as 294 

potential data biases and the retrospective nature of the analysis. Importantly, the data used in this 295 

study are provided by a specific hospital or hospital system, and in pediatric population thus the 296 

generalizability of the research results may be limited. Future research can extend the data source to 297 

other hospitals and to other population and age ranges to cross-validate our results or could focus on 298 

prospectively collecting data and implementing interventions to evaluate their effectiveness in 299 

reducing patient no-show rates. 300 

Our proposed solution of strategic overbooking, itself, has its limitation. It depends on the protocols 301 

shared with the call center to offer certain slots for overbooking. We believe that a model actively 302 

analyzing the patient no-show data and proposing slots in real time using the patient no-show history 303 

might be a better solution to take away any end user bias or human errors in interpreting the protocol 304 

implementation. 305 

 306 

Conclusions  307 

No-shows in healthcare settings pose significant challenges for both providers and patients. 308 

Understanding the underlying factors driving these no-shows is crucial for developing effective 309 
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interventions to reduce their occurrence and enhance clinic efficiency. This study proposes the 310 

implementation of a machine learning framework to predict patient no-shows, offering hospitals a 311 

proactive approach to optimize their outpatient appointment systems. By accurately anticipating 312 

potential no-show behavior, healthcare facilities can implement targeted strategies such as 313 

personalized appointment reminders, flexible scheduling options, and provider-specific interventions 314 

to mitigate the impact of no-shows on healthcare delivery. These proactive measures not only 315 

improve clinic efficiency but also enhance patient satisfaction, provider productivity and overall 316 

healthcare outcomes.   317 
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Tables 403 

 404 

Table 1: Details of the Study Population and influence of the variables across the show and no-show 405 

appointments. 406 

Parameter Completed Appointment  
[95% CI] (n=116,442) 

Not Completed Appointment  
[95% CI] (n=93,202) P-Value Cohen (Effect Size)

Patient’s Age (years) 11.56 [11.49-11.62] 11.27 [11.2-11.33] <0.001 0.0267 
Gender (% Male) 61478 (52.80%) 48409 (51.94%) <0.001 0.0172 
Race Ethnicity (% Caucasian) 108668 (93.32%) 86103 (92.38%) <0.001 0.0377 
English Fluency (% Fluent) 114644 (98.46%) 91307 (97.97%) <0.001 0.0397 
Department 

Allergy/Immunology 
Cardiology 

Craniofacial Surgery 
Cardiothoracic Surgery 

Dermatology 
Endocrinology 

Gastroenterology 
Hematology/Oncology 

Infectious Diseases 
Neurology 

Neonatology 
Neurosurgery 
Nephrology 
Orthopedics 

Plastic Surgery 
Pulmonology 

Sports Medicine 
Surgery (General) 

Urology 
Other Departments 

12811 (11.00%) 
18532 (15.92%) 

694 (0.60%) 
1881 (1.62%) 
1550 (1.33%) 

12739 (10.94%) 
10864 (9.33%) 
7350 (6.31%) 
1125 (0.97%) 

11847 (10.17%) 
1329 (1.14%) 
4119 (3.54%) 
6152 (5.28%) 

13942 (11.97%) 
304 (0.26%) 
1812 (1.56%) 
298 (0.26%) 
3071 (2.64%) 

17474 (15.01%) 
395 (0.34%) 

9643 (10.35%) 
10872 (11.66%) 

564 (0.61%) 
1239 (1.33%) 
1187 (1.27%) 
9290 (9.97%) 

11661 (12.51%) 
3342 (3.59%) 
920 (0.99%) 

13610 (14.60%) 
1366 (1.47%) 
3665 (3.93%) 
6946 (7.45%) 
8209 (8.81%) 
225 (0.24%) 

2425 (2.60%) 
153 (0.16%) 

1823 (1.96%) 
19321 (20.73%) 

351 (0.38%) 

<0.001 
<0.001 
0.7879 
<0.001 
0.2486 
<0.001 
<0.001 
<0.001 
0.6276 
<0.001 
<0.001 
<0.001 
<0.001 
<0.001 
0.3725 
<0.001 
<0.001 
<0.001 
<0.001 
0.1533 

0.021 
0.1162* 
0.0012 
0.0227 
0.005 

0.0312 
0.1094* 
0.1121* 
0.0021 

0.1465* 
0.0305 
0.0214 
0.097 

0.0975 
0.0039 
0.0845 
0.0182 
0.0425 

0.1603* 
0.0064 

Days Until Scheduled Appointment 48.06 [47.68-48.44] 82.28 [81.74-82.82] <0.001 0.5180* 
Appointment Length 25.05 [24.98-25.11] 26.45 [26.38-26.52] <0.001 0.1251* 
Referral Required 16837 (14.46%) 14858 (15.94%) <0.001 0.0421 
Overbooked Timeslot 12302 (10.56%) 5602 (6.01%) <0.001 0.1482* 
Same Day Appointment 9926 (8.52%) 829 (0.89%) <0.001 0.2734* 
Canceled Appointment Ratio 20.40% [20.29%-20.51%] 29.07% [28.93%-29.22%] <0.001 0.4544* 
No-Show Appointment Ratio 3.65% [3.62%-3.69%] 5.12% [5.07%-5.17%] <0.001 0.2249* 
Guardian Gender (% Male) 14325 (22.98%) 7380 (19.86%) <0.001 0.0742 
Employment Status 

