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Abstract 
Background: 
The Prostate Imaging Reporting & Data System (PI-RADS), based on multiparametric MRI 
(mpMRI), is widely used for the detection of clinically significant prostate cancer (csPCa, 
Gleason Grade Group (GG≥2)). However, its diagnostic accuracy can be impacted by 
variability in interpretation. Restriction Spectrum Imaging (RSI), an advanced diffusion-
weighted technique, offers a standardized, quantitative approach for detecting csPCa, 
potentially enhancing diagnostic consistency and performing comparably to expert-level 
assessments. 
Purpose: 
To evaluate whether combining maximum RSI-derived restriction scores (RSIrs-max) with 
deep learning (DL) models can enhance patient-level detection of csPCa compared to using 
PI-RADS or RSIrs-max alone. 
Materials and Methods: 
Data from 1,892 patients across seven institutions were analyzed, selected based on MRI 
results and biopsy-confirmed diagnoses. Two deep learning architectures, 3D-DenseNet and 
3D-DenseNet+RSI (incorporating RSIrs-max), were developed and trained using 
biparametric MRI (bpMRI) and RSI data across two data splits. Model performance was 
compared using the area under the receiver operating characteristic curve (AUC) for patient-
level csPCa detection, using PI-RADS performance for clinical reference. 
Results: 
Neither RSIrs-max nor the best DL model combined with RSIrs-max significantly 
outperformed PI-RADS interpretation by expert radiologists. However, when combined with 
PI-RADS, both approaches significantly improved patient-level csPCa detection, with AUCs 
of 0.79 (95% CI: 0.74-0.83; P=.005) for combination of RSIrs-max with PI-RADS and 0.81 
(95% CI: 0.76-0.85; P<.001) for combination of best DL model with PI-RADS, compared to 
0.73 (95% CI: 0.68-0.78) for PI-RADS alone. 
Conclusion: 
Both RSIrs-max and DL models demonstrate comparable performance to PI-RADS alone. 
Integrating either model with PI-RADS significantly enhances patient-level detection of 
csPCa compared to using PI-RADS alone. 
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Summary Statement: 
RSIrs-max and deep learning models match the performance of expert PI-RADS in patient-
level csPCa detection and combining either with PI-RADS yields a significant improvement 
over PI-RADS alone. 

Key Points: 

• In a study of 1,892 patients from seven institutions undergoing MRI and biopsy for 
prostate cancer, RSIrs-max and the DL model (AUC, 0.75 (P=.59) and 0.78 (P=.09)) 
performed comparably to expert-level PI-RADS scores (AUC, 0.73). 

• Including prostate auto-segmentation improved the DL model (AUC, 0.68 (P=.01) vs 
0.72 (P=.60)). 

• Combining RSIrs-max or the DL model (AUC, 0.79 (P=.005) and 0.81 (P <.001)) with 
PI-RADS statistically significantly outperformed PI-RADS alone (AUC, 0.73). 
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Introduction 
 

Multiparametric magnetic resonance imaging (mpMRI) plays a key role in the early 
diagnosis of prostate cancer, as recommended by the European Association of Urology 
(EAU) and National Comprehensive Cancer Network (NCCN) guidelines1. mpMRI has been 
shown to reduce unnecessary biopsies and improve the detection of clinically significant 
prostate cancer (csPCa, grade group (GG)≥2)1-4. The Prostate Imaging Reporting & Data 
System (PI-RADS v2.1) was developed to provide a standardized approach for interpreting 
mpMRI. However, interpretation can still vary based on the reader’s experience and training. 
As the incidence of prostate cancer is expected to increase in the coming years, there may 
be challenges in meeting demand with the current supply of trained experts6. An accurate, 
supportive tool for interpreting prostate MRI could facilitate standardization and address 
variability in clinical practice7. 
 

Restriction Spectrum Imaging (RSI) is an advanced technique for diffusion-weighted 
imaging (DWI) that measures signal from four distinct tissue compartments: restricted 
intracellular water (RSI-C1), hindered extracellular water (RSI-C2), freely diffusing water 
(RSI-C3), and vascular flow (RSI-C4)1,2. RSI restriction score (RSIrs) is a quantitative 
biomarker based on RSI that has been shown to be superior to Apparent Diffusion 
Coefficient (ADC) for detection of csPCa3–6. Moreover, when maximum RSIrs (RSIrs-max) is 
combined with PI-RADS, the performance for patient-level detection of csPCa has been 
shown to be superior to either alone4,6. 
 

PI-RADS relies predominantly on the T2-weighted imaging (T2w) and DWI components 
of mpMRI, collectively called biparametric MRI (bpMRI)7. There is interest in moving toward 
bpMRI for many patients, as bpMRI avoids the risks and costs associated with intravenous 
contrast8–11. Deep learning artificial intelligence (AI) models have been developed based on 
bpMRI for objective and reproducible detection and localization of csPCa, with results  
matching those of expert radiologists12–16.  
 

As both RSI and deep-learning AI models been shown to be accurate and useful for 
methods, we investigated whether combining the two would improve the automated patient-
level detection of csPCa. 
 
