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 40 

Abstract 41 

Given the fast-increasing prevalence of obesity and its comorbidities, it would be critical to 42 

improve our understanding of the cell-type level differences between the two key human adipose 43 

tissue depots, subcutaneous (SAT) and visceral adipose tissue (VAT), in their depot-specific 44 

contributions to cardiometabolic health. We integrated cell-type level RNA- and ATAC-seq data 45 

from human SAT and VAT biopsies and cell-lines to comprehensively elucidate transcriptomic, 46 

epigenetic, and genetic differences between the two fat depots. We identify cell-type marker 47 

genes for tissue specificity and functional enrichment, and show through genome-wide 48 

association study (GWAS) and partitioned polygenic risk score (PRS) enrichment analyses that 49 

the marker genes upregulated in SAT adipocytes have more prominent roles in abdominal 50 

obesity than those of VAT. We also identify SREBF1, a master transcription factor (TF) of fatty 51 

acid synthesis and adipogenesis, as specifically upregulated in SAT adipocytes and present in 52 

numerous SAT functional pathways. By integrating multi-omics data from an independent 53 

human cohort, we further show that the risk allele carrier status of seven abdominal obesity 54 

GWAS variants in the cis region of SREBF1 affects the adipocyte expression of 146 SAT 55 

adipocyte marker genes in trans. We replicate this finding independently in the UK Biobank by 56 

showing that the partitioned abdominal obesity PRSs of the trans gene sets differ by the regional 57 

SREBF1 risk allele carrier status. In summary, we discover the master TF, SREBF1, driving the 58 

SAT adipocyte expression profiles of more than a hundred of adipocyte marker genes in trans, a 59 

finding that indicates that human trans genes can be identified by integrating single cell omics 60 

with biobank data. 61 

 62 
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 63 

Abbreviations 64 

ASPC - Adipose stem and progenitor cell 65 

ATAC - Assay for transposase accessible chromatin 66 

AUC – Area under the curve 67 

BMI - Body mass index 68 

CCA - Canonical correlation analysis 69 

CMD - Cardiometabolic disease 70 

DE - Differential expression 71 

DA - Differential accessibility  72 

GWAS - Genome-wide association study 73 

KOBS - Kuopio Obesity Surgery Study 74 

LD - Linkage disequilibrium 75 

LEC - Lymphatic endothelial cells 76 

MASLD - Metabolic dysfunction-associated steatotic liver disease 77 

MGSBT - Marker genes shared between the SAT and VAT tissues 78 

MGSS - Marker genes specific to SAT 79 

MGSV - Marker genes specific to VAT 80 

NK - Natural killer cells  81 

PCA - Principal component analysis 82 

PRS - Polygenic risk score 83 

RNA-seq - RNA-sequencing 84 

RYSA - Roux-en-Y Gastric Bypass versus Single-Anastomosis Gastric Bypass  85 
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SAT - Subcutaneous adipose tissue 86 

SMC - Smooth muscle cells 87 

snRNA-seq - Single nucleus RNA-sequencing 88 

SREBF1 - Sterol regulatory element-binding transcription factor 1 89 

T2D - Type 2 diabetes 90 

TF - Transcription factor 91 

UKB - UK Biobank 92 

VAT - Visceral adipose tissue 93 

WHRadjBMI - Waist-hip ratio adjusted for BMI 94 

 95 
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Introduction 97 

Subcutaneous (SAT) and visceral adipose tissue (VAT) are the two key fat depots in humans. 98 

SAT has many important functional roles, including lipogenesis, lipolysis, hormonal, and 99 

endocrine functions, and SAT is also the fat depot that expands most in the presence of 100 

obesity1,2. Efficient adipogenesis (i.e. differentiation of preadipocytes to adipocytes) is critical 101 

for this expansion and buffering against lipotoxicity and low-grade inflammation, the hallmark 102 

of obesity1,3. VAT, i.e. the deeper intra-abdominal fat that lines internal organs, has a lesser 103 

capacity to expand in the presence of obesity and is even more prone to pro-inflammatory 104 

profiles than SAT1,4,5. It has been postulated that efficient SAT adipogenesis is likely relevant for 105 

this VAT inflammation as well6; however, the actual tissue- and cell-type-specific functions of 106 

VAT are not comprehensively understood in humans4, likely partly reflecting the practical 107 

difficulties in obtaining human VAT samples. Thus, it would be crucial to advance our 108 

understanding of the cell-type level transcriptional differences between these two human main 109 

fat depots and how they relate to depot-specific contributions to cardiometabolic health and 110 

disease. 111 

 112 

Previous bulk tissue RNA-seq studies have successfully identified cis regulatory variants and 113 

their targets genes in local cis expression quantitative trait locus (cis-eQTL) analyses7–10 114 

Furthermore, SAT bulk tissue analysis have detected abdominal obesity associated co-115 

expression networks, regulated by transcription factors (TFs), such as TBX1511, suggesting 116 

that TFs regulate cardiometabolic trait -associated gene expression in fat depots in trans. 117 

However, identification of trans regulatory variants and their target genes has been 118 

challenging in SAT and VAT due to the extensive multiple testing issue of the trans-eQTL 119 
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analysis and small samples sizes of SAT and VAT data available for study, which has 120 

hampered powerful enough trans-eQTL discovery. Accordingly, very few trans signals have 121 

been identified12,13 and replicated in SAT or VAT. Thus, it is not well understood how variant 122 

level differences in TFs, especially in disease-connected GWAS effect alleles, contribute to 123 

downstream target genes in trans in bulk tissues, and even less is known about single cell level 124 

trans regulatory variants their target genes in SAT or VAT. 125 

 126 

To advance trans gene discovery, we first performed dual-tissue single nucleus RNA-sequencing 127 

(snRNA-seq) from the same individuals’ SAT and VAT biopsies, which identified the unique 128 

cell-type marker genes in each fat depot for the main cell-types between SAT and VAT. We then 129 

separated these markers into those specific to SAT, specific to VAT, and shared between the two 130 

tissues. This design helped us identify a key adipose tissue TF, Sterol Regulatory Element 131 

Binding Transcription Factor 1 (SREBF1)14,15, among the unique SAT marker genes, present in 132 

87% of functional pathways of SAT adipocytes, suggesting that it exhibits an important trans 133 

regulatory role. Next, we found regional abdominal obesity -associated GWAS variants landing 134 

in SAT adipocyte open chromatin in the cis region of SREBF1. Using a large set of SAT snRNA-135 

seq data from an independent human cohort, we then identify more than one hundred SREBF1 136 

target genes, the adipocyte expression of which differ by the SREBF1 abdominal obesity GWAS 137 

risk variant carrier status. Finally, we discover by building regional PRSs for the SREBF1 trans 138 

target genes in the independent UK Biobank, that their abdominal obesity PRSs differ by the risk 139 

allele carrier status of the SREBF1 abdominal obesity GWAS variants, providing thus 140 

converging evidence to the single cell level data about the trans effects of this key TF. Overall, 141 
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our study integrate single cell omics and biobank data to identify a master SAT TF and a large 142 

number of its trans regulated adipocyte genes for abdominal obesity. 143 

 144 
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Methods 146 

Study cohorts 147 

KOBS cohort 148 

In our dual tissue study design, we analyzed both subcutaneous (SAT) and visceral adipose 149 

tissue (VAT) single nucleus RNA-sequencing (snRNA-seq) data from matching seven Finns 150 

with obesity (2 females and 5 males) from the Kuopio Obesity Surgery Study (KOBS) 151 

cohort16,17. This cohort comprises individuals with severe obesity (BMI>30 kg/m2) who 152 

underwent bariatric surgery, and whose SAT and VAT biopsies were both collected at the 153 

surgery baseline for these single-cell level omics analyses. The mean BMI and age of these seven 154 

individuals are 38.03 kg/m2 (SD=1.76) and 54.11 years (SD=2.03). All participants provided 155 

informed written consent. The study was approved by the local ethics committee. All research 156 

conformed to the principles of the Helsinki Declaration. 157 

 158 

UKB cohort 159 

For our genome-wide association study (GWAS) enrichment, polygenic risk score (PRS), and 160 

partitioned heritability analysis, we used the UK Biobank (UKB)18. Given that our single-cell 161 

level data are of European origin, we only included the unrelated European-origin UKB 162 

participants (n=391,701) in our analysis. As described previously18,19, the genotype data for these 163 

individuals were generated using two highly overlapping genotype arrays, Applied Biosystems 164 

UK BiLEVE Axiom Array (807,411 markers) and Applied Biosystems UK Biobank Axiom 165 

Array (825,927 markers)18, and imputed using the Haplotype Reference Consortium (HRC), 166 

UK10K, and 1000 Genomes panels19. Data from UKB were accessed under application 33934.  167 

 168 
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RYSA cohort 169 

Finnish individuals with obesity were recruited for the RYSA bariatric surgery study at the 170 

Helsinki University Hospital, Helsinki, Finland, as described previously20. In this study, we used 171 

the operation time-point SAT snRNA-seq data from 68 RYSA participants with obesity to test 172 

whether adipocyte expression of SAT adipocyte marker genes is affected in trans by the risk 173 

allele carrier status of seven WHRadjBMI GWAS variants in the SREBF1 cis region. The RYSA 174 

study was approved by the Helsinki University Hospital Ethics Committee, and all participants 175 

provided a written informed consent. All research conformed to the principles of the Helsinki 176 

Declaration. 177 

 178 

Genotype quality control and imputation in the KOBS and RYSA cohorts 179 

We genotyped DNAs of KOBS participants using the Infinium Global Screening Array-24 v1 180 

(Illumina). We performed quality control (QC) on the genotype data using PLINK v1.921 by 181 

excluding individuals with missingness >2% and removing unmapped, strand ambiguous, and 182 

monomorphic SNPs in addition to variants with missingness >2% and Hardy-Weinberg 183 

Equilibrium (HWE) p-value<10-6. We further imputed biological sex using the ‘--sex-check’ 184 

function in PLINK v1.921 and cross-checked with the reported sex of each individual.  185 

 186 

We performed genotype imputation against the HRC reference panel version r1.1 201622 on the 187 

