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Summary 25 

 26 

Nutrition is a fundamental aspect in human life development, both from a socio-27 

economic and medical perspective. In recent years, new personalized approaches have 28 

been added to the biochemical study of nutrients. These approaches consider both the 29 

effect of foods on the body and the role of genes in metabolizing or digesting different 30 

nutrients. Although drug-food interactions have been known for decades, there is a lack 31 

of studies that address these processes in a comprehensive way, using structural and 32 

computational biochemistry techniques. In this paper we develop a method to predict 33 

potential interactions between foods and drugs based on the structural similarity 34 

between food compounds and medications. Our results have produced a database and an 35 

app to consult potential interactions between drugs and foods that we have called 36 

FARFOOD. Additionally, we validated two of these potential interactions with widely 37 

used drugs (lisinopril and bupropion) through structural docking between the ligand 38 

protein and the food compounds that are structurally similar to the drug. Moreover, 39 

patient surveys are used in the lisinopril and bupropion cases in addition to allopurinol 40 

to assess the possible effects of the potentially interacting foods on the symptoms of the 41 

conditions for which the medication is prescribed. In summary, this manuscript presents 42 

an interesting computational resource for predictive food-drug interaction analysis. 43 

  44 
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Introduction 45 

 46 

Food-drug interactions are a crucial yet often underappreciated aspect of patient 47 

care and therapeutic efficacy. The ingestion of certain foods can significantly alter the 48 

pharmacokinetics and pharmacodynamics of drugs, impacting their absorption, 49 

metabolism, and overall effectiveness (Genser, 2008; Z. Hu et al., 2005; Won et al., 50 

2012). These interactions may lead to reduced therapeutic effects or, conversely, to 51 

toxicity, making it essential for healthcare providers and patients to understand the role 52 

diet plays in the success or failure of drug regimens (Chen et al., 2012; Koziolek et al., 53 

2019; Won et al., 2012). With the rise of personalized medicine, understanding food-54 

drug interactions is more important than ever, as individual genetic variations can 55 

influence how drugs and food components interact within the body (Roy et al., 2022; 56 

Wei et al., 2024). Despite the well-documented impact of food-drug interactions on 57 

clinical outcomes, systematic research and data collection in this area are limited. Most 58 

current guidelines focus on well-known interactions (Bailey & Dresser, 2004; Hukkinen 59 

et al., 1995; Mertens-Talcott et al., 2006; Seden et al., 2012; Sica, 2006), but there are 60 

many unexplored interactions that could affect patient safety and drug efficacy, 61 

especially in populations consuming diverse diets. 62 

 63 

This complexity of food-drug interactions is attributed to various factors, 64 

including the biochemical properties of both drugs and food compounds. For instance, 65 

foods containing high levels of specific nutrients, such as calcium or certain fibers, can 66 

inhibit the absorption of certain medications (Aznar-Lou et al., 2019; Deng et al., 2017; 67 

Neuvonen, 1976; Stielow et al., 2023), while others, like those containing grapefruit 68 

compounds, can potentiate drug effects by inhibiting cytochrome P450 enzymes 69 
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(Mertens-Talcott et al., 2006; Seden et al., 2012). A potential manner for detecting 70 

food-drug interactions is based on structural similarity between food compounds and 71 

drugs, as it has been done with drug-drug interactions (Takeda et al., 2017; Vilar et al., 72 

2012). Structural similarity implies that certain bioactive compounds in foods may share 73 

similar chemical structures with drug molecules, potentially leading them to bind to the 74 

same target sites in the body. This structural resemblance can result in competition for 75 

binding sites, altering the pharmacokinetics or pharmacodynamics of drugs. 76 

Understanding these structural relationships is increasingly important for creating 77 

dietary guidelines tailored to individual pharmacological needs, especially as dietary 78 

diversity and self-medication continue to rise globally. 79 

 80 

Structural similarity-based predictions provide a unique perspective for 81 

analyzing interactions that might not be evident through traditional pharmacokinetic 82 

studies alone. Computational approaches such as molecular docking (Agu et al., 2023), 83 

quantitative structure-activity relationship (QSAR) modeling (Zaki et al., 2021), and 84 

machine learning (Roy et al., 2022) can be applied to screen food compounds against 85 

drug targets. For example, certain polyphenols in fruits and vegetables have structural 86 

motifs resembling common pharmacophores in drug molecules, allowing them to 87 

interact with cytochrome P450 enzymes, potentially inhibiting or inducing drug 88 

metabolism (Kimura et al., 2010). Such findings remark the need for systematic 89 

screening of food compounds using computational models, which could help predict 90 

and ultimately prevent adverse interactions. This highlights the potential of using 91 

structural similarity as a predictive tool in food-drug interaction research, where 92 

identifying molecular similarities between food and drug compounds can lead to 93 

proactive dietary or medicament doses recommendations.  94 
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 95 

