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ABSTRACT 
  
Cellular senescence is a prominent accomplice of aging. The expression of gene p16ink4a has 
been established as a biomarker of cellular senescence in humans and animal models. However, 
it has not been extensively studied in clinical settings in the context of natural aging and the 
development of age-related diseases. Here, we report the results of a natural aging study that 
provided an assessment of cellular senescence and a battery of measures of clinical status, 
quality of life (QOL), and physical performance in 250 community-dwelling participants across 
age continuum. This report focused on analyzing predictive relationships between cellular 
senescence and different clinical assessments. Our results suggest that clinical labs and QOL 
assessments produce distinct groupings of participants, yet both have strong predictive 
associations with p16ink4a. Furthermore, the highest accuracy of p16ink4a prediction requires 
subsets of measurements representing diverse aspects of each assessment, pointing towards a 
system-level role of p16ink4a. Our analysis also led to an assessment-based composite indexes 
that strongly correlate with p16ink4a expression. Our study underscores p16ink4a’s association 
with both earlier signs of physiological decline (based on clinical labs) and the later onset of health 
issues limiting the quality of life. 
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1 INTRODUCTION  

Life expectancy in the world's population continues to increase, and globally, the population over 
65 years is the fastest-growing group. In the U.S. alone, the population continues to age 
dramatically. By 2050, persons 65 and older in the U.S. will comprise about 90 million, more than 
double the same-aged population in 2010 [1]. However, these remarkable improvements in life 
expectancy have a downside: increased risk and frequency of diseases of aging [2] that result in 
disability, functional loss, poor quality of life, frailty, and high health care costs. Chronologic age 
alone is a poor indicator of biological age, as there is vast heterogeneity in health status within 
the same age groups. For older persons, high-quality tools are available that account for 
functional status, support, comorbidities, and nutrition and can be used to calculate life 
expectancy and disability accurately (https://eprognosis.ucsf.edu/index.php) [3]; no such tools 
exist for younger persons.  

There is a significant need for accurate, biologically plausible, and easily accessible 
biomarkers that could predict aging trajectory, as well as risk and likelihood of illness in people 
who are considered “healthy”. The American Federation of Aging Research (AFAR) criteria for a 
valid biomarker of aging is one "that predicts a person's physiological, cognitive, and physical 
function in an age-related way, must be testable and not harmful to test subjects, and should work 
in laboratory animals as well as humans" (www.afar.org; Biomarkers of Aging, 2016). p16Ink4a 
gene expression (further referred to as p16) emerges as a biomarker that can meet the AFAR 
criteria. Indeed, p16 is a cell cycle inhibitor and a widely recognized biomarker of cellular 
senescence that tends to increase with age [4]. Cellular senescence is a central biological process 
by which environment, genetics, and lifestyle affect human aging and lead to functional decline 
[5-13] [14, 15]. In murine models and almost all organs, p16 expression substantially increases in 
older mice compared to younger mice [16]. Senescent cells are characterized by permanent 
growth arrest, are metabolically active, and secrete numerous pro-inflammatory cytokines, 
contributing to inflammation, the development of diseases of aging [17], and further spread of 
senescence to healthy cells at both local and distant sites [12, 18]. Several genome-wide 
association studies implicate p16 as a critical determinant of human aging and age-related 
conditions [19-23].  

In mouse models, the p16 promoter is used frequently to demonstrate the impact of cellular 
senescence on physiological decline and diseases. Injected and naturally occurring p16-positive 
cells have been shown to induce disease and shorten the healthy lifespan, while depleting p16-
positive cells improves physical function and delays aging-associated disorders [5, 6, 12, 24, 25]. 
Recently, the p16 promotor has also been used to induce rejuvenation and improve health in 
mouse models by reprogramming of senescent cell states [26]. Given the prominent role of 
senescence in age-related decline, computational approaches based on machine learning 
models have been utilized in search of a reliable predictor of senescence, such as nuclear 
morphology [27, 28]. In human samples, p16 is also emerging as a common measure of cellular 
senescence across tissues [29]. 

With a strong indication of p16 being a biomarker of aging, here we sought to investigate if 
and how p16 correlates with early signs of physiological decline in a naturally aging population 
based on traditional clinical labs, quality-of-life surveys, and physical evaluation. To this end, we 
collected and analyzed data from 250 community-dwelling participants 25 through 85 years old. 
Our study showed that the expression of p16 in peripheral blood is significantly different between 
participants grouped based on both clinical labs and the RAND36 survey, although the clinical lab 
and QOL survey groupings do not fully overlap. The highest accuracy of p16 prediction requires 
diverse types of measurements within the different assessment categories, possibly indicating the 
systemic role of p16 in the physiological state. Finally, we derived linear-combination indexes for 
assessment categories that provide overall metrics strongly correlating with p16 expression 
(𝑟~0.35, which is over two-fold higher than any individual measurement).   
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2 METHODS 

2.1 Study Participants 
Participants were recruited from January to October 2022 (Table 1 and Supplemental Figure 
1). Inclusion criteria: (1) age 25 to 85, (2) willing/able to attend all in-person visits and complete 
all study assessments and questionnaires, and (3) willing/able to provide written informed consent 
electronically. Exclusion criteria: (1) autoimmune disorders, (2) previous or currently undergoing 
chemotherapy, immunotherapy or radiation therapy for cancer ,(3) history of transplants including 
solid organ or bone marrow, (4) presence of major active infection for which antibiotics and/or 
antivirals are prescribed within the last 14 days (chronic or acute, e.g., sepsis, HIV, pneumonia, 
active COVID infection), (5) dialysis, and/or (6) pregnancy. Recruitment was targeted by age 
cohort: N=30 aged 25-34, N=45 aged 35-44, N=50 aged 45-54, N=50 aged 55-64, N=45 aged 
65-74, and N=30 aged 75-85. Recruitment was through word-of-mouth, Facebook, and the UNC 
Research for Me portal (researchforme.unc.edu). The study was approved by the Institutional 
Review Board of the University of North Carolina at Chapel Hill (IRB 21-2153). 

 
Table 1: Participant characteristics (statistics for demographics, comorbidities, clinical labs, 
and quality-of-life survey by gender are provided in Supplemental Tables 1-2) 

Characteristic n (%) / mean ± std Characteristic n (%) 

Age, mean± std, years range 54.3 ± 15.6, 25-85 Diabetes or high blood sugar, n (%) 14 (5.7) 

Female gender, % 181 (72.4) Thyroid problems, n (%) 30 (12.2) 

Race: White, n (%) 211 (84.4) High blood pressure or hypertension, n (%) 50 (20.3) 

Race: Black or African American, n (%)  10 (4.0) Had a heart attack, n (%) 7 (2.8) 

Race: Asian, n (%) 18 (7.2) Stroke-like attack, n (%) 4 (1.6) 

Race: American Indian/Alaskan Native, n (%) 1 (0.4) Treated for heart failure, n (%) 4 (1.6) 
Race:  More than one race, n (%) 6 (2.4) Emphysema, chronic bronchitis, or chronic 

obstructive lung disease, n (%) 
2 (0.8) 

Race: Other, n (%) 4 (1.6) Asthma, n (%) 42 (17.1) 

    Arthritis, n (%) 74 (30.2) 

Systolic BP, mean ± std, mmHg 119.5 ± 17.6 Stomach or peptic ulcer disease, n (%) 14 (5.7) 

Diastolic BP, mean ± std, mmHg 78.0 ± 10.3 Poor kidney function, used hemodialysis, or 
peritoneal dialysis, n (%) 

3 (1.2) 

Heart rate, mean ± std, bpm 66.8 ± 11.1 Cirrhosis or severe liver damage, n (%) 2 (0.8) 

BMI, mean ± std, kg/m2 26.0 ± 5.3 Skin cancer, n (%) 34 (13.8) 

Average gait speed, mean ± std, m/sec 3.1 ± 0.5 Reproductive cancer, n (%) 4 (1.6) 

Up-And-Go time, mean ± std, seconds 8.8 ± 1.9 Non-reproductive cancer, n (%) 3 (1.2) 

 
2.2 Questionnaires  
Short Form SF-36 [30]. This 36-item questionnaire (further referred to as RAND36) inquired about 
general health, engaging in activities of daily living, problems in the past 4 weeks with work or 
other regular daily activities as a result of physical health or emotional problems, and general 
questions about fatigue, anxiety, or depression in the past 4 weeks. Response options are yes/no 
or multiple choice. 

General health/lifestyle survey. Participants were asked whether living and/or deceased 
family members had a history of heart disease, cancer, diabetes, stroke, dementia/Alzheimer’s, 
COPD/pneumonia/flu, kidney disease, and accidents, and any family members who lived past 90 
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years of age. Participants were then asked if they had clinically diagnosed conditions such as 
diabetes or high blood sugar, thyroid problems, high blood pressure or hypertension, heart attack, 
stroke/cerebrovascular accident/blood clot or bleeding of the brain/transient ischemia attack, 
heart failure, emphysema/chronic bronchitis/chronic obstructive lung disease, asthma, arthritis, 
stomach ulcers/peptic ulcer disease, poor kidney function/hemodialysis/peritoneal disease, 
cirrhosis/severe liver damage, skin cancer, reproductive cancer, and/or non-reproductive cancer. 
Given that study enrollment occurred in early 2022, participants were also asked to list current 
medications, whether they had received a COVID-19 vaccine, and whether they had ever tested 
COVID positive.  

