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Abstract 24 

Controlling the carriage and transmission of Streptococcus pneumoniae in children from high-25 

disease burden countries is crucial for disease prevention. To assess the rate of spread, and the 26 

factors associated with the high frequency of transmission despite pneumococcal conjugate 27 

vaccine (PCV) introduction, we measured evolution divergence time using the whole genome 28 

sequences of S. pneumoniae collected from 1,617 child participants from Blantyre, Malawi 29 

between 2015 and 2019. These children included both PCV13 vaccinated children aged 2 to 7 30 

years and PCV13 unvaccinated children aged 5 to 10 years who were age ineligible when PCV 31 

was introduced. Using a generalized additive mixed model (GAMM) and relative risk (RR) 32 

frameworks, while accounting for household geospatial distances, we found that the spread of 33 

lineages became widespread across the population of Blantyre over approximately four years, 34 

with transmission being more likely between neighbouring households. Logistic regression and 35 

random forest models predicted a higher incidence of events among preschool children in 36 

densely populated, higher socioeconomic areas. Additionally, recent transmission was linked 37 

to recently expanding, non-vaccine serotype lineages that are penicillin non-susceptible. Our 38 

findings suggest that enhancing vaccine-mediated immunity among preschool-aged children in 39 

high density settings could reduce transmission of disease-causing and antimicrobial-resistant 40 

pneumococcal lineages, therefore strengthening herd protection for vulnerable individuals (e.g. 41 

very young children and people living with HIV). 42 

Author Summary 43 

The pneumococcus is a leading bacterial cause of pneumonia, meningitis, and sepsis in children. 44 

Despite the widespread introduction of the pneumococcal conjugate vaccine in many lower- 45 

and middle-income countries, effective control of these diseases has not been achieved. 46 

Vaccine-targeted serotype carriage and disease continue to persist in these populations, 47 

accompanied by the emergence of antimicrobial-resistant lineages. 48 
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In this large, population-based study, we applied statistical and machine-learning approaches 49 

to integrate pneumococcal genomic, geospatial, and epidemiological data from Blantyre, 50 

Malawi. Our analysis identified key determinants of transmission including household 51 

proximity, child age, vaccine serotype, population density and penicillin susceptibility. 52 

Importantly, we found that it takes approximately four years for emerging lineages to became 53 

widespread across a population such as Blantyre, largely through transmission between 54 

neighbouring households. These findings support the need for enhanced vaccine strategies that 55 

target disease-causing and antimicrobial-resistant pneumococcal lineages, with a focus on pre-56 

school children. 57 

.  58 
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Introduction 59 

 60 

Understanding the transmission dynamics of respiratory microbes is crucial for effectively 61 

targeting public health interventions aimed at controlling person-to-person spread. 62 

Mathematical models integrating human, environmental, and pathogen-related characteristics 63 

have been widely used to study the spread of SARS-CoV-2 and Mycobacterium tuberculosis 64 

in both local and global contexts (1–4). However, transmission modelling becomes 65 

increasingly complex when investigating a diverse bacterial species such as S. pneumoniae 66 

which consists of multiple co-circulating within the same environment.  67 

 68 

Streptococcus pneumoniae (the pneumococcus) is a respiratory pathogen responsible for a high 69 

global burden of pneumonia, meningitis, and sepsis, associated with approximately 300,000 70 

deaths annually among children under five years (5,6). Pneumococcal nasopharyngeal carriage 71 

is typically asymptomatic, but is a prerequisite for both transmission and disease (7). 72 

Transmission occurs through direct person-to-person contact via respiratory droplets, 73 

particularly amongst children and in crowded settings (8–10). There are over 100 serotypes, 74 

and 900 lineages defined by their Global Pneumococcal Sequence Type (GPSC). These strains 75 

frequently co-circulate within a single region, with multiple strains often carried 76 

simultaneously in the human nasopharynx, particularly in resource-limited settings (11,12).  77 

 78 

Pneumococcal conjugate vaccines (PCV) has been introduced into the routine immunisation 79 

programme of over 160 countries, reducing pneumococcal carriage, transmission, and disease 80 

(7,13). However, despite robust direct protection, control of person-to-person spread by PCVs 81 

and therefore herd immunity has been incomplete in many settings. Mathematical models in 82 

conjunction with pneumococcal genomic data have been used to determine the rate of spread 83 
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across countries, transmission rates from mother to child, and the impact of vaccination on 84 

incidence of invasive pneumococcal disease (IPD) across different age groups in different 85 

settings (14–18). While the factors associated with pneumococcal carriage have been 86 

extensively studied (19–21), less is known about the epidemiological and bacterial mechanisms 87 

of spread within densely populated urban areas following PCV introduction.  88 

 89 

We have previously shown that in Malawi, following the routine introduction of PCV13 in 90 