The main aim of this manuscript is to develop a comprehensive computational 96 

resource for potential interactions between drugs and food compounds based on 97 

structural similarity. Other recent approaches have used gene expression and other 98 

sources for the development of similar databases (Lacruz-Pleguezuelos et al., 2023). We 99 

considered as hypothesis that if two molecules have a very similar structure, then they 100 

might interact with the same protein targets. We validated some of these interactions 101 

using (i) in silico docking experiments that showed how both the drug and the food 102 

compound can bind to the same protein region and (ii) patient surveys in which we 103 

correlate disease parameters with the consumption of foods that contain the potentially 104 

interacting compound.  105 

 106 

  107 
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Materials and Methods 108 

 109 

Input food compound and drug data 110 

For food-related data, we utilized version 1.0 of FooDB (www.foodb.ca) , a 111 

comprehensive, publicly funded database supported by the Canadian Institutes of 112 

Health. FooDB provides extensive information on the biology and chemistry of food 113 

components, including macronutrients, micronutrients, and attributes like color, aroma, 114 

flavor, and texture. Each food component entry includes over 100 fields covering 115 

nomenclature, structural and physicochemical properties, food sources, concentrations, 116 

physiological effects, and potential health impacts (Sanchez-Ruiz & Colmenarejo, 117 

2021). For our structural similarity analysis, we used only the structural data (compound 118 

ID and SMILES format), while food source and concentration data were applied in later 119 

analyses and for the app development. For drug information, we employed version 15 of 120 

CHEMBL (www.ebi.ac.uk/chembl), a manually curated database of bioactive 121 

molecules maintained by the European Bioinformatics Institute (Gaulton et al., 2011). 122 

CHEMBL includes structural data as well as physicochemical and pharmacological 123 

properties for each molecule, such as molecular weight, Lipinski parameters, ADME 124 

properties, and molecular targets. We filtered CHEMBL entries to include only 125 

molecules approved or in late-stage  studies, narrowing the dataset from over two 126 

million entries to approximately 10,000 compounds. For subsequent analyses and the 127 

app, we included each drug’s generic name and physicochemical and pharmacological 128 

characteristics. 129 

 130 

Structural comparison between food compounds and drugs 131 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 23, 2024. ; https://doi.org/10.1101/2024.11.22.24317802doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.22.24317802
http://creativecommons.org/licenses/by-nc/4.0/


To identify potential interactions between food compounds and drugs, we 132 

conducted a structural similarity analysis between each food compound and drug. This 133 

one-to-one comparison across over 70,000 food compounds and more than 10,000 134 

drugs results in over 700 million possible pairwise comparisons. Due to the scale, these 135 

comparisons were automated using a computational algorithm to process, compare, and 136 

analyze each compound-drug pair. To facilitate this process, we developed a PERL 137 

script that utilizes an external software tool, Open Babel (www.openbabel.org) 138 

(O’Boyle et al., 2011), to generate a list of food compound/drug pairs with structural 139 

similarity above a defined threshold. For similarity measurement, we employed the 140 

Tanimoto index (Tanimoto, 1958), a widely-used metric in cheminformatics based on 141 

molecular fingerprints—a binary encoding of the molecular structure (Willett et al., 142 