 
2.3 Physical Evaluation 
Timed Up & Go (UAG) [31]. For this test, participants stand up from a chair without assistance, 
walk 3 meters along a line on the floor at a normal pace, turn, walk back to the chair, and sit down. 
Patients who take more than 12 seconds to complete the test are considered at risk of falling. 

Gait Speed [32]. Participants are in a standing position and are asked to walk at their normal 
speed: acceleration zone 1 meter, testing zone 4 meters, and deceleration zone 1 meter; then 
repeat. 

Other health metrics: Blood pressure and heart rate were measured by a clinical coordinator 
using the same blood pressure cuff device (average of 3 measures). Body mass index (BMI) was 
calculated from height and weight measurements.  

 
2.4 Clinical Labs 
Blood samples were collected for Complete Blood Count (CBC), Comprehensive Metabolic profile 
(CMP), lipid panel, TSH, HbA1c testing. The complete registry is provided as Supplemental 
Document 1.  

 
2.5 Gene Expression Assay 
For p16 analysis, blood sample was collected into SapereX blood collection tube (provided by 
Sapere Bio) and T-cells were isolated within 72h.  

mRNA expression in peripheral blood T-lymphocytes was determined using TaqMan real-time 
quantitative reverse transcription PCR. Expression analysis was performed by Sapere Bio 
(Research Triangle, NC), using technology described previously [33].  
 
2.6 Gender considerations  
The participant cohort consisted of 181 females and 69 males. To account for potential gender-
related biases, we performed our analysis with and without normalization for gender. We chose 
not to use normalization based on the total average (or z-score) because gender differences may 
depend on age, and the subtraction of the global means (across all ages) may heighten gender 
differences for some of the measures in specific age groups. Instead, we performed the 
normalization based on linear regression. A running average or median could also be used, but 
would require introducing additional parameters (e.g., window size and sliding step for averaging), 
while simple linear regression does not. Specifically, all measurement values 𝑉! for each male 𝑖 
were transformed to the normalized values 𝑉)! as  

 
𝑉)!(𝑡") = 𝑉!(𝑡") − (𝑘!𝑡" + 𝑏!) + (𝑘#𝑡" + 𝑏#) 

 
where 𝑡" is the age of male 𝑖; 𝑘! and 𝑏! are the slope and intercept of the regression line relating 
the measure 𝑉 and the age for all males (𝑉! , 𝑎𝑔𝑒!); and 𝑘# and 𝑏# are the slope and intercept of 
the regression line relating this measure 𝑉 and age for all females (𝑉# , 𝑎𝑔𝑒#). We normalize males 
to females and not vice versa because females have about a 2.3-fold higher representation in our 
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data. Supplemental Figure 2 illustrates the normalization of the systolic blood pressure (SBP) 
as an example. Before the normalization, the regression slopes between SBP and age are slightly 
different for females and males. This difference is eliminated upon normalization. This example 
also illustrates that gender difference for SBP is higher in younger individuals, so aligning the all-
age means would not eliminate the difference in SBP evenly for all ages, which could still bias our 
prediction models. Although some of the numerical results in our analysis end up varying between 
the results with and without normalization, our overall conclusions are not highly sensitive to this 
procedure. Supplemental Tables 1-2 summarize the gender difference for all measures used in 
the following sections. The tables provide the mean, standard deviation (std), standard error (se), 
coefficient of correlation with age (r), p-value for testing the hypothesis of no correlation with age 
(pcorr), and p-value from two-sample t-test for the hypothesis that the compared data comes from 
populations with unequal means (pMF). All numbers are provided for females and males with and 
without normalization. The color code highlights strong evidence for rejecting a null hypothesis 
(red: p-value < 0.05), weak evidence (yellow: p-value < 0.1), and insufficient evidence (green: p-
value ≥ 0.1). The tables show that many measures have significant gender differences with 
respect to the correlation with age. For example, the thyroid-stimulating hormone (TSH) has a 
strong correlation with age in females (𝑟 = 0.23, 	𝑝$%&& = 0.002) but a weak one in males (𝑟 = 0.07,
𝑝$%&& = 0.55), while the relative neutrophil count (Neut) has a weak correlation with age in females 
(𝑟 = 0.08, 𝑝$%&& = 0.30) but a strong one in males (𝑟 = 0.38, 𝑝$%&& = 0.001). The difference in the 
overall mean values is also significantly different for many measures before normalization. 
Expectedly, after our regression-based normalization, the difference in the overall mean becomes 
insignificant (𝑝!# > 0.1) for all measures.  
 
2.7 Assessing the effect of age on pairwise correlations 
A similar regression-based approach can be used to “age-correct” the data for each male 𝑖 and 
female 𝑗 and establish if there is a direct correlation between any two measures as opposed to 
an indirect correlation due to their common dependence on age: 
 

𝑉@!(𝑡") = 𝑉!(𝑡") − (𝑘!𝑡" + 𝑏!)	
𝑉@#A𝑡'B = 𝑉#A𝑡'B − A𝑘#𝑡' + 𝑏#B 

 
These age-corrected values for a given person can be viewed as measurement deviations from 
values typical for the person’s age. We considered three different scenarios:  
Case 1: A pair of gender-normalized measures has a strong correlation (𝑝$%&& < 0.05) before age 
correction but no correlation (𝑝$%&& > 0.1) after age correction. 
Case 2: A pair of gender-normalized measures has no correlation (𝑝$%&& > 0.1) before age 
correction but has a strong correlation (𝑝$%&& < 0.05) after age correction. 
Case 3: A pair of gender-normalized measures has a strong correlation (𝑝$%&& < 0.05) both before 
and after age correction. 

Because this work primarily focuses on the biomarker of cellular senescence, we present the 
results of these three case scenarios only for correlations between p16 and all 86 other measures 
from Supplemental Tables 1-2 (Figure 1).  
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In Case 1 (when 𝑝$%&& 
values are less than 0.05 
before age correction and 
more than 0.10 after age 
correction), p16 has a 
strong positive correlation 
with total cholesterol (tot 
Chol), LDL-C, non HDL-C, 
BUN, Na, alkaline 
phosphatase (AP), HbA1c, 
systolic blood pressure 
(SBP), and questions 29 
and 31 on the RAND36 
survey; and a strong 
negative correlation with 
absolute lymphocyte 
counts, heart rate (HR), 
and questions 3, 4, 6, 9, 
and 15 on RAND36 survey 
.  

In Case 2 (when 𝑝$%&& 
values are more than 0.1 
before age correction and 
less than 0.05 after age 
correction), p16 has a 
strong positive correlation 
with total protein and 
question 35 on the 
RAND36 survey; and a 
strong negative correlation 
with abs Eso, abs Baso, 
and Baso.  
In Case 3 (when 𝑝$%&& 
values are less than 0.05 
both before and after age 
correction), p16 has a 
strong positive correlation 
only with K and Ca. 
 

These results show 
that very few individual 
clinical or QOL metrics still correlate with p16 when corrected for age (2/86 variables in Case 3 
vs 17/86 in Case 1). Therefore, p16’s association with clinical labs, RAND36 survey, and physical 
evaluation is likely mediated by their common relationship with aging-related processes but not 
necessarily due to a direct dependence. Also, p16’s strong positive correlation with the total 
protein and Q35 on RAND36, as well as its strong negative correlation with absolute eosinophil 
and relative and absolute basophil counts become evident only after age correction. Thus, for 
these measures, p16 correlates not with the absolute values but with the extent of deviations from 
the mean values at that age. 

 
Figure 1. Comparison of the correlation coefficients, r, between p16 
expression and all the other measurements (left panel for clinical labs and 
right panel for RAND36 survey and physical evaluation). The correlation 
coefficients are shown for gender normalized data in three cases: 1) when 𝑝!"## 
values less than 0.05 before age-correction and more than 0.10 after age-
correction; 2) when 𝑝!"## values are more than 0.10 before age-correction and 
less than 0.05 after age-correction; 3) when 𝑝!"## values are less than 0.05 both 
before and after age-correction. In all cases, age correction is achieved by 
subtracting the regression lines in the measure vs age coordinates separately for 
male and female populations. Here, 𝑝!"## values validate the null hypothesis that 
there is no correlation between the measurements. 𝑟 and 𝑝!"## values for all 
measurements before are after gender normalization are provided in 
Supplemental Tables 1-2.  
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2.8 Validation of hierarchical clustering method in application to the natural aging data 
Pairwise correlations between the measures are informative but do not capture the higher-level 
interrelationships in the dataset. To 
investigate such data structures, we use 
both unsupervised clustering and hold-out 
training models. Before applying 
hierarchical clustering to grouping the 
data, we tested if our data had sufficient 
power to allow for meaningful multivariable 
associations. As the basis for determining 
if our data had sufficient power, we used 
the well-established 8-scale scoring of the 
RAND36 quality-of-life survey. This 
scoring system groups 36 questions into 
eight categories (health concepts): 
physical functioning, bodily pain, role 
limitations due to physical health problems, 
role limitations due to personal or 
emotional problems, emotional well-being, 
social functioning, energy/fatigue, and 
general health perceptions. Here, we test 
how accurately the hierarchical clustering 
algorithm can reproduce this grouping with 
our data from all 250 participants. 
Supplemental Figure 3 shows a 
dendrogram for 36 survey questions. To 
provide a quantitative measure for the 
strength of the association of each 
question with each health concept, we 
applied the following method.  