2011, there has been limited herd protection against IPD, particularly for unvaccinated children 91 

and adult persons living with HIV (PLHIV) (22–25).  Despite PCV coverage exceeding 90%, 92 

this limited impact may be attributed to the persistence of high pneumococcal vaccine serotype 93 

carriage in the population (24), which - along with age-related factors - contributes to a 94 

sustained high force of infection (26). Furthermore, shifts in the pneumococcal population 95 

structure have led to the emergence of genotypes with virulence and AMR profiles that confer 96 

competitive advantage, as well as pneumococcal capsule locus variant lineages that retain their 97 

serotype (PCV13 serotypes 3, 14, 23F) and contribute to vaccine escape (27,28). We 98 

hypothesise that the emergence and persistence of vaccine-escape lineages are driven by short-99 

range transmission among young children, amplified by antimicrobial resistance (AMR) 100 

related to a high rate of antibiotic exposure (29). 101 

 102 

To test this hypothesis, we integrated large-scale longitudinal genomic and epidemiological 103 

data from a high burden urban population in Malawi. By analysing divergence times, and 104 

geographical locations of pneumococcal genome pairs and employing machine learning and 105 

statistical models, we infer the time required for pneumococcal lineages to reach saturation and 106 

become fully mixed within the community. We evaluate the likelihood of transmission between 107 

neighbouring and distant households, and identify key factors associated with transmission, 108 
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including child age, population density, vaccine serotype, penicillin non-susceptibility, and 109 

GPSC lineage. 110 

 111 

Results 112 

 113 

Modelling the time S. pneumoniae spread to reach saturation, mixing points, and the 114 

likelihood of transmission between neighbouring and distant households. 115 

To explore pneumococcal  rate of spread within the population and determine which human 116 

and bacterial factors are associated with transmission in urban Blantyre, Malawi, we have used 117 

the Pneumococcal Carriage in Vulnerable Populations in Africa (PCVPA) dataset, collected 118 

from 2015 to 2019 (Table S1 and Figure 1) (24). This dataset consists of 2,283 child 119 

participants in which a single isolate from each was participants sequenced, comprising 59 120 

unique serotypes, of which 23.1% (n=528) are PCV13 VT. There are 118 GPSC lineages, with 121 

37.4% (n=854) of isolates being non-susceptible to penicillin defined by a minimum inhibitory 122 

concentration (MIC) > 0.12 μg/ml for meningitis infections), 30.3% (n=692) resistant to 123 

tetracycline, and 16% (n=366) resistant to erythromycin. 124 

 125 

To determine the pairwise divergence times between S. pneumoniae carriage isolates among 126 

children in the community, we first generated a Bayesian time-calibrated phylogenetic tree 127 

using BactDating for each GPSC lineage with recombination removed. We successfully 128 

constructed a Bayesian time-calibrated phylogenetic trees for 31 out of the 118 GPSCs. These 129 

lineages comprised 1,617 of the 2,283 carriage isolates collected from the PCVPA dataset, 130 

which showed no geographical clustering of lineages (Table S1).  131 

 132 
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Using pairwise divergence times between isolates derived from the Bayesian time-calibrated 133 

phylogenetic tree, we developed a generalized additive mixed model (GAMM) to assess the 134 

relationship between divergence time and distance between pairs (Figure 2A). The model 135 

explained 76.6% of the variance with a statistically significant relationship between the 136 

divergence time and geographical distance (p < 0.001). Initial the GAMM model predicts an 137 

increase in divergence time as geographical distance between pairs increased. This confirms 138 

the convention that pneumococcal spread among children is relatively localised, only gradually 139 

spreading to the rest of the community over time. Notably, the trend reached saturation at 3.92 140 

years of divergence, with pairs being 2.31 km apart on average (the mean distance of all pairs 141 

within 10 years of divergence was 2.46 km, ranging from 0 -14.3 km). These findings suggest 142 

that even in a high density, high carriage prevalence population, pneumococcal community 143 

spread occurs relatively slowly. 144 

 145 

To further characterise the transmission dynamics and identify potential targets for intervention, 146 

we calculated the relative risk (RR) across five divergence time groups (less than 1 year, 2 to 147 

3 years, 3 to 4 years, and 4 to 5 years) over a range of distances (Figure 2B). We set the lowest 148 

distance to measure relative risk at 75m apart, based on the mean nearest neighbour distance 149 

of 72m, which yielded the highest RR for each divergence time group compared to other 150 

distances. With each increase in divergence time group, we observed a general decrease in the 151 

relative risk of transmission occurring at those distances, as well as a decrease in relative risk 152 

with increasing distance between pairs up to 1-2 km apart. This suggests that transmission is 153 

most likely to occur between neighbouring households, only gradually spreading across the 154 

community over time. Moreover, we observe that pairs less than 75 metres apart reached a non-155 

significant difference from 1 (RR 1.53, 95% CI 0.92–2.34). This indicates that it takes 4 years  156 

for isolates to become fully mixed in the community in Blantyre. 157 
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 158 

We also found that the likelihood of transmission between children of different ages decreased 159 

as the age difference increased (Figure 2C). The highest RR was seen when the age difference 160 

was between 0 and 1 year (RR 1.7, 95% CI 1.27-2.2), compared to 1 to 2 years difference (RR 161 

1.22, 95% CI 1.04-1.42) and 2 to 3 years difference (RR 0.54, 95% CI 0.35-0.84). This suggests 162 

that transmission between children is more likely to occur among children of similar ages. 163 

 164 

Pneumococcal transmission is decreased with age and vaccine serotype isolates, but 165 

increased with higher population density, socioeconomic score, and penicillin MIC 166 

