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Abstract— Hypertensive disorders of pregnancy (HDPs)
remain a major challenge in maternal health. Early predic-
tion of HDPs is crucial for timely intervention. Most existing
predictive machine learning (ML) models rely on costly
methods like blood, urine, genetic tests, and ultrasound,
often extracting features from data gathered throughout
pregnancy, delaying intervention.

This study developed an ML model to identify HDP risk
before clinical onset using affordable methods. Features
were extracted from blood pressure (BP) measurements,
body mass index values (BMI) recorded during the first and
second trimesters, and maternal demographic information.

We employed a random forest classification model for
its robustness and ability to handle complex datasets. Our
dataset, gathered from large academic medical centers
in Atlanta, Georgia, United States (2010-2022), comprised
1,190 patients with 1,216 records collected during the first
and second trimesters. Despite the limited number of fea-
tures, the model’s performance demonstrated a strong abil-
ity to accurately predict HDPs. The model achieved an F1-
score, accuracy, positive predictive value, and area under
the receiver-operating characteristic curve of 0.76, 0.72,
0.75, and 0.78, respectively.

In conclusion, the model was shown to be effective in
capturing the relevant patterns in the feature set necessary
for predicting HDPs. Moreover, it can be implemented using
simple devices, such as BP monitors and weight scales,
providing a practical solution for early HDPs prediction in
low-resource settings with proper testing and validation. By
improving the early detection of HDPs, this approach can
potentially help with the management of adverse pregnancy
outcomes.

Index Terms— Hypertensive Disorders of Pregnancy,
Gestational Hypertension, Preeclampsia, Eclampsia, Blood
pressure, Body Mass Index, Demographic Features
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I. INTRODUCTION

Hypertensive disorders of pregnancy (HDPs) are a leading
cause of maternal and fetal morbidity and mortality worldwide,
posing a significant risk to maternal and infant health [1].
Elevated blood pressure (BP), protein in the urine, severe
headaches, and vision changes are some of the main symptoms
of these disorders [2]–[4]. In 2019, the Institute for Health
Metrics and Evaluation (IHME) Global Burden of Disease
(GBD) reported that the global mean prevalence of HDPs
is 116.4 per 100,000 women of childbearing age [5]. In the
United States, HDPs are common pregnancy complications.
Between 2017 and 2019, the prevalence of HDPs among deliv-
ery hospitalizations increased from 13.3% to 15.0%. Notably,
31.6% of deaths occurring during delivery hospitalizations
involved HDPs [6].

In a normotensive pregnancy, BP typically follows a spe-
cific pattern reflecting physiological changes to support the
developing fetus [7], [8]. A typical pregnancy lasts around
40 weeks, with a common range from 37 to 42 weeks [9],
[10]. Health care providers divide this period into three stages
called trimesters, each lasting about three months, to mark
distinct stages of fetal development [11], [12]. During the early
first trimester, BP usually remains stable or slightly decreases
compared to pre-pregnancy levels. As the pregnancy advances
into the second trimester, BP generally stays within the normal
range but often begins to rise by the mid-second trimester. In
the third trimester, BP continues to increase gradually due to
the growing demands of the fetus. During labor and delivery,
BP may fluctuate but should return to normal levels after
childbirth [13].

Studies by Harper et al. [14] and Macdonald-Wallis et al.
[15] support this pattern of BP changes throughout pregnancy.
Their datasets involved 300 and 13,016 pregnant women,
respectively. According to the findings, systolic blood pressure
(SBP) and diastolic blood pressure (DBP) show mean varia-
tions of less than 10 mmHg during pregnancy. The mean SBP
increases from about 110 mmHg to more than 115 mmHg
and the mean DBP changes from more than 65 mmHg to
about 70 mmHg. Therefore, accurate analysis of BP during
pregnancy is essential due to its substantial impact on the
health and well-being of both the mother and the fetus. Precise
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BP readings enable physicians to make informed decisions
regarding the management of HDPs [16]. A notable study by
Gunderson et al. [17] assessed the risk factors for HDPs in
pregnant women by analyzing a comprehensive BP dataset
comprising 249,892 individuals and examining BP patterns
during pregnancy. They classified BP values from the first half
of pregnancy into six specific groups and fitted models using a
third-order polynomial curve for each category. Subsequently,
they calculated the risk factors for HDPs for pregnant women
based on the best fit of their early BP values in one of the
models, along with demographic features.