Michigan imputation server after removing duplicate variants and variants with allele mismatch 188 

with the reference panel. Strand flips or allele switches needed to match the reference panel were 189 

performed on the server before haplotype phasing using Eagle v2.423 and genotype imputation 190 
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using minimac424. We performed QC on the imputed genotype data by removing SNPs with 191 

imputation score R2<0.3 and HWE p-value<10-6 for the downstream analyses. 192 

 193 

We genotyped the RYSA participants’ DNAs using the Infinium Global Screening Array-24 v1 194 

(Illumina). Genotype data QC, imputation, and post-imputation QC were performed for the 195 

RYSA cohort as described above. 196 

 197 

Nuclei isolation in VAT biopsies from the KOBS cohort  198 

To isolate nuclei from the snap-frozen VAT biopsies from the KOBS participants, we first 199 

combined and minced the VAT samples in a petri dish over dry ice and immediately transferred 200 

the minced tissue into a 500 μl chilled 0.1X Lysis Buffer consisting of 10 mM Tris-HCl, 10 mM 201 

NaCl, 3 mM MgCl2, 0.1% Tween-20, 0.1% IGEPAL CA-630, 0.01% Digitonin, 1% BSA, 1 mM 202 

DTT, and 1 U/μL RNase inhibitor. After a 15-minute incubation period, the lysate mixed with a 203 

500 μl chilled Wash Buffer containing 10 mM Tris-HCl, 10 mM NaCl, 3 mM MgCl2, 1% BSA, 204 

0.1% Tween-20, 1 mM DTT, and 1 U/μL RNase inhibitor was passed through a 70 μm Flowimi 205 

Cell Strainer into a 2 ml tube. Nuclei were centrifuged at 500 rcf for 5 minutes at 4°C and the 206 

supernatant was removed without disrupting the nuclei pellet, followed by a resuspension in a 1 207 

ml chilled Wash Buffer. Nuclei were passed through a 40 μm Flowimi Cell Strainer into a 2 ml 208 

tube and centrifuged at 500 rcf for 5 minutes at 4°C. We removed the supernatant without 209 

disrupting the nuclei pellet and resuspended in a 30 μl chilled Diluted Nuclei Buffer containing 210 

1X Nuclei Buffer (10x Genomics), 1 mM DTT, and 1 U/μl RNase inhibitor. We measured the 211 

concentration and overall quality of the nuclei using Countess II FL Automated Cell Counter 212 

after staining with trypan and DAPI and used the Single Cell Multiome ATAC + Gene 213 
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Expression Reagent Kit (10x Genomics) for the joint snRNA- and snATAC-seq library 214 

construction. We analyzed the quality of cDNA and libraries using Agilent Bioanalyzer and 215 

sequenced the libraries on an Illumina NovaSeq X Plus (snRNA) and Next seq 500 (snATAC) 216 

with a target sequencing depth of 400 million read pairs for both snRNA- and snATAC-seq. 217 

 218 

Nuclei isolation in SAT biopsies of the KOBS and RYSA cohorts 219 

We performed SAT snRNA-seq experiments on the snap-frozen SAT biopsies from the KOBS 220 

participants, as previously described11. Briefly, we first pooled approximately 100 mg of each 221 

biopsy and isolated nuclei from the pooled biopsies as described earlier11. Next, we measured the 222 

concentration and overall quality of the nuclei using Countess II FL Automated Cell Counter 223 

after staining with trypan and DAPI and used the Single Cell 3’ Reagent Kit v3.1 (10x 224 

Genomics) for the library construction. We analyzed the quality of cDNA and gene expression 225 

library using Agilent Bioanalyzer and sequenced the library on an Illumina NovaSeq SP with a 226 

target sequencing depth of 600 million read pairs. 227 

 228 

In this study, we used the operation time-point SAT snRNA-seq data from 68 participants with 229 

obesity of the RYSA cohort, generated as part of the full RYSA cohort, by randomly pooling 8 230 

SAT samples/batch for nuclei isolation. We isolated nuclei and constructed libraries for SAT 231 

snRNA-seq from each batch as described above and sequenced libraries from all batches 232 

together on an Illumina NovaSeq S4 with a target sequencing depth of 400 million read pairs per 233 

batch. 234 

 235 

Processing of the SAT snRNA-seq data from the RYSA cohort 236 
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We aligned the raw snRNA-seq data in a FASTQ format file for each batch against the GRCh38 237 

human genome reference and GENCODE v42 annotations25 using STAR v2.7.10b26 with the ‘--238 

soloFeatures GeneFull’ option to account for full pre-mRNA transcripts. We evaluated the 239 

quality of the raw and mapped snRNA-seq data using FastQC. Next, we used DIEM v2.4.027 to 240 

remove empty droplets and droplets with high amounts of ambient RNA. We set droplets with 241 

UMI<500 as debris, used k=50 for the initialization step with k-means clustering, and otherwise 242 

used the default parameters. After the clustering step, we removed clusters of highly 243 

contaminated droplets characterized by low average UMIs, low average number of unique genes 244 

detected (nFeatures), high percentage of reads mapped to the mitochondrial genome (%mito), 245 

and high number of mitochondrial and ribosomal genes as top expressed features. Next, we used 246 

Seurat v4.3.0.128 to remove low-quality droplets with UMI<500, nFeatures<200, %mito>10%, 247 

and spliced read fraction³75%, log-normalize gene counts using the ‘NormalizeData’ function, 248 

identify top 2,000 variable genes excluding mitochondrial and ribosomal genes using the 249 

‘FindVariableFeatures’ function, scale the normalized gene counts to mean 0 and variance 1 250 

using the ‘ScaleData’ function, perform principal component analysis (PCA) using the 251 

‘RunPCA’ function, and cluster the nuclei with a standard Louvain algorithm, first 30 PCs, and a 252 

resolution of 0.5. For the remaining nuclei, we removed contaminated counts using DecontX29 253 

with the previously removed low-quality nuclei as the background and the Seurat cluster 254 

assignment as the ‘z’ and removed additional low-quality nuclei with UMI<500, UMI>30,000, 255 

nFeatures<200, and %mito>10% based on the remaining clean counts. To identify the 256 

originating participant of each nucleus, we used demuxlet from popscle software tool30 with ‘--257 

min-MQ 30’ and high-quality imputed genotype data. We only included nuclei classified as a 258 

singlet and assigned the best matching participant to identify the originating participant for each 259 
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nucleus. Next, we used DoubletFinder31 to identify and remove any remaining doublets. As 260 

DoubletFinder requires predicted number of doublets in each dataset, we performed pN-pK 261 

parameter sweeps on a subset of 10,000 nuclei to select pN of 0.25 and the most optimal pK 262 

value maximizing mean-variance normalized bimodality coefficient for each batch, as previously 263 

recommended27. 264 

  265 

After performing the QC, we used Seurat v4.3.0.128 to merge all remaining high-quality droplets 266 

from the batches and subset for nuclei originating from operation time-point samples of the 68 267 

participants from the RYSA cohort included in this study. In the subset, we kept only the genes 268 

with at least 3 raw counts in at least 3 nuclei29 and performed gene count normalization, variable 269 

gene identification, data scaling, and PCA, as described above. To account for variation in gene 270 

expression driven by batch effect, we used Harmony v1.0.332 to integrate on batch and clustered 271 

the nuclei with a standard Louvain algorithm, first 30 reductions from Harmony, and a resolution 272 

of 0.5. Cell-type annotations were performed using SingleR v1.8.133, as described above, with 273 

the SAT single-cell and snRNA-seq data from the previously published adipose tissue atlas by 274 

Emont et al. as a reference34. 275 

 276 

Processing of the SAT VAT snRNA-seq data from the KOBS cohort 277 

We aligned the VAT and SAT snRNA-seq data from the seven KOBS biopsies to the GRCh38 278 

human genome reference with Ensembl annotations using CellRanger-arc -count v2.0.035 and 279 

CellRanger -count v6.1.135 for VAT and SAT, respectively. As the VAT sequencing from the 280 

seven KOBS VAT biopsies was generated using the 10x Genomics Multiome platform, we 281 

simultaneously profiled RNA and ATAC in each cell. We subset the data to include the nuclei 282 
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passing the QC for both RNA and ATAC, as recommended by CellRanger-arc, while only 283 

including the VAT snRNA-seq data in the downstream analyses of this study. The KOBS SAT 284 

snRNA-seq data were generated as a single modality and processed using the same reference 285 

(GRCh38 human genome) but with the base software for CellRanger. Similarly to VAT, we only 286 

included the nuclei from SAT that passed the recommended filtering from CellRanger. For the 287 

remaining SAT and VAT nuclei, we separately further filtered out those containing ambient 288 

reads using DIEM27 through the removal of droplets from a debris cluster that reflected high 289 

amounts of background RNA or low levels of nuclear RNA. To remove genetic doublets and 290 

demultiplex the KOBS VAT Multiome samples and SAT snRNA-seq samples back to their 291 

individuals of origin, we ran demuxlet30 against the imputed genotype data of the individuals. 292 

We removed all SAT and VAT cells that were not classified as singlets. We then ran DecontX29 293 

to remove contaminated reads within each droplet and filtered out nuclei with high levels of 294 

ambient RNA, keeping those with UMIs over 200 and mitochondrial read percentage<10%. 295 

These QC processes resulted in 3,216 nuclei for VAT and 3,516 nuclei for SAT from the same 296 

individuals.  297 

 298 

Integration and clustering of SAT and VAT snRNA-seq data from the KOBS cohort 299 

To find differences between SAT and VAT cell-type level gene expression from the KOBS 300 

biopsy samples, we performed integration between the tissues using Seurat v4.3.028. The count 301 

data for nuclei from each tissue were first log-normalized using the NormalizeData function of 302 

Seurat28, with the default scaling factor of 10,000. Using these normalized count data, the top 303 

2000 variable genes per tissue were calculated using the FindVariableFeatures function. 304 

Afterwards, we integrated the two tissues using canonical correlation analysis (CCA) with the 305 
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IntegrateData function of Seurat28. Following integration, the normalized read counts were 306 

scaled with a mean of 0 and variance of 1. In the integrated samples with a total of 6,732 cells 307 

from across the SAT and VAT snRNA-seq data, we performed PCA and identified clusters using 308 