To further understand the role of human and bacterial factors in pneumococcal transmission 167 

within this urban community, we conducted univariate and multivariable mixed-effect logistic 168 

regression analyses, informed by the findings from the GAMM model with isolates to be 169 

recently transmitted if they were less than 4 years divergence apart and 2.5km apart (Table S2). 170 

Consistent with previous studies (30,31), the mixed effect logistic regression revealed a 171 

significant decrease in pneumococcal transmission with increasing age (adjusted OR 0.82 per 172 

year, 95% CI 0.73-0.92; p < 0.001), and a significant increase in transmission with population 173 

density (adjusted OR 1.31 per km2, 95% CI 1.18-1.46, p < 0.001) (table 1).174 
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Table 1: Univariate and multivariate mixed effect logistic regression model on human and bacteria characteristics associated with transmission 
  

Univariate 
  

Multivariate 
Characteristic OR1 95% CI1 p-value OR1 95% CI1 p-value 

Age 0.77 0.70, 0.86 <0.001 0.82 0.73, 0.92 <0.001 
Population density (per km²) 1.37 1.23, 1.52 <0.001 1.31 1.18, 1.46 <0.001 
Socioeconomic score 1.09 0.99, 1.21 0.092 1.15 1.03, 1.28 0.014 
PCV13 vaccine type serotypes 0.59 0.47, 0.75 <0.001 0.54 0.35, 0.83 0.005 
Penicillin MIC (μg/mL) 1.24 1.04, 1.47 0.014 1.30 1.09, 1.55 0.004 
1 OR = Odds Ratio, CI = Confidence Interval 
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In relation to bacterial factors, we found significantly less transmission of pneumococcal 

vaccine serotypes compared to non-vaccine serotypes (adjusted OR 0.54, 95% CI 0.35-0.83; p 

= 0.005). Additionally, higher penicillin MIC values were positively associated with recent 

transmission events (adjusted OR 1.3 per μg/ml, 95% CI 1.09-1.55; p = 0.004). Additionally, 

we observed a significant increase in penicillin MIC from those collected between July 2017 

to June 2019 compared to those collected between July 2015 to June 2017 (Wilcoxon, p <0.001) 

(Figure S1). These data support the emerging evidence (18), that in a population with high 

vaccine uptake and high antimicrobial usage,  pneumococcal lineages that are able to escape 

vaccine-induced immunity and that exhibit AMR are likely to spread within a community (32) . 

 

Overall, we observed the expected pattern of higher carriage prevalence among children from 

the lowest socioeconomic households (table 2). However, our analysis of the impact of 

socioeconomic status on recent transmission revealed an unanticipated aspect of this complex 

process: transmission is more likely to occur among children from higher socioeconomic 

households (adjusted OR 1.15 per socioeconomic households score, 95% CI 1.03, 1.28; p = 

0.014). 
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Table 2: Univariant and multivariant Logistic regression model on human factors associated with carriage 

  Univariate   Multivariate  

Characteristic OR1 95% CI1 p-value OR1 95% CI1 p-value 
Age 0.58 0.53, 0.6 3 <0.001 0.62 0.57, 0.68 <0.001 
Population density (per km²) 1.29 1.19, 1.40 <0.001 1.07 0.98, 1.17 0.14 
Socioeconomic score 0.70 0.64, 0.76 <0.001 0.77 0.70, 0.84 <0.001 
1 OR = Odds Ratio, CI = Confidence Interval      
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Higher transmission rates among preschool children and the identification of key GPSC 

lineages associated with increased transmission 

 

Many compartmental models of infectious disease dynamics assume that transmission rates are 

directly proportional to the densities of susceptible and infected populations (33). However, 

after vaccines are introduced, there is a decline in the number of individuals that are susceptible 

to infection, leading to saturation. The non-linear dynamics of pathobionts such as S. 

pneumoniae are  complex and somewhat unpredictable (10). To address these complexities, we 

developed a random forest model to identify the non-linear patterns associated with community 

transmission. The random forest model achieved ROC-AUC score 0.70 (CI 0.64-0.76) on an 

independent test data (Figure 3A). The precision-recall AUC or the test data was 0.69 (CI 0.62-

0.76) (Figure 3B). This resulted in sensitivity score of 0.69 (CI 0.61-0.76), specificity 0.55 (CI 

0.48-0.63) and a G-mean of 0.62 (CI 0.57-0.67) for the test data. These metrics suggest that the 

model performs reasonably well, balancing sensitivity and specificity while minimising 

overfitting. 

 

Using the SHapley Additive exPlanations (SHAP) values which indicate the directionality of 

influence of the variables on the model prediction, we identified the top five important features 

from the random forest model (Figure 3C). These features include both human and 

environmental factors such as the age of the child and population density, as well as three 

bacterial factors - lineages GPSC102, GPSC21, and vaccine serotype. This suggests that a 

combination of human and bacterial factors plays a crucial role in pneumococcal transmission 

within the community.  
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In the random forest models, we applied the same predictors used in the logistic regression 

analysis. Although the trends were consistent with the logistic regression, they were not strictly 

linear. For example, the partial dependence plot for age shows that the model identified that 

children aged younger than six have substantially more positive influence the model’s 

prediction of transmission, relative to older children (Figure 4A). In Malawi, children six years 

and older typically attend school, highlighting that pneumococcal transmission primarily 

occurs among younger, preschool children within this community.  