In addition to BP patterns, various maternal factors, includ-
ing Body Mass Index (BMI) and demographic features, are
associated with HDPs. Understanding these factors alongside
BP patterns is essential for the early detection of HDPs, which
is crucial for improving maternal and fetal health outcomes.
In the following sections, we will examine the relationship
between these factors and HDPs.

A. Hypertensive Disorders of Pregnancy

The International Classification of Diseases, Ninth Revision,
Clinical Modification (ICD-9-CM), and the newer version,
Tenth Revision, Clinical Modification (ICD-10-CM) are stan-
dardized coding systems for classifying diagnoses, symptoms,
and medical procedures in healthcare. These systems in-
clude specific codes and descriptions for various hypertension
groups, as shown in Tables I and II. The main difference
between these codes is the level of details they provide for di-
agnoses and procedures. Within the ICD-9-CM classification,
HDPs are categorized into four groups [4]: Gestational hyper-
tension (GE), Preeclampsia/Eclampsia, Pre-existing (chronic)
hypertension, and Unspecified hypertension.

The primary distinction between GE and preeclamp-
sia/eclampsia, and pre-existing hypertension is the timing of
onset [3]. Hypertension identified before 20 weeks of gesta-
tional age (GA) is considered pre-existing. If hypertension is
detected after 20 weeks’ gestation, it is classified as either GE
or preeclampsia/eclampsia. Hypertension is defined as the SBP
≥140 mmHg or DBP ≥90 mmHg. Each type of hypertension
has specific characteristics and implications for maternal and
fetal health. In the following, we briefly describe them [3],
[4]:

• Gestational hypertension (GE) is defined as hyperten-
sion occurring after 20 weeks of GA without proteinuria
or end-organ damage.

• Preeclampsia (PE) is likely in the pathway and progres-
sion to GE but it is often associated with high levels
of protein in the urine and includes signs of end-organ
damage or uteroplacental dysfunction.

• Eclampsia is a severe form of preeclampsia characterized
by seizures.

• Pre-existing (chronic) hypertension is defined as persis-
tent hypertension present before pregnancy or diagnosed
before 20 weeks of GA.

• Unspecified hypertension refers to patients with insuffi-
cient information to classify hypertension into one of the
specified categories.

In the ICD-10-CM code classification, there is one ad-
ditional group compared to ICD-9-CM: ”Pre-existing and
Preeclampsia”. This new category includes patients with pre-
eclampsia or eclampsia superimposed on pre-existing hyper-
tension. The additional detail provided by ICD-10-CM codes
allows for straightforward conversion to ICD-9-CM codes. In
the next section, we describe the dataset used for this project.
Due to limited access to recent versions of ICD-10-CM codes
for part of the data, groups are classified based on ICD-9-CM
codes, as the data was gathered before the implementation of
ICD-10-CM in health centers. In cases where ICD-9-CM codes
are unavailable, we use the converted version of ICD-10-CM
codes to ICD-9-CM ones.