30 PCs and a resolution of 0.8. 309 

 310 

SnRNA-seq cell-type assignment and unique marker gene identification in the KOBS SAT 311 

and VAT biopsy samples 312 

We used SingleR v2.0.033 with a previously published human single-cell adipose atlas34 as a 313 

reference to annotate the data at the individual cell level36. We ran the FindAllMarkers function 314 

in Seurat28 using only.pos = TRUE and min.cells.group=50 to identify marker genes of each cell-315 

type. We only included cell-types that consisted of at least 50 nuclei from the integrated tissues. 316 

P-values were adjusted for multiple testing using the Bonferroni approach. To identify marker 317 

genes unique per cell-type, we removed genes detected as marker genes (padj<0.05) for multiple 318 

cell-types. These marker genes are shown in Supplementary Table 1. 319 

 320 

Tissue-specific marker gene identification  321 

To find differences in the expression profiles of the three most prevalent SAT and VAT cell-322 

types (adipocytes, macrophages, and adipose stem and progenitor cells (ASPC)) in the KOBS 323 

cohort, we identified three separate sets of cell-type marker genes. These three sets comprised 324 

cell-type marker genes specific to SAT (MGSS), VAT (MGSV), and shared between the tissues 325 

(MGSBT). We identified tissue-specific markers using the FindMarkers function of Seurat28, 326 

using a log2 fold change threshold of >0, to compare the SAT and VAT data of each cell-type. In 327 

this tissue-specific marker gene identification, we only included the genes identified as unique 328 
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markers for each cell-type above. We adjusted p-values for multiple testing using FDR<0.05 for 329 

the total number of cell-type-specific markers from above. Using this adjustment method, we 330 

identified genes that are not only cell-type-specific but also show differential expression (DE) 331 

between VAT (MGSV) and SAT (MGSS). We also identified a third group of marker genes for 332 

each cell-type, i.e., those that showed no significant DE (FDR>0.05) between SAT and VAT. 333 

We classified these as marker genes shared between the SAT and VAT tissues (MGSBT). 334 

Overall, this resulted in 9 cell-type marker gene sets, i.e., three per cell-type (macrophages, 335 

adipocytes, and ASPC) with no overlap between them. These 9 sets are listed in Supplementary 336 

Table 2. 337 

 338 

Identification of enriched functional pathways  339 

After identifying the 9 sets of cell-type marker genes, as described above, we ran WebGestalt37 340 

to functionally characterize each set, using all genes with non-zero expression in at least two 341 

cells in the cell-type34 irrespective of the tissue origin, as the background. For each set, we tested 342 

for significant (FDR<0.05) overrepresentation of genes from Gene Ontology (GO) biological 343 

processes, cellular components, and molecular functions. We then identified the top pathway 344 

genes (i.e. the genes that appeared in >1 significantly enriched pathways) by ranking each gene 345 

by the number of times it appeared in the identified pathways.  346 

 347 

GWAS enrichment analysis of the cell-type marker genes  348 

We assessed the 9 sets of tissue-specific and tissue-shared cell-type marker genes for significant 349 

enrichments of genetic associations with BMI, WHRadjBMI, T2D, and MASLD using 350 

MAGENTA v2.4 (Meta-Analysis Gene-set Enrichment of variaNT Associations)38.  351 
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 352 

We first downloaded publicly available European-only GWAS summary statistics for T2D39, 353 

while for WHRadjBMI and BMI, we used the UKB GWAS data we generated, as described 354 

above. For every outcome, we then used the summary statistics to generate association scores for 355 

each gene within the gene set based on the p-values of all variants within a 500kb upstream and 356 

downstream window. Gene score-cutoff tests using the 75th percentiles of the scores of all genes 357 

as cutoffs were performed to evaluate enrichment. While MAGENTA38 filters out genes near one 358 

another, we retained all genes per set in our analyses due to our small gene set sizes. 359 

 360 

Construction of marker gene -based regional and genome-wide PRSs for abdominal 361 

obesity, BMI, and type 2 diabetes in UKB 362 

We built both marker gene -based regional and genome-wide PRSs for waist-hip ratio adjusted 363 

for BMI (WHRadjBMI), body mass index (BMI), and type 2 diabetes (T2D) for all unrelated 364 

Europeans from UKB18. In our analysis, WHRadjBMI was used as a well-established proxy for 365 

abdominal obesity11. The genome-wide PRSs for these traits were constructed using all SNPs 366 

(see below), whereas the regional PRSs for each trait were created using the cis regional SNPs 367 

(gene+/-500kb) of each of the autosomal marker gene sets separately (MGSBT, MGSS, and 368 

MGSV) for the three main cell-types (adipocytes, macrophages, and ASPCs). We excluded the 369 

set that contained shared SAT/VAT macrophage marker genes as it comprised only 9 genes, and, 370 

therefore, it remained too small for reliable regional PRS building given the technical issues with 371 

overfitting in PRS40. As WHRadjBMI is a highly sex-specific trait11, we also built the regional 372 

WHRadjBMI PRSs for males (n= 88,988) and females (n=104,614) separately. Thus, in addition 373 
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to the genome-wide PRSs, we constructed 24 regional PRSs for WHRadjBMI and 8 regional 374 

PRSs for T2D and BMI, respectively.  375 

 376 

Construction of WHRadjBMI and BMI PRSs 377 

To construct the WHRadjBMI and BMI PRSs, we randomly selected 50% of the unrelated 378 

Europeans from UKB (n=195,863) to generate GWAS summary statistics as the base data for the 379 

PRS, and applied the PRS model in the remaining 50% of the cohort (i.e., the target group). For 380 

the GWASs, the data were filtered to only retain variants with MAF >1% and INFO>0.8. We 381 

also removed individuals with >1% of their genotypes missing or extreme heterozygosity, as 382 

well as variants missing in >1% of the subjects or violating Hardy-Weinberg equilibrium from 383 

the genotype data target group41. We conducted the GWASs of WHRadjBMI and BMI using 384 

linear-mixed model approach of BOLT-LMM v2.3.623, with age, age2, sex, the top 20 genetic 385 

PCs, testing center, and genotyping array as covariates, where we applied a rank-based inverse 386 

normal transformation for each outcome. For WHRadjBMI, given the sex-specificity of the 387 

outcome11,42,43, we normalized twice, first in all individuals, and then for males and females 388 

separately. Next, we fit the PRS models and computed the PRSs for WHRadjBMI and BMI for 389 

the individuals in the target group using the split-validation mode from lassosum44 (n=193,602) 390 

and the filtered GWAS summary statistics as the base data for the PRS models. 391 

 392 

Construction of T2D PRSs 393 

To construct the T2D PRSs, we used the publicly available T2D GWAS summary statistics of 394 

Europeans without UKB from the DIAGRAM Consortium45 as the base data. We built the PRS 395 

models using the target group genotype data employing PRScs46, with the provided LD matrix 396 
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from the Europeans in the 1000 Genomes Project as the LD reference, and applied the models to 397 

the target group using PLINK.    398 

 399 

Calculating the explained variance in the trait by the PRSs 400 

We calculated the incremental variance explained (R2) in the trait against a null model containing 401 

the covariates of age, age2, the top 20 genetic PCs, testing center, genotyping array, and sex 402 

using lassosum44. For T2D, we calculated a delta AUC, similarly to the incremental variance 403 

from above.  404 

 405 

We evaluated the significance of each regional PRS by ranking the observed incremental R2 or 406 

delta AUC against the incremental R2/delta AUC of 10,000 PRSs similarly built from the cis 407 

regional variants of random gene sets of the same size as in the regional PRS set, using all 408 

expressed genes (counts>=1 in at least 2 nuclei)34 in the cell-type of interest as a background. 409 

The P-value was defined as the number of permutations in which the R2/delta AUC is larger than 410 

the calculated PRS divided by 10,000. 411 

 412 

Partitioned heritability assessment of PRS-enriched gene sets 413 

We performed a partitioned heritability analysis with LD Score regression (LDSC)47,48 to assess 414 

the genes with WHRadjBMI R2 enriched PRSs for enrichment in the WHRadjBMI heritability 415 

relative to the genome, similarly as in Finucane et al.48. Briefly, we used LDSC to estimate the 416 

LD scores from all SNPs in the genome, as well as from all SNPs residing with the cis regions of 417 

each PRS-enriched gene set. Scores were constructed in 76,758 randomly selected, unrelated 418 

Brits from UKB (35,257 males, 41,501 females) for computational efficiency, and as in Finucane 419 
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et al.48, we only included SNPs with MAF>5% for the analysis. We then used the same 420 

WHRadjBMI GWAS summary statistics as in the PRS analysis to compute the WHRadjBMI 421 

heritability of the genome and marker gene annotations and test each marker annotation for 422 

significant (p<0.05) heritability enrichment, defined as the proportion of heritability divided by 423 

the proportion of the genome from the annotation48.  424 

 425 

Longitudinal RNA- and ATAC-sequencing during human SAT primary preadipocyte 426 

differentiation  427 

We previously performed a longitudinal adipogenesis experiment using human SAT primary 428 

preadipocytes and generated longitudinal bulk RNA- and ATAC-seq data on samples collected at 429 

the 0 day (0d), 1d, 2d, 4d, 7d, and 14d timepoints, with 4 isogenic replicates per timepoint, as 430 

described earlier7,49. Peaks from the ATAC-seq were filtered to remove blacklisted regions and 431 

identify consensus peaks, as described in detail previously7.  432 

 433 

Differential expression (DE) analysis across six adipogenesis time points  434 

We examined the longitudinal expression patterns of the top pathway-enriched genes from the 435 

adipocyte MGSS set (n=43 genes) using ImpulseDE2 v0.99.1050. We used the runImpulseDE2 436 

function with default parameters and boolCaseCtrl=FALSE, boolIdentifyTransients=TRUE, and 437 

scaNProc=1. P-values were corrected for multiple testing using FDR<0.05. As the adipogenesis 438 

experiment was conducted in SAT preadipocytes, we only ran this DE analysis for genes in the 439 

adipocyte MGSS set. 440 

 441 
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Identification of longitudinally co-expressed clusters of adipocyte pathway genes and their 442 

regulators during human adipogenesis 443 

To search for longitudinal co-expression patterns among the adipocyte pathway genes across 444 

human adipogenesis, we ran DPGP v0.151 to cluster genes by their expression trajectories. We 445 

ran DPGP with the timepoint data of the adipogenesis experiment described above and only 446 

included the genes that we identified as significantly longitudinally DE (FDR<0.05) during 447 

human adipogenesis from ImpulseDE250 and expressed across adipogenesis (n=42).  448 