Materials and Methods 
 
Study Population 

The data for this study comes from seven imaging centers participating in the 
Quantitative Prostate Imaging Consortium (QPIC): the Center for Translational Imaging and 
Precision Medicine at the University of California San Diego (CTIPM), UC San Diego Health 
(UCSD), University of California San Francisco (UCSF), Harvard University affiliated 
Massachusetts General Hospital (MGH), University of Rochester Medical Center (URMC), 
University of Texas Health Sciences Center San Antonio (UTHSCSA), and University of 
Cambridge (Cambridge)6. The study was approved by each center’s institutional review 
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board (IRB). At UTHSCSA and Cambridge, the data were collected prospectively as part of 
related projects with written informed consent. At the other centers, the data were collected 
retrospectively, and a waiver of consent was approved by the respective IRBs for secondary 
use of routine clinical data. Individuals were included if aged ≥18 years and underwent 
prostate MRI for suspected PCa or active surveillance between January 2016 and March 
2024. They were excluded if they had prior treatment of PCa or if there was no available 
biopsy result from within 6 months of a positive MRI scan (PI-RADS≥3). Patients with 
metallic implants were also excluded to avoid metal-induced imaging artifacts. The diagnosis 
of csPCa was confirmed on biopsy histopathology as per standard-of-care practice at each 
center. These data have been previously analyzed for performance of RSIrs-max4,6,17 (Figure 
1). 
 
Data acquisition and processing 

The processing for RSI data included correction for background noise, eddy currents, 
and gradient nonlinearities18–20. Correction for distortion caused by B0 inhomogeneity was 
applied to data acquired at CTIPM21. ADC, DWI and RSI data were resampled to the same 
image resolution as the T2w data. Automated prostate contours were obtained using an 
FDA-cleared commercial product (OnQ Prostate, CorTechs.ai, San Diego, CA).  
 

For RSI data, the signal intensity for each b-value was modeled as a linear combination 
of exponential decays representing four diffusion compartments (RSI-C1, RSI-C2, RSI-C3 and 
RSI-C4), each with a diffusion coefficient determined empirically in previous work2. The RSIrs 
biomarker is the intensity value of the RSI-C1 signal at a given voxel normalized by median 
T2-weighted signal in the prostate. RSIrs-max is the maximum RSIrs value within a given 
patient’s prostate. Additional details regarding the RSI modeling are provided in 
Supplementary Materials. 

 
Model 

RSIrs-max-only and PI-RADS-only were previously analyzed for performance of patient-
level csPCa detection using univariable logistic regression6. Here, we compare the 
performance of deep learning models to those previously described logistic regression 
models. 3D-DenseNet21 and 3D-DenseNet+RSI, both 3D densely connected convolutional 
networks, were trained to get the probability of csPCa with different modalities. The details of 
the models are illustrated in Figure 2. 
 

The loss function used to supervise the two models is the Cross Entropy Loss (𝐿𝑜𝑠𝑠!"): 

𝐿𝑜𝑠𝑠!"   =   − #
$ '∑ '𝑡% log-𝑝%/   +  -1  −  𝑡%/ log-1  −  𝑝%/2$

%&# 2 (1)  

In the equation (1), 𝑁	is the number of data points. 𝑡% refers to the ground truth value. If 
the patient has a csPCa, then 𝑡% is 1. 𝑝% is the SoftMax probability for the 𝑖'( data point. 
 

We also use either RSIrs-max or output probabilities of the AI models, along with PI-
RADS, as inputs to a multivariable logistic regression model for comparison with either 
alone. 
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Implementation Details 

We employed two different data splits for this study (Figure 1). Data Split 1 was used to 
test all models and was chosen to facilitate direct comparison with a previous study6, which 
also used Data Split 1; Data Split 2 allocated a larger and more diverse dataset for training 
because deep learning models’ performance typically improves substantially when trained 
on heterogeneous data. Data Split 2 was used for testing the model with RSIrs-max-only 
input; the PI-RADS-only input; the best-performing deep learning model; the combination of 
RSIrs-max and PI-RADS; and the combination of the output probability from the best-
performing deep learning model and PI-RADS from analysis of Data Split 1. We also divided 
and tested the data for both splits based on GG. 
 

Data Split 1 was described previously6,17. Scans collected with the RSI acquisition 
protocol and the same scanner model (GE Healthcare Discovery MR750) were used for 
training (n=554). The remaining protocols were used for the testing dataset (n=664) with 
patients who were biopsy-naïve at the time of the MRI scan and received a biopsy following 
the MR acquisition. The validation dataset (n=628) is from the rest of the patients that are 
not included in either training or testing data of Data Split 1 (Table 1).  
 

The training set for Data Split 2 (n=898) includes data from different RSI protocols and 
collected from two centers (UCSD CTIPM and URMC). Data from UCSD CTIPM were 
collected using GE Healthcare Discovery MR750 and GE Healthcare Signa Premier 
scanners. Data from URMC were collected from SIEMENS Magnetom Skyra scanners. The 
testing dataset (n=384) is from the remaining patients of all other cohorts who were biopsy-
naïve at the time of the MRI scan and received a biopsy following the MR acquisition. The 
validation dataset (n=564) for Data Split 2 is from the rest of the patients that are not 
included in either training or testing data of Data Split 2 (Table 1). Both testing and validation 
datasets are external to the training dataset.  
 

Two univariable logistic regression models (RSIrs-max or PI-RADS as input, 
respectively) and two multi-variable logistic regression models (combination of RSIrs-max or 
output probability of the best performing AI model with PI-RADS as inputs, respectively) 
were implemented using MATLAB. 
 