1986). Each fingerprint represents the presence or absence of specific substructures 143 

within a molecule using binary bits. By setting a threshold, we identified molecule pairs 144 

that met or exceeded this similarity score, with higher threshold values indicating 145 

greater structural similarity. 146 

 147 

Design of FARFOOD database and app 148 

The molecule pairs with Tanimoto index > 0.7 were selected, and the 149 

information obtained from the FooDB and CHEMBL databases was stored as data 150 

tables in MATLAB. To generalize and simplify access to the FARFOOD database, we 151 

developed a cross-platform app using MATLAB's Application Designer. The app is 152 

compatible with Windows, Linux, and macOS, though it requires users to install the 153 

free MATLAB Runtime environment. The app is distributed as an executable file that 154 

can be downloaded from http://www.github.com/acroman. The FARFOOD app 155 

provides access to the database information, allowing users to explore drug-food 156 
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compound interactions, as well as detailed data from CHEMBL and FooDB. The app’s 157 

interface prioritizes simplicity, featuring a search bar at the top, a dropdown menu to 158 

select either "CHEMBL ID" or "CHEMBL name," and a search button for easy 159 

querying. The app is centered around drugs, enabling users to quickly identify potential 160 

food interactions for any drug of interest. To enrich the interaction data, the app links 161 

interaction results with additional details on compounds, including the foods containing 162 

each compound and their concentrations. This information is shown in a lower app 163 

window when the user clicks on a compound, enabling a comprehensive view of food 164 

sources and concentrations for each compound involved in a drug interaction. 165 

 166 

Molecular docking 167 

To validate potential interactions between structurally similar food compounds 168 

and drugs, we employed a molecular docking approach (Shoichet, 2004). Docking 169 

analyses require the structure of the target protein and the potential ligand as input, 170 

producing one or more bound conformations of the ligand-protein complex as output. 171 

We selected the target protein for each drug as identified in the FARFOOD database, 172 

which draws on CHEMBL for target information. PDB files for each protein were 173 

downloaded from the Protein Data Bank (Berman et al., 2000). For ligands, we used 174 

both the drug (as a positive control) and the structurally similar food compound. Drug 175 

structures were obtained from CHEMBL, while food compound structures were 176 

retrieved from FooDB and converted from SMILES to PDB format using Open Babel. 177 

Docking was performed using DockThor (https://www.dockthor.lncc.br/v2/) (Guedes et 178 

al., 2024), a public server supporting interactive docking. Default conditions, including 179 

blind docking, were applied to ensure comprehensive exploration of binding sites. 180 

 181 
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Patient surveys 182 

Patients with specific drug prescription from the regional healthcare area of 183 

Almaraz were contacted by phone. They were asked for their habits of food 184 

consumption (using foods that contain potentially interacting compounds as well as 185 

other –control- types of food). These results were normalized using the following scale: 186 

0-never; 1-sporadically, once in months; 2- at least once per week; 3-daily consumption. 187 

In addition, they were asked for specific symptoms or characteristics about the diseases 188 

related to the prescription. A minimum of 20 patients were asked for each drug 189 

analyzed, and the demographic data (age and sex) can be consulted in Table 1. The 190 

study protocol was reviewed by the Ethics Board of the University of Extremadura, and 191 

approved with the reference number 167/2023. 192 

 193 

 194 
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Results 196 

 197 

Design of a database of potential interactions between drug and food compounds 198 

using structural similarity 199 

First we designed a workflow that detected potential interactions between drug 200 

and food compounds based on the structural similarity of each molecule (Figure 1A). 201 

Specifically, we compared the structure of each drug present in CHEMBL database 202 

(N=10,650) with each food compound present in FooDB database (N=70,477). We 203 

retrieved the pairwise relations that presented a Tanimoto Index equal or above 0.7, 204 

resulting in 657,219 potential interactions between drugs and food compounds. We 205 

compiled specific information from both databases in a MATLAB application that can 206 

be freely used (Figure 1B). With this application, a user can search for a specific drug, 207 

and the database will return the specific compounds with structural similarity (Tanimoto 208 

Index equal or above 0.7), the food in which this compound has been detected and its 209 

relative concentration, if known. As expected, the number of drugs that present potential 210 

interactions with food compounds decreases if we increase the Tanimoto Index 211 

threshold (Figure 1C). More than 2,500 drugs in the CHEMBL database present 212 

structural similarities with a Tanimoto Index threshold of 0.7, while more than 1,000 213 

drugs still present structural similarities with a threshold of 0.9. The specificity of the 214 

potential interactions that were predicted is supported because most of the drugs 215 

presented only 1-5 interactions with compounds (Figure 1D). This data showed that a 216 

relevant number of known drugs presented structural similarity to food compounds and 217 

their specificity suggested that they might become candidates for a source of food-drug 218 

interactions. 219 

 220 
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Study of the pharmacological and chemical properties of candidate drugs 221 