 449 

Identification of co-accessible peaks during human adipogenesis within the cis region of 450 

SREBF1 451 

To identify co-accessible peaks in the SREBF1 cis region during human adipogenesis, we used 452 

the longitudinal ATAC-seq data from the human SAT primary preadipocyte differentiation 453 

experiment described above. We first identified SAT adipocyte peaks within ±500 kb of 454 

SREBF1, a key SAT adipocyte marker gene. To determine temporal differential accessibility 455 

(DA) of these SAT peaks and identify clusters of longitudinally co-accessible peaks, we ran 456 

ImpulseDE250 as described above on the accessibility counts for the peaks, subset the data to the 457 

peaks passing an FDR threshold<0.05, and then clustered the DA peaks (n=120) using DPGP51, 458 

as described above. We only included the clustered peaks that passed a cluster assignment 459 

threshold of probability>0.9. 460 

 461 

Identification of WHRadjBMI GWAS variants within the longitudinally co-accessible SAT 462 

adipocyte peaks in the SREBF1 cis region 463 
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We next investigated the 5 longitudinally co-accessible SAT adipocyte peaks discovered in the 464 

SAT adipogenesis experiment within the cis regions of SREBF1 for WHRadjBMI GWAS 465 

variants. Accordingly, we overlapped the positions of the genome-wide significant (p<5´ 10-8) 466 

WHRadjBMI GWAS variants using the summary statistics from a previously published 467 

extensive WHRadjBMI GWAS of the GIANT–UKB meta-analysis52 with the positions of the 468 

co-accessible SAT adipocyte peaks.  469 

 470 

Identification of adipocyte MGSS genes by risk allele status of the WHRadjBMI GWAS 471 

variants in the SREBF1 region 472 

We tested whether the risk allele carrier status of the seven WHRadjBMI GWAS variants 473 

residing in the longitudinally co-accessible SAT peaks in the SREBF1 region affects the SAT 474 

adipocyte expression of SREBF1 and other SAT adipocyte markers genes in trans using RYSA 475 

SAT adipocyte snRNA-seq data. Briefly, for each variant, we labeled each individual from the 476 

RYSA cohort with zero copies of the GWAS trait-increasing allele as “non-carriers” and those 477 

with one or two copies of the trait-increasing allele as “carriers,” and then labelled each 478 

individual cell in the cohort as coming from a “carrier” or a “non-carrier” individual. We  subset 479 

the SAT snRNA-seq data to adipocytes and ran the FindMarkers function in Seurat28 with 480 

logfc.threshold = 0 between cells labeled “carriers” and “non-carriers” while only testing the 481 

adipocyte MGSS gene set and adjusting the p-values for multiple testing using FDR<0.1. We 482 

repeated this for each of the seven SNPs. For each trans gene set, we built module scores using 483 

the AddModuleScore function in Seurat v4.3.028 in SAT adipocytes from the RYSA cohort to 484 

determine the average expression across all adipocytes between carriers and non-carriers. 485 

 486 
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Identification of adipogenesis open chromatin peaks by cell-type 487 

To identify upregulated and shared peaks at the preadipocyte and adipocyte stages of human 488 

adipogenesis, we ran DESeq253 on the raw peak count data generated using ATAC-seq at the day 489 

0 and 14 time points in the SAT adipogenesis experiment described above. Peaks with a 490 

log2FC>0.1 and Bonferroni adjusted P (padj)<0.05 were classified as upregulated in 491 

preadipocytes, while the peaks with a log2FC<-0.1 and padj<0.05 were classified as upregulated 492 

in adipocytes. The remaining peaks were classified as shared between the human preadipocytes 493 

and adipocytes. 494 

 495 

Construction of abdominal obesity PRSs in UKB for the adipocyte marker genes affected 496 

by the seven regional SREBF1 variants in trans 497 

To investigate the abdominal obesity risk of the regional variants in the trans gene sets, the 498 

adipocyte expression of which is up- or downregulated by the SREBF1 variant carrier status, we 499 

constructed partitioned PRSs using the cis regional SNPs of these trans gene sets. The PRSs 500 

were built separately for each up/downregulated trans gene set for the seven SNPs, resulting in 501 

14 total unique PRS sets. As abdominal obesity risk differs by sex42,43, we analyzed these 502 

partitioned abdominal obesity PRSs in all individuals, females, and males separately. Due to the 503 

small region sizes and to allow for fine-grained control of the SNPs comprising each PRS, we 504 

used a clumping and thresholding (C+T) approach with PLINK v1.9 for the PRS construction, 505 

with the same GWAS summary statistics for WHRadjBMI described above, as the base data. We 506 

partitioned the remaining 50%, not used for the GWAS, into two cohorts, a 30% test group 507 

(n=115,120) for performing the LD clumping and learning the optimal thresholding parameter, 508 

and a 20% validation group (n=76,758) to apply the learned PRS model and perform 509 
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downstream analyses. We performed QC on the test and validation genotype data, similarly as 510 

described above.  511 

 512 

To build the partitioned abdominal obesity PRSs, we first performed LD clumping on the full 513 

genotype data of the test groups with PLINK v1.9 using R2 of 0.2 and window size of 250 kb, 514 

and built the PRSs from the independent SNPs passings p-value thresholds ranging from 5´10-8 515 

to 0.5 to empirically determine the p-value threshold that maximizes the incremental variance 516 

explained in WHRadjBMI in the test group. Next, for each trans gene set, we identified all C+T 517 

SNPs that landed in the adipocyte upregulated open chromatin peaks (described earlier), using 518 

the empirically determined p-value thresholds of  p<0.05, p<0.005, and p<0.1 for all individuals, 519 

females, and males, respectively. To avoid direct SREBF1 cis effects on the abdominal obesity 520 

risk, we removed the seven SNPs in the SREBF1 region as well as any C+T SNPs in LD 521 

(R2>0.1) with any of these seven SNPs from these partitioned PRS analyses. We computed PRSs 522 

for the sets that contained >= 5 valid SNPs. As explained before, the incremental variance (R2) 523 

was calculated for each PRS and compared against 10,000 permuted PRSs built from the same 524 

numbers of C+T SNPs.  525 

 526 

After computing individual level WHRadjBMI PRSs, we compared the polygenic risk, i.e., the 527 

PRS magnitudes, in the regional PRSs of the trans gene sets between the SREBF1 variant 528 

carriers and non-carriers. First, we classified individuals in the UKB PRS cohort into “carriers” 529 

or “non-carriers” in the same way as in the RYSA cohort. Next, we performed a two-sided 530 

Wilcoxon test between the WHRadjBMI PRSs of the carriers and non-carriers within each group 531 

while correcting for multiple testing using Bonferroni. 532 
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Results 533 

Study design 534 

The summary of the study design is shown in Supplementary Figure 1. Briefly, by first 535 

identifying cell- and tissue-type expression profiles that drive functional differences between the 536 

two key human fat depots, subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) 537 

and genetic enrichments of these SAT and VAT -specific genes for abdominal obesity, we 538 

discovered a transcription factor (TF) gene preferentially involved in numerous functional SAT 539 

pathways over VAT. We then further investigated the cell-type level regulatory mechanisms of 540 

this TF, and discovered that the regional abdominal obesity GWAS variants of this TF affect the 541 

adipocyte expression of tens of SAT adipocyte marker genes in trans in the independent RYSA 542 

cohort. Finally, we confirmed the identified trans effects of the TF variants by comparing the 543 

partitioned regional PRSs of the trans genes by their risk allele carrier status at the biobank level 544 

(Figure 1a). 545 

 546 

Marker gene analysis reveals distinct differences between SAT and VAT in cell-type level 547 

expression profiles 548 

To elucidate cell-type level functional differences between SAT and VAT, the two main human 549 

fat depots1, we first investigated SAT and VAT gene expression profiles at the cell-type 550 

resolution using SAT and VAT biopsies from the same individuals (Figure 1b-c). These dual 551 

tissue fat depot data from the same individuals, which reduce confounding by phenotypic 552 

differences between the donors of the SAT and VAT biopsies, enabled us to identify unique SAT 553 

and VAT cell-type marker genes, or genes that are differentially upregulated in only one cell-554 

type, and also unique to each adipose tissue depot in their marker gene status (see Methods). 555 
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Figure 1d shows the adipocyte cell-type markers distributed by tissue specificity. Supplementary 556 

Table 1 shows the identified unique cell-type marker genes for all SAT and VAT cell-types after 557 

integrating the single nucleus level data of the two tissues. As small differences often drive 558 

depot-specific gene and functional patterns42, we sought to study not only differences in 559 

expression between the depots but also shared transcriptional profiles, as this may elucidate the 560 

connection and shared characteristics between the tissues. Thus, from each cell-type marker set, 561 

we identified sets of unique marker genes specific to each tissue and shared across the two, 562 

resulting in 3 sets: marker genes specific to SAT (MGSS), marker genes specific to VAT 563 

(MGSV), and marker genes shared between tissues (MGSBT) (Supplementary Table 2). We 564 

focused our analyses on the three major shared cell-types between SAT and VAT, i.e., adipose 565 

stem and progenitor cells (ASPCs), adipocytes, and macrophages due to their functional pathway 566 

enrichments (see below) and highest number of nuclei available across the two tissues. The 567 

MGSS sets contained 244, 208, and 250 unique cell-type marker genes for ASPCs, adipocytes, 568 

and macrophages; the MGSV sets 131, 225, and 224; and the MGSBT sets 112, 155, and 9, 569 

respectively (Supplementary Table 2). 570 

 571 

Shared and tissue-specific marker genes are enriched for genetic signals of obesity and 572 

related CMDs 573 

As both adipose tissue depots are known to be impacted by obesity and related disorders2,4,5,54, 574 

we first examined these marker gene sets for GWAS variant enrichments of obesity and related 575 