The RSI-C1 and RSI-C2 components from RSI data, T2w, ADC and high b-value DWI 
(high-b DWI) were included as the 3D-data for the input of the corresponding model. The 
preprocessing and augmentation of the input image data is described in Supplementary 
Materials. The following models were evaluated: Model 1: PI-RADS; Model 2: RSIrs-max; 
Model 3 (bpMRI): T2w, ADC, high-b DWI; Model 4 (bpMRI-seg): T2w with automated 
prostate segmentation applied as a binary mask (T2w-seg), ADC-seg, high-b DWI-seg; 
Model 5: bpMRI-seg, RSIrs-max; Model 6 (bpMRI-seg, RSI-seg, RSIrs-max): bpMRI-seg, 
RSI-C1-seg, RSI-C2-seg, RSIrs-max; Model 7: RSIrs-max, PI-RADS and Model 8: bpMRI-
seg, RSI-seg, RSIrs-max, PI-RADS (Table 2 and Table 3). For all inputs labeled with “-seg”, 
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the automated prostate segmentation was applied to the 3D data as a binary mask through 
element-wise multiplication. 
 

All models, preprocessing, and data augmentation were implemented using the PyTorch 
toolbox and MONAI22. The training details is described in Supplementary Materials. 
 
Statistical analysis 

The precise location and extent of csPCa in each patient’s prostate are generally 
unknown, and targeted biopsy can have MRI-to-ultrasound registration or needle placement 
errors. Many cancers are also detected through systematic biopsy. We therefore focus on 
patient-level csPCa detection, a more reliable approach that addresses the key clinical 
question of whether to recommend an invasive biopsy. The performance for patient-level 
detection was assessed by the Area Under the Curve of the Receiver Operating 
Characteristic curve (AUC). For the two data splits, we made statistical comparisons via 
10,000-bootstrapping samples to calculate 95% confidence intervals and P for the difference 
between the performance of the models and PI-RADS23. The primary analysis was for 
detection of GG≥2 (csPCa) versus GG=1 and Benign (non-csPCa), for which we determined 
the statistical significance through a two-sided α=0.05. Secondary subgroup analyses 
evaluated the results per GG. For Data Split 2, we repeated the above analyses for PI-
RADS, RSIrs-max, and the best performing deep learning model (based on median AUC for 
GG≥2) from the Data Split 1 analyses. 
 

We trained a model with bpMRI and compared its performance with PI-RADS-only and 
RSIrs-max-only univariable logistic regression models. To assess whether automated 
prostate contours could enhance performance, we also tested our model with bpMRI-seg 
input. Finally, we evaluated combining RSIrs-max with bpMRI-seg to determine if RSIrs-max 
improves performance over bpMRI-seg alone. 

 
Codes used in developing the DL model are available on GitHub. 
 

Results  
 

Data were acquired using 7 distinct acquisition protocols, 2 scanner vendors, 4 scanner 
models, and 17 MRI scanners (Table 1, Supplementary Table 2 and 3). 1,892 patients met 
the inclusion criteria (Figure 1). Occlusion sensitivity map24 was generated for interpretation 
of the DL models (Figure 3 and 4). 
 
Patient-level detection of csPCa for Data Split 1 

Table 2 shows the AUC values of models with different 3D-inputs and testing groups for 
Data Split 1. We tested our model on 4 groups, none of which were used during training. 
Group A (n=664) consists of patients that were biopsy-naïve at time of MRI and then either 
had a biopsy to determine cPCa status or were presumed non-csPCa based on low clinical 
suspicion. Group B (n=500) is the subset of Group A consisting of patients with GG2 csPCa 
or non-csPCa (i.e., excluding GG≥3). Group C (n=409) is the subset of Group A consisting 
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of patients with GG3 csPCa or non-csPCa. Lastly, Group D (n=393) is the subset of Group A 
consisting of patients with high grade GG4-5 csPCa or non-csPCa (Table 1). 
 

When an automated prostate segmentation was included (AUC, 0.72 (95% CI: 0.69-
0.76; P=.60)), patient-level csPCa detection was comparable to PI-RADS (AUC, 0.74 (95% 
CI: 0.70-0.77)), whereas training the bpMRI model without the prostate segmentation (AUC, 
0.68 (95% CI: 0.64-0.72; P=.01)) yielded worse performance than PI-RADS. The same 
pattern was observed for the subgroups based on GG.  
 

Combining PI-RADS with either RSIrs-max (AUC, 0.77 (95% CI: 0.73-0.81; P=.01)) or 
with the best deep learning model (Model 6) (AUC, 0.78 (95% CI: 0.74-0.81; P<.001)) 
yielded significantly improved patient-level csPCa detection compared to PI-RADS alone 
(AUC, 0.74 (95% CI: 0.70-0.77)). 
 

The quantitative biomarker RSIrs-max performed comparably in comparison of PI-RADS 
(P=.49) and the bpMRI-seg deep learning AI model (P=.85). Combining RSIrs-max with the 
deep learning bpMRI-seg model did not result in a statistically significant improvement in 
csPCa detection with PI-RADS, with (P=.87) or without (P=.49) the 3D volumes from RSI-C1 
and RSI-C2. This suggests that a straightforward, interpretable biomarker (RSIrs-max) 
derived from approximately two minutes of RSI acquisition may capture most of the valuable 
information provided by bpMRI. However, when PI-RADS was combined with RSIrs-max 
(P=.01), performance was significantly superior to PI-RADS alone. Likewise, combining PI-
RADS with the best deep learning model (P<.001) also improved performance beyond PI-
RADS alone. 
 