 

Regarding population density, our model predicts a slight increase in transmission around 

15,000 people/km², followed by sharper rise and then a plateau between 15,000 to 30,000 

people/km². Transmission increases again over 30,000 people/km² (Figure 4B). This non-linear 

trend suggests higher contact rates among children in higher-density populated areas contribute 

to pneumococcal transmission. Other factors, such as community infrastructure, behaviour and 

the age of children in these areas may also play a role. 

 

Like the logistic regression model, the random forest model predicts that transmission increases 

with higher socioeconomic background but in a non-linear manner. Rates level off between a 

social score of 6 and 11 before increasing above 12, indicating possible factors associated with 

socioeconomic background (Figure 4C). However, as before this observation may be 

artefactual, as the model does not account for non-carriage events. 

 

The random forest model also predicts that transmission increases with higher penicillin MICs 

but drops in for isolates with an MIC of 0.5 μg/ml or more (Figure 4D). This suggests that 

while penicillin nonsusceptibility may confer a fitness advantage, high penicillin MICs become 

detrimental to isolates, potentially because mutations in the penicillin-binding protein affect 
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cell wall synthesis (34). However, the small number of isolates in the population with an MIC 

higher than 0.5 could introduce noise into these predictions. In contrast, resistance to 

erythromycin and tetracycline did not substantially affect transmission (Figure 3C). Indeed, 

while penicillin nonsusceptibility increased over the surveillance period, resistance to 

erythromycin and tetracycline remained stable (Figure S2). 

 

To further understand how pneumococcal transmission dynamics have evolved in this 

population, we included year of isolation as a variable in our model (not included in the logistic 

model due to an increase in the AIC score, indicating a poorer model fit). We observed an 

increase in transmission between 2017 and 2018, stabilising around mid-2018 before rising 

again post-2019 (Figure 4E). This pattern aligns with the observed significant increase in 

penicillin-non-susceptible strains after 2017 (Wilcox test p value <0.001) (Figure S1). 

 

We also used a random forest model to examine the effect pneumococcal transmission among 

children based on the number of children aged under-5-years, the number of adults, and the 

number of children aged 5 to 15 in their household, which were not included in the logistic 

regression model (Figures 4F, G and H). The results indicate that the presence of children in 

either age group generally increased the probability of transmission. However, households with 

two or more adults saw a decrease in transmission. This suggests that while more children may 

lead to greater interaction and higher transmission, having multiple adults might limit these 

interactions and reduce transmission. 

 

Recent expansion of lineage associated with increased transmission 

To assess whether the random forest model accurately predicted the lineage effects associated 

with transmission, we employed statistical analyses commonly used in genome-wide 
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association studies (GWAS) to identify lineage effects (35). In line with the top lineages of 

importance from our random forest model in predicted transmission, we find there is a 

significant lineages effect for GPSC102 (p-value < 0.001), GPSC21 (p-value < 0.001), and 

GPSC163 (p-value = 0.01). However, only GPSC102 exhibited an enhanced impact on 

transmission in the random forest model (Figure 3C). GPSC21 and GPSC163 were predicted 

to reduce transmission in the random forest model. At the sequence type (ST) level, GPSC102-

ST4423 (p-value = 0.001), GPSC5-ST10599 (p-value = 0.02), GPSC102-ST10880 (p-value = 

0.02), and GPSC5-ST10603 (p-value = 0.03) significantly impact community transmission. 

These STs belong to GPSC lineages that the random forest model identified as most important 

for predicting transmission dynamics. 

 

To further explore why these GPSC and STs were more or less likely to be detected in recent 

transmission in our analysis, we investigated their change in prevalence during the study 

(Figure S3A). We found no significant increase in GPSC102 (p-value 0.05), whereas GPSC21 

(p-value 0.3), GPSC163 (p-value 0.4), and GPSC5 (p-value 0.8) showed no significant during 

the study period. However, regarding STs that showed a lineage effect, there was a significant 

increase in GPSC102-ST4423 (p-value < 0.001, 5.52% increase in prevalence during the study), 

which emerged in the population in 2016, and GPSC5-ST10599 (p-value < 0.01. 2.68% 

increase in prevalence) (Figure S3B). However, GPSC5-ST10603 showed no significant 

change (p-value = 0.3), while GPSC102-ST10880 significantly decreased in prevalence during 

the study (p-value = 0.002, 1.86% decrease in prevalence). This decrease may be due to 

GPSC102-ST10880's susceptibility to penicillin. Additionally, the decline in GPSC102-

ST10880 could be driven by the emergence of GPSC102-ST4423, which was penicillin non-

susceptible. The observed increase in GPSC102-ST4423, alongside the decrease in GPSC102-

ST10880, suggests possible lineage replacement.  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 23, 2024. ; https://doi.org/10.1101/2024.11.22.24317796doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.22.24317796
http://creativecommons.org/licenses/by-nc/4.0/


16 
 

 

We further explored whether the most common STs within these GPSCs have recently 

expanded to determine if new lineages may influence transmission in the population (Figure 