CMDs. Accordingly, we tested the variants in the cis regions (±500kb) of the three sets per cell-576 

type in three cell-types, MGSS, MGSV, and MGSBT (nine total sets), for enrichment of BMI, 577 

abdominal obesity (using WHRadjBMI as a proxy), and type 2 diabetes (T2D) GWAS signals 578 
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using GWAS summary statistics and the MAGENTA tool (see Methods). We observed 579 

significant enrichments (FDR<0.05) in the ASPC MGSBT for BMI, and in the adipocyte MGSS 580 

for T2D and WHRadjBMI (Table 1), while no enrichments were detected for any cell-types with 581 

the MGSV sets.  582 

 583 

Next, we assessed each marker gene set for enrichment of polygenic risk for these obesity and 584 

related traits. We evaluated the predictive power of annotated polygenic risk scores (PRSs) for 585 

WHRadjBMI, BMI, and T2D from the cis regional variants of each set in the large UK Biobank 586 

(UKB) cohort. We first built PRSs for all individuals for each cell-type set and found that the 587 

regional PRS constructed for the adipocyte MGSS gene set was a significant predictor 588 

(pR2<2.23´10-308) of WHRadjBMI. Next, we followed up on these WHRadjBMI PRS findings 589 

using permutations. Of our 10,000 permutation scores, each similarly built from SNPs residing in 590 

the cis regions of the same number of randomly selected adipocyte expressed genes from either 591 

tissue, we observed only 0.82% to have an incremental R2 greater than or equal to that of the 592 

adipocyte MGSS WHRadjBMI PRS (R2=1.20%; pperm10,000=0.0082) (Figure 2; Supplementary 593 

Table 3). Due to this observed enrichment in variance explained of WHRadjBMI, which is 594 

known to be a sex-dimorphic trait43,55, we also constructed these regional WHRadjBMI PRSs for 595 

females and males separately. We observed the enrichment in all individuals to be driven by 596 

females as the WHRadjBMI PRS constructed for the cis regional variants of the adipocyte 597 

MGSS genes was significantly enriched (R2=2.12%, pperm10,000= 0.0101) in females, but not in 598 

males (Figure 2; Supplementary Table 3). In line with previous connections with visceral adipose 599 

tissue56,57, we found that the variance explained for T2D was significantly enriched for the 600 

adipocyte MGSV gene set (Delta AUC=1.16%, pperm1,000= 0.036). No other significant 601 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 23, 2024. ; https://doi.org/10.1101/2024.11.22.24317804doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.22.24317804


28 
 

enrichments in variance explained were detected for BMI or T2D in our PRS analyses, and no 602 

other significant enrichments were detected for other cell-types for WHRadjBMI.  603 

 604 

After identifying the adipocyte MGSS WHRadjBMI PRS results as significantly enriched for 605 

variance explained for all individuals and females, we performed a partitioned heritability 606 

analysis  to further corroborate these enrichments. We observed that the heritability (h2) of 607 

WHRadjBMI from the SNPs in the cis regions of the adipocyte MGSS set was significantly 608 

enriched in all individuals (h2 enrichment=2.21, p=0.00150) and in females (h2 enrichment=2.47, 609 

p=1.54 ´ 10-4), in line with the regional PRS analysis. 610 

 611 

Taken together, the GWAS and PRS enrichments and significant heritability enrichment results 612 

highlight the adipocyte MGSS gene set as particularly important for the polygenic risk of 613 

abdominal obesity. 614 

 615 

Identification of SREBF1 as the key SAT-enriched adipocyte marker gene 616 

After identifying WHRadjBMI PRS enrichments in the adipocyte MGSS set, we explored the 617 

functional differences of the SAT and VAT gene sets. For each major cell-type, we tested for 618 

overrepresentation of genes in Gene Ontology (GO) categories using all three sets, MGSS, 619 

MGSV, and MGSBT (Supplementary Tables 4-10). There were no significant functional 620 

pathways for the macrophage MGSS and MGSBT sets. Among the adipocyte MGSV and 621 

MGSBT gene sets, we detected 170 and 9 significant pathways, respectively (FDR<0.05). 622 

Among the pathways of the adipocyte MGSV gene set, 103 (61%) and 98 (58%) pathways 623 

included the well-known insulin metabolism genes, INSR and IRS2, respectively. However, the 624 
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strongest adipose tissue function-related pathway enrichments were observed in the adipocyte 625 

MGSS set (FDR<0.05), including regulation of fatty acid metabolic process, positive regulation 626 

of triglyceride metabolic process, and neutral lipid metabolic process amongst other breakdown-627 

of-molecule centered processes (Supplementary Table 4). 628 

 629 

In more detail, we found 23 significant functional pathways (FDR<0.05) for the adipocyte 630 

MGSS set (Figure 3a; Supplementary Table 4). Notably, we observed a strong presence of the 631 

master transcription factor (TF) of adipogenesis and fatty acid biosynthesis, SREBF114, in these 632 

MGSS pathways. Of the 23 enriched functional pathways for adipocyte MGSSs (FDR< 0.05), 20 633 

(87%) included SREBF1, making it the most prevalent pathway gene, and thus supporting its 634 

importance in the SAT adipocyte function. Consistent with the known role of SREBF1 as an 635 

adipose master TF14,58,59, we also observed that 8 of the most prevalent pathway genes (genes 636 

present in 8 or more pathways) in the adipocyte MGSS gene set are predicted transcription 637 

targets of SREBF1 that have also previously been linked to obesity, including LEP60 and FASN61 638 

(Figure 3b).  639 

 640 

Figure 3c shows how this key MGSS TF, SREBF1 exhibits a substantially higher adipocyte-641 

enriched expression level in SAT than VAT. We confirmed the adipocyte unique marker gene 642 

status of SREBF1 in SAT snRNA-seq in the independent RYSA cohort (n=68) (average log2 fold 643 

change=0.473, padj<2.23´10-308), thus replicating its role as a significant SAT specific marker. 644 

Additionally, we replicated the lack of preferential expression of SREBF1 in VAT adipocytes, in 645 

an independent VAT snRNA-seq data from another cohort34 comprising obese individuals 646 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 23, 2024. ; https://doi.org/10.1101/2024.11.22.24317804doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.22.24317804


30 
 

(BMI>30) of European descent (n=5), which, similarly to the KOBS VAT samples, showed low, 647 

diffuse expression of SREBF1 in all VAT cell-types (Supplementary Figure 2).  648 

 649 

Identification of temporally co-expressed adipocyte MGSS pathway genes during human 650 

adipogenesis 651 

To link these functionally enriched MGSS genes to adipose tissue development and 652 

differentiation, we examined the temporal expression of the key pathway genes within the 653 

adipocyte MGSS set during human primary SAT preadipocyte differentiation (i.e., 654 

adipogenesis). We first identified 43 MGSS genes that contributed to more than one significantly 655 

(FDR<0.05) overrepresented pathway (Supplementary Table 4) and then found that the 42 of the 656 

43 genes, expressed during SAT adipogenesis, were all longitudinally differentially expressed 657 

(DE) (FDR<0.05) during differentiation (Figure 3d). To link together genes with similar 658 

temporal transcription patterns, we clustered these longitudinally expressed genes using DPGP51 659 

into 8 groups of temporally co-expressed genes (Figure 3d, Supplementary Table 11). Of note, 660 

we observed SREBF1 to cluster with two previously described obesity genes, LEP60 and FASN61 661 

(Figure 3d), further supporting the coordinated role of SREBF1 as a master TF with other key 662 

adipocyte marker genes.  663 

 664 

Longitudinally differentially accessible peaks, co-accessible in the SREBF1 region during 665 

adipogenesis, harbor abdominal obesity GWAS variants 666 

To elucidate the genetic regulatory role of SREBF1 in abdominal obesity, we first searched for 667 

open chromatin peaks with similar temporal accessibility patterns in the cis region of SREBF1 668 

during human SAT adipogenesis (Figure 4a). We detected 129 peaks in the cis region (± 500 kb) 669 
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of SREBF1 and found 120 (93%) to be longitudinally DA over the 14-day preadipocyte 670 

differentiation data (FDR<0.05), which we then clustered into 10 groups using DPGP51 671 

(Supplementary Table 12). The clusters with peaks remaining after thresholding at a cluster 672 

assignment probability>0.9 are shown in Supplementary Figure 3. We focused on cluster 4, 673 

which contains 5 peaks with similar trajectories over the 14-day differentiation (Figure 4b). 674 

 675 

To determine whether these five co-accessible peaks from cluster 4 in the SREBF1 region 676 

(Figure 4b) are involved in genetic risk of abdominal obesity, we next investigated them for 677 

overlaps with WHRadjBMI GWAS variants. Using the large, previously published GWAS 678 

summary statistics for WHRadjBMI from GIANT-UKB52, we identified 7 GWAS SNPs within 679 

these 5 peaks (Table 2). Of the 7 SNPs, rs4924755, rs7224725, and rs9944423 were significant 680 

(p<5´10-8) in all individuals, driven by females (also significant in only females); rs35104205 681 

was significant in all, females, and males; and rs12948060, rs4646347, and rs4646346 were 682 

significant only in males, reflecting the well-known sex effects of the WHRadjBMI trait (Table 683 

2). Furthermore, rs4924755, rs7224725, rs9944423, and rs35104205 are also significant GWAS 684 

SNPs (p<5´10-8) for the serum total triglycerides in all individuals from the European ancestry 685 

GLGC lipid GWAS62. 686 

 687 

We observed tight LD patterns (R2>99%) among three of the 7 SNPs, rs12948060, rs4646347, 688 

and rs4646346, and separately among two SNPs rs7224725 and rs9944423, indicating 4 separate 689 

regional WHRadjBMI signals (Figure 4c). These results show that the 5 co-accessible peaks in 690 

the SREBF1 region contribute to the genetic risk of abdominal obesity. 691 

 692 
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Risk allele status for the abdominal obesity GWAS SNPs in the SREBF1 cis region affects 693 

