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Abstract 12 

Background: The relationship between antibody levels (more generally, a scalar measure of 13 

immune protection) at the time of exposure to infection (so-called exposure-proximal correlates 14 

of protection) and the risk of infection given exposure is of central interest in evaluating the 15 

evolution of immune protection conferred by prior infection and/or vaccination. A version of the 16 

test-negative study design (TND), adapted from vaccine effectiveness studies, has been used to 17 

assess this relationship. However, the conditions under which such a study identifies the 18 

relationship between immune measurements and protection have not been defined. 19 

Objective: To evaluate the conditions for TNDs to estimate the relationship between antibody 20 

levels or a similar scalar measurement of immunity (hereafter exposure-proximal correlates of 21 

protection, COP) and the relative incidence rate of infection given exposure. 22 

Method: Individual-based transmission models, linking infection risk linearly and nonlinearly 23 

with COP value and accounting for waning immunity post-vaccination and -infection, were used. 24 

Simulations were performed of a TND with sampling on predetermined dates. Data from either 25 

one or multiple simulation days were analyzed using logistic regression and generalized additive 26 

models. 27 

Result: A correctly specified logistic regression model provided an unbiased estimate of the 28 

effectiveness of specific COP levels (analogous to vaccine effectiveness). Aggregating data 29 

across different simulation dates with incidence-density sampling also provided reliable 30 

estimates of protection. When, as is generally the case, the functional form relating COP level to 31 

protection is unknown, generalized additive models offer a more flexible alternative to 32 

traditional logistic regression approaches. 33 
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Conclusion: A TND can validly estimate the relative effect of an immune COP at the time of 34 

exposure on the incidence rate of infection via logistic regression if the functional form of the 35 

effect is known and appropriately modeled or unknown a semiparametric approach. Future 36 

research should further examine the dynamics of immunity waning and boosting for more 37 

reliable inference.  38 
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1. Introduction 39 

Correlates of protection (COP) are measurable quantities such as binding or neutralizing 40 

antibody concentrations that predict the degree of protection against incidence of an infectious 41 

disease. These markers provide valuable insights into the immune system's response to 42 

pathogens and vaccines,1 which is essential for advancing the understanding of immune 43 

mechanisms, as well as facilitating estimates of levels of protection in the population over time 44 

and informing the evaluation of new vaccines. For example, hemagglutination-inhibition 45 

antibody titers have been identified as a COP for influenza.2,3 COP are particularly useful for 46 

estimating vaccine effectiveness by linking the magnitude of an immune response to levels of 47 

protection, especially in scenarios where direct measures of effectiveness are not available.4,5  48 

Recent studies highlight the importance of post-immunization antibody titers as effective 49 

COP for COVID-19 vaccines.6,7 Notable research efforts have investigated the use of these 50 

correlates to forecast absolute risks (AR) and relative risks (RR) of infection in randomized 51 

vaccine efficacy trials,4,6,8–10 using the antibody concentration measured at a fixed time post-52 

vaccination. More recently, an observational study using a test-negative design (TND) was 53 

employed to estimate “exposure-proximal” COP, that is, how the COP level around the time an 54 

individual may be exposed to infection affects their risk of becoming infected.11,12  55 

The use of the TND for exposure-proximal COP studies builds on a longstanding 56 

tradition of using these studies, which compare vaccination histories of those who test positive 57 

for a condition (e.g., COVID-19) with those experiencing the same symptoms but testing 58 

negative for the condition, to evaluate vaccine effectiveness. If the vaccine provides all-or-59 

nothing protection and there are no unmeasured confounding with respect to infection or test-60 

seeking, such as due to heterogeneous vaccination decisions or characteristics leading to varying 61 
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susceptibility among participants, the odds ratio (OR) for vaccination among test-positive vs. 62 

test-negative participants in a TND is an unbiased estimator of the incidence rate ratio (IRR) in 63 

the population, such that one minus the OR estimates vaccine effectiveness (1-IRR). These 64 

assumptions are strong,13 and methodological work has highlighted that they may be violated in 65 

practice.14–20  66 

However, to our knowledge, no study has yet evaluated the validity of the TND for 67 

monitoring the relationship between a continuous exposure-proximate COP and protection. In 68 

contrast with using the TND for vaccine effectiveness, the goal is not to estimate the causal 69 

effect, as interventions on the correlate may not be well defined, but rather to estimate the 70 