Patient-level detection of csPCa for Data Split 2 

The best-performing AI model in Data Split 1 analyses (based on median AUC) was 
Model 6. We therefore calculated and compared AUC values of Models 1, 2 and 6 within 
Data Split 2 (Table 3). Group E (n=384) is the full testing dataset for Data Split 2, consisting 
of either the patients that are biopsy-naïve at time of MRI with a biopsy confirmed diagnosis 
or are non-csPCa. Group F (n=255) is a subset of Group E consisting of patients with GG2 
csPCa and non-csPCa. Group G (n=228) is another subset of Group E consisting of patients 
with GG3 csPCa and non-csPCa. Lastly, Group H (n=211) is also another subset of Group E 
consisting of patients with GG4-5 csPCa and non-csPCa. 
 

RSIrs-max (AUC, 0.75 (95% CI: 0.70-0.80; P=.59)) and the AI model (Model 6) (AUC, 
0.78 (95% CI: 0.73-0.83; P=.09)) had higher point estimates for AUC than PI-RADS (AUC, 
0.73 (95% CI: 0.68-0.78)) in Data Split 2, but there was no statistically significant difference 
between any of these models. Interestingly, though, while the AUC for PI-RADS was similar 
in the two data splits, the AI model performed better when trained on more diverse data: 
(AUC, 0.73 (95% CI: 0.69-0.77)) in the testing set for Data Split 1 and (AUC, 0.78 (95% CI: 
0.73-0.83)) in the testing set for Data Split 2. Importantly, combining PI-RADS with either 
RSIrs-max (AUC, 0.79 (95% CI: 0.74-0.83; P=.005)) or AI model (AUC, 0.81 (95% CI: 0.76-
0.85; P<.001)) significantly outperformed PI-RADS alone. 
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Discussion 
 

Previous work demonstrated the promising utility of RSIrs-max as a quantitative imaging 
biomarker for csPCa2–4,6,25. In this study, we explored deep learning AI as an alternative or 
complementary approach for reproducible, objective interpretation of prostate MRI. We 
observed comparable performance in csPCa detection using PI-RADS, a bpMRI AI model, 
and RSIrs-max. While training AI models with bpMRI and RSI data (RSIrs-max alone or with 
full RSI volumes) showed a numerical improvement in detection, it was not statistically 
significant. However, combining PI-RADS with either the best AI model (Model 6) or RSIrs-
max significantly enhanced detection performance compared to PI-RADS alone. Thus, 
RSIrs-max provides rapid, quantitative, standardized data to support radiologist 
interpretation and could augment PI-RADS scoring. 
 

An advantage of a bpMRI AI tool over RSIrs-max is that it may be applicable to datasets 
lacking DWI compatible with calculation of RSIrs-max. The deep learning model does not 
rely on the radiologist's expertise and offers results comparable to PI-RADS, which could 
make it a useful tool in helping less experienced prostate radiologists perform more 
accurately, to address the growing shortage of subspecialist expert radiologists26. 
 

It is worth noting that the bpMRI AI model achieved better performance when 
incorporating an automated segmentation of the prostate. This result suggests it can be 
more efficient and accurate to train a model with known prior anatomical information. 
 

RSIrs-max, initially trained on a small cohort of 46 patients from a single institution, 
demonstrates strong generalization due to its biophysical basis and alignment with cancer 
cell morphology1,2,6,17,27. Conversely, AI models, are known to benefit from larger and more 
diverse training datasets. We found that expanding the training data (i.e., moving from Data 
Split 1 to Data Split 2) improved the AI model performance slightly from (AUC, 0.73 (95% CI: 
0.69-0.77)) in Data Split 1 to (AUC, 0.78 (95% CI: 0.73-0.83)) in Data Split 2. These are 
different datasets, so the AUCs are not directly comparable, but neither PI-RADS nor RSIrs-
max saw a similar boost in performance between the two data splits. With larger datasets, 
combining AI and RSI may even achieve superior performance. 
 

The combination of RSIrs-max or the best deep learning model (Model 6) with PI-RADS 
achieved statistically significantly better results than PI-RADS alone. This finding suggests 
that both RSIrs-max and the deep learning model can serve as complementary tools to PI-
RADS for detection of csPCa. 
 

The performance of our models are concordant with other recent studies of AI for 
prostate MRI that also showed patient-level csPCa detection comparable to PI-RADS12,28. 
For example, in the PI-CAI challenge, an AI model was developed as a single combination of 
the 5 best performing models (among 293 submitted for the challenge) and performed 
similarly to radiologists12. Of note, beyond imaging data, the PI-CAI model also included age, 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted November 26, 2024. ; https://doi.org/10.1101/2024.11.22.24317504doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.22.24317504


prostate-specific antigen (PSA) level, prostate volume, and scanner name. Another recent 
study described two models developed for patient-level detection: one with only imaging 
data, and another that combined imaging with PSA and PSA density28. Performance of AI 
models is best assessed in external validation datasets. Saha et al. (PI-CAI study) tested 
their model in data from 1,000 patients from four centers, all using Siemens Healthineers 
scanners (mainly Siemens Skyra)12. Cai et al. tested their model in data from 604 patients 
from 3 sites of a single academic institution using 2 scanner vendors (Siemens Healthineers 
and GE Healthcare) and an external dataset28. Our Data Split 1 had 664 patients in the 
testing set from 6 imaging centers and 2 scanner vendors (Siemens Healthineers and GE 
Healthcare). Data Split 2 had 384 patients in the testing set from 5 imaging centers and the 
same 2 scanner vendors (Siemens Healthineers and GE Healthcare). 
 

Limitations of our study include those typical for prostate MRI: (1) biopsy is an imperfect 
gold standard due to possibility of missing csPCa, even when targeting with MRI, and (2) 
individuals with hip implants were excluded because of known potential to cause severe 
artifacts on MRI. Larger datasets could facilitate improved AI training, smaller confidence 
intervals, and increased statistical power to detect differences between models. To our 
knowledge, though, this is the largest study to date to combine AI and an advanced MRI 
biomarker for prostate cancer. Finally, we evaluated only one type of deep learning model 
here; future research will include additional AI architectures. 
 