B. Association between Demographic Features, Body
Mass Index, and Hypertensive Disorders of Pregnancy

Demographic features, including sex, age, race, and eth-
nicity have a significant impact on BP levels and the risk of
hypertension. In a recent study, we examined approximately
75 million BP values from the general population. The pre-
processed BP dataset includes 1,699,955 unique individuals,
consisting of 58.9% females and 41.1% males, aged 0-120
years, and spanning seven racial and ethnic groups from Geor-
gia, USA. Our findings showed that the African American or
Black group has slightly higher BP levels on average compared
to the Asian, Caucasian or White, Multiple, Native Hawaiian
or Other Pacific Islander, American Indian or Alaskan Native,
and Hispanic racial groups [19]. The study also showed that
average DBP peaks in the forties age group, whereas average
SBP shows a consistent increase with age. This variation in BP
across different ages is particularly relevant when considering
maternal age as a determinant in the development of HDPs
[20]. Specifically, women of early reproductive age and those
of advanced maternal age are at higher risk for conditions
such as GE and preeclampsia. The first group may lack
physiological maturity leading to increased susceptibility to
GE and preeclampsia [21], [22] and in the second group,
there is a decline in vascular and endothelial function, which
increases the risk of chronic hypertension and developing
preeclampsia [23], [24]. In 2014, Ye et al. [25] conducted
a study on 112,386 pregnant women in China and reported
that women aged 25–29 years exhibited the lowest prevalence
of HDPs, which was 4.33%. In contrast, the prevalence was
significantly higher at 22.15% among those aged 35 years and
older.

Maternal race and ethnicity are additional factors that may
influence the incidence of HDPs [26], [27]. Previous studies
have shown the impact of these factors on the development
of HDPs and have incorporated them into predictive models
distinguishing HDPs from normal pregnancies. In 2022, the
Centers for Disease Control and Prevention (CDC) reported
approximately one in five delivery hospitalizations among
Black women involving HDPs [28]. A growing body of
research emphasizes that structural racism, in addition to race
or ethnicity, is a significant driver of disparities in the risk and
outcomes of HDPs. Socioeconomic status and access to health-
care further compound these inequities [29], [30]. Global data
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TABLE I: ICD-9-CM Diagnosis Codes for Hypertension in Pregnancy [4]

Type of Hypertension Description Code
Preexisting Benign essential hypertension complicating pregnancy, childbirth, and the puerperium 642.0x

Hypertension secondary to renal disease, complicating pregnancy, childbirth, and the puerperium 642.1x
Other pre-existing hypertension complicating pregnancy, childbirth, and the puerperium 642.2x

Gestational Transient hypertension of pregnancy 642.3x
Preeclampsia/eclampsia Mild or unspecified pre-eclampsia 642.4x

Severe pre-eclampsia 642.5x
Eclampsia 642.6x

Pre-eclampsia or eclampsia superimposed on pre-existing hypertension 642.7x
Unspecified Unspecified hypertension complicating pregnancy, childbirth, and the puerperium 642.9x

TABLE II: General structure of ICD-10-CM Diagnosis Codes for Hypertension in Pregnancy [18]

Type of Hypertension Description Code
Preexisting Preexisting hypertension complicating pregnancy, childbirth and the puerperium 010.x

Preexisting and Preeclampsia Pre-existing hypertension with pre-eclampsia 011.x
Gestational Gestational [pregnancy-induced] edema and proteinuria without hypertension 012.x

Gestational [pregnancy-induced] hypertension without significant proteinuria 013.x
Preeclampsia/eclampsia Pre-eclampsia 014.x

Eclampsia 015.x
Unspecified Unspecified maternal hypertension 016.x

also reveal notable disparities in the HDPs burden between
high-income countries and low- and middle-income countries
[1]. In 2019, the highest HDP prevalence was recorded in
Africa, at 334.9 per 100,000 women, followed by Southeast
Asia and the Middle East, with rates of 136.8 and 121.4
per 100,000, respectively. In contrast, the Western Pacific
region had the lowest prevalence, at 16.4 per 100,000 women
[5], [31]. These regional statistics underscore the significant
geographic disparities in HDPs.

Finally, pre-pregnancy BMI, calculated as weight in kilo-
grams divided by the square of height in meters, and Gesta-
tional Weight Gain (GWG) are two critical factors that can
affect the development of HDPs [32]. Numerous studies have
reported a direct relationship between pre-pregnancy BMI and
the risk of HDPs [33]–[35]. In other words, as pre-pregnancy
BMI increases, the risk of incidences of HDPs rises. On the
other hand, GWG is necessary to support the growing fetus
and prepare the maternal body for delivery and the process
of breastfeeding after that [36]. However, excessive GWG is
associated with elevated BP and HDPs. Weight gain is not
significant during the first trimester and usually accelerates in
the second and third trimesters [37]. In 2009, the Institute of
Medicine and the National Research Council published total
GWG and weekly rate of weight gain recommendations during
the second and third trimesters regarding pre-pregnancy BMI
groups [38]. The report shows that the recommended minimum
and maximum total weight gains are related to the obese and
underweight BMI groups, respectively, suggesting an inverse
relationship between pre-pregnancy BMI and recommended
total weight gain(Table III).