We explored further the drugs that presented structural similarity with food 222 

compounds, using some of their pharmacological and chemical properties that were 223 

contained in CHEMBL database. The majority (56%) of these drugs were synthetic 224 

small molecules, while 35% of them were from natural origin, a property that could be 225 

linked to their similarity to natural food compounds (Figure 2A). The structure of these 226 

drugs mainly presented single steroisomerism (47%), with a representative percentage 227 

(27%) being achiral molecules (Figure 2B). As this study focused in the detection of 228 

potential interactions between drugs and food compounds, it was very relevant for us to 229 

assess the percentage of these drugs that are orally administered, as they might directly 230 

interact with the food compounds. We observed that 12% of the drugs that presented 231 

structural similarity with food compounds were orally administered (Figure 2C). In 232 

addition, one of the main classic methods to determine the potential oral bioavailability 233 

of a drug is the Rule of Lipinski or Rule of 5, that characterize the pharmacokinetic 234 

properties of a drug. In this case, 62% of the drugs with potential food interactions 235 

fulfilled this Rule (Figure 2D). Finally, it was also interesting to assess the novelty of 236 

these drugs, but a low percentage (1%) of them were the first-of-class drug on its area 237 

(Figure 2E). This exploratory study confirms that several drug candidates can physically 238 

share the space with food compounds, leading to a more severe interaction in the 239 

digestive system. 240 

 241 

Study case of lisinopril and its potential interaction with cyclosquamosin A. 242 

Lisinopril is a peptidyl dipeptidase inhibitor classified under ACE inhibitors 243 

(angiotensin-converting enzyme inhibitors) (Chase & Sutton, 1989; Lancaster & Todd, 244 

1988). It functions by competitively inhibiting the ACE enzyme, which catalyzes the 245 
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conversion of angiotensin I to the vasoconstrictor peptide angiotensin II. Angiotensin II 246 

also stimulates aldosterone secretion by the adrenal cortex. Inhibiting ACE reduces 247 

angiotensin II levels, leading to decreased vasopressor activity and reduced aldosterone 248 

secretion, which may increase serum potassium levels. Through this mechanism, 249 

lisinopril acts as a potent vasodilator for both veins and arteries, producing prolonged 250 

hypotensive effects. Lisinopril is primarily indicated for hypertension, offering 251 

advantages over other antihypertensives as it does not interfere with carbohydrate, lipid, 252 

or uric acid metabolism. Additionally, it is used to treat conditions such as heart failure, 253 

acute myocardial infarction, and diabetic nephropathy. A common side effect is a 254 

persistent dry cough, which may lead some patients to discontinue treatment (Y. Hu et 255 

al., 2023). According to DrugStats, lisinopril was the fourth most prescribed drug in the 256 

United States in 2020, with 88,597,017 prescriptions for 19,816,361 patients.  257 

 258 

In terms of potential food-drug interactions, the FARFOOD database estimated 259 

its structural similarity with cyclosquamosin A (Figure 3A, top). Cyclosquamosin A is a 260 

compound found in tropical fruits such as cherimoya (Yang et al., 2008). Interestingly, 261 

other compounds from its same family showed vasorelaxant and anti-inflammatory 262 

activities (Morita et al., 2006; Yang et al., 2008). Since the molecular target of lisinopril 263 

(ACE) is known, we performed docking analyses to examine whether cyclosquamosin 264 

A binds to the same site. It is shown that both compounds have affinity for the same 265 

binding region on ACE (Figure 3A, middle). A closer look at the binding pocket (Figure 266 

3A, bottom) reveals that both compounds occupy the same pocket on ACE, with 267 

cyclosquamosin A forming even more interactions. This supports the possibility of an 268 

interaction between the two molecules. In order to confirm this, we studied if the 269 

consumption of tropical fruits (with content of cyclosquamosin A) in lisinopril patients 270 
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was associated to the presence of past myocardial infarctions (Figure 3B, top). We 271 

statistically observed that the consumption of tropical fruits was associated to the 272 

absence of myocardial infarctions, while this association was not observed in the case of 273 

other fruit consumption (Figure 3B, bottom). This result supports the idea of a potential 274 

interaction between cyclosquamosin A and lisinopril. 275 

 276 

Study case of bupropion and its potential interaction with hydroxybupropion. 277 

Bupropion is classified under the therapeutic category of other antidepressants 278 