Conclusions 
 

Deep learning bpMRI and the RSIrs-max imaging biomarker achieve performance 
comparable to expert radiologists for detecting csPCa. Combining PI-RADS with RSIrs-max 
or an AI model outperformed PI-RADS alone, suggesting that both could serve as valuable 
complements to human expertise. Larger datasets may reveal advantages to integrating RSI 
in AI. 
 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted November 26, 2024. ; https://doi.org/10.1101/2024.11.22.24317504doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.22.24317504


Reference 
1. Brunsing RL, Schenker-Ahmed NM, White NS, et al. Restriction spectrum imaging: An 
evolving imaging biomarker in prostate MRI: Prostate MRI with Restriction Spectrum 
Imaging: A Review. J Magn Reson Imaging. 2017;45(2):323-336. doi:10.1002/jmri.25419 
2. Conlin CC, Feng CH, Rodriguez-Soto AE, et al. Improved Characterization of Diffusion 
in Normal and Cancerous Prostate Tissue Through Optimization of Multicompartmental 
Signal Models. J Magn Reson Imaging. 2021;53(2):628-639. doi:10.1002/jmri.27393 
3. Feng CH, Conlin CC, Batra K, et al. Voxel-level Classification of Prostate Cancer on 
Magnetic Resonance Imaging: Improving Accuracy Using FOUR-COMPARTMENT Restriction 
Spectrum Imaging. J Magn Reson Imaging. 2021;54(3):975-984. doi:10.1002/jmri.27623 
4. Zhong AY, Digma LA, Hussain T, et al. Automated patient-level prostate cancer 
detection with quantitative diffusion magnetic resonance imaging. Eur Urol Open Sci. 
2023;47:20-28. 
5. Lui AJ, Kallis K, Zhong AY, et al. ReIGNITE radiation therapy boost: a prospective, 
international study of radiation oncologists’ accuracy in contouring prostate tumors for focal 
radiation therapy boost on conventional magnetic resonance imaging alone or with 
assistance of restriction spectrum imaging. Int J Radiat Oncol Biol Phys. 2023;117(5):1145-
1152. 
6. Rojo Domingo M, Do DD, Conlin CC, et al. Restriction Spectrum Imaging as a 
quantitative biomarker for prostate cancer with reliable positive predictive value. medRxiv. 
Published online 2024:2024-06. 
7. Turkbey B, Rosenkrantz AB, Haider MA, et al. Prostate imaging reporting and data 
system version 2.1: 2019 update of prostate imaging reporting and data system version 2. 
Eur Urol. 2019;76(3):340-351. 
8. Baxter MT, Conlin CC, Bagrodia A, et al. Advanced Restriction imaging and 
reconstruction Technology for Prostate MRI (ART-Pro): Study protocol for a multicenter, 
multinational trial evaluating biparametric MRI and advanced, quantitative diffusion MRI for 
detection of prostate cancer. medRxiv. Published online 2024:2024-08. 
9. Asif A, Nathan A, Ng A, et al. Comparing biparametric to multiparametric MRI in the 
diagnosis of clinically significant prostate cancer in biopsy-naive men (PRIME): a 
prospective, international, multicentre, non-inferiority within-patient, diagnostic yield trial 
protocol. BMJ Open. 2023;13(4):e070280. 
10. Eldred-Evans D, Burak P, Connor MJ, et al. Population-based prostate cancer 
screening with magnetic resonance imaging or ultrasonography: the IP1-PROSTAGRAM 
study. JAMA Oncol. 2021;7(3):395-402. 
11. Schoots IG, Barentsz JO, Bittencourt LK, et al. PI-RADS Committee Position on MRI 
Without Contrast Medium in Biopsy-Naive Men With Suspected Prostate Cancer: Narrative 
Review. Am J Roentgenol. 2021;216(1):3-19. doi:10.2214/AJR.20.24268 
12. Saha A, Bosma JS, Twilt JJ, et al. Artificial intelligence and radiologists in prostate 
cancer detection on MRI (PI-CAI): an international, paired, non-inferiority, confirmatory 
study. Lancet Oncol. Published online 2024. Accessed October 10, 2024. 
https://www.thelancet.com/journals/lanonc/article/PIIS1470-2045(24)00220-1/abstract 
13. Yoo S, Gujrathi I, Haider MA, Khalvati F. Prostate cancer detection using deep 
convolutional neural networks. Sci Rep. 2019;9(1):19518. 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted November 26, 2024. ; https://doi.org/10.1101/2024.11.22.24317504doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.22.24317504