Full-Time 
Part-Time 

Student 
Unemployed 

58784 (50.48%) 
7903 (6.79%) 
1814 (1.56%) 

32678 (28.06%) 

31562 (33.86%) 
4758 (5.11%) 
977 (1.05%) 

23121 (24.81%) 

<0.001 
<0.001 
<0.001 
<0.001 

0.3324* 
0.0669 
0.0412 
0.0725 

Insurance (% Medicaid) 50497 (43.37%) 35233 (37.80%) <0.001 0.1123* 
Copay Due at Visit 8.07 [7.98-8.16] 6.29 [6.2-6.38] <0.001 0.1146* 
Maximum Temperature 65.23 [65.12-65.33] 63.94 [63.82-64.06] <0.001 0.0699 
Minimum Temperature 47.41 [47.31-47.51] 46.35 [46.24-46.47] <0.001 0.0615 
Temperature 56.19 [56.09-56.29] 55.03 [54.92-55.15] <0.001 0.0673 
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Wind Chill 27.32 [27.21-27.43] 25.96 [25.83-26.09] <0.001 0.1008* 
Precipitation 0.13 [0.13-0.13] 0.13 [0.13-0.13] 0.0235 0.01 
Wind Speed 10.38 [10.36-10.4] 10.42 [10.4-10.44] 0.0057 0.0121 
Cloud Cover 52.53 [52.35-52.72] 53.79 [53.59-54] <0.001 0.0395 
Relative Humidity 67.26 [67.19-67.34] 67.45 [67.37-67.53] 0.0011 0.0142 
Weather - Clear 29065 (24.96%) 22124 (23.74%) <0.001 0.0283 
Weather - Rain 56191 (48.26%) 45990 (49.34%) <0.001 0.0218 
Weather - Overcast 35816 (30.76%) 30136 (32.33%) <0.001 0.0341 
Weather - Partially cloudy 51561 (44.28%) 40942 (43.93%) 0.1066 0.0071 
 407 

Table 2. Model performance metrics on the 2019 validation data. 408 

 Precision Recall F1-score 

All Features 

Negative Class 0.83 0.75 0.79 

Positive Class 0.82 0.88 0.85 

Accuracy   
0.82 

Top 5 Features 

Negative Class 0.78 0.74 0.76 

Positive Class 0.81 0.84 0.82 

Accuracy   
0.80 

 409 

Table 3. Model training on the entire dataset followed by application and evaluation on individual 410 

racial and ethnic groups. 411 

Racial/Ethnic 
Group 

2015-2018 (# of Patients 
and Total Percent) 

2019 (# of Patients 
and ROC AUC) 

2020 (# of Patients 
and ROC AUC) 

Caucasian 177, 375 (93%) 67,559 (AUC: 0.89) 47,495 (AUC: 0.89) 
Black 5,644 (3.0%) 1,999 (AUC: 0.84) 1,466 (AUC: 0.83) 
Two or More 
Races 4,570 (2.4%) 1,933 (AUC: 0.75) 1,408 (AUC: 0.83) 

Hispanic/Latino 2,386 (1.2%) 1,095 (AUC: 0.79) 731 (AUC: 0.81) 
Asian American 1,073 (0.6%) 568 (AUC: 0.83) 372 (AUC: 0.85) 
Native American 204 (0.1%) 69 (AUC: 0.84) 84 (AUC: 0.78) 
 412 
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Figure Legends 413 

Figure 1. Performance of the machine learning (XGBoost) model for predicting no-shows in t414 

hold-out test set. AUROC of xgboost machine learning model all features (blue line), only the top415 

features (orange line) and the direct no-show/cancel rate (yellow line) in predicting no-shows f416 

2019 hold-out validation dataset. 417 
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Figure 2. Feature importance in predicting no-shows. SHAP summary plot for the top 10 featur420 

contributing to the XGBoost model. Each line represents a feature, and the abscissa is the SHA421 

value. Red dots represent higher feature values, blue dots represent lower feature values and gr422 

dots represent missing values. 423 

 424 
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Figure 3. Performance of the machine learning (XGBoost) model for predicting no-shows in t427 

external validation dataset. AUROC of xgboost machine learning model all features (blue lin428 

only the top-5 features (orange line) and the direct no-show/cancel rate (yellow line) in predicting n429 

shows of the 2020 telemedicine dataset during the pandemic season. 430 
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