and is primarily indicated for major depressive episodes (Dhillon et al., 2008; Patel et 279 

al., 2016). Its mechanism of action involves the selective inhibition of catecholamine 280 

reuptake, specifically norepinephrine and dopamine, with minimal effect on serotonin 281 

reuptake and no inhibition of monoamine oxidase (Stahl et al., 2004). This selective 282 

inhibition leads to an increase in neurotransmitters within the synaptic cleft, which is 283 

associated with improved mood and a sense of well-being. Bupropion is also approved 284 

as a smoking cessation aid for patients with nicotine dependence, although the exact 285 

mechanism for this effect is not fully understood . It is believed to involve 286 

noradrenergic and/or dopaminergic pathways (Simon et al., 2004). According to 287 

DrugStats, bupropion was the 18th most prescribed medication in the United States in 288 

2020, with 28,889,368 prescriptions for 5,801,282 patients. 289 

 290 

Structural similarity analysis revealed that only hydroxybupropion, a metabolite 291 

of bupropion (Connarn et al., 2016), shares a significant structural resemblance with 292 

bupropion itself (Tanimoto index = 0.875; Figure 4A, top). Following FooDB, 293 

hydroxybupropion has been detected, although not quantified, in various foods such as 294 

black gram beans (Vigna mungo), chicory leaves (Cichorium intybus var. foliosum), red 295 
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currants (Ribes rubrum), and European chestnuts (Castanea sativa). Given that the 296 

molecular target of bupropion is known (the dopamine transporter, DAT) (Nemeroff & 297 

Owens, 2009), a docking analysis was conducted to assess whether hydroxybupropion 298 

binds to the same region on DAT using the DockThor server. As shown in figure 4A 299 

(middle), both compounds bound to the same region of DAT, supporting the hypothesis 300 

that hydroxybupropion may interfere with the effect of bupropion if consumed through 301 

foods containing this metabolite. A closer examination of the binding site (Figure 4A, 302 

bottom) illustrates the significant overlap in the binding positions of both molecules, 303 

further supporting the potential for interaction. Previous works suggested that 304 

hydroxybupropion can also reduce depression (Damaj et al., 2004), so we studied if the 305 

patterns in hydroxybupropion-containing food consumption can interact with 306 

parameters related to bupropion prescription. In this case, we observed that the 307 

consumption of chestnuts (food that contains hydroxybupropion) is statistically 308 

associated to mild instead of severe depression in the bupropion patients (Figure 4B, 309 

top). In the case of a control food that does not contain hydroxybupropion, as milk, we 310 

did not observe the same trend (Figure 4B, bottom). As in with lisinopril, this survey 311 

data points to an interaction between the drug and the food compound, or in this case 312 

bupropion and chestnut consumption. 313 

 314 

Study case of allopurinol and its potential interaction with oxypurinol. 315 

Allopurinol is classified as a uric acid production inhibitor, working primarily by 316 

inhibiting xanthine oxidase (Gibson et al., 1982; Seth et al., 2014). This enzyme is 317 

responsible for converting hypoxanthine to xanthine and xanthine to uric acid. By 318 

blocking this pathway, allopurinol reduces uric acid levels both in plasma and urine 319 

(Gibson et al., 1982; Seth et al., 2014). Due to this mechanism, allopurinol is indicated 320 
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for treating clinical manifestations associated with uric acid deposition, such as gouty 321 

arthritis, cutaneous tophi, and kidney complications involving urate crystal deposits or 322 

kidney stones. Gout, often the primary manifestation of uric acid buildup, can be 323 

aggravated by lifestyle and dietary factors. Foods high in purines, such as red meat and 324 

seafood, as well as fructose-rich fruits and vegetables, exacerbate the condition (Choi et 325 

al., 2004). Conversely, certain foods may alleviate gout symptoms; for example, 326 

cherries have been shown to be associated with lower uric acid levels and reduced gout 327 

attacks (Zhang et al., 2012). Cherries contain anthocyanins, antioxidants that help 328 

decrease inflammation. According to DrugStats, allopurinol was the 42nd most 329 

prescribed medication in the United States in 2020, with 36,600,871 prescriptions for 330 

3,606,249 patients, moving up one rank from 2019.  331 

 332 

A structurally similar compound, oxypurinol (Tanimoto index = 0.88), was 333 

identified as present at high concentrations in beer (Ka et al., 2006). Previous studies 334 

have shown how oxypurinol and allopurinol share xanthine oxidase as protein target 335 