14. Liu S, Zheng H, Feng Y, Li W. Prostate cancer diagnosis using deep learning with 3D 
multiparametric MRI. In: Medical Imaging 2017: Computer-Aided Diagnosis. Vol 10134. 
SPIE; 2017:581-584. Accessed October 10, 2024. 
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10134/1013428/Prostate-
cancerdiagnosis-using-deep-learning-with-3D-multiparametric-
MRI/10.1117/12.2277121.short 
15. De Vente C, Vos P, Hosseinzadeh M, Pluim J, Veta M. Deep learning regression for 
prostate cancer detection and grading in bi-parametric MRI. IEEE Trans Biomed Eng. 
2020;68(2):374-383. 
16. Arif M, Schoots IG, Castillo Tovar J, et al. Clinically significant prostate cancer detection 
and segmentation in low-risk patients using a convolutional neural network on multi-
parametric MRI. Eur Radiol. 2020;30(12):6582-6592. doi:10.1007/s00330-020-07008-z 
17. Do DD, Rojo Domingo M, Conlin CC, et al. Robustness of a Restriction Spectrum 
Imaging (RSI) quantitative MRI biomarker for prostate cancer: assessing for systematic bias 
due to age, race, ethnicity, prostate volume, medication use, or imaging acquisition 
parameters. medRxiv. Published online 2024:2024-09. 
18. White NS, McDonald CR, Farid N, et al. Diffusion-weighted imaging in cancer: physical 
foundations and applications of restriction spectrum imaging. Cancer Res. 
2014;74(17):4638-4652. 
19. Zhuang J, Hrabe J, Kangarlu A, et al. Correction of eddy-current distortions in diffusion 
tensor images using the known directions and strengths of diffusion gradients. J Magn 
Reson Imaging. 2006;24(5):1188-1193. doi:10.1002/jmri.20727 
20. Karunamuni RA, Kuperman J, Seibert TM, et al. Relationship between kurtosis and bi-
exponential characterization of high b-value diffusion-weighted imaging: application to 
prostate cancer. Acta Radiol. 2018;59(12):1523-1529. doi:10.1177/0284185118770889 
21. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected convolutional 
networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition. ; 2017:4700-4708. Accessed October 10, 2024. 
http://openaccess.thecvf.com/content_cvpr_2017/html/Huang_Densely_Connected_Convolu
tional_CVPR_2017_paper.html 
22. Cardoso MJ, Li W, Brown R, et al. MONAI: An open-source framework for deep learning 
in healthcare. Published online November 4, 2022. Accessed October 10, 2024. 
http://arxiv.org/abs/2211.02701 
23. Efron B, Tibshirani R. Bootstrap methods for standard errors, confidence intervals, and 
other measures of statistical accuracy. Stat Sci. Published online 1986:54-75. 
24. Zeiler MD. Visualizing and Understanding Convolutional Networks. In: European 
Conference on Computer Vision/arXiv. Vol 1311. ; 2014. 
25. Domingo MR, Conlin CC, Karunamuni RA, et al. Utility of quantitative measurement of 
T2 using Restriction Spectrum Imaging for detection of clinically significant prostate cancer. 
medRxiv. Published online 2024:2024-03. 
26. James ND, Tannock I, N’Dow J, et al. The Lancet Commission on prostate cancer: 
planning for the surge in cases. The Lancet. 2024;403(10437):1683-1722. 
27. Zhong AY, Lui AJ, Kuznetsova S, et al. Clinical Impact of Contouring Variability for 
Prostate Cancer Tumor Boost. Int J Radiat Oncol Biol Phys. Published online 2024. 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted November 26, 2024. ; https://doi.org/10.1101/2024.11.22.24317504doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.22.24317504


Accessed October 10, 2024. 
https://www.sciencedirect.com/science/article/pii/S0360301624007405 
28. Cai JC, Nakai H, Kuanar S, et al. Fully Automated Deep Learning Model to Detect 
Clinically Significant Prostate Cancer at MRI. Goh V, ed. Radiology. 2024;312(2):e232635. 
doi:10.1148/radiol.232635 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted November 26, 2024. ; https://doi.org/10.1101/2024.11.22.24317504doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.22.24317504


Figures 

 
Figure 1. Flowchart shows inclusion and exclusion criteria and patient characteristics. PCa = 
Prostate Cancer. PI-RADS = Prostate Imaging Reporting and Data System. csPCa = 
Clinically Significant Prostate Cancer. ADC = Apparent Diffusion Coefficient. GG = Gleason 
Grade Group. UC = University of California. CTIPM = Center for Translational Imaging and 
Precision Medicine 
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Figure 2. Overview of the experimental setup. 3D-Data are used as input of the 3D-DenseNet, followed by 
convolution layer, several 3D Dense Blocks and Transition layers, then after the Pooling layer and Flatten & Fully 
Connected (FC) layer, the 3D-DenseNet returns the final classification of csPCa or not. For 3D-DenseNet+RSI, the 
process before the Flatten & FC layer is the same, the remaining process is concatenating the intermediate output 
from the Flatten & FC layer with the RSIrs-max. Then, after going through another FC layer, the 3D-DenseNet+RSI 
gives the final output of probability of csPCa. 
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Figure 3. Male patient, age between 55 and 59, underwent MRI due to clinical suspicion of prostate cancer. The 
patient subsequently underwent prostatectomy and had Gleason Score 4 + 3 (GG 3) cancer at the right and left 
posterior near the apex of the prostate. He was included in both Data Split 1 and Data Split 2 test sets. The patient-
level probability from Model 4 (AI bpMRI-seg) with Data Split 1 was 0.18, from Model 6 (AI bpMRI-seg + RSI-seg + 
RSIrs-max) with Data Split 1 was 0.47, and from Model 6 with Data Split 2 was 0.51. The radiologists graded this 
examination as PI-RADS 4 for the lesion at the right peripheral zone at the posterior medial prostate within apex. (A) 
T2-weighted image (T2w, representative slice). (B) Apparent diffusion coefficient map (ADC, representative slice, 
left) and high-b diffusion-weighted image (high-b DWI, representative slice, right). (C) Intracellular (RSI-C1, 
representative slice, left) and extracellular (RSI-C2, representative slice, right) images.  
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Figure 4. Scan from the same patient as Figure 3. (A) T2w, ADC, and high-b DWI images from left to right and with 
occlusion sensitivity maps from Model 4 (Data Split 1) overlaid at the right of each MRI images. (B) T2, ADC, high-b 
DWI, RSI-C1, and RSI-C2 images from left to right and with occlusion sensitivity maps from Model 6 (Data Split 1) 
overlaid at the right of each MRI images. (C) T2w, ADC, high-b DWI, RSI-C1, and RSI-C2 images from left to right 
with occlusion sensitivity maps from Model 6 (Data Split 2) overlaid at the right of each MRI images. 
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Tables 
Characteristic Training (Data Split 1)* Validation (Data Split 1) Testing (Data Split 1) Training (Data Split 2) Validation (Data Split 2) Testing (Data Split 2) 