4). For GPSC102-ST1080 which had a significantly increase in prevalence during the survey 

and was found to have expanded within the last five years of the most recent sampling date, 

compared to ST10880, which significantly decreased in prevalence and was shown to have 

expanded over ten years ago (Figures 5A, B, C, D). This was also observed within GPSC5, 

where ST10599 significantly increased in prevalence during the study within the last eight 

years, compared to ST10603, which showed no difference in prevalence and was shown to 

have expanded over ten years ago (Figures 6A, B, C, D). Furthermore, for GPSC21, ST347 

and ST10572 expanded around 60 and 40 years before the most recent sampling date, and 

GPSC163 ST19568 was shown to have expanded 40 years ago (Figures 7A, B, C, D). This 

along with the prevalence data, suggests that recently emergent lineages within the population 

are more likely to be shared than those that have been established in the population for longer 

periods of time. 

 

Discussion 

Using a combination of whole-genome sequencing, geospatial, and epidemiological data, our 

study reveals that pneumococcal transmission in Blantyre is predominantly driven by pre-

school children residing in high-density areas. Transmission is largely localised, occurring 

primarily between neighbouring households, with pneumococcal lineages taking up to four 

years to fully mixed within the Blantyre community. This is driven by new emergent non-

vaccine type serotypes exhibiting penicillin non-susceptibility. Our findings align with 

previous studies, strengthening biological relevance of our models, and provide new insights 

into household-to-household transmission, and the speed of pneumococcal spread in low- and 
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middle-income cities such as Blantyre (16,21,24,36,37). Additionally, we show that emergent 

lineages have a greater influence on transmission dynamics compared to lineages that have 

been established for several years, highlighting the importance of targeted public health 

interventions that reduce pneumococcal transmission and so reduce invasive pneumococcal 

disease (IPD). Our findings also underscore the need for continuous genomic surveillance to 

detect potentially highly transmissible emergent lineages in such settings. 

 

This analysis benefitted from intense sampling of 1,618 isolates over 4 years allowing us to 

achieve a higher resolution in tracking local transmission than in countrywide studies in Israel 

(1,174 isolates collected over 9 years (17)) and South Africa (6,910 isolates over 15 years (18)). 

Our model indicates that, even in a country with previously described high force of infection, 

transmission amongst children in this urban setting is relatively short range, with lineages that 

become fully mixed within four years (26). This is relatively slow compared to Israel, where 

lineages fully mixed after approximately five years, in a country with a population size of 9.6 

million (population density of 434 people per km2 (17)). However, the slower rate of spread in 

Blantyre is more consistent with South Africa, with a population size 60 million (population 

density of 48 people per km2), where it took 50 years for pneumococcal lineages to fully mixed 

(18). This difference may reflect a variety of factors, including socio-economic status, childcare, 

antimicrobial usage, immune status, transport networks and  local internal migration, and 

possibly differences in the IPD lineages or the underlying nasopharyngeal microbiome 

(18,21,38,39).  

 

Data from the pre-PCV13 era suggest that infant-to-mother and infant-to-sibling transmission 

is the primary contributor to spread within a population (40). As might be expected for 
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respiratory contact-dependent transmission, this was most prevalent in the higher-density areas 

of Blantyre, and in line with these observations, occurred most frequently between 

neighbouring households between preschool-aged children of similar ages. Studies in rural 

populations in Kenya and The Gambia, observed a high frequency of carriage episodes among 

young children that declined with age, likely due to increasing clearance rates (41,42). This 

together with the localised nature of the spread seen in Blantyre highlights the importance of 

close-contact interactions among young children, rather than older children and adults in 

driving transmission.  

 

There are multiple bacterial factors that influence pneumococcal transmission, these include 

the polysaccharide capsule, which can evolve through both mutation and genetic exchange(43), 

is a major virulence factor and is the target for PCV. In animal models, both the type and amount 

of capsule has been shown to affect pneumococcal transmission dynamics (44). Following PCV 

introduction, new lineages have since emerged, replacing previous vaccine serotypes with non-

vaccine serotypes that exhibit greater resistance to penicillin (44,45). In our study, we observed 

increased transmission linked to emergent, penicillin non-susceptible lineages, such as GPSC5 

and GPSC102, both have expanded clonally in multiple countries following PCV introduction.  

In contrast, GPSC21, which contained the highest number of VTs, underwent clonal expansion 

before the vaccine was introduced. Together these data build on our earlier observations of 

persistent VT carriage (24), showing that the sub-optimal control the spread of VT lineages. 

Clonal expansion among a number of pathogenic bacteria with enhanced transmission 

capabilities has been linked to the acquisition of antimicrobial resistance (AMR) (45–48). 

However, the driver of the increase in prevalence and transmission of the penicillin non-

susceptible pneumococcal isolates in our study remains unclear. The use of beta-lactam 
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antibiotics has previously been linked to a rise in penicillin non-susceptible isolates, but we did 

not collect this data (49).  

 

Limitations of this study include the absence of data on factors known to influence 

pneumococcal carriage, such as viral infections, pollution, and human contact patterns (50–52). 

Additionally, our model does not account for individuals without pneumococcal carriage, who 

may provide insight into protective human factors against bacterial transmission. Single-colony 

sequencing from nasopharyngeal samples may also miss important transmission links, 

especially in young children in Malawi who often carry multiple pneumococcal lineages (53). 