First, we selected one question from 
each concept as a landmark. For the 
landmarks, we used the questions that 
seeded the grouping (i.e., had the smallest 
dissimilarity with another question in the 
groups of the dendrogram shown in 
Supplemental Figure 3). Next, we 
randomly picked 90% of the participants, 
built a dendrogram for this subset, and 
measured Euclidian distances from each 
question to each landmark. Then, we 
repeated this procedure 5000 times (every 
time having a different random 90% 
sample) and averaged the result. Based on 
these averaged measurements, we found 
the distance to the closest landmark, 𝑦("), 
and to the next closest landmark, 𝑦)*+,. 
This way, we not only associated each 
question with one of the eight landmarks 
but also determined a measure of the 

 
Figure 2. Grouping of RAND36 quality of life questions 
based on hierarchical clustering. The dendrogram distance 
between each feature (second column) and the closest 
landmark feature representing a health concept (first column) 
is denoted as 𝑦$%&, while the distance to the next closest 
landmark is 𝑦&'(). Each selected landmark is indicated as the 
first feature in the group of questions. Therefore, the fourth and 
third columns characterize the strength and exclusiveness of 
the association of each feature with its group. The dendrogram 
distances are measured as the Euclidean lengths between the 
rows of the pairwise correlation matrix. The misclassified 
features (Q30, Q35, and Q3) are highlighted in red.   

 

SF-36 Scale Rand36 
questions 

𝑦𝑛𝑒𝑥𝑡 − 𝑦𝑚𝑖𝑛
𝑦𝑚𝑖𝑛

 
1

𝑦𝑚𝑖𝑛
 

Emotional well-being 28   
Emotional well-being 24 0.118 0.074 
Emotional well-being 25 0.316 0.093 
Emotional well-being 26 0.026 0.083 
Energy/fatigue  23   
Emotional well-being 30 0.074 0.097 
Energy/fatigue 29 0.043 0.076 
Energy/fatigue 27 0.718 0.130 
Energy/fatigue 31 0.159 0.081 
General health 35 0.002 0.060 
General health 1   
General health 33 0.012 0.063 
General health 34 0.044 0.074 
General health 36 0.293 0.092 
Pain 21   
Pain 22 0.173 0.083 
Physical functioning 3 0.042 0.068 
Physical functioning 9   
Physical functioning 4 0.152 0.077 
Physical functioning 5 0.199 0.071 
Physical functioning 6 0.281 0.085 
Physical functioning 7 0.550 0.099 
Physical functioning 8 0.159 0.074 
Physical functioning 10 1.045 0.128 
Physical functioning 11 0.376 0.080 
Physical functioning 12 0.189 0.066 
Limitations (emotional problems) 17   
Limitations (emotional problems) 18 0.196 0.089 
Limitations (emotional problems) 19 0.092 0.078 
Limitations (physical health) 16   
Limitations (physical health) 2 0.020 0.059 
Limitations (physical health) 13 0.153 0.073 
Limitations (physical health) 14 0.090 0.071 
Limitations (physical health) 15 0.223 0.080 
Social functioning 20   
Social functioning 32 0.285 0.099 
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strength, -
.*+,

, and exclusiveness, .,-.//.*+,
.*+,

, of this association. The second metric identifies 
cases when a question has an equally strong association with more than one health concept. 
Figure 2 shows the resulting grouping and the corresponding metrics of the association strength 
and exclusiveness. For example, Q35 was misclassified as belonging to energy/fatigue instead 
of general health perception, but its exclusiveness metric is very low (.*0./.*+,

.*+,
= 0.002), 

indicating that this question is on the borderline between the two concepts. Indeed, question 35, 
“I expect my health to get worse,” might reflect a possibility that the worsening prediction is 
significantly affected by the respondent’s low level of energy or high fatigue. The other two 
questions are Q30, “Have you been a happy person?” and Q3, “Does your health now limit you 
in vigorous activities, such as running, lifting heavy objects, participating in strenuous sports?”, 
may also fit well to “Energy/fatigue” instead of “Emotional well-being” or “Bodily Pain” instead of 
“Physical functioning.” In any case, our overall result is that only 3 out of 36 questions were 
misclassified with respect to the previously suggested grouping (91.7% accuracy).  
 
2.9 Machine Learning Analysis 
All computational analysis and visualizations in this work were performed using in-house scripts 
within the programming language and numeric computing environment MATLAB. For training 
machine learning models, the input data was randomly partitioned into 20% training and 80% 
testing sets using the ‘cvpartition’ function. Then, for the training set, an ensemble of bootstrap-
aggregated (“bagged”) decision trees was built using ‘TreeBagger’ function. Bootstrap 
aggregation helps reduce overfitting by individual decision trees. This function selects predictors 
for decision splits based on the random forest algorithm [34]. To report feature importance, we 
used the output variable ‘OOBPermutedPredictorDeltaError.’ This variable is calculated as an 
increase in prediction error if the feature values are permuted between the out-of-bag 
observations for each tree, followed by averaging over all trees in the ensemble and dividing by 
the standard deviation. Finally, the predicted values for validation were calculated by applying the 
‘predict’ function with the held-out test set and the ensemble of trees (i.e., the trained model) as 
inputs. To estimate the accuracy of the prediction, we repeated each training independently 100 
times (folds) with different randomized 20/80 splits and combined the true and predicted values 
from all folds. Then, the aggregated true and predicted values were compared by determining the 
Pearson correlation coefficient and the p-value of the null hypothesis that there is no correlation 
(both using the ‘corrcoef’ function). The feature importance for each training procedure was 
calculated as an average of feature importance values from the 100 folds.     
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3 RESULTS 

3.1 The expression of p16 is significantly different between participants grouped based 
on both clinical labs and the RAND36 survey 
After establishing that the hierarchical clustering produces sufficiently accurate grouping of the 
features in the RAND36 survey (see Methods), we ask if grouping people based on their clinical 
labs generates subpopulations with district profiles of the other assessments (senescence 
biomarker, quality of life, and physical evaluation). Figure 3 shows absolute and logarithmic 
values (as well as the corresponding mean and median trends) of p16 against participant age. 
While there is a characteristic increase in p16 with age as previously shown [35], p16 expression 
is highly variable between participants within each age group. Therefore, to analyze such 
intrinsically noisy data, we approach grouping statistically by excluding a small randomly selected 
subset (2 out 250) of people and repeating the hierarchical clustering 1000 times. An example of 
a single iteration of an unsupervised grouping of 248 people into two large clusters is shown in 
Supplemental Figure 4. The mean values and the confidence regions (±2 standard errors) for 
each clinical lab measurement in this example are shown in Supplemental Figure 5A with p-
values from the two-sample t-test on the right side of the graph. Most of the clinical lab 
measurements are significantly different between the two clusters (p-value < 0.05). A significant 
difference in the clinical lab measurements is expected because these measurements were used 

 
Figure 3. p16 expression versus age. The left and right panels show p16 expression values in linear and log2 
scales, respectively. Solid blue lines illustrate the age trend (running average with a 20-years window size and a 1-
year sliding step) with a characteristic initial phase of slow growth, followed by a fast acceleration period that ultimately 
levels off into a plateau. Blue dotted and dashed lines indicate the ± standard deviation range. Black lines are the 
running median with a 20-years window size and a 1-year sliding step. The red correlation line corresponds to 𝑟 =
0.48 and p-value =	0.7e-15.   
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in the clustering algorithm. However, the other (unused) measurements may or may not differ 
between the clusters. Indeed, Supplemental Figure 5B shows that only a few questions in the 
RAND36 survey are significantly different between the clinical lab-based subpopulations, while 

 
Figure 4. Statistical significance of differences between participants grouped based on clinical lab 
measurements using unsupervised hierarchical clustering. The clustering was performed 1000 times; each time 
excluding two randomly selected people and repeating the procedure for the remaining people. Here p-values validate 
the null hypothesis that the compared measurements in the two groups have equal mean and variance (two-sample 
t-test). Blue dots are the median p-values over 1000 randomized repeats for each measure in the dataset. The solid 
red line corresponds to p-value = 0.05 and the red dashed line to p-value = 0.1. The bottom right graph shows that 
distribution of p-values for p16 expressions in the resulting clinical labs-based groups.   
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all outcomes of physical evaluation differ significantly (Supplemental Figure 5C). A plausible 
explanation is that physical characteristics, such as elevated blood pressure, BMI, HR, Gait, and 
UAG, are strongly associated with high levels of cholesterol (tot Chol, Chol/HDL-C, LDL-C, non-

 
Figure 5. Statistical significance of differences between participants grouped based on RAND36 QOL 
responses using unsupervised hierarchical clustering. As in Figure 4, the clustering was performed 1000 times; 
each time excluding two randomly selected people and repeating the procedure for the remaining people. Here p-
values validate the null hypothesis that the compared measurements in the two groups have equal mean and variance 
(two-sample t-test). Blue dots are the median p-values over 1000 randomized repeats for each measure in the 
dataset. The solid red line corresponds to p-value = 0.05 and the red dashed line to p-value = 0.1. The bottom right 
graph shows that distribution of p-values for p16 expressions in the resulting RAND36-based groups.   
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HDL-C), triglycerides, hematocrit, hemoglobin, glucose, HbA1c, total protein, etc., even before 
the onset of specific and serious health problems. On the other hand, RAND36 is designed to 
assess ongoing physical and mental health conditions. In other words, clinical labs and RAND36 
may represent different time points of the physiological decline and, thus, do not produce fully 
overlapping grouping by cross-sectional data. In this regard, it is intriguing that our results (Figure 
4) show a significant difference in p16 expression between the two groups.   