C. Aims of This Research

This study aims to classify records into two categories:
Normal and HDPs, which include GE and Preeclamp-
sia/eclampsia. Our goal is to predict HDPs in patients who
initially appear to be in low-risk groups with normal blood
pressure before pregnancy but later develop HDP during

TABLE III: Total gestational weight gain and weekly rate of
weight gain recommendations regarding pre-pregnancy BMI
groups [38]

Pre-Pregnancy
Weight Group

BMI Ranges
(kg/m2)

Total Weight
Gain (kg)

Weekly Rate of
Weight Gain (kg)

Underweight ≤ 18.5 12.5 - 18 0.51 (0.44 - 0.58)
Normal weight 18.5 - 24.9 11.5 - 16 0.42 (0.35 - 0.50)
Overweight 25.0 - 29.9 7 - 11.5 0.28 (0.23 - 0.33)
Obese ≥ 30.0 5 - 9 0.22 (0.17 - 0.27)

pregnancy. While recent advancements in machine learning
(ML) and deep learning (DL) methods have led to significant
progress in predicting HDPs [39], [40], the task remains an
ongoing challenge. Most existing models have certain limita-
tions that our research aims to address. The key contributions
and novelties of our developed model include:

1) Early Prediction Focus: Our approach emphasizes
early prediction of HDP during the first and second
trimesters, unlike models that rely on data from the
entire gestational term or the third trimester [41]–[43].
HDP symptoms typically become more apparent closer
to delivery, which can enhance model performance but
limits clinical usefulness for early intervention. Early
detection of HDPs is vital, as it allows for timely inter-
ventions such as low-dose aspirin (LDA) therapy, one of
the most effective preventive measures for HDPs. The
American College of Obstetricians and Gynecologists
(ACOG) recommends starting a daily dosage of 81 mg
of aspirin for women at risk of HDPs between 12 and 28
weeks of gestation [44]. By early prediction of HDPs,
our model can aid in optimizing management strategies
and potentially reducing the risk of adverse pregnancy
outcomes.

2) Integration of Multiple Sequential Data Points: Our
model improves on previous methods by incorporating
sequential measurements of SBP, DBP, and BMI from
both the first and second trimesters, rather than relying
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on single BP or BMI values[42], [45]. This approach
accounts for variations in these metrics, offering a more
accurate and comprehensive understanding of maternal
health during pregnancy. A single BP and BMI mea-
surement can often be insufficient due to the numerous
factors that can affect the accuracy of measurements
[46]. Temporal data, which is often overlooked in exist-
ing models, is crucial for capturing the dynamic nature
of BP and BMI during pregnancy, ultimately leading to
more reliable predictions.

3) Accessible and Cost-Effectiveness: Our model is de-
signed to be practical and accessible, especially in low-
resource settings where advanced diagnostic tests may
be unavailable. Many predictive models rely on features
derived from costly and less accessible methods, such
as blood tests, genetic tests, and Doppler ultrasound
techniques [47], [47]–[52]. A literature review of 40
predictive models for GE and preeclampsia identified
the four most frequently used features as BMI, uterine
artery pulsatility index (UtA PI), pregnancy-associated
plasma protein-A (PAPP-A), and placental growth factor
(PlGF) [53]. In contrast, our approach leverages widely
available and less costly metrics, including BP and
BMI values and demographic features ensuring broader
feasibility without compromising prediction accuracy.

In this research, we demonstrate how these contributions ad-
dress the primary limitations of previous studies and enhance
the predictive power of models for HDPs.