For example, Serotype 1, which frequently causes disease outbreaks, may be underrepresented 

in carriage studies when only a single colony is sequenced (16). Multi-colony metagenomic 

sequencing could improve our understanding of transmission, as lower-abundance resistant 

strains may be carried alongside susceptible strains within a single host (54). 

 

In summary, our analysis highlights the complexity of pneumococcal transmission dynamics 

in Blantyre, demonstrating that both human and bacterial factors contribute to localised spread.  

These results highlight the need for data-driven, targeted public health interventions to reduce 

the incidence of invasive pneumococcal disease (IPD) by integrating epidemiological data with 

genomic surveillance. Future refinement of these models could be achieved by incorporating 

multicarriage sequence data and additional epidemiological cofactors. This would further 

elucidate transmission patterns and support the development of more effective vaccine 

strategies that target transmission of disease-causing and antimicrobial-resistant pneumococcal 

lineages and increase herd protection for vulnerable individuals (e.g. very young children and 

people living with HIV). 
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Methods 

Setting and study population 

The city of Blantyre (228 km2) is in southern Malawi with an urban population of 

approximately 1 million (growth rate 3.9%; overall population density 3,006 people per km2). 

Within Blantyre there are multiple high-density residential areas ranging up to 34,602 people 

per km2. Recruitment to the Pneumococcal Carriage in Vulnerable Populations in Africa 

(PCVPA) study was between 2015 and 2019 (PCV13 introduced into routine immunisation 

November 2011). PCVPA study methods are reported elsewhere (24). In brief, participants 

included healthy infants 4-8 weeks old prior to first dose of PCV13, healthy children 18 weeks–

7 years old who received PCV13 as part of routine immunisation or the catch-up campaign, 

and healthy children 3–10 years old who were age-ineligible (born on or before 11 November 

2010 and therefore too old) to receive PCV13. Epidemiological information collected include 

household location (GPS coordinates) and household composition, date of nasopharyngeal (NP) 

swab collection, participant’s age and gender, vaccination status, and socioeconomic status. 

Furthermore, we used population density of Blantyre from each year of the study obtained from 

WorldPop research programme(55). These population density data are modelled outputs from 

a statistical model that takes as inputs the national census data, geographical and settlement 

data to infer the locations where people live. The model predicts the number of people within 

a100m X 100m grid with associated confidence intervals 

 

Isolates and whole genome sequences 
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S. pneumoniae was isolated by culture from NP samples  and bacterial DNA extracted from 

individual colonies as previously described (56). DraG assemblies of whole genome sequences 

were obtained from the PCVPA study and linked with study data from PCV-vaccinated children 

aged 2 to 7 years (n = 1,882) and PCV-unvaccinated (age ineligible) children aged 5 to 10 years 

(n = 600) collected in Blantyre  from 2015 to 2019 (24).  

 

Gene4c typing and an4bio4c resistance tes4ng 

Whole Genome sequences of pneumococcal isolates, serotypes, geneTc lineages, and 

anTmicrobial resistance were determined using Pathogenwatch 

(hUps://pathogen.watch/)(57). Lineages were defined by both the Global Pneumococcal 

Sequence Cluster (GPSC) from POPpunk v2.7.0 and the pneumococcal mulTlocus sequence 

type (MLST) scheme. The penicillin MIC was predicted in silico using the SPN-PBP-AMR 

machine learning algorithm using the EUCAST 2024 breakpoints (58–60). Other AMR gene and 

mutaTons were detected using Pathogenwatch AMR predicTon module. 

Extrac4ng divergence 4me from Bayesian 4me calibrated phylogene4c tree 

A Bayesian Tme-calibrated phylogeneTc tree was constructed for each GPSC. To find the best 

reference sequence to align for each GPSC, we uTlised ReferenceSeeker to find the closest 

related complete genome sequence from the NCBI Genbank database for each GPSC (61,62). 

These isolates were then aligned using Parsnp v1.0, and recombinaTon events were removed 

with Gubbins v3.3.1  (63,64). A Bayesian Tme-calibrated phylogeneTc tree was then 

constructed using BactDaTng v1.1.2 with the mixedcarc model (65). The tree was used for 

further analysis if all parameters converged and reached an effecTve sample size > 100. 
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Divergence distances between isolate pairs were extracted using the rrspread R package 

(hUps://github.com/hsuehchien66/rrspread_v2). 

 

Sta4s4cal analysis of pairwise distance and divergence from phylogene4c tree 

A generalized additive mixed model (GAMM) with a  gaussian distribution was constructed to 

analyse the pairwise divergence distances of isolates with less than 10 years of divergence. The 

model formula was specified as follows: 

𝐘 = ƒ𝟏(𝐗𝟏) + 𝒖𝟏 + 𝒖𝟐 + 𝝐 

Where Y represents the pairwise distance (in km) between samples, ƒ1(X1) is a smooth 

function of the fixed effect for time divergence (in years) between pairs, is a random intercept 

accounting for the non-independence of the sample pairs, and ϵ denotes the residual error. 

This model was constructed using the mgcv v1.9-1 R package. 

