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Statement of translational relevance

The identification of a low-abundance microRNA signature in plasma-derived extracellular
vesicles offers significant translational potential for the early diagnosis and subtyping of
pancreatic cancer, particularly across diverse ethnic populations. This discovery could lead to
the development of non-invasive liquid biopsies that improve early detection rates, a critical need
for a cancer with notoriously poor prognosis due to late diagnosis. By incorporating this
microRNA signature into clinical practice, oncologists may be able to detect pancreatic cancer at
earlier, more treatable stages, enhancing patient survival rates. Additionally, the subtyping
capability of this signature could guide personalized treatment strategies, allowing for more
targeted therapies based on specific cancer subtypes. This could ultimately reduce the need for
invasive diagnostic procedures and optimize treatment efficacy, reducing adverse effects and
improving outcomes. The integration of radiogenomics and liquid biopsy technologies promises

to be a powerful tool in the future of cancer medicine, particularly in underserved populations.
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Abstract
Purpose

Currently there is a lack of effective methods to accurately detect pancreatic cacer. In our study,
we develop a liquid biopsy signature of EV miRNAs based on associated radiomics features of

patients’ tumors in order to provide new insights for the early diagnosis of pancreatic cancer.
Experimental Design

A total of eight datasets enrolled in this study, featuring clinical and imaging data from different
benign pancreatic lesions and malignant pancreatic cancers as well as small RNAseq data from
cargo of plasma extracellular vesicles of tumor patients. Radiomics Feature Extraction and
different features analysis performed by limma packages. Feature selection was performed by
Boruta algorithms and radiomics related signature model was build and validated by lasso
regression algorithms. Radiomic signature related to low abundance EV miRNAs was analyzed
by weighted gene co-expression network analysis. The diagnosis ability of above miRNA are
validated by ten machine-learning algorithms. The shared target of candidate miRNAs were
predicted and clustered followed by subsequently probing for predicting survival benefit of the

patient, drug sensitivity of tumor cells and functional differences.
Results

A total of 88 significant radiologic features demonstrate differences between benign lesion and
pancreatic cancer. Three radiomics factor related signature related a plasma EV-miRNAs triplet
possessing high accuracy in diagnosis cancer from benign lesions. Moreover, clustering miRNA
and there predicted molecular signaling partners in tumor tissue identified tow molecular
subtypes of pancreatic cancer. Cluster stratification separates low risk tumors in terms of
severely prolonged overall survival time of patients, higher sensitivity to immune therapies. We
also propose the potential of purposing selected targeted drugs to specifically targeting the

molecular activation markers in high-risk tumor cluster.
Conclusion

Our three radiogenomics related blood plasma extracellular vesicle microRNA signature is a
useful liquid biopsy tool for early diagnosis and molecular subtyping of pancreatic cancer, which

might treatment decision making.
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Introduction

Pancreatic cancer is one of the most lethal tumors having a poor prognosis and patients
suffering from this disease show one of the lowest 5-year overall survival rate of all cancer
patients with approximately 13%. One of the main reasons for this dismissal prognosis is the
lack of a proper early detection possibility, resulting in late diagnosing often in advanced,

metastatic stage'

The detection and diagnosis of pancreatic cancer, of which approximately 90% are classified as
pancreatic ductal adenocarcinoma (PDAC), currently relies primarily on modalities of medical
imaging, such as computer tomography, magnet resonance imaging, positron emission
tomography and transabdominal ultrasonography?. The most common biomarker considered for
PDAC differential diagnosis is elevated blood abundancy of carbohydrate antigen 19-9 (CA19-9)
and carcinoembryonic antigen (CEA), though these are only used as prognostic markers and not
effective for screening or early diagnosis® Nowadays, new markers based on liquid biopsy such
as microRNA are discerned and might pose as promising tools for early detection of PDAC.
miRNA are non-coding RNAs that target genes and regulate their expression by inhibiting mRNA
translation or enhancing their degradation*. Currently, extracellular vesicles (EV) are gaining
attention as disease specific marker since they carry the material of their secreting cells and are
therefore considered to contain tumor-derived elements, showcasing their molecular fingerprint
(Bamankar und Londhe 2023). It has been shown multiple times that miRNA derived from small
EVs play a role in differentiation and metastasis of cancer®. The rapidly developing field of data
mining and analytical techniques provide new insights and make the discovery of relevant key
players more feasible. Numerous miRNA have been described using co-expression network
analysis that might be applicated as diagnostic or prognostic biomarker, for patient stratification

or disease recurrence’.