II. METHODS

This section will discuss the dataset, preprocessing steps,
feature extraction, and the ML model employed for pre-
dicting HDPs. Fig. 1 shows the graphical overview of the
developed model (The study was approved by the Emory
University Institutional Review Board (IRB) under protocol
number STUDY00005252, with approval granted on February
2, 2024.).

A. Dataset
In this study, we utilized Obstetrics and Gynecology

(OBGYN) medical health records collected from 2010 to
2022, over twelve years, from large academic medical centers
based in Atlanta, Georgia, United States. Multiple databases
were queried to form a dataset encompassing information on
the Last Menstrual Period (LMP), service date, SBP, DBP,
and BMI values, as well as maternal demographic features
including self-reported race, and ethnicity, age, and diagnosis
labels. In this project, LMP information is used to identify GA
at each visit.

For labeling the records, we used both ICD-9-CM and ICD-
10-CM codes. This was necessary because the dataset was
collected over an extended period, and ICD-10-CM codes were
not available for a group of records. We used both coding
systems to maximize the number of records included. It’s
important to note that the ICD-10-CM codes can be converted
to ICD-9-CM codes because it provides much information.
We compared both ICD systems to ensure consistency, and in

cases of discrepancies or when one code was not recorded
or labeled as “unspecified hypertension” we checked the
corresponding ICD-10-CM code and updated the record’s label
according to the reported classification and the specific type
of hypertension.

In the HDPs group, records labeled as “Pre-existing
(chronic) hypertension” have hypertension before their preg-
nancies and are at higher risk of pregnancy complications.
These women often require medical supervision throughout
all trimesters. Additionally, there is a lack of information
about “Unspecified hypertension”, which complicates classi-
fying hypertension into one of the specified HDPs categories.
Therefore, our approach focuses on addressing both “ges-
tational hypertension” and “preeclampsia/eclampsia” in the
HDPs group, while excluding the records with labels of “pre-
existing (chronic) hypertension” and “unspecified hyperten-
sion”.

B. Data Preprocessing

The dataset contains information on 19,753 unique patients,
including patient ID, service date, LMP, SBP and DBP values,
birth date, and race and ethnicity. Data preprocessing involved
omitting records lacking LMP information, as it is necessary to
calculate GA and match diagnosis labels to a unique patient ID
in the next steps. We also excluded invalid records where the
service date was earlier than the LMP, resulting in a dataset of
13,139 patients. There were no missing values in date of birth
recordings, but records with unknown race and ethnicity led to
a final dataset of 11,393 unique patients. To exclude invalid BP
values, we first removed recordings where the DBP was higher
than the SBP. After addressing this issue, statistical analysis
revealed that more than 99% of the BP data were within the
range of DBP ≥ 40 and SBP ≥ 70. Therefore, we considered
these as the BP thresholds, consistent with the preprocessing
approach used in the study by P. Gunderson et al. [26].
In the next stage, we integrated the preprocessed data with
the diagnosis data which includes patient ID, diagnosis date,
and labels assigned by physicians based on patients’ health
conditions. It is evident that as patients approach their delivery
date, the diagnoses become more precise. trimester. To ensure
accuracy, we selected the diagnosis label with the maximum
time difference from the LMP as the final diagnosis. The
time difference between the diagnosis date and LMP ranges
from 1 to 294 days. After matching the relevant diagnosis
labels with each record, we noticed a lack of diagnosis labels
for many patients, resulting in a dataset that includes 3,077
unique patients. Then, we excluded patients who had pre-
pregnancy diabetes from the dataset because diabetes is a high-
risk factor during pregnancy, and patients with this condition
should be under control throughout the entire pregnancy. In
the final stage, we combined the preprocessed data with BMI
values based on patient ID and service date. Consequently, our
final dataset includes 28,664 records related to 3,025 unique
patients. It should be noted that some records had missing BMI
values (62 and 45 missing BMI values in the first and second
trimesters, respectively). Fig. 2 shows the data preprocessing
steps involved in preparing the dataset.
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Fig. 1: Overview of the developed model for prediction of hypertensive disorders of pregnancy using data collected from large
academic medical centers in Atlanta, Georgia, United States (2010-2022). The pipeline includes data collection, preprocessing,
feature extraction, and the classification model. The features consist of blood pressure and body mass index values, race, and
age.