(predictive) relationship between COP-level and infection over time. In this case, our main 71 

concern is the potential for selection bias due to the sampling scheme of the TND.  72 

Here, we introduce a novel, simplified simulation model that mimics disease transmission 73 

within a community, taking into account vaccination and the waning immunity from previous 74 

infections, to explore whether the TND is able to recover the relationship between COP and 75 

infection and to identify the correct transformations and statistical models for accurately linking 76 

COP to infection. We are specifically interested in situations where assessing vaccine 77 

effectiveness in TND may otherwise introduce bias such as when the vaccine exhibits leaky 78 

protection. When the relationship between COP, the predictor, and infection risk is linear, we 79 

show that a model linking the 𝑙𝑛(𝐼𝑅𝑅) of infection to either the logarithm of one minus the 80 

linear predictor of incidence rate (parametric) or a flexible function of that predictor 81 

(semiparametric) can effectively recover the correct relationship between that predictor and the 82 

incidence rate ratio of infection. When the relationship is unknown, we show semiparametric 83 

methods are superior.  84 
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2. Methods 85 

2.1 Simulation model and assumptions 86 

We employed an individual-based transmission model, involving susceptible, exposed, 87 

asymptomatically infectious, symptomatically infectious, vaccinated, and recovered individuals, 88 

to simulate disease transmission within a community (Figure 1), with detailed parameters listed 89 

in Table 1. Individuals were tracked because each individual had a level of a scalar measure of 90 

immunity, denoted as 𝑋, that varied over time and affected their risk of becoming infected. The 91 

model made several key assumptions: The risk of infection decreases linearly as the individual’s 92 

COP level increases, calculated as 𝛽 ∗ (1 − 𝑋) ∗ (𝐼 + 𝐴)/𝑁, where 𝛽 is the transmission 93 

coefficient, 𝑋 is a rescaled COP level ranging from 0 to 1, 𝐼 is the number of symptomatically 94 

infectious individuals, 𝐴 is the number of asymptomatically infectious individuals, and 𝑁 is the 95 

total population. One third of the infectious individuals are assumed to be symptomatic and this 96 

proportion did not vary over time or across subgroups.21 We assume COP provides equal 97 

protection against asymptomatic and symptomatic infection. Individuals cannot receive 98 

vaccinations if they are symptomatically infectious. All susceptible individuals start with a COP 99 

level at 0 units, and a first-time exposure, including recovery after infection or vaccination, will 100 

raise the COP level from 0.00 to 0.75 units. With subsequent exposures, this level will boost 101 

from current level to 1 unit. These specific values act as simplified indicators to assess the degree 102 

of protection conferred against infections following the first22,23 and subsequent24–26 exposures, 103 

respectively. Additionally, all uninfected individuals experience a linear immunity decline at a 104 

rate of 0.01 units per day, modeled as a simplified waning mechanism, whereas exposed and 105 

infectious individuals will remain their antibody level unchanged until they recover.27–30 Data on 106 

each individual’s antibody level and infection status is recorded on predetermined simulation 107 
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dates. In the simulation, 0.5% of the eligible population will be vaccinated every 15 days from 108 

day 1 to day 600, totaling 40 rounds. By the end, 20% of the eligible population will receive the 109 

vaccine.  110 

 111 

 112 

Figure 1. Schematic representation of the modela 113 
a For detailed descriptions of the parameters used, refer to Table 1. 114 

State: S, Susceptible; E, Exposed; I, Symptomatically Infectious; A, Asymptomatically 115 