Benefiting from interdisciplinary advances in artificial intelligence, the integration of machine
learning and genomics has led to breakthroughs in the early diagnosis and classification of
tumors. For example, we used machine learning algorithms to assist in the development of a
three-serum miRNA signature that effectively provides early warning of premalignant pancreatic
cancer®. Another model, based on machine learning algorithms, focuses on the immune
subtypes of triple-negative breast cancer, offering critical insights for identifying patients who
may benefit from immunotherapy®. In the current study, we employed radiogenomics technology,
another product of interdisciplinary collaboration between medicine and engineering. This novel
approach integrates the quantification of image features from CT or MRI, which are then

correlated with genomic signatures and allows for a non-invasive prediction of molecular
4
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characteristics'. Such as, claim to be able to predict the occurrence of p53 mutations using CT

images by radiogenomic analysis and hence make a statement on the prognosis™’.

In the present study, we aim to develop a liquid biopsy signature of EV-derived miRNA based on
the radiogenomic analysis of CT images derived from ethical diverse background and
interrogating small RNAseq data of plasma-derived total EVs, in order to advance the diagnostic

possibilities and the molecular subtyping of PDAC.

Materials and Methods

Data resources and pre analytics preparation

A total of four hospitals and four public datasets, comprising a total of eight datasets enrolled in
this study, University hospital Magdeburg in Germany (UMMD), and Jiaxing Hospital Center,
China (JHC), provided enhanced computed tomography (CT) images of 46 pancreatic benign
lesion (PB) patients and 127 pancreatic cancer (PC) patients as training dataset. For test
datasets, CT data resource from Wanan medical university hospital (WUH) with 27 PB patients
and 72 PC patients. University hospital Dresden, Germany (DUH) center provide miRNA and
MRNA seq data from total plasma extracellular vesicles (EV) of PDAC patients with associated
clinical follow information, including 20 benign pancreatic disease patients and 63 pancreatic
cancer patients. The four public serum miRNA sequence data containing pancreatic cancer (PC)
and healthy control (HC) were GSE106817(2759 PC vs.115 HC), GSE113486(40 PC vs.100HC),
GSE112264(50 PC vs.41 HC), GSE109319(24 PC vs. 21 HC). Before future analysis, we
removed the low quality of images and the low quality of miRNA sequence samples, then we
use Propensity Score Matching (PSM) method to match the begin and tumor patients from DUH
to UMMD & JHC according to age factor. Afterwards, we constructed a new matrix including CT
images, EV miRNAs, mRNAs and patients clinical follow up information. The workflow is
schematically depictured in Figure 1. Ethical approval to conduct the study for UMMD and DUH
after approval by the local Institutional Review Board/ethics committee (UMMD 46/22; 30/01 with
amendment 43/14; DUH: EK76032013). Written informed consent from the patients was

obtained pre-operatively with the disclosure of research purpose.
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Radiogenomics reveals blood plasma extracellular vesicle microRNA signature for early diagnosis and
molecular subtyping of pancreatic cancer
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Figure 1: Schematic presentation of the workflow of this study. The use radiomics to aid finding

novel EV charged miRNAs to allow PDAC diagnostics.
EV isolation and RNA sequencing

Details on the protocols for EV isolation including presentation of optical and molecular
characteristics of isolated vesicles proofing high quality isolation performance have been

described previously by our groups’?.

EV isolation using ultracentrifugation: 500 yl plasma samples were thawed and mixed with
500 pl PBS. The diluted plasma samples were filtered with 0.2 um filter and subjected to
ultracentrifugation at 100,000xg, 2 h, 4 °C in a ultracentrifuge (Sorvall MX150 + micro-
ultracentrifuge, Thermo Scientific, Darmstadt, Germany). The supernatant was removed and the

pellet was washed once with ice-cold Phosphate Buffered Saline (PBS, Gibco, Carlsbad,

6
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California, USA) and ultracentrifuged again at 100,000xg, 2 h, 4 °C. The resulting pellet was
resuspended 100 ul PBS and transferred to Vivaspin ® 500 filtration (100,000 MWCO, Sartorius,
Gottingen, Germany) for centrifugation at 15,000xg, 45 min. The concentrated EVs were stored

at — 20 °C until further use for EV characterization.