No. of cases 554 628 664 898 564 384 
Age (y)** 70 (64-75) 70 (65-75) 69 (64-74) 70 (64-74) 70 (65-75) 70 (64-75) 
csPCa 192 (34.7) 184 (29.3) 345 (52.0) 376 (41.9) 116 (20.6) 229 (59.6) 

non-csPCa 362 (65.3) 444 (70.7) 319 (48.0) 522 (58.1) 448 (79.4) 155 (40.4) 
Cohorts             

UC San Diego Health 546 (98.6) 48 (7.7) 98 (14.8) 0 (0.0) 383 (67.9) 309 (80.5) 
UC San Diego CTIPM 3 (0.5) 386 (61.4) 258 (38.9) 647 (72.0) 0 (0.0) 0 (0.0) 

Harvard University's Massachusetts General Hospital (MGH) 0 (0.0) 25 (4.0) 38 (5.7) 0 (0.0) 25 (4.4) 38 (9.9) 
University of Rochester Medical Center (URMC) 0 (0.0) 18 (2.9) 233 (35.1) 251 (28.0) 0 (0.0) 0 (0.0) 

UC San Francisco (UCSF) 0 (0.0) 22 (3.5) 20 (3.0) 0 (0.0) 22 (3.9) 20 (5.2) 
UT Health Sciences Center San Antonio (UTHSCSA) 0 (0.0) 129 (20.5) 17 (2.5) 0 (0.0) 129 (22.9) 17 (4.4) 

University of Cambridge 5 (0.9) 0 (0.0) 0 (0.0) 0 (0.0) 5 (0.9) 0 (0.0) 
Manufacturer/Model             

GE Healthcare/Discovery MR750 554 (100.0) 278 (44.3) 189 (28.5) 470 (52.3) 340 (60.3) 211 (55.0) 
GE Healthcare/Signa Premier 0 (0.0) 203 (32.3) 225 (33.9) 177 (19.7) 95 (16.8) 156 (40.6) 

SIEMENS Healthcare/Magnetom Skyra 0 (0.0) 59 (9.4) 250 (37.6) 251 (28.0) 41 (7.3) 17 (4.4) 
SIEMENS Healthcare/Magnetom Trio 0 (0.0) 88 (14.0) 0 (0.0) 0 (0.0) 88 (15.6) 0 (0.0) 

Biopsy             
Biopsy-confirmed cases 322 (58.1) 361 (57.5) 664 (100.0) 689 (76.7) 274 (48.6) 384 (100.0) 

Biopsy-naïve cases 400 (72.2) 164 (26.1) 664 (100.0) 613 (68.3) 231 (41.0) 384 (100.0) 
Gleason Grade Group             

Benign 72 (13.0) 80 (12.7) 179 (27.0) 186 (20.7) 66 (11.7) 79 (20.6) 
1 58 (10.5) 97 (15.5) 140 (21.1) 127 (14.1) 92 (16.3) 76 (19.8) 
2 85 (15.3) 88 (14.0) 181 (27.3) 189 (21.0) 65 (11.5) 100 (26.0) 
3 56 (10.1) 54 (8.6) 90 (13.6) 104 (11.6) 23 (4.1) 73 (19.0) 

4-5 51 (9.2%) 42 (6.7) 74 (11.0) 83 (9.3) 28 (5.0) 56 (14.6) 
PI-RADS score             

1 255 (46.0) 320 (51.0) 60 (9.0) 261 (29.1) 342 (60.6) 32 (8.3) 
2 17 (3.1) 24 (3.8) 12 (1.8) 29 (3.2) 22 (3.9) 2 (0.5) 
3 46 (8.3) 62 (9.9) 155 (23.3) 157 (17.5) 52 (8.2) 54 (14.1) 
4 120 (21.7) 118 (18.8) 215 (32.4) 208 (23.1) 88 (15.6) 157 (40.9) 
5 116 (20.9) 104 (16.5) 222 (33.5) 243 (27.1) 60 (10.7) 139 (36.2) 

Table 1. Patient Demographic Characteristics in the Data Sets from Data Split 1 and Data Split 2. Unless otherwise specified, data are numbers of 
examinations, with percentages in parentheses. *The training set for Data Split 1 were acquired with the same RSI protocol. **Data are median with IQR in 
parentheses. csPCa = Clinically Significant Cancer (Gleason Grade Group ≥ 2 or PI-RADS ≥ 3). non-csPCa = Not having Clinically Significant Cancer 
(Benign, Gleason Grade Group = 1 or PI-RADS < 3 with a prostate-specific antigen density < 0.15). CTIPM = Center for Translational Imaging and Precision 
Medicine. UC = University of California. UT = University of Texas. PI-RADS = Prostate Imaging Reporting & Data System. 
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  1: PI-RADS 2: RSIrs-max 3: AI bpMRI 4: AI bpMRI-

seg 

5: AI bpMRI-

seg + RSIrs-

max 

6: AI bpMRI-seg 

+ RSI-seg + 

RSIrs-max 

7: PI-RADS + 

RSIrs-max 

8: PI-RADS + AI 

bpMRI-seg + RSIrs-

max + RSI-seg 

Detected vs. non-

csPCa 

Median (95% CI) Median (95% CI) Median (95% CI) Median (95% CI) Median (95% CI) Median (95% CI) Median (95% CI) Median (95% CI) 