The saturation point of each GAMM curve was defined by the first instance of the derivative 

of the curve being less than 0.1, indicating a flattening. 

To calculate the relative risk (RR) of transmission across different divergence times and 

distances, these were binned into the following intervals: 0–1 year, 1–2 years, 2–3 years, 3–4 

years, and 4–5 years; and 0-0.075km, 0.075-0.5km, 0.5-1km, 1-2km, 2-3km, 3-4km and 4-5km. 

We implemented the following formula adapted from Cheng et al., 2024 (17): 

𝑹𝑹 =	
∑(𝒅𝒊𝒗, 𝒅𝒊𝒏𝒕)/∑(𝒅𝒊𝒏𝒕)
∑(𝒅𝒊𝒗, 𝒅𝒐𝒖𝒕)/∑(𝒅𝒐𝒖𝒕)
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Where ∑(𝒅𝒊𝒗, 𝒅𝒊𝒏𝒕)is the sum of the number of pairs that fall within a specified divergence 

time interval and specified pairwise distance., )∑(𝒅𝒊𝒏𝒕)is the sum of number of pairs within 

that specified distance interval, ∑(𝒅𝒊𝒗, 𝒅𝒐𝒖𝒕) is the sum of number of pairs with divergence 

times outside the specified distance and ∑(𝒅𝒐𝒖𝒕) is the sum of the number of pairs outside that 

specified distance interval. 

The RR was also calculated based on the likelihood of transmission between children as a 

function of their age difference, grouped into the following intervals: 0-1, 1-2, 2-3, 3-4, 4-5- 

and 5-6-years difference. This RR was calculated using the following formula: 

𝑹𝑹	 =
∑(< 𝟏𝒅𝒊𝒗,𝑨𝒊𝒏𝒕)/∑(𝑨𝒊𝒏𝒕)
∑(< 𝟏𝒅𝒊𝒗,𝑨𝒐𝒖𝒕)/∑(𝑨𝒐𝒖𝒕)

 

Where ∑(< 1	𝑑𝑖𝑣, 𝐴&'() is sum of number of pairs<1 year divergence within a specified age 

difference, ∑(𝑨𝒊𝒏𝒕)   is  sum of number of pairs within  a specified age difference, 

∑(< 𝟏𝒅𝒊𝒗, 𝑨𝒐𝒖𝒕) the sum of number of pairs <1 year divergence outside a specified age 

difference and ∑(𝑨𝒐𝒖𝒕) is  sum of number of pairs outside  a specified age difference. 

The confidence interval (CI) for the RR was estimated by bootstrapping 20 initiation, For each 

initiation we resampling the individuals with replacement and recalculating the RR for each 

resampled dataset.  

A univariate and multivariable mixed-effects logistic regression model was developed to 

examine the significance of child epidemiological data, such as age of child household 

population data, social economic score, and population density as well as bacterial serotype 

and antimicrobial resistance (AMR) genotype variables, as predictors. The outcome variable 

was binary, coded as 1 for isolates that were found in at least one pair with divergence in time 

and distance below the saturation points identified from the GAMM model, indicating recent 

transmission events, and 0 otherwise.  This was used to distinguish recent transmission of 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 23, 2024. ; https://doi.org/10.1101/2024.11.22.24317796doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.22.24317796
http://creativecommons.org/licenses/by-nc/4.0/


24 
 

lineages in the study. The GPSC lineages were set as a random effect.  

 

A univariate and multivariable logistic regression model were also constructed to explore the 

significance of human factors associated with carriage and non-carriage of pneumococcal. All 

continuous variables included in the models were standardised (z-scored) to normalise their 

scales. For both models, variables used for prediction were selected based on the absence of 

multicollinearity and a lower AIC score. Results were considered significant if P value < 0.05. 

mixed-effect logistic regression mode was constructed using the lme4 v1.1-35.4 R package. 

Random forest model 

A random forest classifier model was constructed to classify a transmission event, and identify 

human and bacterial characteristics which predict transmission (20,66,67). Human 

characteristics included the age of the child, year of sample collected, socioeconomic score, 

household density (including number of children 5 years or younger, number of children 5-15 

years or younger, and number of adults). Bacterial features included isolate’s GPSC, whether 

a PCV13 vaccine type serotypes, expected AMR phenotype from the genotype, and in-silico 

penicillin MIC. Categorical data were one-hot encoded. Optuna, a hyperparameter 

optimization framework (68), was used for hyperparameter optimisation, tuning parameters 

such as number of estimators, maximum depth, minimum samples split, minimum samples leaf, 

maximum features, class weight, and bootstrap settings, with performance evaluated via cross-

validation using the mean ROC-AUC score. Feature selection was performed using Recursive 

Feature Elimination with Cross-Validation (RFECV) and 5-fold cross-validation. The best 

model was applied to training and testing datasets, with ROC-AUC, precision-recall AUC, and 

classification reports used to assess performance. The CI for performance metrics was 

calculated by bootstrapping 1,000 times. SHAP values were calculated on the train set and 
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employed to identify important features, with partial dependence plots showing the impact of 

continuous variables. Python libraries Optuna v4.0, scikit-learn v1.5.2, and SHAP v0.46 were 

used. 