The result for median p-values (two-sample t-test) after 1000 iterations of clinical lab-based 
grouping is summarized in Figure 4. Clinical lab measurements that are consistently different (p-
value < 	0.05) between the two groups (30 out of 44 measures) include the full lipid panel (6 
measures), red blood cell characteristics (6 measures), most of the white blood cell types (9 
measures), protein levels (tot Protein, Glob, Alb/Glob), HbA1c, Glucose, ALT, AP, and CO2. 
Clinical lab-based grouping shows a significant difference only for 7 out of 36 questions in the 
RAND36 survey. For the physical evaluation, all differences are significant. Finally, p16 varies 
between the two groups, with the median p-value near 0.05. Similar overall patterns were 
obtained for the gender- and age-corrected data (Supplemental Figures 6 and 7).  

Similarly, we performed 1000 iterations of grouping based on RAND36 data. Now, as 
expected, we see a significant difference between the participant groups in the majority of the 
survey questions, while most of the blood measurements differ insignificantly (Supplemental 
Figure 8). The statistical results for the original (uncorrected) data are shown in Figure 5. 
Interestingly, the list of questions that differ between the groups includes all items in the role 
limitations due to personal or emotional problems, emotional well-being, social functioning, 
energy/fatigue, and general health perceptions, and about half of the physical functioning 
questions. The questions that differ insignificantly include items in bodily pain, role limitations due 
to physical health problems, and the remaining half of the physical functioning. This split can be 
possibly characterized as a set of questions associated with age-related issues versus a set 
related to age-independent (more strenuous) physical problems or damage. The senescence 
biomarker p16 differs significantly between the RAND36-based groups. After accounting for 
gender difference, p16 remains significantly different (Supplemental Figure 9), while the age 
correction leads to groups with an insignificant difference of p16 (Supplemental Figure 10). 

Overall, the major outcome of this analysis is that subpopulations with different clinical lab 
measurements or different health survey responses tend to have different p16. However, the 
clinical lab-based and RAND36-based subpopulations tend not to overlap, which suggests that 
p16 may serve as a biomarker that links the early (predisposing) and late (ongoing) stages of 
age-related health decline. 

 
3.2 The highest accuracy of p16 prediction requires diverse types of measurements within 
their assessment categories  
Predicting one of the measurements based on the others does not necessarily follow the rule “the 
more features, the better.” The number of features giving the most accurate prediction depends 
on the underlying patterns in the dataset. Here, we ask how accurately the expression of p16 can 
be predicted with ML models (see Methods) using 80/20 data split for training and testing. Our 
goal is not only to achieve the highest possible accuracy of prediction but also to determine the 
measures that contribute the most to the predictive power. To this end, we implement a strategy 
in which we start by training the model with the whole feature set, evaluate feature importance, 
remove the feature with the lowest importance score from the set, and repeat the process until 
two features are left. As a measure of accuracy, we report the correlation coefficient, 𝑟, between 
the predicted and true values of the testing dataset. Typically, this approach gives an optimal 
(highest accuracy) feature set between two extremes: a low accuracy for the whole set (because 
many features have negative importance and hurt the prediction) and the two last features 
(because a lot of information carried by the other features were not used for prediction). To 
account for the variability due to the randomization of the 80/20 split, we repeat each iteration 100 
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times and average the result. Finally, to account for possible variability in the feature removal 
sequence, we repeat the whole sequence 20 times and average the importance over all 20 
repeats and over all 100 iterations (using zero importance at iterations when the feature is 
removed).  

Figure 6 illustrates this routine for predicting p16 expression by clinical lab measurements 
(without gender or age correction). Here, the optimal feature set improves the accuracy from 𝑟 =
0.19 (all 44 measures) to 𝑟 = 0.33 (13 measures). Notably, the optimal set includes about 30% of 
available clinical lab measures and still represents all major types of clinical labs: diabetes screen 
(HbA1c), complete blood count (Hemat, Hb, RBC), blood differential (Neut, Lymph, abs Lymph, 

 
Figure 6. Clinical lab measurements that give the highest prediction accuracy for p16 expression in the 
dataset without gender or age normalization. The top left panel shows the correlation coefficient between 
predicted and true values in the validation set as a function of the number of iteratively removed features with the 
lowest importance scores. The results for 20 repeats are in gray, and the mean ± 2 standard errors are in red. The 
bottom left panel shows a colormap of average importance scores over 20 repeats of the feature exclusion protocol. 
The vertical dotted line corresponds to the exclusion step with the highest prediction accuracy. The dark blue to bright 
yellow colormap represents the importance scores between min to max values. The right panel shows average 
importance scores. The red color indicates features presented in the optimal set. The results for normalized data are 
shown in Supplemented Materials.  
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Eos, abs Eos), basic metabolic panel (BUN), comprehensive metabolic panel (AP, tot Protein), 
and lipid panel (tot Chol). The results for gender and age correction are shown in Supplemental 
Figures 11 and 12. Our regression-based gender normalization produces a similar result with 
mostly the same features at the top of the importance list but in a different order. HbA1c is still 
the highest importance feature. One feature that moved up to the optimal set after normalization 
was calcium (Ca). The optimal set for the data after age correction still makes the prediction 
accuracy significantly higher than the whole set (from 𝑟	 = 	0.03 to 𝑟	 = 	0.18), but this accuracy is 

 
Figure 7. RAND36 survey responses that give the highest prediction accuracy for p16 expression in the 
dataset without gender or age normalization. The top left panel shows the correlation coefficient between 
predicted and true values in the validation set as a function of the number of iteratively removed features with the 
lowest importance scores. The results for 20 repeats are in gray, and the mean ± 2 standard errors are in red. The 
bottom left panel shows a colormap of average importance scores over 20 repeats of the feature exclusion protocol. 
The vertical dotted line corresponds to the exclusion step with the highest prediction accuracy. The right panel shows 
average importance scores. The red color indicates features presented in the optimal set. The results for normalized 
data are shown in Supplemented Materials. 
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about half as low as it is for the predictions with and without gender normalization. Most 
noticeably, after age correction, HbA1c drops from the top of the importance list to the bottom.  

The same analysis for predicting p16 by the RAND36 data is shown in Figure 7 (original 
data) and Supplemental Figures 13 (gender normalized data) and 14 (age-corrected data). Here 
we have a similar situation with 12 out of 36 questions from different health concepts forming the 
optimal set: physical functioning (Q8, Q9, Q3, Q6), role limitations due to personal or emotional 
problems (Q17), emotional well-being (Q25, Q26), social functioning (Q20), energy/fatigue (Q31, 
Q29, Q27), and general health perceptions (Q1). Age correction gives the lowest accuracy (𝑟 =
0.12) and the smallest optimal set compared to the data before (𝑟 = 0.29) and after (𝑟 = 0.37) 
gender normalization. The results are summarized in Table 2 and Supplemental Table 3. 