Infectious; R, Recovered; V, Vaccinated. 116 

Arrow: Solid arrows represent continuous transitions between states; dashed arrows represent 117 

the discrete vaccination schedule as detailed in Methods. 118 

 119 
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Table 1. Model parameters 120 

Parameter Description Value 

N Population size 50,000 

tlatent Latent period 531 

tinfectious Infectious period 732 

α Symptomatically infectious proportion 1/321 

σ Rate from exposed to infectious 1 / tlatent 

γ Rate from infectious to recovered 1 / tinfectious 

R0 Basic reproduction number 233 

β Transmission coefficient R0 / tinfectious 

λ Per capita rate of infection β * no. of infectious people 

w Antibody level waning rate 0.01 

Initial S No. of initial susceptible cases 48,950 

Initial E No. of initial exposed cases 25 

Initial I No. of initial infectious cases 25 

Initial R No. of initial recovered cases 1000 

 121 

2.2 Data sampling scheme 122 

In our simulation, we implemented a data sampling scheme modeled after a typical TND study.34 123 

Symptomatically infectious individuals were identified as cases, and each case was matched with 124 

four controls who were susceptible, recovered, or exposed. This sampling scheme implies 125 

selection of controls is independent of COP level on that day. It was assumed that all 126 

symptomatically infectious individuals tested positive, and the matched controls tested negative. 127 
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To increase sample size by aggregating data across multiple days, we used an incidence density 128 

sampling approach, matching cases and controls based on the day of sampling. 129 

2.3 Statistical analysis 130 

Our analysis considered four regression models: two logistic regression models (with and 131 

without transformation of the independent variable, the COP measurement 𝑋) and two 132 

generalized additive models (GAMs, with and without transformation of 𝑋). COP levels were 133 

assessed at the time of sampling, reflecting the exposure-proximate COP — the levels measured 134 

when individuals tested positive or negative. 135 

Untransformed models modeled 𝑙𝑜𝑔𝑖𝑡 (𝑝) ~ 𝑋 for logistic regression and 136 

𝑙𝑜𝑔𝑖𝑡 (𝑝) ~ 𝐺𝐴𝑀(𝑋) for the GAM, while transformed models considered 𝑙𝑜𝑔𝑖𝑡 (𝑝) ~ 𝑙𝑛(1 − 𝑋) 137 

for the transformed logistic regression and 𝑙𝑜𝑔𝑖𝑡 (𝑝) ~ 𝐺𝐴𝑀(𝑙𝑛(1 − 𝑋))for the transformed 138 

GAM. The rationale for the transformation was as follows: The transformation applied to these 139 

levels was the natural logarithm of 1 – COP level, 𝑙𝑛(1 − 𝑥), which is used to reflect the log of 140 

IRR expression in our model setting when comparing the infection incidence rate at a specific 141 

COP level to the rate at zero COP level. The derivation is as follows:  𝑙𝑛(𝐼𝑅𝑅) =  𝑙𝑛{[𝜆 ∗  𝐼(𝑡)  ∗142 

 𝑈(𝑡)  ∗  (1 − 𝑋𝑋=𝑥)]/[𝜆 ∗  𝐼(𝑡)  ∗  𝑈(𝑡)  ∗  (1 − 𝑋𝑋=0)]}  =  𝑙𝑛(1 − 𝑥) where 𝜆 is the force of 143 

infection, 𝐼(𝑡) is the number of infectious individuals at time t, and 𝑈(𝑡) is the number of 144 

uninfected individuals at time t. Following the logic of TND vaccine studies, in which the OR 145 

provides an unbiased estimate of the IRR of infection among vaccinated versus unvaccinated 146 

individuals,13 we posited that the log of IRR is linearly related to the log OR comparing 147 

individuals with a given level of COP to those who have a COP value of zero and hence the log 148 

odds. 149 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 23, 2024. ; https://doi.org/10.1101/2024.11.22.24317757doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.22.24317757
http://creativecommons.org/licenses/by-nc/4.0/


 