C. Feature Extraction

After preprocessing the data, we calculated the GA in weeks
and days by determining the difference between the LMP and
the service date. GA was then categorized into trimesters as
follows [54]: the first trimester was defined as 12 weeks or
fewer, the second trimester as between 13 and 28 weeks, and
the third trimester as 29 weeks or more. Table IV shows the
distribution of patients and records across all trimesters based
on the diagnosis labels. In this dataset, some records include
multiple measurements within a single week, while others
have missing values across several weeks. Consequently, we
grouped the data by patient ID, LMP, and trimesters, and
calculated mean available information of BMI and BP values
across maternal demographic features including age and race.
Additionally, a patient’s age during pregnancy may vary by
up to one year, so we considered the minimum age during the
pregnancy for each patient. Table V shows the distribution of
patients and records in the first, second, and both trimesters
based on the HDPs and Normal labels.

We categorized all the features considered in this study
for developing the classifier for HDP vs. Normal into two
groups based on their temporal characteristics: non-time-
varying features, including age, race, and ethnicity, and time-
varying features related to BP and BMI. In the first stage of
feature extraction, in addition to SBP and DBP values, we
calculated the mean arterial pressure (MAP) and pulse pressure
(PP) for both the first and second trimesters. In the next step,

we calculated the ratio and difference of BMI between the
two trimesters as additional features. There are no missing
values for any parameters except for BMI values. In total,
our database contains 18 features, including mean DBP, SBP,
MAP, pulse pressure, BMI values from the first and second
trimesters, the differences in these values between the two
trimesters, the BMI ratio (second to first trimester), as well as
age and race.

D. Feature Distributions

In this section, we examine the distribution of features in the
dataset to ensure that they are appropriately represented and
that any potential biases related to these features are identified.

• Non-time-varying features: Race and ethnicity are repre-
sented by six categories: Caucasian (or White), African
American (or Black), Asian, American Indian (or Alaskan
Native), Native Hawaiian (or Other Pacific Islander), and
Hispanic. Due to the small representation of the latter
three groups, which together comprise about 2 percent of
the data, they were merged into a new category labeled
”Multiple.” Fig. 4 illustrates the distribution of records
across racial and ethnic groups, categorized by diagnosis
labels. The data reveals a balanced representation within
both groups.
In our dataset, maternal age ranges from 16 to 56
years. We categorized ages into 5-year intervals and
merged groups with less than 10 percent representation.
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TABLE IV: Distribution of Patients and Records in All Trimesters Based on the Hypertension in Pregnancy Diagnosis Labels

Trimester N Patients N Records Normal Preeclampsia/Eclampsia Gestational Preexisting Unspecified
First 2439 2579 1016 (39.40%) 374 (14.50%) 331 (12.83%) 607 (23.54%) 251 (9.73%)
Second 2420 2555 646 (25.28%) 472 (18.47%) 409 (16.01%) 707 (27.67%) 321 (12.56%)
Third 2183 2297 443 (19.29%) 470 (20.46%) 422 (18.37%) 642 (27.95%) 320 (13.93%)
Both first and second 1927 2021 534 (26.42%) 358 (17.71%) 324 (16.03%) 566 (28.01%) 239 (11.83%)

TABLE V: Distribution of Patients and Records in the First Two Trimesters Based on Normal and HDPs Diagnosis Labels

Trimester N Patients N Records Normal HDPs
First 1667 1721 1016 (59.04%) 705 (40.96%)
Second 1492 1527 646 (42.31%) 881 (57.69%)
Both first and second 1190 1216 534 (43.91%) 682 (56.09%)

Fig. 2: Data cleaning and preprocessing workflow. Abbre-
viations, OBGYIN: Obstetrics and Gynecology, LMP: Last
Menstrual Period

Table VI shows the statistical distribution of age groups
across both diagnosis labels. The age group 30-34 years
represents the largest proportion in both Normal and
HDPs groups, while the 40-56 years group represents
the smallest proportion. Overall, the distribution appears
balanced between the two diagnosis labels, suggesting no
significant bias or trend toward any particular age group.