SAT adipocyte expression of SREBF1 and more than hundred SAT adipocyte marker 694 

genes  695 

We hypothesized that these seven abdominal obesity GWAS variants, which reside in the cis 696 

regulatory region of SREBF1, may influence the downstream expression of important adipocyte 697 

genes in trans. To address this hypothesis, we investigated whether the risk allele status of the 698 

seven WHRadjBMI GWAS SNPs in the SREBF1 cis region impacts SAT adipocyte expression 699 

of SREBF1 and downstream, the adipocyte expression of other adipocyte MGSSs, using 700 

independent SAT snRNA-seq data from another European bariatric surgery cohort, RYSA 701 

(n=68) (see Methods). We identified SREBF1 and 146 other adipocyte MGSS genes, for which 702 

the adipocyte expression is significantly affected by the risk allele carrier status of one or more 703 

of these seven WHRadjBMI GWAS variants in trans (see Methods) (Supplementary Table 13). 704 

Due to the tight LD (R2>99%) among rs12948060, rs4646347, and rs4646346, as well as among 705 

SNPs rs7224725 and rs9944423 (Figure 4c), their results are identical. 706 

 707 

In more detail, we observed that the SAT adipocyte expression of SREBF1 was significantly 708 

impacted by each of the seven WHRadjBMI GWAS variants, being higher expressed in the risk 709 

allele carriers of rs12948060, rs35104205, rs4646347, and rs4646346, and lower expressed in the 710 

risk allele carriers of rs4924755, rs7224725, and rs9944423. The three SNPs in tight LD 711 

(rs12948060, rs4646347, and rs4646346) had the largest number of genes (n=115 genes) with 712 

significantly higher expression in the risk allele carriers (Supplementary Table 13), while the 713 

SNPs rs7224725 and rs9944423 in LD (R2>99) had the fewest (n=23 genes) (Supplementary 714 

Table 13). We found that the variant rs4924755 impacted the largest number of genes with lower 715 
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expression in the risk-allele carriers (n=48 genes), including multiple functionally important 716 

adipose genes, e.g., FASN, AGPAT2, DGAT1, in line with the downregulation of SREBF1 in 717 

these carriers (Supplementary Table 13). The risk allele carrier status of this variant rs4924755 718 

also associated with upregulation of numerous key adipose genes, such as PLIN1, PLIN4, and 719 

LIPE (Supplementary Table 13). We show the functional pathway enrichments of the gene sets 720 

affected by the risk allele carrier status in Supplementary Tables 14-16.  721 

 722 

We also built module scores in the independent RYSA cohort using the SAT adipocyte 723 

expression of the up/down regulated trans genes by the risk allele status of the of the SREBF1 724 

abdominal obesity GWAS SNPs (Figure 5a-b, Supplementary Figure 4). These average 725 

expression results of the trans genes further demonstrate the significant, wide-spread trans 726 

effects of the SREBF1 abdominal obesity GWAS SNPs on SAT adipocyte expression. Taken 727 

together, our results suggest that the WHRadjBMI GWAS SNPs in the cis region of SREBF1 728 

affect SAT adipocyte expression of the major adipose tissue TF, SREBF1, and downstream of 729 

that, the adipocyte expression of 146 genes, comprising 70% of all adipocyte MGSS genes and 730 

including multiple key adipocyte MGSS genes. 731 

 732 

Adipocyte open chromatin variants in cis regions of the trans gene sets are enriched for 733 

variance explained in WHRadjBMI and their PRSs differ by the risk allele carrier status of 734 

the SREBF1 abdominal obesity GWAS SNPs 735 

We hypothesized that the trans gene sets we identified had downstream effects on the polygenic 736 

risk of abdominal obesity by the risk allele carrier status of the SREBF1 abdominal obesity 737 

GWAS SNPs. Accordingly, we first examined the genetic risk contributions from the trans genes 738 
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sets by constructing their regional PRSs for WHRadjBMI in UKB from the SNPs that fell in 739 

adipocyte open chromatin peaks in the cis regions of each trans gene set (see Methods). We 740 

found, through 10,000 permutations, that 12 out of the 21 PRSs which were built from variants 741 

from upregulated trans gene sets were significantly enriched (pperm10,000<0.05) for incremental 742 

variance explained in abdominal obesity (Figure 5c, Supplementary Table 17), as were 6 out of 743 

the 10 PRSs built from variants from downregulated trans gene sets (Figure 5c, Supplementary 744 

Table 18), indicating that the regulatory regions of these trans regulated genes are important for 745 

abdominal obesity.  746 

 747 

Next, we classified the UKB individuals as the carriers and non-carriers of the seven SREBF1 748 

abdominal obesity GWAS risk alleles in the same way as in the RYSA adipocyte expression 749 

analysis and then compared the WHRadjBMI PRSs of the trans gene sets between the carriers 750 

and non-carriers in UKB to further assess the trans regulatory nature of the carrier status. We 751 

found that the SREBF1 cis regional variants exhibit significant differences in the magnitude of 752 

the regional WHRadjBMI PRSs of 10 out of the 21 upregulated trans gene sets between the 753 

carriers and non-carriers of the corresponding SREBF1 abdominal obesity GWAS SNP risk 754 

allele (Wilcoxon padj<0.05) (Supplementary Table 17), thus independently confirming the 755 

observed trans effects in RYSA adipocytes at the population level in UKB. Similarly, we found 756 

that 4 out of 10 downregulated trans gene sets also show significant PRS differences (Wilcoxon 757 

padj< <0.05) between the carriers and non-carriers (Supplementary Table 18). Figure 5d shows 758 

these significant differences between the regional WHRadjBMI PRSs of the trans genes by the 759 

risk allele carrier status of one of the 7 SREBF1 WHRadjBMI GWAS SNPs, rs4924755, and 760 

Supplementary Figure 5 illustrates similar significant WHRadjBMI PRS differences with several 761 
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of the other SNPs. We also observed sex-specific differences in these PRS results (Figure 5c-d, 762 

Supplementary Tables 17-18), in line with the well-known sex differences in abdominal obesity. 763 

Overall, our results discover SREBF1 for SAT adipocyte function and genetic risk of abdominal 764 

obesity via variant-specific trans effects on numerous adipocyte trans genes. 765 

 766 

 767 

 768 

 769 

 770 

 771 

 772 

 773 

 774 

 775 

 776 

 777 

 778 

 779 

 780 

 781 

 782 

 783 

 784 
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Discussion 785 

Despite prevailing cellular heterogeneity within and between the two major human fat depots, 786 

SAT and VAT, the underlying genes, functional pathways, and epigenetic and genetic factors 787 

explaining these differences have remained largely elusive at the cell-type resolution63–65. 788 

Previous studies have reliably connected SAT and VAT to obesity and related cardiometabolic 789 

metabolic diseases (CMDs)2,4,5,54, but the distinct contributions of each fat tissue and their cell-790 

types to disease predisposition are less well understood. Here, we integrated human single-cell 791 

level RNA data to comprehensively compare SAT and VAT at the transcriptomic level. By 792 

deriving tissue- and cell-type-specific marker gene sets (MGSS, MGSV, and MGSBT) for each 793 

of the three major adipose cell-types, we establish which unique cell-type marker genes are 794 

shared and which ones are specific to adipocytes, ASPCs, and macrophages in SAT versus VAT 795 

and how these genes contribute to the key cell-type functions and genetic risks to CMDs. Upon 796 

assessing the GWAS associations, partitioned polygenic risk scores, and heritability estimates in 797 

these cell-type marker gene sets, we highlighted the importance of the adipocyte marker genes 798 

unique to the SAT depot for genetic predisposition to abdominal obesity, led by the major 799 

adipose TF gene, SREBF1, observed in 87% of the functional pathways unique to the SAT 800 

adipocyte marker genes. We also discover regional, longitudinally co-accessible peaks across 801 

SAT adipogenesis at this SREBF1 locus, which harbor seven GWAS variants associated with 802 

WHRadjBMI, a well-established abdominal obesity proxy11. Next, we show that the risk allele 803 

carrier status of these seven WHRadjBMI GWAS variants affects SAT adipocyte expression of 804 

SREBF1 and 146 other functionally enriched SAT adipocyte marker genes (i.e., 70% of all SAT 805 

adipocyte marker genes) in the large independent SAT snRNA-seq data set from the RYSA 806 

cohort, identifying profound cell-type level downstream effects of this adipose major TF in 807 
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trans. Lastly, we confirm this result independently in the UK Biobank by demonstrating that the 808 

partitioned abdominal obesity PRSs of the adipocyte trans gene sets differ by the risk allele 809 

carrier status of the SREBF1 abdominal obesity GWAS variants. Taken together, our study 810 

discovers abdominal obesity GWAS variants in the cis region of SREBF1 that act in trans as 811 

drivers of downstream adipocyte gene expression of more than a hundred of genes.  812 

 813 

Previous studies have shown that excess VAT leads to increased risk for MASLD, insulin 814 

resistance, and coronary artery disease56,57 and that excess SAT is correlated with an increase in 815 

oxidative stress and inflammation66, but the cell-type and gene level mechanisms underlying 816 

these different depot-specific contributions to CMD predispositions are not well understood. In 817 

our study, by leveraging the snRNA-seq data from the same KOBS participants’ SAT and VAT 818 

biopsies , we characterize gene expression without inter-individual bias and separate cell-type 819 

marker genes into shared and tissue-specific gene sets. While previous studies have similarly 820 

discerned both partial differences in the cell-type identities and functionalities of shared cell-821 

types67–70, our study further examines these tissue-shared and specific profiles in the context of 822 

the CMD risks. Through constructing partitioned polygenic risk scores which isolate the 823 

polygenic risk contributions from the regional variants in the genes at the center of these tissue 824 

profiles, we discern enrichment for the abdominal obesity PRS from the adipocyte SAT-specific 825 

marker genes, further supported by our WHRadjBMI heritability analysis of the adipocyte 826 

MGSS gene set by LD score regression. We additionally confirm previously known connections 827 

of VAT to T2D56,57 through identifying enrichment for T2D PRS from the adipocyte VAT-828 

specific marker genes. Overall, our genetic results suggest that the genetically regulated 829 

transcriptional differences between the two human fat depots link to substantial distinctions 830 
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between the tissue- and cell-type level contributions to CMDs. When investigating the role of 831 

sex as a biological factors, we also found that the regional PRSs constructed from the local 832 

variants of the adipocyte SAT-specific marker genes are highly enriched predictors of 833 