 

Lineage effect analysis 

The lineage effect was analysed based on detected transmission within the population using the 

linear mixed model from pyseer v1.13.10 which use the method proposed by Earle et al (35,69). 

Genetic distance between isolates was calculated using Mash v2.0 and were assigned to their 

GPSC and MLST (70). Bonferroni correction was used to adjust p value for multiple 

comparison between different lineages. To determine the significant increase in prevalence of 

lineages we used the R stats package setting the denominator as all the isolates collected during 

those surveys and significance was determined by Chi-squared test for trend using rstatix 

package v0.7.2 R package.  

 

Detecting expansion effect population size 

To determine clonal expansion and infer the effective population size over time, we used the 

Bayesian time-calibrated phylogenetic tree previously described and employed the CaveDive 

v0.1.1 R package, using priors from Helekal et al. (71). 

Data Availability 

R and Python code used to plot the GAMM model and random forest model can be found in 

the Git repository: https://github.com/rorycave/Blantyre_SPN_geospace_paper. Whole 

genome sequence data are available from BioProject PRJNA1011974. 

Study ethical approval 
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The PCVPA study protocol received approval from the College of Medicine Research and 

Ethics Committee, University of Malawi (P.02/15/1677), and the Liverpool School of Tropical 

Medicine Research Ethics Committee (14.056). Written informed consent was obtained from 

adult participants and the parents or guardians of child participants. Children aged 8–10 years 

also provided informed assent. Consent included permission for publication.
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Figures 

 

 Figure 1: Geographic representaTon of Malawi and Blantyre. A) Map of Malawi indicaTng 

the locaTon of Blantyre (Blue dot). B) Detailed map of Blantyre illustraTng populaTon density, 

with areas where samples were collected outlined by black convex hulls, and the number of 

isolates collected from each area represented by marker size. 
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Figure 2: GAMS model and RR analysis. A) A GAM mixed model showing the divergent time 

between pairs against the distance between pairs. Blue line is the plotted GAM model, grey 

area is the 95% confidence interval, purple dashed line is the saturation point of the curve and 

red dashed line is the mean distance of all pairs that have less than 10 years of divergence. B) 

Relative risk of isolates pairwise divergence times difference can be found between different 

pairwise distance. C) Relative risk of isolates pairwise divergence of less than 1 year 

divergence found between pairwise difference of children ages. 
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Figure 3: Random forest model fit to predict human and bacterial factors associated with 

transmission. A) The Receiver Operating Characteristic (ROC) curve showing the performance 

of the random forest model against the training and test datasets. B) Precision-recall curve of 

the random forest model on the training and test datasets. C) Beeswarm plot of SHAP values 

for each feature's impact on the model's predictions regarding the likelihood of an isolate being 

part of recent transmission. The features are displayed in descending order of importance from 

top to bottom, based on the average absolute SHAP value. 
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Figure 4: Partial plot of SHAP values for A) Age of child, B) Population density, C) Socioeconomic score, D) Penicillin MIC, E) Year of isolation, 

F) Number of children aged 5 or under in a household, G) Number of adults in a household, H) Number of children aged 5 to 15 in a household. 

The red line is the locally estimated scatterplot smoothing (LOESS) trend of the partial plot.
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Figure 5: Clonal expansion and effective population of lineages showing GPSC102 lineage 

effects in transmission. A) Dated phylogeny illustrating the expansion of GPSC102-ST4423. 

Pairwise matrix showing the posterior probabilities of any two genomes belonging to the same 

subpopulation. B) Posterior summary of the inferred effective population size for GPSC102-

ST4423. C) Dated phylogeny illustrating the expansion of GPSC102-ST10880. Pairwise 

matrix showing the posterior probabilities of any two genomes belonging to the same 

subpopulation. D) Posterior summary of the inferred effective population size for GPSC102-

ST10880. 
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Figure 6: Clonal expansion and effective population of lineages showing GPSC102 lineage 

effects in transmission. A) Dated phylogeny illustrating the expansion of GPSC5-10603. 

Pairwise matrix showing the posterior probabilities of any two genomes belonging to the same 

subpopulation. B) Posterior summary of the inferred effective population size for GPSC5-

10603. C) Dated phylogeny illustrating the expansion of GPSC5-ST10599. Pairwise matrix 

showing the posterior probabilities of any two genomes belonging to the same subpopulation. 

D) Posterior summary of the inferred effective population size for GPSC5-ST10599. 
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Figure 7: Clonal expansion and effective population size of lineages showing the effects of 

GPSC92 and GPSC163 in transmission. A) Dated phylogeny illustrating the expansion of 

GPSC92. Pairwise matrix showing the posterior probabilities of any two genomes belonging 

to the same subpopulation. B) Posterior summary of the inferred effective population size for 

GPSC92. C) Dated phylogeny illustrating the expansion of GPSC163. Pairwise matrix 

showing the posterior probabilities of any two genomes belonging to the same subpopulation. 

D) Posterior summary of the inferred effective population size for GPSC163.For the effective 

population size graphs, the grey area represents the 95% credible interval, and the lines denote 
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the median. Solid lines indicate past effective population size inference, while dashed lines 

represent predictions of future effective population size. Point 0 on the x-axis corresponds to 

the most recent sample date, which was 2019
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