Further, the two different infection risk functions—squared (𝑟𝑖𝑠𝑘 = 𝛽 ∗ (1 − 𝑋2) ∗ 𝐼/𝑁) 150 

and cubic (𝑟𝑖𝑠𝑘 = 𝛽 ∗ (1 − 𝑋3) ∗ 𝐼/𝑁) transformations of the COP level—were sensitivity 151 

analyses used to assess the robustness of the approach to estimating the shape of the relationship 152 

between the COP value and incidence when the relationship is more complex and nonlinear.35,36 153 

For each of the parametric and semiparametric methods, three models are applied: an 154 

untransformed misspecified model, a transformed misspecified model, and a transformed 155 

correctly specified model. In both the misspecified and correctly specified transformed models, a 156 

natural logarithmic transformation is used. The misspecified transformed models apply linear 157 

COP levels, consistent with the primary analysis, while the correctly specified models use 158 

squared and cubic COP levels to align with the corresponding infection risk functions. 159 

3. Results 160 

The model simulated the spread of infection over 600 days within a community of 50,000 161 

individuals. Figure 2 shows the temporal dynamics of infectious-and-symptomatic prevalence, 162 

COP level proportions, and odds of infection stratified by COP levels. Four complete waves of 163 

infection occurred. Notably, declines in the number of individuals with higher antibody levels, 164 

due to waning immunity, preceded the emergence of subsequent infection waves. As expected, 165 

the simulation shows lower mean and variability in infection odds and lower amplitudes among 166 

those with higher COP levels. 167 

 168 
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 169 

Figure 2. Trends in infectious prevalence, COP proportions, and odds of infectiona from 170 

simulation days 10 to 600 with an increment of 10 171 
a The odds of infection curves are fitted using cubic splines with 15 degrees of freedom. 172 

Panel A: the prevalence of infectious individuals. Panel B: the distribution of the population 173 

across different antibody intervals. Panel C: the odds of incident infection by COP intervals. 174 

 175 

TND sampling from the simulation showed that when using data collected from a single 176 

day, the transformed logistic model accurately recovered the linear relationship between COP 177 

level and IRR. In contrast, the untransformed logistic model failed to do so due to 178 

misspecification of the functional form (Figure 3). Although both semiparametric GAM models 179 

generally captured the relationship, they often deviated from the true pattern, particularly at 180 

extreme COP values (Figure 3A). Figure 3B illustrates the relationships predicted by these 181 

models using compiled incidence density data sampled over multiple days, showing that both 182 

GAM models produced results more closely aligned with those of the transformed logistic 183 

model. 184 

 185 
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 186 

 Figure 3. COP level and infection incidence rate ratio sampling on a single simulation day 187 

and compiled simulation days 188 

Panel A used data collected from simulation day 600, panel B used data from simulation days 189 

500-600 with an increment of 10. 190 

 191 

The impact of population-level antibody distribution and the aggregation of data from 192 

multiple days on the accuracy of regression models in predicting infection IRR were 193 

investigated. Besides the transformed logistic regression, both GAMs accurately estimate the 194 

IRR when sufficient data are aggregated from multiple days using incidence-density sampling 195 

(Figure 4D). This accuracy is achieved during periods when the pandemic has stabilized after an 196 

extended onset, resulting in a diverse and adequately distributed range of COP levels. In 197 

situations with more limited numbers of participants with certain COP levels (Figure 4A, C) or 198 

insufficient data (Figure 4A, B) from TND sampling, semiparametric approaches tend to 199 

produce more complex estimated relationships, likely due to overfitting the noise in the data. In 200 

contrast, the transformed logistic regression consistently recovers the linear relationship. 201 

 202 
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 203 

Figure 4. Impact of antibody distributiona and data aggregation on infection incidence rate 204 

ratio predictions by regression models  205 
a Gray areas in the plots indicate the proportions of COP levels within the population. 206 