(Sekine et al., 2023). Interestingly, they suggested that the mechanism of inhibition 336 

could be different in both compounds. This led us to investigate whether beer 337 

consumption, with its higher concentration of oxypurinol, might impact patients in the 338 

patients who were prescribed allopurinol. We assessed beer consumption and gout/uric 339 

acid-related symptoms to determine any correlation. Beer consumption was clearly 340 

associated with gout symptoms, particularly in terms of the number of affected joints 341 

and the duration of gout attacks, while the frequency of attacks was less significantly 342 

correlated (Figure 5A). Patients were also surveyed regarding their consumption of 343 

other foods, including red meat. Interestingly, the only significant correlation with red 344 

meat consumption was the frequency of gout attacks—the variable less associated with 345 
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beer consumption (Figure 5B). This data suggests that the consumption of beer is 346 

affecting gout symptoms through a different way as the consumption of red meat, 347 

pointing to the possible effect of the presence of oxypurinol and its interaction with 348 

allopurinol. 349 

 350 
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Discussion 352 

 353 

In this paper, we developed a novel database with potential interactions between 354 

drugs and food compounds. Our hypothesis is grounded in the principle that a drug’s 355 

effect results from its interaction with one or more specific molecular targets, typically 356 

proteins, which are activated or inhibited by the drug, either through direct binding or 357 

competition with other ligands. The pharmacological response observed arises from this 358 

alteration in protein activity, as described in Goodman and Gilman's Manual of 359 

Pharmacology and Therapeutics (Goodman and Gilman 2011), where it is noted that the 360 

effects of most drugs are mediated through their interactions with macromolecular 361 

components of the body. While our hypothesis is theoretically sound and supported by 362 

existing pharmacological frameworks (Shoichet, 2004), there are still potential 363 

limitations in our analysis that could lead to false positives within the FARFOOD 364 

database predictions. 365 

 366 

One major limitation concerns the bioavailability of food compounds at the 367 

target site. Many ingested food compounds undergo extensive metabolism in the 368 

digestive tract and may be transformed before reaching the bloodstream or may be 369 

entirely excreted, thus never reaching the intended target cells. A solution to this 370 

limitation could involve verifying whether the predicted food compounds are indeed 371 

present in human plasma. The Human Metabolome Project (Wishart et al., 2022) is a 372 

valuable resource, containing data on over 35,000 metabolites detected in blood, and 373 

could serve as an experimental filter to validate the presence of specific compounds in 374 

circulation. By cross-referencing FARFOOD predictions with experimentally detected 375 
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metabolites, we could enhance the reliability of our predictions, focusing on interactions 376 

with compounds confirmed in the bloodstream. 377 

 378 

Another consideration is whether our selected Tanimoto index threshold (≥0.7) 379 

is restrictive enough to minimize false positives. While a higher Tanimoto index implies 380 

greater structural similarity and then a higher likelihood of interaction, it is crucial to 381 

balance sensitivity with specificity. To address this, the Tanimoto index is clearly 382 

displayed in the app interface, providing users with transparency regarding the 383 

interaction likelihood. Furthermore, the molecular docking analyses of lisinopril and 384 

bupropion to evaluate the binding affinity between the drug and its receptor in 385 

comparison with structurally similar food compounds showed a positive result. Docking 386 

studies, which are well-validated across numerous publications (Sousa et al., 2006; 387 

Trott & Olson, 2010), suggest that our computational predictions can reflect 388 

experimentally observed binding behaviors. Nonetheless, experimental validation 389 

remains necessary, and it could include in vitro assays where recombinant target 390 

proteins are incubated with mixtures of the drug and food compound to determine 391 

kinetic parameters and binding affinities. Since macromolecular targets are often 392 

located on cell surfaces or within specific intracellular compartments, in vitro testing 393 

would provide a precise measure of how food compounds influence the 394 

pharmacodynamics of drugs at the cellular level. 395 

 396 

Moreover, our dietary habit surveys and symptom tracking for patients taking 397 

specific medications also support the existence of interactions between drugs (lisinopril, 398 

bupropion and allopurinol) and structurally similar food compounds. The survey 399 

findings align with our computational predictions and provide real-world evidence of 400 
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these interactions, but it remains unclear the effect (agonist or antagonist) of the food 401 

compound with the drug. In two examples (lisinopril and bupropion), the consumption 402 

of the structurally similar food compounds correlated with positive clinical measures of 403 

the patients, while in the other example (allopurinol), the consumption of the food was 404 

associated to a negative impact in the disease. 405 

 406 

Additionally, a promising line for future work involves developing a Polygenic 407 