EV isolation using precipitation method: 550 ul plasma samples were thawed and first
centrifuged at 2000xg for 20 min. The supernatant was subjected to another round of
centrifugation at 10,000xg for 20 min. After the second round of centrifugation, 500 pl
supernatant was mixed with 250 pl PBS, vortexed and added with 150 pl Exosome Precipitation
Reagent. The mixture was incubated at room temperature for 10 min and centrifuged at
10,000x%g for 5 min. After removing the supernatant completely, the pellet was resuspended with
500 pl PBS and concentrated with Vivaspin ® 500 filtration (100,000 MWCO, Sartorius,
Goéttingen, Germany) by centrifugation at 15,000xg, 45 min. The resulting EVs were stored at

— 20 °C until further use for EV characterization.
RNA sequencing

The eluted EV RNAs were first analyzed for their integrity and concentration using Agilent
Fragment Analyzer 5200™ with DNF-472 High Sensitivity RNA Analysis Kit, 15 nt (Agilent
Technologies, Santa Clara, California, United States). A range of 1 ng—2 ug RNA was used for
complementary DNA (cDNA) synthesis as a preparation for EV RNA sequencing (RNA-seq)
libraries with SMARTer smRNA-Seq Kit for lllumina (Takara Bio Inc, Mountain View, California,
USA) and were sequenced on an lllumina sequencing platform (NextSeg® 500/550 Mid Output
Kit v2, San Diego, California, USA) with run configurations of single read, read 1:51 cycles,

index 1:8 cycles, index 2:8 cycles and an average of 3.7 million reads per sample.

Raw reads were first converted from bcl to fastqg format using bcl2fastq (v2.20.0.4.422) and
subsequently filtered using FastQ Screen to remove potential contaminations by microorganisms
or artefacts due to technical issues. The reads were mapped to a phase |l reference genome of

the 1000 Genomes Project.
Radiomics Feature Extraction and different features (DFs) analysis

We use 3DSlice soft (www.slicer.org) to mark pancreatic benign and pancreatic cancer in CT
images as mask and use original figure as reference. Subsequently, we use python (Version 3.8)
soft to extract radiomics feature, respectively. Afterwards, we use limma packages analysis to
conduct different feature analysis to identify the significant features between benign and cancer.

The p-value < 0.05 was defined as statistical significant.
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Feature selection and radiomics related signature model build

After obtain the DFs, to avoid multicollinearity of the data, we conduct the dimensionality
reduction analysis by Boruta algorithms and Lasso regression (LR) model. First, the Boruta
algorithms will calculate the importance of each feature and if importance more than shadow
feature, it will be selected as important feature, and then, input above important feature into the
LR model, the features were selected as significant if the model penalty coefficients were
minimized. After selection by machine learning algorithms, we calculate the regression
coefficient of each feature in LR model. After that, by combining the feature expression to build
the signature model in order to predict the images status from large amount of imaging data. The
model formula as listed below, multiplies the regression coefficients of the features with the
corresponding feature expressions separately followed by summation of those. The model
validation was test with applying WUH center CT dataset, whereas the area under curve (AUC)

of Receiver operating characteristic curve (ROC) was used to evaluated the predict ability of

model.
Definition and identification of low abundance EV-derived miRNA transcripts.

Low abundance miRNAs are defined as the EV miRNAs with the lowest 30% Counts Per Million
(CPM) value across all samples. First, we calculate the CPM value for each miRNA across all
samples using the edger function. Then, the non-zero miRNAs with CPM values ranked in the

lowest 30% of all samples were selected and defined as low abundance miRNAs

Weighted gene co-expression network analysis (WGCNA) analysis to identify imaging
feature related EV miRNAs

According to the radiomics signature, patients will be spilt into low and high-risk group. Low risk
classification means images have high percentage of feature parameters from benign images
while high risk more likely become cancer featuring images. To explore the correlation between
above groups with EV miRNAs, we conduct the WGCNA analysis. The soft-thresholding power
of WGCNA was automatically defined by the model, which was then assisting in calculating the
expression correlation with a) a given miRNA to obtain gene significance (GS), and b) of module
membership with miRNAs to obtain module membership (MM). Based on the cut-off criteria
(IMM] > 0.5 and |GS| > 0.1), we obtain the significant miRNAs related to low and high risk

images, respectively.