• Time-varying features: Features extracted from BP mea-
surements include mean SBP, mean DBP, mean MAP,
and mean PP in each trimester as well as the difference
between the two trimesters. Fig. 5 demonstrates the 95%
percentile range of BP distributions for the HDPs and
Normal groups during the first and second trimesters.
In the Normal group, SBP and DBP values tend to
decrease slightly in the second trimester compared to
the first, consistent with known trends in BP fluctuation
throughout pregnancy. In contrast, the HDPs group shows

(a)

(b)

Fig. 3: Distribution of diagnosis labels. a) Distribution of
data based on Normal and hypertensive disorders of preg-
nancy (HDPs) diagnosis labels. b) Based on the aim of
this project, records labeled as “Pre-existing (chronic) hy-
pertension” and “Unspecified hypertension” were excluded,
and the labels “Gestational Hypertension” and “Preeclamp-
sia/Eclampsia” were renamed as HDP labels.
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Fig. 4: Distribution of race and ethnic groups based on
diagnosis labels

TABLE VI: Distribution of Records Based on the Age and
Diagnosis Labels

Characteristics N All N HDPs N Normal
Maternal age, y, mean (SD) 32.01±5.36 31.7±5.42 32.4±5.26
Age categories
16–24 146 (12.0%) 94 (13.8%) 52 (9.7%)
25–29 304 (25.0%) 167 (24.5%) 137 (25.7%)
30–34 444 (36.5%) 262 (38.4%) 182 (34.1%)
35–39 268 (22.1%) 136 (19.9%) 132 (24.8%)
40–56 53 (4.4%) 22 (3.2%) 31 (5.8%)

less decrease in BP, indicating a difference in BP changes
between the two groups.
The extracted features from BMI include mean BMI
during the first and second trimesters, as well as the ratio
and difference. BMI is the variable in the dataset with
missing values, with over 99% of records falling within
the 16.0 to 56.0 range across trimesters. Additionally,
more than 99% and 98% of records fall within the BMI
ratio range of 0.65 to 1.55 and the BMI difference range
of -6 to 6, receptively. We used these as thresholds,
marking outliers as missing. The observed ratios ranged
from 0.86 to 1.27, differences from -4.9 to 5.5, and BMI
values from 17.1 to 56.0. Table VII shows BMI group
distribution across both trimesters, with most patients in
the Normal and Overweight categories. The data show
that individuals with normal outcomes may belong to
higher BMI groups, while those with HDPs can also be
in lower BMI categories. This balance underscores the
importance of retaining records with missing BMI, as
weight measurements are sometimes missed in pregnancy
visits. Fig. 6 further illustrates that patients with HDPs
tend to have BMI ratios above one, while those with
normal outcomes have ratios closer to one.

E. Machine Learning Classification Models

In this study, different ML methods were employed to
evaluate their efficacy for the early prediction of HDPs. The
models used include Extreme Gradient Boosting (XGBoost),
Support Vector Machine (SVM), k-nearest Neighbors (k-NN),
Multilayer Perceptron (MLP), Random Forest (RF), and voting

Fig. 5: Blood pressure distributions based on the diagnosis
labels. The contours correspond to the 95% percentile range
of the data. Dots show the mean SBP and DBP corresponding
to the diagnostic labels.

Fig. 6: Histogram of BMI Ratio from second to first trimester
based on diagnostic label.

algorithm. Each model was chosen based on its ability to
handle complex, non-linear relationships and produce robust
predictions in healthcare data. The models were trained us-
ing 5-fold cross-validation to provide a reliable estimate of
performance. Class weights were applied to emphasize the
importance of detecting HDPs, ensuring that the model gives
more attention to the clinically significant class. The parameter
settings for each model are detailed in Table VIII.