WHRadjBMI in all individuals and females, in line with the previously established heritability 834 

enrichments of WHRadjBMI in SAT, sex-dimorphisms of WHRadjBMI, and the causality 835 

estimates of WHRadjBMI for MASLD71,72.  836 

 837 

We further elucidate patterns of tissue and cell-type specificity among the two fat depots through 838 

evaluating the functional enrichments among the SAT and VAT marker gene sets. In line with 839 

previously identified cellular heterogeneity between the two tissues34,70, we observe that the 840 

adipocyte SAT-specific marker genes are enriched for genes involved in the metabolism of fatty 841 

acids, triglycerides, and glucose, while the adipocyte marker genes shared across the depots, or 842 

specific to VAT exhibited enrichment in molecular movement and lipid localization. These 843 

results are supported by previous studies that found that VAT is important for a flux of fatty acid 844 

buildup73, which suggests that while VAT would be important for the long-term fat storage-845 

oriented properties of adipose tissue, SAT may be more influential for the metabolic activities, 846 

such as rapid-expansion of fat molecules, and flexible breakdown of fat-related molecules. In 847 

particular, we identified SREBFI as the key to the adipocyte MGSS functional pathways, found 848 

in 87% of the SAT-specific significant functional pathways. SREBF1 is the fatty acid synthesis 849 

master TF and a key regulator of transcriptional control for adipogenesis14,15. It also regulates the 850 

transcription of several obesity-involved gene pathways15. In our study, we observed a distinct 851 

upregulation of SREBF1 adipocyte expression in SAT, compared to its sparse and diffuse 852 

expression across all cell-types in VAT, a pattern that we replicated in independent SAT and 853 
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VAT cohorts34. Consistent with our genetic assessments, these patterns suggest that the 854 

contributions to abdominal obesity may be more pronounced in SAT adipocytes than in the VAT 855 

counterparts. Although other studies have shown low diffuse expression levels of SREBF1 across 856 

multiple cell-types in VAT58, our study discovers SREBF1 as a unique adipocyte-specific marker 857 

gene in SAT involved in numerous functional SAT pathways not enriched among the VAT 858 

adipocyte marker genes, which may explain functional differences between SAT and VAT given 859 

the well-established regulatory role of this master TF. Furthermore, we present differences in 860 

SAT adipocyte gene expression of the key adipocyte marker genes between the carriers and non-861 

carriers of the abdominal obesity GWAS variants in the cis region of SREBF1, supporting the 862 

evidence of SREBF1 as a master transcription factor with more than a hundred important target 863 

genes in SAT adipocytes. Taken together, we find that differences in cell-type-specific gene 864 

expression between SAT and VAT link to differences in SAT and VAT function and identify 865 

one such gene, SREBF1 that is present in most SAT adipocyte-specific pathways and absent in 866 

VAT adipocyte-specific pathways. 867 

 868 

When investigating the genetic contribution of the SREBF1 region to abdominal obesity, we 869 

found that co-accessible adipocyte ATAC-seq peaks in the cis region of SREBF1 harbor multiple 870 

genome-wide significant WHRadjBMI GWAS variants, including variants with sex-specific 871 

associations, thus linking to the well-established sex-dimorphism of the abdominal obesity11,43,55. 872 

We also discovered using SAT adipocyte expression data from the large independent RYSA 873 

cohort that these WHRadjBMI GWAS risk variants are associated with expression of 146 874 

adipocyte marker genes specific to SAT, including SREBF1. These adipocyte marker genes, 875 

impacted by the risk allele carrier status, are also functionally enriched for important adipocyte 876 
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functions. Next, we further confirm these single cell-level trans effects by building partitioned 877 

abdominal obesity PRSs of these trans gene sets in the UK Biobank data, which shows that their 878 

partitioned abdominal obesity PRSs differ by the risk allele carrier status of the SREBF1 879 

abdominal obesity GWAS variants, thus highlighting their downstream trans effects of the 880 

SREBF1 variants also at the genomic level.  Overall, our results identify trans effects on SAT 881 

adipocyte gene expression by the WHRadjBMI risk variants in the SREBF1 region using several 882 

different data modalities and cohorts. Given the known important TF functional of SREBF1, our 883 

results support the notion that these WHRadjBMI GWAS risk variants in the regulatory region of 884 

SREBF1 have downstream effects in trans on transcriptional regulation of numerous central 885 

obesity -related genes. More broadly, our study also provides an integrative genomics approach, 886 

leveraging single cell omics and biobank data, that can be generalized to other TFs to accelerate 887 

the currently slow discovery of trans effects of TF GWAS variants. 888 

 889 

We acknowledge several limitations in our study. First, while our KOBS snRNA-seq data pass a 890 

rigorous QC, the total number of SAT and VAT nuclei in the KOBS cohort are relatively small. 891 

However, the publicly available VAT snRNA-seq data are currently very sparse, and using our 892 

dual tissue study design with both SAT and VAT biopsies from the same Finnish individuals 893 

with obesity, we at least partially circumvent a well known factor in snRNA-seq data analysis, 894 

i.e., the interindividual cellular heterogeneity34,49 that may affect the assessment of the cell-type 895 

marker genes. Furthermore, we conducted the risk allele carrier status –based analyses in the 896 

large independent RYSA snRNA-seq data set and confirmed the key SAT and VAT results of 897 

the SREBF1 cell-type level expression in the RYSA cohort and previous adipose ATLAS by 898 

Emont and coworkers34. Second, as we assessed adipogenesis data only from the SAT depot due 899 
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to the well-known practical and technical challenges to obtain viable human VAT primary 900 

preadipocytes - which is also reflected by the current lack of longitudinal human VAT 901 

adipogenesis RNA-seq data in the public data repositories - it would be important to also explore 902 

adipogenesis differentiating human VAT primary preadipocytes in future studies. Third, the 903 

cohorts and analyses of this study comprise Europeans from Finland and the UK. Extrapolations 904 

to diverse ethnicities are warranted to further investigate these findings. Lastly, the SAT and 905 

VAT biopsies in the current study are from individuals with obesity and thus, studies in 906 

individuals with normal weight and overweight may provide important additional information 907 

regarding the impact of the obese condition on these results.  908 

 909 

 910 

 911 

 912 

 913 

 914 

 915 

 916 

 917 

 918 

 919 

 920 

 921 

 922 
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Figure Legends 923 

Figure 1 924 

Adipose single nucleus RNA-sequence data from the KOBS participants’ subcutaneous 925 

adipose tissue (SAT) and visceral adipose tissue (VAT) identify distinct sets of tissue-926 

specific and shared cell-type marker genes.  (a) The study design visualized through cohort 927 

usage. The data from the individuals in the KOBS cohort were used to identify cell-type marker 928 

gene sets, while the data from the individuals in the RYSA cohort were used to identify trans 929 

gene sets by the carrier status of the SREBF1 risk alleles. Lastly, all polygenic risk scores were 930 

built using individuals from the UK Biobank. (b-c) The integrated SAT and VAT single nucleus 931 

RNA-seq data (n=6,732 nuclei) from 7 KOBS participants are visualized in a Uniform Manifold 932 

Approximation and Projection (UMAP) and colored by (b) fat depot of origin and (c) cluster 933 

cell-type identity, while mapping each cluster to one of the 16 identified cell-types. ASPC 934 

indicates adipose stem and progenitor cells; B, B cells; LEC, lymphatic endothelial cells; NK, 935 

natural killer cells; SMC, smooth muscle cells; and T, T cells. (d) A volcano plot depicts 936 

differential expression (DE) of the unique adipocyte marker genes by tissue. Genes are grouped 937 

into marker genes specific to SAT (MGSS), specific to VAT (MGSV), and shared between the 938 

SAT and VAT tissues (MGSBT) (see Methods), and then colored by these groups.  939 

 940 

Figure 2 941 

Regional polygenic risk scores (PRSs) constructed from the cis regional variants of the 942 

adipocyte MGSS gene sets show enrichment in variance explained for abdominal obesity in 943 

all individuals and females of the UK Biobank. Lollipop plots visualize the predictive 944 

performance of each regional PRS relative to the 10,000 PRSs built using the same number of 945 
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randomly selected adipocyte-expressed genes. Each horizontal lollipop represents a separate 946 

regional PRS, broken into three categories on the left (all individuals, females, and males). Dot 947 

size corresponds to the variance explained, R2, of each PRS. The vertical dotted line represents 948 

the cutoff for significance (pperm10,000<0.05).  949 

 950 

Figure 3  951 

Functional pathway enrichment analyses of cell- and tissue-type level expression profiles 952 

reveal distinctive differences in SAT and VAT pathways and highlight the adipose master 953 

transcription factor SREBF1 as the central pathway gene present in 87% of the adipocyte 954 

MGSS pathways. (a) The top 10 most significant (FDR<0.05) functional pathways for 955 

adipocyte MGSS and MGSV are shown side by side, colored by adipocyte tissue-specific set. P-956 

values for each pathway are shown on the x-axis, and each pathway is subsequently ranked by 957 

decreasing p-value. The point size of each dot corresponds to the enrichment ratio of the 958 

pathway. (b) Circos plots visualize the pathway memberships of the adipocyte MGSS genes that 959 

appear in >=8 adipocyte MGSS pathways and connect the genes to their respective pathways. 960 

Genes denoted with an asterisk are predicted target genes of SREBF1. Each gene is colored by 961 

the number of pathways it belongs to. We highlight SREBF1, an adipose tissue master TF and a 962 

key pathway gene that is present in 20 out of 23 pathways enriched in adipocyte MGSSs. (c) The 963 

cell-type level expression of SREBF1 across both fat depots is shown on the UMAP space, 964 

separately for SAT and VAT, and colored by normalized gene expression counts. d) The scaled 965 

expression counts over a 14-day adipocyte differentiation experiment of the longitudinally 966 

differentially expressed (DE) adipocyte MGSS genes with memberships in multiple enriched 967 

pathways are plotted and grouped by their longitudinal expression trajectory clusters.  968 
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 969 