Hub EV miRNAs identify and validation in serum and tissues level
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We merge WGCNA results and low abundance EV miRNAs to identify the candidate hub
miRNAs, then we use GSE109319 to validate this EV miRNAs different expression between
healthy participants and PADC patients in serum level. In addition, we also validate this EV
miRNAs different expression between pancreatic tissue of healthy individuals and PADC tissues
in TCGA- sample cohort.

Screening the best models to aid hub EV miRNAs in blood based diagnosis

We collect serum dataset from GSE106817, GSE113486, GSE112264, our hospital center
(UMMD) and GSE109319 dataset to perform this procedure. First, the GSE106817 as training
dataset, GSE113486 and GSE112264 are used as independent test dataset. Then we use ten
machine learning algorithms (Gradient Boosting Machine
GBM ,KNN ,Lasso ,XGBoost ,ENR ,SVM ,LR ,RR ,StepWise ,and QDA) composition to select
the best model for prediction. After selection based on highest performance values, we apply our
hospital (UMMD) dataset and GSE109319 to validate the model accuracy for ability of clinical

prediction.
Common candidate target mRNAs of hub EV miRNAs

To discover the candidate regulation mechanisms of hub EV miRNAs, we use miRPathDB v2.0
database (https://mpd.bioinf.uni-sb.de/overview.html ) to predict the candidate target mRNAs of
hub EV miRNAs. Subsequently we select the pass experiment validation mRNAs from the
evidence column, as candidate targets of each miRNAs. then, we explore candidate targets of
above which were regulated by this three miRNAs at the same time. Finally, we merge above
targets and DHU patient's mRNA sequence to identify the final shared mRNAs which were

regulated by three miRNAs at the same time and for the future analysis.
Cluster of shared target mRNAs and survival analysis between different clusters

We use R package ConsensusClusterPlus to perform the cluster analysis of common target
mMRNAs, and rank the best cluster results according to the Consensus value output received.
Afterwards, we also analyze the survival difference between identified subtypes by R package

survival. OS and DFS were used to as event endpoint.
Clustering of tumor subtype with clinical factors

To explore the clinical value of each subtype, we analyze the relationship between the subtypes

and important clinical factors, such as, age, tumor size, number of positive lymph nodes. We



259
260

261
262

263
264
265
266
267

268

269
270
271

272

273
274
275
276
277

278

279

280
281
282
283
284
285
286
287

also discover the distribution of sex, peri-neural invasion (PNI), and tumor stage the in different

subtypes.

Characterization of immune cell infiltration properties and immune check point activation

in each tumor subtype

We use the Microenvironment Cell Populations-counter (MCP-counter) algorithms to calculate
immune cell infiltration of each samples and calculated the difference in the two tumor subtypes
for each immune cell type separately. We also conduct the relationship between the subtypes
and immune check point activation, to predict the candidate subtype could benefit from the

immune checkpoint inhibitors.
Potential drug sensitivity for each subtype

We download drug sensitivity data of molecular characterized cell lines to FDA approved, clinical

drugs from GDSC database https://www.cancerrxgene.org/ , and then use pRRophetic package

to estimate the drug sensitivity of the two discovered subtypes.
Functional enrichment analysis and pathway prediction

To explore the biological function difference in Biological Process (BP), Cellular Component (CC)
and Molecular Function (MF), we conduct the Gene Set Enrichment Analysis (GSEA) analysis.
We also use this method to analysis the pathway enrichment difference between the two
subtypes. Cluster profile package perform this operation and set p-value < 0.05 as significant

enrichment results.
Results
Enrolled population and baseline information for CT images and EV miRNA

A total of 272 patients enrolled this study providing CT imaging, including 173 in UMMD&JHC
center while 99 in WUH center. In UMMD&JHC center, also including 46 pancreatic benign
lesion and 127 pancreatic cancer CT images. Most of pancreatic patients in this center are older
with obesity, but less smoking or alcohol and less with diabetes. For WUH center, most
pancreatic cancer are female, and also with a high account for older, and obesity. The DUH
provide the patients with EV-miRNAs, EV-mRNAs data and follow up information. About 82.5%
(52/53) patients are older, and 34 patients are female. The clinical characteristics of the data

cohorts are summarized in Figure 2.
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Figure 2: The base line information of clinical parameters of patients enrolled from four centers

in this multi-center trial.