Panel A used data collected from simulation day 50, panel B used data collected from 207 

simulation day 450, panel C used data from simulation days 50-150 with an increment of 10, 208 

and panel D used data from simulation days 400-500 with an increment of 10. 209 

 210 

The sensitivity analyses examined the predictability of models on the nonlinear 211 

relationships between infection risk and COP levels, including squared and cubic, with sufficient 212 

data sampled. The curves generated from the correctly specified transformed logistic regression 213 

models are capturing the true relationships, as the primary analysis did, which further shows the 214 

robustness of the model selection and transformation function. Although the semiparametric 215 

models (whether transformed, correctly specified, or not) did not capture the exact relationship at 216 
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all levels of COP, they closely approximate the true relationship with only slight fluctuations 217 

around the actual lines (Figure 5). 218 

 219 

 220 

Figure 5. Sensitivity Analysis – COP level and infection incidence rate ratio sampling on 221 

compiled simulation days 500 to 600 with an increment of 10 222 

Panel A used data from simulation where infection risk correlates with squared COP level, and 223 

panel B used data from simulation where infection risk correlates with cubic COP level.  224 

Formulas used for Panel A include: 225 

Untransformed Misspecified Logit:  𝑙𝑜𝑔𝑖𝑡 (𝑝) ~ 𝑋  226 

Transformed Misspecified Logit:  𝑙𝑜𝑔𝑖𝑡 (𝑝) ~ 𝑙𝑛(1 − 𝑋)  227 

Transformed Logit:  𝑙𝑜𝑔𝑖𝑡 (𝑝) ~ 𝑙𝑛(1 − 𝑋2)  228 

Untransformed Misspecified GAM:  𝑙𝑜𝑔𝑖𝑡 (𝑝) ~ 𝐺𝐴𝑀(𝑋)  229 

Transformed Misspecified GAM:  𝑙𝑜𝑔𝑖𝑡 (𝑝) ~ 𝐺𝐴𝑀(1 − 𝑋)  230 

Transformed GAM:  𝑙𝑜𝑔𝑖𝑡 (𝑝) ~ 𝐺𝐴𝑀(1 − 𝑋2) 231 

 232 

4. Discussion 233 

Antibody levels have been used in prior studies to predict the infection risk of influenza and 234 

COVID-19, and are considered one of the appropriate COP for investigating the relationship 235 

between infection and individual immunity. However, apart from one recent paper designed for 236 

cohort studies,11 there has been little work to define approaches for estimating exposure-237 

proximate COP, that is how an individual’s instantaneously measured level of immunity predicts 238 

their susceptibility to infection at that moment. While prospective cohorts have many 239 

advantages, case-control designs such as the TND are widely employed due to their 240 
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comparatively low cost and feasibility. Thus, we sought to understand the conditions under 241 

which a TND would validly estimate the relationship between a COP level and the degree of 242 

protection offered by that level. 243 

Our study demonstrates that a TND-style approach can identify the shape of a predictive 244 

relationship between a correlate of protection measured near the time of exposure and the risk of 245 

infection when using a semiparametric model or when using a correctly specified parametric 246 

model with appropriate transformation of the value of the correlate. We have phrased this in 247 

terms of prediction rather than causal inference because it is difficult to envision even a 248 

hypothetical intervention that would set an individual’s COP value at a certain level, and because 249 

for many practical purposes, prediction is the question of interest: how well protected is an 250 

individual, given a particular COP value? In a causal setting one would also have to consider 251 

confounding in which a predictor of COP value had a causal effect on the likelihood of infection. 252 

For example, if occupation were predictive of vaccination (and thus COP level) and outcome, or 253 

in vaccine campaigns where elderly or immunocompromised individuals are prioritized for early 254 

uptake and exhibit lower protection at the same COP value. We have used a model in which such 255 

common causes do not exist. 256 

Borrowing from the theory of TNDs, the OR estimates the IRR for a particular covariate 257 

value. In the simulation, we define the risk of infection as one minus the immunity level. 258 

Therefore, in a logistic regression framework, the right-hand side, 𝑙𝑛(𝐼𝑅𝑅) or 𝑙𝑛(1 − 𝐶𝑂𝑃), 259 

should estimate the left-hand side 𝑙𝑛(𝑜𝑑𝑑𝑠), and our simulations confirm that using this 260 

functional form produces estimates that are indistinguishable from the input to the simulation. 261 