A: GG≥2 0.74 (0.70-0.77) 0.72 (0.68-0.76) 0.68 (0.64-0.72) 0.72 (0.69-0.76) 0.72 (0.68-0.76) 0.73 (0.69-0.77) 0.77 (0.73-0.81)* 0.78 (0.74-0.81)* 

B: GG2 0.69 (0.64-0.73) 0.69 (0.64-0.74) 0.62 (0.57-0.66) 0.70 (0.66-0.75) 0.70 (0.65-0.74) 0.68 (0.63-0.73) 0.73 (0.68-0.77) 0.72 (0.67-0.77) 

C: GG3 0.74 (0.69-0.79) 0.72 (0.66-0.78) 0.72 (0.65-0.78) 0.71 (0.65-0.77) 0.70 (0.63-0.76) 0.74 (0.68-0.80) 0.78 (0.72-0.83) 0.79 (0.73-0.84) 

D: GG4-5 0.85 (0.80-0.89) 0.80 (0.73-0.86) 0.78 (0.72-0.84) 0.79 (0.73-0.85) 0.81 (0.74-0.86) 0.85 (0.80-0.90) 0.87 (0.82-0.92) 0.90 (0.85-0.94) 

Table 2. AUCs Results for Data Split 1. 95% CI refers to the 95 percent confidence interval. * refers to p<0.05 for comparison of AUC vs. PI-
RADS 1 (only reported for primary analysis, GG≥2). Model 1 refers to the logistic regression model with PI-RADS input; Model 2 refers to the 
logistic regression model with RSIrs-max input; Model 3 refers to the 3D DenseNet with T2w, ADC and high-b DWI input (bpMRI); Model 4 
refers to the the 3D-DenseNet with T2w-seg, ADC-seg and high-b DWI-seg input (bpMRI-seg); Model 5 refers to the 3D-DenseNet+RSI with 
bpMRI-seg and RSIrs-max input; Model 6 refers to the 3D-DenseNet+RSI with bpMRI-seg, RSI-C1-seg, RSI-C2-seg (RSI-seg) and RSIrs-max 
input; Model 7 refers to the logistic regression model with PI-RADS and RSIrs-max input; Model 8 refers to the logistic regression model with 
PI-RADS and the output probability of Model 6. Group A) All the patients that are biopsy-naïve at time of MRI with biopsy confirmed diagnosis 
that are not used for training vs. non-csPCa (n=664). Group B) Subsets of Group A) with either GG2 csPCa and non-csPCa (n=500). Group C) 
Subsets of Group A) with either GG3 csPCa and non-csPCa (n=409). Group D) Subsets of Group A) with either GG4-5 csPCa and non-csPCa 
(n=393). n is the number of cases in each testing group.  
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  1: PI-RADS 2: RSIrs-max 
6: AI bpMRI-seg + RSI-

seg+ RSIrs-max 

7: PI-RADS + RSIrs-

max 

8: PI-RADS + AI bpMRI-seg 

+ RSIrs-max + RSI-seg 

Detected vs. non-

csPCa 
Median (95% CI) Median (95% CI) Median (95% CI) Median (95% CI) Median (95% CI) 

A: GG≥2 0.73 (0.68-0.78) 0.75 (0.70-0.80) 0.78 (0.73-0.83) 0.79 (0.74-0.83)* 0.81 (0.76-0.85)* 

B: GG2 0.69 (0.63-0.75) 0.72 (0.66-0.75) 0.73 (0.66-0.79) 0.75 (0.69-0.81) 0.76 (0.70-0.82) 

C: GG3 0.74 (0.67-0.80) 0.75 (0.68-0.82) 0.8 (0.73-0.86) 0.8 (0.73-0.86) 0.82 (0.75-0.88) 

D: GG4-5 0.80 (0.74-0.86) 0.80 (0.72-0.87) 0.86 (0.80-0.92) 0.85 (0.79-0.91) 0.89 (0.83-0.94) 

Table 3. AUCs Results for Data Split 2. Same as the setting of Table 2. 95% CI refers to the 95 percent confidence interval. * refers to P<.05 
for comparison of AUC vs. PI-RADS 1 (only reported for primary analysis, GG≥2). Model 1 refers to the logistic regression model with PI-RADS 
input; Model 2 refers to the logistic regression model with RSIrs-max input; Model 6 refers to the 3D-DenseNet+RSI with bpMRI-seg, RSI-seg 
and RSIrs-max input; Model 7 refers to the logistic regression model with PI-RADS and RSIrs-max input; Model 8 refers to the logistic 
regression model with PI-RADS and the output probability of Model 6. Group E) All the patients that are biopsy-naïve at time of MRI with biopsy 
confirmed diagnosis that are not used for training vs. non-csPCa (n=384). Group F) Subsets of Group E) with either GG2 csPCa and non-
csPCa (n=255). Group G) is subset of Group E) with either GG3 csPCa and non-csPCa (n=228). Group H) is subset of Group E) with either 
GG4-5 csPCa and non-csPCa (n=211). n is the number of cases in each testing group.  
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