 
Table 2: Accuracy of p16 prediction by clinical labs and RAND36 survey using 80/20 
training/validation split (reported as the average correlation coefficient between the predicted 
and true values) 

Data normalization Clinical labs, r RAND36, r 
None 0.33 0.29 

Gender-normalized 0.35 0.37 
Age-corrected 0.18 0.12 

 
3.3 Composite indexes for assessment categories provide simple overall metrics that 
strongly correlate with p16 expression  
Training ML models to predict p16 gives a sense of how well the standard clinical tests can predict 
cellular senescence. However, another important question is how well senescence biomarkers 
can predict a person’s health condition or a predisposition for developing age-related issues. 
Without longitudinal data, we can’t answer this question directly, but we can use cross-sectional 
data to extract a single metric (index) for each assessment category based on the strength of its 
association with the biomarker expression and compare these indexes with the other 
assessments, effectively reducing the extensive feature set to a few categorical readouts. In future 
studies, these senescence-based indexes can be tested for a direct association with the 
physiological decline or development of age-related diseases. To this end, we use the following 
strategy. For a given assessment (𝑎) and a biomarker (𝑏), we define the composite index for each 
person (𝑛) as 

𝑆0,2(𝑛) = H (−1)3+𝐹"(𝑛)
"	(6+76max)

 

where 𝐹" is the 𝑖’s feature (z-normalized measurement) in the assessment 𝑎; 𝑃" is the p-value for 
the correlation between the feature 𝐹" and the biomarker 𝑏 for all people in the set; 𝑘" is 0 for 
positive correlation and 1 for negative correlation; and the summation is performed for all features 
with 𝑃" less than 𝑃(0+. For example, if we consider the clinical labs as an assessment, p16 as a 
biomarker, and 𝑃(0+ = 0.05, the 11 features in the summation are tot Chol (𝑃- = 0.013, 𝑘- = 0), 
LDL-C (𝑃9 = 0.044, 𝑘9 = 0), non HDL-C (𝑃: = 0.043, 𝑘: = 0), BUN (𝑃; = 0.004, 𝑘; = 0), K (𝑃< =
0.017, 𝑘< = 0), Ca (𝑃= = 0.014, 𝑘= = 0), AP (𝑃> = 0.033, 𝑘> = 0), HbA1c (𝑃? = 0.012, 𝑘? = 0), abs 
Lymph (𝑃@ = 0.040, 𝑘@ = 1), Neut (𝑃-A = 0.018, 𝑘-A = 0), Lymph (𝑃-- = 0.029, 𝑘-- = 1). In this 
example, the index 𝑆labs,	p16 has a correlation coefficient of 0.31 (p-value 5.8e-7) with p16, which 
is close to the optimal prediction accuracy of 0.33 using our ML training approach (see Figure 6). 
The fact that a simple linear combination produces a single clinical lab-based index so strongly 
correlating with the biomarker of interest justifies our scoring approach, which doesn’t require 
complex algorithms and extensive model training.  

To illuminate the need to choose a specific cutoff for p-value, 𝑃(0+, we calculated the index 
for the full range of values between 0.01 and 1 with a 0.01 step. Figure 8 shows the coefficient 
of correlation between the index and p16 and the ratio of this value to the maximal coefficient of 
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correlation between p16 and the individual features in the assessment set. The latter 
characteristic tells us how much the composite index improves correlation over a single most 
strongly correlating feature. Supplemental Table 4 lists the measures for clinical lab-based and 
RAND36-based indexes that give the largest improvement for the correlation with p16.  

Once again, we see that p16 
strongly correlates with both clinical 
labs and the RAND36 survey. The 
correlation between assessment 
indexes 𝑆labs,	p16 and 𝑆rand36,	p16 is 
significant but not as strong (𝑟 < 0.3) 
as their correlation with p16. We can 
propose two potential explanations. 
One is that clinical lab-based and 
RAND36-based indexes represent 
sufficiently different aspects of age-
related health decline, but since p16 is 
indicative of system-level aging, it 
correlates strongly with each of the 
assessments. Another possibility, and 
the one that we are leaning towards, is 
that clinical lab-based and RAND36-
based indexes represent earlier and 
later phases of decline. In this case, a 
high value for 𝑆labs,	p16, is a predictor of 
a trajectory towards developing a high 
value for 𝑆rand,	p16 for the same 
individuals later in their lives. 
Confirming the validity of the second 
interpretation requires a longitudinal 
study of the senescence biomarkers. 
The composite indexes developed 
here (Supplemental Table 4) can help 
to simplify such temporal tracking.  

 
 

4 DISCUSSION 
 
In this report, we analyzed interrelationships between the expression of a gene used to measure 
cellular senescence, p16, and three batteries of assessments: clinical labs (44 measures), 
RAND36 quality-of-life survey (36 measures), and physical evaluation (6 measures). We 
approached the analysis several ways. First, we checked to what degree pairwise correlations 
between measurements are mediated by their common correlation with age. To this end, we 
compared the data adjusted for the gender differences before and after additional correction for 
the age trend. In this analysis, the p16 expression was strongly affected by the age correction. 
Only five measurements (total protein, absolute eosinophil count, absolute and relative basophil 
count, and question 35, “I expect my health to get worse”) have a significant correlation with p16 
when the age trends are subtracted (comparing only the deviations from the trend). That means, 
for example, that people with a p16 level elevated with respect to the mean level for their age are 
more likely to have an increased level of serum total protein and lower absolute counts of 
eosinophils and basophils (as compared to the mean values for their age group). Two 

 
Figure 8. An illustration of the linear combination approach to 
finding the score metric with the highest correlation with p16. 
For each value of the cutoff, Pmax, clinical lab features with the higher 
individual correlation significances (p-value<Pmax) are combined in a 
single multi-feature measure. The left axis indicates the correlation 
coefficient between the resulting score and the p16 expression. The 
right axis shows the ratio of this coefficient to the highest correlation 
coefficient of a single feature in the set, indicating the correlation 
improvement, so that Pmax value corresponding to the highest 
improvement indicates the best combination of measurements.  
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measurements (potassium and calcium) have strong positive correlation with p16 regardless of 
age correction. 

Next, we determined how grouping people based on one assessment reflects the differences 
between the resulting groups in terms of the other assessments. For classification and 
comparison, we only considered the splits into two major groups using unsupervised hierarchical 
clustering. Before using this method, we verified that our data had sufficient statistical power to 
reproduce a previously established grouping of RAND36 QOL questions into eight health 
concepts. Our hierarchical clustering misclassified only three questions at the borderline between 
pairs of concepts. Application of this method to group people has shown that clinical lab-based 
and RAND36-based groupings produce weakly overlapping subpopulations. This distinction 
between the two assessments may reflect the fact that deviation of a clinical lab measurements 
from a norm is indicative of a developing issue (e.g., elevated HbA1c vs diagnosed diabetes), 
while the self-assessment reports an ongoing physical or mental limitation (e.g., difficulty in lifting 
or carrying groceries). Thus, if we interpret clinical labs and RAND36 assessments as indicators 
of earlier and later phases of physiological decline, it is not surprising that these assessments 
classify people in a mixed population differently. The clinical lab-based clustering produced 
groups with significantly different outcomes of physical evaluation (all six measures), while 
RAND36-based groups only differed in the systolic blood pressure. An intriguing result is that p16 
turned out to be significantly different in the groups segregated by clinical labs and RAND36, while 
there was no difference in the average age of the people in these groups. Thus, p16 and not 
participants’ age is indicative of ongoing health limitations but also sensitive to developing issues 
before the onset of a serious condition. In other words, p16 may serve as an earlier predictor of 
the physiological decline. This suggestion needs to be verified by a longitudinal study tracking 
p16 expression and health state over the course of time.  

Following the unsupervised classification, we sought to explore the accuracy of predicting 
biomarker expressions based on clinical labs and RAND36 survey using the standard machine 
learning approach: training the model on 80% of the data and verifying the predicted values for 
the held out 20% of the data. We determined that optimal subsets of measurements providing the 
highest accuracy (i.e., the largest correlation coefficient between the true and predicted values) 
are typically about two-fold larger than the strongest correlation coefficient between p16 and the 
individual measurements in the assessments. Interestingly, such optimal feature subsets for p16 
tend to include diverse features covering clinical lab measurements from different panels or 
RAND36 questions from different health concepts. We interpret this result as evidence that p16, 
a biomarker of accumulating cellular senescence, is also a biomarker of the system-level 
physiological state (i.e., the biological age).  

Because many of the measures contributing to the accuracy of the predictions have 
statistically significant (p-value < 0.05, 𝑟~0.15) correlations with p16, we tested if a simple addition 
of measures (with positive and negative signs for positively and negatively correlating measures, 
respectively) can give us metrics that strongly correlate with the biomarker. Indeed, this approach 
produced composite indexes (combined subsets of measurements from each assessment) with 
correlation coefficients equivalent to the correlations between true and predicted values (𝑟~0.35) 
by the machine learning approach. Obviously, such an algorithm is not a better option or a 
substitute for machine learning methods in general. A larger dataset could provide significantly 
improved training accuracy and capture more complex interrelations in the data than a simple 
linear combination. However, for our 250 (people) x 87 (measures) dataset, the linear indexes 
give fast, simple, and interpretable metrics correlating with p16 significantly (over twofold) 
stronger than the individual measurements. This way, we reduced multivariable assessments to 
a characterization with only two indexes representing the different levels of cellular senescence 
in individuals.  

Previously, we developed a two-component mathematical model of p16 accumulation with 
age that accurately reproduced both the mean trends and the variability of the gene expression 
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as a function of time [35]. This mechanistic model described p16 changes over time, with the 
characteristic exponential growth early and saturation later in life, because of an interplay between 
the accumulation and clearance of senescent cells. If we interpret the rate of clearance as the 
efficiency of the immune system (or the level of immune senescence), the model predicts that the 
highest level of senescent cells will result from simultaneously high rates of cellular and immune 
senescence; the lowest level from simultaneously low rates, and the intermediate levels when 
only one of the rates is elevated. The new data presented here suggests that p16 alone is a strong 
indicator of physiological differences at the earlier and later stages of the health decline. However, 
consolidating such differences across different stages would require a combination of both cellular 
and immune senescence biomarkers. 
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SUPPLEMENTAL MATERIALS 

  

 
Supplemental Figure 1. Study Schematic  
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Supplemental Table 1: Statistical gender differences for clinical labs before and after normalization. Colors highlight 
p-values <0.05 (pink), >0.10 (green), and >0.05 & <0.1 (yellow).  