Alternatively, using a generalized additive model can approximate this relationship if one does 262 

not know the proper functional form for the relationship of the COP value to the IRR. 263 
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In TND, estimating the ‘vaccine direct effect’ for leaky vaccines—those that confer only 264 

partial protection to all recipients—is problematic and tends to show declining protection over 265 

time. The bias arises because vaccinated individuals continue to experience infections at a 266 

reduced rate, while unvaccinated individuals may gain immunity through natural infection.13 267 

Over time, this dynamic narrows the infection rate gap between vaccinated and unvaccinated 268 

groups, causing the OR to trend toward the null. This pattern fails to accurately reflect the 269 

vaccine’s true effectiveness. In contrast, this study shows that examining immunity levels as a 270 

predictor of infection incidence rate does not suffer from this bias. By analyzing infection rate at 271 

varying levels of COP, this approach measures how immunity, regardless of its source, 272 

influences infection likelihood. Since it does not rely solely on vaccination status, using COP 273 

levels sidesteps the specific biases introduced by leaky vaccine effects in TND. This method, 274 

therefore, offers a framework for understanding how incremental COP levels may influence 275 

infection incidence rates, while minimizing the impact of vaccine-specific assumptions. 276 

The utilization of simulation models stands out as a major strength of this study, allowing 277 

us to emulate real-life pandemic scenarios with a degree of control over experimental variables 278 

and pre-assumed infection relative risk functions that are not typically possible in field studies. 279 

This approach enabled us to systematically test different infection IRR functions, both linear and 280 

nonlinear, and to assess their impact on the relationship between immunity levels and infection 281 

risks. Additionally, by employing several logistic regression models on the results obtained from 282 

TND, we have enhanced the robustness and applicability of our findings to actual pandemic 283 

conditions. Despite its strengths, our study is not without limitations. The infection IRR and risk 284 

functions used were intentionally simplified, which might have affected the granularity and 285 

generalizability of our findings. Similarly, the model simplifies assumptions about immunity 286 
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boosting and waning, which may not fully capture the complexities of immunity development 287 

and decline in diverse populations. Prior studies suggest that immunity waning could be 288 

nonlinear,35,36 indicating that the model might overlook important variations. Furthermore, the 289 

assumption of homogeneity among agents—considering them to have identical susceptibility and 290 

transmission characteristics—may not truly reflect the variability observed in real populations.37  291 

Future research should aim to incorporate more realistic infection IRR and risk functions 292 

and more sophisticated mechanisms for modeling immunity waning and boosting. Additionally, 293 

enhancing the model by calibrating it with real-world data that includes detailed agent 294 

characteristics and distributions of COP among circulating variants of concern could 295 

significantly improve the model’s accuracy and relevance. Such advancements are important for 296 

developing more effective epidemiological models, which, in turn, can inform public health 297 

strategies and vaccination programs more accurately. 298 

5. Conclusion 299 

Antibody levels are vital in epidemiological research, serving as a key metric for evaluating how 300 

these COP are associated with infections under various study designs. These insights are crucial 301 

for assessing vaccine efficacy and guiding public health interventions. This study shows that 302 

employing logistic regression models with natural logarithm transformations of infection IRR 303 

function helps to model the relationship between infection incidence rate and antibody levels 304 

more precisely, enabling the visualization of both linear and nonlinear effects. To enhance model 305 

accuracy, it is essential to refine infection IRR and risk functions and integrate mechanisms of 306 

immunity waning and boosting given vaccination or infection within these models. Calibration 307 

with real-world data is crucial to confirm model accuracy and relevance. By transitioning from 308 

basic theoretical frameworks to more sophisticated, data-driven models, researchers can more 309 
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effectively simulate the complex interplay between pathogen exposure, immune response, and 310 

population health outcomes, advancing the understanding of immunity dynamics and improving 311 

the capacity to predict and manage infectious diseases.  312 
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