Risk Score (PRS)-like approach (Kachuri et al., 2023; Kullo et al., 2022) tailored to 408 

food-drug interactions. By focusing on the target proteins listed in FARFOOD, we 409 

could identify and map the genes encoding these proteins, as genetic variations 410 

impacting these targets would likely alter the efficacy of drugs and the action of 411 

structurally similar food compounds. If we extend this analysis to food items containing 412 

multiple bioactive compounds, we could construct a PRS-like method specifically for 413 

food-related interactions. This approach would allow us to identify individuals with a 414 

high risk for a particular food, indicating a potential predisposition to altered drug 415 

responses when consuming that food. In summary, our study highlights the potential of 416 

FARFOOD as a predictive tool for identifying food-drug interactions, though further 417 

validation and refinement of these predictive methods are essential for achieving 418 

clinically relevant outcomes. 419 

 420 
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Study Highlights 422 

 423 

What is the current knowledge on the topic? 424 

Food-Drug Interactions is a relevant and well-studied field in Pharmacology. 425 

Nevertheless, these interactions are detected in a case-by-case manner, leading to 426 

multiple undetected interactions with mild consequences in pharmacokinetics. 427 

What question did this study address? 428 

This study uses structural similarity between compounds as a method to predict 429 

potential interactions due to similar protein binding. Using a drug-wide and food-wide 430 

system, we predict multiple potential interactions between drugs and food compounds. 431 

What does this study add to our knowledge? 432 

The main result of this study is a database/application that contains the similarities (and 433 

therefore the potential interactions) between drugs and food compounds; in addition, we 434 

validate three of these predictions using in silico docking as well as patient surveys. 435 

How might this change clinical pharmacology or translational science? 436 

These results can lead to a deeper analysis of specific drug/food compounds in order to 437 

validate additional interactions, and then to novel nutritional recommendations for 438 

medicated patients. 439 

 440 
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Figure 1 663 

 664 

Figure 1. (A) Scheme of the food-wide and drug-wide analysis to detect structural 665 

similarities between drugs and food compounds. (B) Snapshot of the FARFOOD 666 

application available at https://github.com/angelcroman. (C) Number of drugs with 667 

potential food interactions depending on the Tanimoto Index. (D) Histogram 668 

representing the different number of food compounds that present structural similarity 669 

to a specific drug. 670 
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Figure 2 673 

 674 

Figure 2. Pie charts categorizing the drugs that presented structural similarities with 675 

food compounds depending on (A) the molecular origin of the drug, (B) the structural 676 

properties of the drug, (C) the administration (oral or not) of the drug, (D) the 677 

fulfillment of the Rule-of-five or Rule of Lipinski, and  (E) the novelty of the drug 678 

among its class. 679 
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Figure 3 683 

 684 

Figure 3. (A) Structures of lisinopril and cyclosquamosin A (top), as well as the 685 

docking results of both compounds against ACE (middle, bottom). (B) Results from 686 

patient surveys related to tropical (top) or other (bottom) fruit consumption and the 687 

presence of myocardial infarctions (M.I). 688 
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Figure 4. 691 

 692 

Figure 4. (A) Structures of bupropion and hydroxybupropion (top), as well as the 693 

docking results of both compounds against DAT (middle, bottom). (B) Results from 694 

patient surveys related to chestnut (top) or milk (bottom) consumption and the presence 695 

of episodes of mild or severe depression. 696 
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Figure 5 699 

 700 

Figure 5. (A) Results from patient (allopurinol) surveys related to beer consumption 701 

and the reference of number of affected joints (left), duration of gout crises (middle) and 702 

the number of gout crises (right). (B) Same as in A, but for meat consumption. 703 

 704 
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Table 1. Demographic data of patients used in the study 706 
 707 
Drug Sex (Female %) Age (Mean/SD years) 
Lisinopril 48% 75.2/12.3 
Bupropion 55% 51.1/20.4 
Allopurinol 22% 73.1/18.8 
 708 
 709 
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