  

measure mean std se r p corr mean std se r p corr mean std se mean std se
p16 10.70 1.16 0.09 0.48 0.00 10.72 0.91 0.11 0.51 0.00 0.86 10.70 1.16 0.09 10.91 0.98 0.12 0.17

tot Chol 194.69 34.39 2.56 0.31 0.00 184.32 39.41 4.74 0.08 0.52 0.04 194.69 34.39 2.56 198.77 40.80 4.91 0.43

HDL-C 69.01 14.49 1.08 0.22 0.00 56.25 14.29 1.72 -0.07 0.59 0.00 69.01 14.49 1.08 70.23 14.63 1.76 0.55

Trig 90.25 43.25 3.21 0.13 0.07 110.46 79.07 9.52 0.13 0.27 0.01 90.25 43.25 3.21 92.46 78.58 9.46 0.78

LDL-C 107.01 30.99 2.30 0.21 0.00 107.44 36.19 4.39 0.09 0.45 0.93 107.01 30.99 2.30 109.41 36.66 4.45 0.60

Chol/HDL-C 2.92 0.77 0.06 0.06 0.46 3.47 1.24 0.15 0.10 0.40 0.00 2.92 0.77 0.06 2.94 1.23 0.15 0.90

non HDL-C 125.66 34.19 2.54 0.22 0.00 128.07 40.09 4.83 0.10 0.41 0.64 125.66 34.19 2.54 128.52 40.63 4.89 0.58

Glucose 90.71 14.00 1.04 0.22 0.00 96.20 33.55 4.04 0.14 0.26 0.07 90.71 14.00 1.04 91.87 33.38 4.02 0.70

BUN 13.97 3.93 0.29 0.51 0.00 16.45 5.20 0.63 0.38 0.00 0.00 13.97 3.93 0.29 14.73 5.23 0.63 0.21

Scr 0.77 0.12 0.01 0.15 0.05 1.00 0.27 0.03 0.17 0.16 0.00 0.77 0.12 0.01 0.77 0.26 0.03 0.78

Na 139.28 2.00 0.15 0.15 0.05 139.49 1.88 0.23 -0.16 0.18 0.45 139.28 2.00 0.15 139.39 1.88 0.23 0.69

K 4.40 0.32 0.02 0.06 0.41 4.48 0.33 0.04 0.09 0.46 0.10 4.40 0.32 0.02 4.41 0.33 0.04 0.87

Cl 103.94 2.09 0.16 -0.11 0.12 103.77 2.07 0.25 0.06 0.62 0.56 103.94 2.09 0.16 103.85 2.08 0.25 0.76

CO2 25.93 1.99 0.15 0.24 0.00 26.46 2.13 0.26 -0.21 0.08 0.06 25.93 1.99 0.15 26.11 2.14 0.26 0.53

Ca 9.50 0.36 0.03 0.11 0.16 9.52 0.33 0.04 -0.19 0.11 0.63 9.50 0.36 0.03 9.51 0.32 0.04 0.77

tot Protein 6.88 0.35 0.03 -0.17 0.02 6.77 0.37 0.04 -0.16 0.19 0.03 6.88 0.35 0.03 6.86 0.37 0.04 0.64

Alb 4.38 0.23 0.02 -0.14 0.07 4.39 0.26 0.03 -0.39 0.00 0.85 4.38 0.23 0.02 4.37 0.24 0.03 0.72

Glob 2.50 0.30 0.02 -0.10 0.17 2.38 0.30 0.04 0.15 0.23 0.00 2.50 0.30 0.02 2.49 0.30 0.04 0.78

Alb/Glob 1.78 0.24 0.02 0.03 0.69 1.87 0.26 0.03 -0.29 0.02 0.01 1.78 0.24 0.02 1.78 0.25 0.03 0.94

Bilirub 0.61 0.22 0.02 0.10 0.17 0.85 0.31 0.04 0.00 0.99 0.00 0.61 0.22 0.02 0.62 0.31 0.04 0.80

AP 62.52 18.80 1.40 0.28 0.00 62.12 18.98 2.28 0.12 0.31 0.88 62.52 18.80 1.40 64.51 19.58 2.36 0.46

AST 19.09 5.96 0.44 0.08 0.29 22.16 6.72 0.81 -0.18 0.14 0.00 19.09 5.96 0.44 19.27 6.62 0.80 0.84

ALT 16.56 8.86 0.66 -0.01 0.91 22.65 10.97 1.32 -0.19 0.11 0.00 16.56 8.86 0.66 16.53 10.76 1.30 0.98

HbA1c 5.34 0.46 0.03 0.32 0.00 5.38 0.54 0.06 0.22 0.07 0.59 5.34 0.46 0.03 5.40 0.55 0.07 0.41

TSH 2.08 1.03 0.08 0.23 0.00 2.44 1.53 0.18 0.07 0.55 0.04 2.08 1.03 0.08 2.17 1.54 0.19 0.60

WBC 5.48 1.44 0.11 -0.03 0.66 5.70 1.83 0.22 0.14 0.25 0.32 5.48 1.44 0.11 5.46 1.82 0.22 0.93

RBC 4.48 0.36 0.03 0.00 0.98 4.93 0.38 0.05 -0.22 0.07 0.00 4.48 0.36 0.03 4.48 0.37 0.04 0.99

Hb 13.46 1.03 0.08 0.09 0.21 15.22 1.02 0.12 0.02 0.87 0.00 13.46 1.03 0.08 13.50 1.02 0.12 0.80

Hemat 40.74 2.80 0.21 0.12 0.10 45.36 2.95 0.36 0.05 0.67 0.00 40.74 2.80 0.21 40.87 2.97 0.36 0.75

MCV 91.06 4.72 0.35 0.17 0.02 92.08 3.90 0.47 0.50 0.00 0.11 91.06 4.72 0.35 91.36 3.48 0.42 0.62

MCH 30.10 1.97 0.15 0.12 0.12 30.91 1.53 0.18 0.39 0.00 0.00 30.10 1.97 0.15 30.18 1.43 0.17 0.73

MCHC 33.04 0.96 0.07 -0.04 0.63 33.56 0.81 0.10 -0.09 0.48 0.00 33.04 0.96 0.07 33.02 0.80 0.10 0.92

RDW 12.65 0.75 0.06 0.08 0.27 12.57 0.63 0.08 -0.07 0.54 0.43 12.65 0.75 0.06 12.68 0.64 0.08 0.82

Plat 263.29 59.22 4.40 0.00 0.95 233.52 53.40 6.43 -0.16 0.18 0.00 263.29 59.22 4.40 263.40 52.69 6.34 0.99

MPV 10.51 0.95 0.07 -0.14 0.06 10.53 0.91 0.11 -0.28 0.02 0.87 10.51 0.95 0.07 10.46 0.89 0.11 0.70

abs Neut 3172.40 1094.68 81.37 0.01 0.86 3192.84 1297.01 156.14 0.22 0.08 0.90 3172.40 1094.68 81.37 3177.95 1266.56 152.48 0.97

abs Lymph 1703.88 505.94 37.61 -0.14 0.05 1765.14 562.21 67.68 -0.06 0.61 0.41 1703.88 505.94 37.61 1676.09 566.07 68.15 0.71

abs Mono 424.84 109.94 8.17 0.03 0.70 519.20 180.77 21.76 0.09 0.45 0.00 424.84 109.94 8.17 426.03 180.03 21.67 0.95

abs Eso 138.08 87.87 6.53 0.05 0.48 180.33 137.08 16.50 -0.04 0.72 0.00 138.08 87.87 6.53 139.84 137.03 16.50 0.90

abs Baso 44.01 17.45 1.30 0.14 0.06 44.01 19.21 2.31 0.10 0.43 1.00 44.01 17.45 1.30 44.94 19.28 2.32 0.72

Neut 57.02 8.14 0.60 0.08 0.30 55.21 8.19 0.99 0.38 0.00 0.12 57.02 8.14 0.60 57.26 7.59 0.91 0.83

Lymph 31.64 7.23 0.54 -0.14 0.06 31.45 6.37 0.77 -0.38 0.00 0.85 31.64 7.23 0.54 31.25 5.98 0.72 0.69

Mono 7.93 1.78 0.13 0.11 0.13 9.27 2.17 0.26 -0.15 0.23 0.00 7.93 1.78 0.13 8.00 2.16 0.26 0.77

Eos 2.59 1.63 0.12 0.08 0.30 3.29 2.52 0.30 -0.14 0.24 0.01 2.59 1.63 0.12 2.64 2.50 0.30 0.86

Baso 0.82 0.31 0.02 0.17 0.03 0.80 0.31 0.04 -0.06 0.65 0.57 0.82 0.31 0.02 0.84 0.32 0.04 0.65

not normalized normalized
female male female male

p MFp MF
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Supplemental Table 2: Statistical gender differences for RAND36 survey and physical evaluation before and after 
normalization. Colors highlight p-values <0.05 (pink), >0.10 (green), and >0.05 & <0.1 (yellow). 