Figure 4 970 

Longitudinal trajectory analysis of open chromatin reveals co-accessible peaks in the cis 971 

region of SREBF1 that harbor WHRadjBMI variants. (a) A regional schematic overview 972 

shows the proximity to SREBF1 of 5 co-accessible peaks that exhibit very similar open 973 

chromatin trajectory patterns. The peaks collectively harbor WHRadjGWAS variants, viewable 974 

through zoomed in loci of the chromosome. (b) The temporal accessibility patterns of the 5 peaks 975 

in the SREBF1 are plotted across the 14-day, 6 time-point SAT preadipocyte differentiation 976 

experiment. (c) The pairwise linkage disequilibrium (LD) (R2) in the UK Biobank (n=9,981) 977 

between the 7 WHRadjBMI GWAS SNPs residing within the co-accessible adipocyte peaks in 978 

the SREBF1 cis region is shown as a HaploView plot, colored by R2.  979 

 980 

Figure 5 981 

Trans effects of SREBF1 abdominal obesity GWAS SNPs established using single cell level 982 

expression data and biobank investigation. (a) Trans effects of abdominal obesity GWAS 983 

SNPs in the SREBF1 region on SAT adipocyte expression of the adipocyte MGSS genes in an 984 

allele-specific way is shown using module scores, constructed in the RYSA cohort (n=68) using 985 

the average SAT adipocyte expression of the upregulated trans genes by the risk allele status of 986 

the SREBF1 GWAS SNPs. For the module scores of the downregulated trans genes, see 987 

Supplementary Figure 4. The plots represent the module scores calculated for the upregulated 988 

trans genes by each SNP (or by a SNP representing a tight LD block, see Figure 4c). Thus, the 989 

module scores for the LD block of rs12948060, rs4646347, and rs4646346 and the LD block of 990 

rs7224725 and rs9944423 are shown using the data for rs12948060 and rs7224725. Each point 991 
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represents a cell and its average gene expression of the trans genes of interest. (b) The 992 

differences between the carriers and non-carriers are also visualized through a two-sided 993 

Wilcoxon test and boxplot. (c) The trans gene sets are enriched for variance explained in 994 

abdominal obesity. Lollipop plots show the regional PRS results for each trans gene set 995 

(constructed in all individuals and females). Entries missing a lollipop did not either have enough 996 

SNPs to accurately build a PRS (<5 SNPs) or significantly predict the variance in WHRadjBMI 997 

(pR2>0.05) after the regional PRS construction. (c) Differences in the magnitude of the regional 998 

PRSs between the carriers and non-carriers of the abdominal obesity risk allele for rs4924755 999 

visualized through boxplots. Significance is calculated using a two-sided Wilcoxon test. Plots for 1000 

the regional WHRadjBMI PRSs of the trans genes calculated in females and all individuals in 1001 

UKB are displayed. 1002 
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Table 1. Variants in the cis regions of genes in the SAT and tissue-shared adipocyte unique marker gene sets 

are significantly enriched for obesity and type 2 diabetes GWAS SNPs. 

Gene setA GWAS outcomeB FDRC 

Adipocyte 
MGSS 

T2D 4.30  10-3 

Adipocyte  
MGSS 

WHRadjBMI 1.77  10-2 

ASPC 
MGSBT 

BMI 2.93  10-2 

 

A MGSS indicates the unique marker genes specific to subcutaneous adipose tissue (SAT), and MGSBT the 

unique marker genes shared between the two fat depots. 

B WHRadjBMI indicates waist-hip-ratio adjusted for body mass index, T2D type 2 diabetes, BMI body mass 

index, and GWAS genome-wide association study. 

C Significance was determined by comparing observed vs expected number of genes that passed 75% 

enrichment cutoff using MAGENTA38. 
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Table 2. Open chromatin peaks co-accessible during human SAT adipogenesis in the cis region of SREBF1 

harbor seven genome-wide significant WHRadjBMI GWAS variants from GIANT-UKB WHRadjBMI 

GWAS52. 

Variant 
Effect 
alleleA 

Males Females All individuals 

BetaB p-value Beta p-value Beta p-value 

rs4924755 G 0.0133 8.32×10-6 0.0209 2.05×10-15  0.0186 6.89×10-21 

rs12948060 T 0.0183 1.60×10-11 3.80×10-3 0.114  9.30×10-3 2.64×10-7 

rs35104205 C 0.0199 1.75×10-11 0.0149 2.45×10-8 0.0167 3.56×10-17 

rs4646347 T 0.0199 2.81×10-11 1.50×10-3 0.579 8.90×10-3 8.37×10-6 

rs4646346 C 0.0199 2.43×10-11 9.00×10-4 0.738 8.60×10-3 1.92×10-15 

rs9944423 G 8.50×10-3 0.103 0.0394 1.38×10-16 0.0258 4.27×10-13 

 

A Trait-increasing allele indicating the allele of the variant that results in a positive effect on waist-hip-ratio 

adjusted for body mass index (WHRadjBMI). 

B Effect size on WHRadjBMI per copy of WHRadjBMI-increasing allele. 
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Table 3. Investigation of seven WHRadjBMI GWAS variants for histone modifications reveals activity in 

enhancer and promoter regions.  

Variant GroupA 

 
Chromatin 

states 
(15-state 
model)B 

Chromatin 
states 

(25-state 
model)C 

H3K4me1D H3K4me3E H3K27acF H3K9acG 

rs4924755 

Fat.Msc.Dr.Adip TssAFlnk TxReg Enh Pro - Pro 

Fat.Adip.Dr.Msc TssAFlnk EnhA1 Enh Pro  Pro 

Fat.Adip.Nuc TssAFlnk TxReg Enh Pro Enh Pro 

rs12948060 

Fat.Msc.Dr.Adip TssAFlnk EnhA1 Enh Pro - Pro 

Fat.Adip.Dr.Msc Enh EnhAF Enh - - Pro 

Fat.Adip.Nuc Enh EnhW2 Enh Pro Enh Pro 

rs35104205 

Fat.Msc.Dr.Adip TssAFlnk TxReg Enh Pro - Pro 

Fat.Adip.Dr.Msc Enh EnhA1 Enh Pro - Pro 

Fat.Adip.Nuc TssAFlnk EnhA1 Enh Pro Enh Pro 

rs4646347 

Fat.Msc.Dr.Adip TssAFlnk TxReg Enh Pro - Pro 

Fat.Adip.Dr.Msc Enh EnhA1 Enh Pro - Pro 

Fat.Adip.Nuc TssAFlnk EnhA1 Enh Pro Enh Pro 

rs4646346 

Fat.Msc.Dr.Adip TssAFlnk TxReg Enh Pro - Pro 

Fat.Adip.Dr.Msc Enh EnhA1 Enh Pro - Pro 

Fat.Adip.Nuc TssAFlnk EnhA1 Enh Pro Enh Pro 

rs7224725 

Fat.Msc.Dr.Adip TssAFlnk EnhA1 Enh Pro - Pro 

Fat.Adip.Dr.Msc TssAFlnk EnhA1 Enh Pro - Pro 

Fat.Adip.Nuc Enh PromD1 Enh Pro Enh Pro 

rs9944423 

Fat.Msc.Dr.Adip Enh EnhA1 Enh Pro - Pro 

Fat.Adip.Dr.Msc Enh EnhA1 Enh Pro - Pro 

Fat.Adip.Nuc Enh TxReg Enh Pro Enh Pro 

 

A Description of cell-line. Fat.Msc.Dr.Adip refers to Mesenchymal Stem Cell Derived Adipocyte Cultured 

Cells, Fat.Adip.Dr.Msc refers to Adipose Derived Mesenchymal Stem Cell Cultured Cells and Fat.Adip.Nuc 

refers to Adipose Nuclei. 
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B Chromatin state from the HaploReg database which uses the 15-state core model. TssAFlnk refers to 

“Flanking Active TSS” and Enh refers to “Enhancers.” 

C Chromatin state from the HaploReg database which uses the 25-state model using 12 imputed marks. TxReg 

refers to “Transcribed and regulatory (Prom/Enh)”, EnhA1 refers to “Active Enhancer 1”, EnhAF refers to 

“Active Enhancer Flank”, and PromD1 refers to “Promoter Downstream TSS 1.”  

D Histone modification annotation of type H3K4me1. Enh refers to Enhancer. 

E Histone modification annotation of type H3K4me3. Pro refers to Promoter. 

F Histone modification annotation of type H3K27ac. Enh refers to Enhancer. 

G Histone modification annotation of type H3K9ac. Pro refers to Promoter. 
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B C

D

A

SAT/VAT snRNA-seq
(KOBS, n=7) 

WHRadjBMI GWAS 
(UKB, n=391,701)

SAT snRNA-seq
(RYSA, n=68) 

Study Design - cohort usage

Identification of unique cell-type marker 
genes specific to tissue

Construction of abdominal obesity polygenic 
risk scores of variants from trans genes

Identification of trans interacting genes 
through differential expression testing

Identification of trans effects converging at the 
cell-type and population level

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 23, 2024. ; https://doi.org/10.1101/2024.11.22.24317804doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.22.24317804


All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 23, 2024. ; https://doi.org/10.1101/2024.11.22.24317804doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.22.24317804


A

B D

C

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 23, 2024. ; https://doi.org/10.1101/2024.11.22.24317804doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.22.24317804


rs4
92
47
55

rs1
29
48
06
0

rs3
51
04
20
5

rs4
64
63
47

rs4
64
63
46

rs7
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rs9
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44
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Genes

Coaccessible 
SAT peaks

WHRadjBMI 
GWAS variants

chr17:17264763-17265998 chr17:17396454-17397319
chr17:17477139-17477772
chr17:17478625-17479591

chr17:17483619-17484962

B C

A
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C

A

B

D
p = 5.7 × 10-8 p = 4.5 × 10-11 p = 1.6 × 10-11 p < 2 × 10-16

p < 2 × 10-16 p < 2 × 10-16 p < 2 × 10-16 p < 2 × 10-16

Upregulated trans genes in carriers Upregulated trans genes in non-carriers Upregulated trans genes in carriers Upregulated trans genes in non-carriers

Upregulated trans genes in carriers Upregulated trans genes in non-carriers Upregulated trans genes in carriers Upregulated trans genes in non-carriers
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