Different expression radiomic features between pancreatic benign lesions and aggressive

tumors

Before the analysis, we conduct the PSM procedure to match the benign and aggressive tumor
from DUH to MUJH, respectively, according to age. After match, we found both center baseline
difference are removed (Figure 3A). Then the difference expression radiomics features was
conduct, the results indicate that a total of n=88 significant features demonstrate differences

between groups (Figure 3B).
Four important radiomic feature was selected to build a related signature

We use Boruta algorithms to select the important features and result show that a total 12
features were identified, which more than shadow features. In addition, after input above
features into LR algorithms and we can found that four features are list as key features(Figure
3C-D). Based on LR model with regression coefficient and feature expression, we build a four
radiomics feature related signature and validate the prediction ability in WUH center data,

revealing a signature accuracy of prediction efficiency (AUC=0.911) (Figure 3E-F).
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Figure 3: Propensity Score Matching (PSM) allows matching data of benign pancreas lesions
and PDAC patients from DUH to UMMD & JHC patients according to the age factor, all of DUH
patients successful matched similar patients (A). The different radiomic features between the
benign lesions and PDAC patients CT images(B). 12 most important radiomic features
differentiating between the benign pancreatic lesion and PDAC patients” CT images identified by
the Boruta algorithms (C) Four radiomic features were selected by Lasso Regression to build
model signature (D&E). Applying the four radiomic features related signature in image analysis
show high accuracy in predicting the PDAC manifestation in the WUH test dataset(F).

Three EV miRNAs are associated with radiomic features

After radiomics signature was build, each patients presents an individual risk score and we split
patients into high-risk and low-risk patients, according to median value of risk score. We use
WGCNA to connect the EV miRNA data and two imaging-featured patient risk groups. The
WGCNA results shows that the green model is the key module and the hub gene of this module
co-expresses 12 miRNAs. The number of low abundance of miRNA are calculated was n=295.
Merging both results, three miRNAs are identified (hsa-miR-1260b, hsa-miR-151a-3p and hsa-
miR-5695) and selected for subsequent alignment with associated with radiomic features (Figure
4A-C).
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Expression validation of three EV miRNAs

We use serum and tissues sample to validate the expression of three hub EV miRNAs and the
results show that compare with healthy serum sample, this three miRNAs are enriched in tumor
patient serum sample. Interestingly, this correlation of upregulation in tumor conditions was also

true when comparing tumor tissue with non-tumor tissue (Figure 4D-I).
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Figure 4: EV miRNA presenting the risk group stratification based on radiomics signature by
WGCNA analysis featuring green mode discovering our key module for further analysis (r=0.21,
p=0.047) (A). The number of low abundance miRNA in the entire EVseq dataset cohort is n=
295 (B). Out of those low abundance miRNAs, n=12 present matching candidates differentially

expressed in high risk group patients. Alignment to our radiomics feature parameters identified
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three core miRNAs (hsa-miR-1260b, hsa-miR-151a-3p and hsa-miR-5695) (C). The three key

miRNAs show significantly different expression levels in tumor condition, both for serum (D-F)

and tissue (G-I).

Three EV miRNAs predictd pancreatic cancer with high accuracy

We use seven machine-learning combos to train and test the ability of three EV miRNAs levels

to predict tumor manifestation and clinical course of patient. The results show that in the GBM-

default (cutoff=0.75) model, three EV miRNAs show a high accuracy to predict the pancreatic

cancer with the training accuracy was 0.978 with AUC=0.978, and two test dataset accuracy are
0.923 with AUC=0.919, and 0.871 with AUC=0.857,respectively. Then, we choose GBM model
for the extend validation by our hospital data(MUH) and GSE109319.Before this procedure, we

use combat package to remove the batch effect allowing the merge of the two datasets. The

results of the extend dataset validation via GBM further highlights the high diagnostic accuracy

of the three EV miRNAs (accuracy =0.894, and AUC=0.897) (Figure 5).
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Training dataset of GBM Before Batch Remove
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