  
  

measure mean std se r p corr mean std se r p corr mean std se mean std se
Q1 74.03 19.30 1.44 0.00 0.97 78.26 18.15 2.18 -0.01 0.92 0.12 74.03 19.30 1.44 74.00 18.14 2.18 0.99

Q2 55.28 19.60 1.46 0.05 0.47 53.68 18.96 2.30 -0.02 0.86 0.56 55.28 19.60 1.46 55.67 18.99 2.30 0.89

Q3 64.61 35.02 2.62 -0.32 0.00 63.97 33.28 4.04 -0.36 0.00 0.90 64.61 35.02 2.62 60.18 33.20 4.03 0.37

Q4 93.89 19.53 1.46 -0.30 0.00 93.48 16.96 2.04 -0.09 0.49 0.88 93.89 19.53 1.46 91.66 17.91 2.16 0.41

Q5 96.94 12.01 0.90 -0.16 0.03 96.27 13.24 1.62 -0.03 0.79 0.70 96.94 12.01 0.90 96.21 13.38 1.63 0.68

Q6 83.43 28.48 2.13 -0.28 0.00 91.30 20.93 2.52 -0.09 0.46 0.04 83.43 28.48 2.13 80.28 22.37 2.69 0.41

Q7 96.11 14.43 1.08 -0.17 0.02 97.10 11.77 1.42 -0.13 0.29 0.61 96.11 14.43 1.08 95.16 11.94 1.44 0.63

Q8 85.75 26.62 1.99 -0.26 0.00 82.61 29.49 3.55 -0.30 0.01 0.42 85.75 26.62 1.99 82.96 29.04 3.50 0.47

Q9 91.06 25.49 1.91 -0.25 0.00 88.97 27.11 3.29 -0.18 0.14 0.57 91.06 25.49 1.91 88.54 27.45 3.33 0.50

Q10 94.97 17.65 1.32 -0.18 0.01 93.48 20.85 2.51 -0.11 0.38 0.57 94.97 17.65 1.32 93.75 20.99 2.53 0.64

Q11 98.31 10.52 0.79 -0.05 0.47 98.53 8.51 1.03 -0.17 0.18 0.88 98.31 10.52 0.79 98.10 8.41 1.02 0.88

Q12 99.16 8.36 0.63 -0.03 0.67 98.53 8.51 1.03 -0.04 0.73 0.60 99.16 8.36 0.63 99.05 8.51 1.03 0.93

Q13 93.89 24.02 1.79 -0.16 0.03 92.75 26.12 3.14 0.06 0.65 0.74 93.89 24.02 1.79 92.38 26.38 3.18 0.67

Q14 84.44 36.34 2.71 -0.11 0.12 83.82 37.10 4.50 -0.18 0.13 0.91 84.44 36.34 2.71 82.89 36.71 4.45 0.76

Q15 91.01 28.68 2.15 -0.27 0.00 81.16 39.39 4.74 -0.20 0.11 0.03 91.01 28.68 2.15 88.03 39.44 4.75 0.51

Q16 90.56 29.33 2.19 -0.13 0.08 86.96 33.92 4.08 -0.09 0.46 0.41 90.56 29.33 2.19 89.08 34.01 4.09 0.74

Q17 81.56 38.89 2.91 0.11 0.15 89.86 30.41 3.66 0.02 0.88 0.11 81.56 38.89 2.91 83.21 30.72 3.70 0.75

Q18 68.89 46.42 3.46 0.16 0.03 82.35 38.41 4.66 -0.03 0.80 0.03 68.89 46.42 3.46 72.07 39.14 4.75 0.62

Q19 83.33 37.37 2.79 0.19 0.01 94.20 23.54 2.83 0.24 0.04 0.03 83.33 37.37 2.79 86.09 23.99 2.89 0.57

Q20 87.99 18.23 1.36 0.11 0.16 91.67 14.64 1.76 0.27 0.03 0.14 87.99 18.23 1.36 88.73 14.25 1.72 0.76

Q21 74.81 20.26 1.51 -0.15 0.05 71.01 20.73 2.50 -0.11 0.35 0.19 74.81 20.26 1.51 73.67 20.82 2.51 0.70

Q22 89.77 16.53 1.25 -0.12 0.11 88.77 16.90 2.03 -0.09 0.48 0.67 89.77 16.53 1.25 88.94 16.96 2.04 0.72

Q23 57.11 23.84 1.78 0.22 0.00 65.80 20.61 2.48 0.08 0.51 0.01 57.11 23.84 1.78 59.14 21.24 2.56 0.54

Q24 75.98 20.81 1.56 0.21 0.00 85.29 19.12 2.32 0.19 0.11 0.00 75.98 20.81 1.56 77.77 19.29 2.34 0.54

Q25 91.16 14.35 1.07 0.01 0.90 95.36 9.79 1.18 0.14 0.24 0.03 91.16 14.35 1.07 91.21 9.69 1.17 0.98

Q26 59.89 21.88 1.64 0.20 0.01 71.76 19.92 2.42 0.23 0.06 0.00 59.89 21.88 1.64 61.60 19.91 2.41 0.57

Q27 55.56 23.78 1.77 0.18 0.01 66.76 22.56 2.74 0.07 0.59 0.00 55.56 23.78 1.77 57.23 22.96 2.78 0.62

Q28 82.32 19.47 1.45 0.15 0.05 88.82 14.82 1.80 0.24 0.05 0.01 82.32 19.47 1.45 83.42 14.68 1.78 0.67

Q29 66.78 22.39 1.67 0.28 0.00 77.94 18.00 2.18 0.24 0.05 0.00 66.78 22.39 1.67 69.32 18.62 2.26 0.41

Q30 70.50 20.61 1.53 0.22 0.00 79.41 16.20 1.96 -0.07 0.59 0.00 70.50 20.61 1.53 72.39 16.80 2.04 0.50

Q31 59.78 23.25 1.73 0.34 0.00 68.24 20.22 2.45 0.12 0.32 0.01 59.78 23.25 1.73 62.79 21.65 2.63 0.35

Q32 86.03 20.19 1.51 0.05 0.52 92.75 14.91 1.80 0.15 0.22 0.01 86.03 20.19 1.51 86.42 14.78 1.78 0.88

Q33 85.81 23.30 1.75 0.19 0.01 90.58 16.66 2.01 0.20 0.10 0.12 85.81 23.30 1.75 87.55 16.96 2.04 0.57

Q34 76.68 24.37 1.82 0.05 0.50 76.81 21.57 2.60 0.10 0.41 0.97 76.68 24.37 1.82 77.16 21.50 2.59 0.89

Q35 57.63 30.59 2.30 -0.12 0.11 51.45 32.34 3.89 -0.32 0.01 0.16 57.63 30.59 2.30 56.17 30.85 3.71 0.74

Q36 73.89 24.34 1.81 0.04 0.60 74.28 23.47 2.83 0.01 0.96 0.91 73.89 24.34 1.81 74.26 23.49 2.83 0.91

SBP 115.66 16.94 1.26 0.43 0.00 129.59 15.22 1.83 0.26 0.03 0.00 115.66 16.94 1.26 118.47 16.54 1.99 0.24

DBP 77.20 10.64 0.79 0.11 0.14 80.03 9.24 1.11 -0.07 0.59 0.05 77.20 10.64 0.79 77.65 9.30 1.12 0.76

HR 68.93 10.80 0.80 -0.15 0.04 61.19 10.10 1.22 -0.19 0.12 0.00 68.93 10.80 0.80 68.29 10.07 1.21 0.67

BMI 25.83 5.81 0.43 0.04 0.61 26.53 3.69 0.44 0.00 0.97 0.35 25.83 5.81 0.43 25.92 3.69 0.44 0.91

Gait 3.10 0.47 0.03 0.19 0.01 3.26 0.61 0.07 0.24 0.05 0.03 3.10 0.47 0.03 3.13 0.60 0.07 0.64

UAG 8.58 1.91 0.14 0.20 0.01 9.35 1.77 0.21 0.08 0.51 0.00 8.58 1.91 0.14 8.73 1.81 0.22 0.59

not normalized normalized
female male

p MF
female male

p MF
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Supplemental Figure 2. An illustration of the regression-based gender normalization approach. Here, the 
systolic blood pressure (SBP) increases with age differently for females and males. Thus, aligning the all-age 
averages would work for middle-aged people but still differ for young and elderly individuals. Instead, we align the 
regression lines, making the normalization uniform across ages. As shown by the distributions in the bottom panels, 
this procedure also brings closer the overall averages. Supplemental Tables 1-2 provide the statistics before and 
after gender normalization for all other measurements used in our analysis.   
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Supplemental Figure 3. An example of a dendrogram resulted from unsupervised hierarchical clustering of 
RAND36 survey questions. The x-axis indicates the Euclidean distance between the rows of 36x36 matrix of 
pairwise correlations. Red and green lines indicate the established (ground truce) grouping of rand36 questions into 
eight health concepts specified on the right side. The order of questions in this dendrogram coincides with the 
expected grouping, but a single threshold in the dendrogram distance would not reproduce that grouping. However, 
as shown in Figure 2, for 33 out of 36 questions, our statistical approach based on 5000 randomized 90% subsets of 
study participants does produce the correct association with the concept representatives (landmarks) marked here 
by black boxes.  
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Supplemental Figure 4. An example of a dendrogram resulted from unsupervised hierarchical clustering of 
250 study participants based on clinical lab measurements only. The x-axis indicates the Euclidean distance 
between the rows in a 250x250 matrix of pairwise correlations. The statistical differences between all measurements 
in the red and cyan groups are shown in Supplemental Figure 5.  
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Supplemental Figure 5. The comparison of mean ± 2 standard error of all measurements in three 
assessments for two groups of people (red and cyan). The groups are generated by unsupervised hierarchical 
clustering based on clinical lab measurements as in Supplemental Figure 4. We repeat this calculation 1000 times, 
every time excluding two randomly selected individuals from the dataset to perturb the clustering and capture the 
variability of the clustering outcome from the noisy data.  

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 22, 2024. ; https://doi.org/10.1101/2024.11.21.24317752doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.21.24317752
http://creativecommons.org/licenses/by-nc/4.0/


  
p16Ink4a as a biomarker of physiological decline Tang et al. 

26 
 

 

  

 
Supplemental Figure 6. Statistical significance of differences between participant groups based on gender 
normalized clinical lab measurements using unsupervised hierarchical clustering. The clustering was 
performed 1000 times; each time excluding two randomly selected people and repeating the procedure for the 
remaining people. Here p-values validate the null hypothesis that the compared measurements in the two groups 
have equal mean and variance (two-sample t-test). Blue dots are the median p-values over 1000 randomized repeats 
for each measure in the dataset. The solid red line corresponds to p-value = 0.05 and the red dashed line to p-value 
= 0.1. The bottom right graph shows that distribution of p-values for p16 expressions in the resulting clinical lab-based 
groups.   
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Supplemental Figure 7. Statistical significance of differences between people grouped based on gender 
normalized and age corrected clinical lab measurements using unsupervised hierarchical clustering. The 
clustering was performed 1000 times; each time excluding two randomly selected people and repeating the procedure 
for the remaining people. Here p-values validate the null hypothesis that the compared measurements in the two 
groups have equal mean and variance (two-sample t-test). Blue dots are the median p-values over 1000 randomized 
repeats for each measure in the dataset. The solid red line corresponds to p-value = 0.05 and the red dashed line to 
p-value = 0.1. The bottom right graph shows that distribution of p-values for p16 expressions in the resulting clinical 
lab-based groups.   
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Supplemental Figure 8. The comparison of mean ± 2 standard error of all measurements in three 
assessments for two groups of people (red and cyan). The groups are generated by unsupervised hierarchical 
clustering based on RAND36 survey responses. We repeat this calculation 1000 times, every time excluding two 
randomly selected individuals from the dataset to perturb the clustering and capture the variability of the clustering 
outcome from the noisy data. 
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Supplemental Figure 9. Statistical significance of differences between people grouped based on gender 
normalized RAND36 measurements using unsupervised hierarchical clustering. The clustering was performed 
1000 times; each time excluding two randomly selected people and repeating the procedure for the remaining people. 
Here p-values validate the null hypothesis that the compared measurements in the two groups have equal mean and 
variance (two-sample t-test). Blue dots are the median p-values over 1000 randomized repeats for each measure in 
the dataset. The solid red line corresponds to p-value = 0.05 and the red dashed line to p-value = 0.1. The bottom 
right graph shows that distribution of p-values for p16 expressions in the resulting RAND36-based groups.   
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Supplemental Figure 10. Statistical significance of differences between people grouped based on gender 
normalized and age corrected RAND36 measurements using unsupervised hierarchical clustering. The 
clustering was performed 1000 times; each time excluding two randomly selected people and repeating the procedure 
for the remaining people. Here p-values validate the null hypothesis that the compared measurements in the two 
groups have equal mean and variance (two-sample t-test). Blue dots are the median p-values over 1000 randomized 
repeats for each measure in the dataset. The solid red line corresponds to p-value = 0.05 and the red dashed line to 
p-value = 0.1. The bottom right graph shows that distribution of p-values for p16 expressions in the resulting RAND36-
based groups.   
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Supplemental Figure 11. Clinical lab measurements that give the highest prediction accuracy for p16 
expression in the gender-normalized dataset. The top left panel shows the correlation coefficient between 
predicted and true values in the validation set as a function of the number of iteratively removed features with the 
lowest importance scores. The results for 20 repeats are in gray, and the mean ± 2 standard errors are in red. The 
bottom left panel shows a colormap of average importance scores over 20 repeats of the feature exclusion protocol. 
The vertical dotted line corresponds to the exclusion step with the highest prediction accuracy. The right panel shows 
average importance scores. The red color indicates features presented in the optimal set. 
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Supplemental Figure 12. Clinical lab measurements that give the highest prediction accuracy for p16 
expression in the age-corrected dataset. The top left panel shows the correlation coefficient between predicted 
and true values in the validation set as a function of the number of iteratively removed features with the lowest 
importance scores. The results for 20 repeats are in gray, and the mean ± 2 standard errors are in red. The bottom 
left panel shows a colormap of average importance scores over 20 repeats of the feature exclusion protocol. The 
vertical dotted line corresponds to the exclusion step with the highest prediction accuracy. The right panel shows 
average importance scores. The red color indicates features presented in the optimal set. The optimal prediction 
accuracy here is much lower than it is without age correction. 
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Supplemental Figure 13. RAND36 survey responses that give the highest prediction accuracy for p16 
expression in the gender-normalized dataset. The top left panel shows the correlation coefficient between 
predicted and true values in the validation set as a function of the number of iteratively removed features with the 
lowest importance scores. The results for 20 repeats are in gray, and the mean ± 2 standard errors are in red. The 
bottom left panel shows a colormap of average importance scores over 20 repeats of the feature exclusion protocol. 
The vertical dotted line corresponds to the exclusion step with the highest prediction accuracy. The right panel shows 
average importance scores. The red color indicates features presented in the optimal set. 
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Supplemental Figure 14. RAND36 survey responses that give the highest prediction accuracy for p16 
expression in the age-corrected dataset. The top left panel shows the correlation coefficient between predicted 
and true values in the validation set as a function of the number of iteratively removed features with the lowest 
importance scores. The results for twenty repeats are in gray, and the mean ± 2 standard errors are in red. The 
bottom left panel shows a colormap of average importance scores over twenty repeats of the feature exclusion 
protocol. The vertical dotted line corresponds to the exclusion step with the highest prediction accuracy. The right 
panel shows average importance scores. The red color indicates features presented in the optimal set. The optimal 
prediction accuracy here is much lower than it is without age correction. 
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Supplemental Table 3: Optimal feature sets for p16 prediction by clinical labs and RAND36 survey responses. Here 
GN and AC stand for ‘gender normalized’ and ‘age-corrected’ data, respectively.  
 

Biomarker Dataset for 
prediction 

Prediction 
accuracy  

Features in the optimal set  
(in the order of the importance score) 

p16 Blood 0.33 HbA1c, Hemat, Neut, Hb, Lymph, RBC, abs Eso, BUN, AP, Eos, tot Chol, abs 
Lymph, tot Protein 

p16 (GN) blood (GN) 0.35 HbA1c, BUN, AP, abs Lymph, Neut, Ca, tot Protein, abs Eso, Eso 
p16 (AC) blood (AC) 0.18 abs Baso, abs Eso, tot Protein, Baso, Hemat, Hb, RBC, Neut, abs Neut, Glob 

p16 RAND36 0.29 Q8, Q31, Q29, Q1, Q17, Q9, Q3, Q27, Q20, Q25, Q26, Q6 
p16 (GN) RAND36 (GN) 0.37 Q17, Q9, Q8, Q6, Q20, Q12, Q27, Q31, Q1, Q4 
p16 (AC) RAND36 (AC) 0.12 Q8, Q7, Q14, Q9, Q10, Q22 

 
 
Supplemental Table 4: Formulas for clinical lab-based and RAND36-based indexes that have the highest correlation 
coefficients with p16 expression.  
 

Composite 
index 

Correlation 
coefficient 

Percent 
improve Formula 

𝑆labs,p16 0.39 215 
tot Chol + HDL-C + LDL-C + non HDL-C + BUN + Scr + Na + K + Ca + 
Glob – Alb/Glob + AP + HbA1c + Hb + Hemat + MCV – MCHC – MPV – 
abs Lymph – abs Mono – abs Eso – abs Baso + Neut – Lymph 

𝑆rand36,p16 0.33 134 – Q3 – Q8 + Q17 + Q29 
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