F. Evaluation Metrics

The performance of the provided ML models was evaluated
across various metrics to facilitate comparison with other
studies. The metrics used in this study are as follows:

• Accuracy: The proportion of correctly predicted records.
• Precision (Positive Predictive Value (PPV)): The pro-

portion of correctly predicted positive records out of all
predicted positive records.

• Recall (Sensitivity): The proportion of actual positive
records that were correctly predicted.

• F1-Score: The harmonic mean of precision and recall,
providing a balance between the two when dealing with
imbalanced datasets.

• Specificity: The proportion of actual negative records that
were correctly predicted.

• Negative Predictive Value (NPV): The proportion of
correctly predicted negative records out of all predicted
negative records.
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TABLE VII: BMI distribution of records during the first and second trimesters

Trimester 1 Trimester 2
BMI Category N All = 1216 N HDPs = 682 N Normal = 534 N All = 1216 N HDPs = 682 N Normal = 534
Missing values 62 (5.1%) 32 (4.7%) 30 (5.6%) 45 (3.7%) 16 (2.3%) 29 (5.4%)
Underweight (< 18.5) 14 (1.2%) 7 (1.0%) 7 (1.3%) 7 (0.6%) 2 (0.3%) 5 (0.9%)
Normal weight (18.5–24.9) 440 (36.2%) 222 (32.6%) 218 (40.8%) 368 (30.3%) 172 (25.2%) 196 (36.7%)
Overweight (25–29.9) 321 (26.4%) 187 (27.4%) 134 (25.1%) 354 (29.1%) 198 (29.0%) 156 (29.2%)
Obesity class I (30–34.9) 189 (15.5%) 110 (16.1%) 79 (14.8%) 209 (17.2%) 135 (19.8%) 74 (13.9%)
Obesity class II (35–39.9) 108 (8.9%) 71 (10.4%) 37 (6.9%) 136 (11.2%) 92 (13.5%) 44 (8.2%)
Obesity class III (≥40) 82 (6.7%) 53 (7.8%) 29 (5.4%) 97 (8.0%) 67 (9.8%) 30 (5.6%)

TABLE VIII: Parameters of the Machine Learning Models

Models Parameters
KNN n neighbors=5, weights=“uniform”, algorithm=“auto”, leaf size=30, Power=2, metric=“minkowski”
SVM C=1.0, kernel=’rbf’, degree=3, gamma=’scale’, coef0=0.0, shrinking=True, probability=False, tol=0.001,

cache size=200, verbose=False, max iter=-1, decision function shape=’ovr’
MLP hidden layer sizes=(100,), activation=’relu’, solver=’adam’, alpha=0.0001, batch size=’auto’, learn-

ing rate=’constant’, learning rate init=0.001, power t=0.5, max iter=200, shuffle=True, tol=0.0001, mo-
mentum=0.9, nesterovs momentum=True, validation fraction=0.1, beta 1=0.9, beta 2=0.999, epsilon=1e-
08, n iter no change=10, max fun=15000

XGBoost max depth=3, learning rate=0.1, n estimators=100, silent=True, objective=’binary:logistic’,
booster=’gbtree’, n jobs=1, gamma=0, min child weight=1, max delta step=0, subsample=1,
colsample bytree=1, colsample bylevel=1, reg alpha=0, reg lambda=1, scale pos weight=1,
base score=0.5

RF n estimators=100, criterion=’gini’, min samples split=2, min samples leaf=1, max features=’sqrt’, boot-
strap=True, verbose=0, ccp alpha=0.0

• Receiver Operating Characteristic (ROC): A curve
that plots the true positive rate (recall) against the false
positive rate (1-specificity), allowing visualization of the
model’s diagnostic ability. We reported the area under the
curve as the AUROC value.

• SHAP value analysis: SHAP (SHapley Additive ex-
Planations) values are used to interpret each feature’s
contribution to the model’s predictions. This analysis
provides insight into how individual features influence the
output, helping to explain the model’s decision-making
process.

By defining these metrics, we ensure a comprehensive eval-
uation of the ML models, capturing both their ability to
correctly predict positive and negative records. Additionally,
we should specify that the reported results are based on the
mean and standard deviation (SD) calculated from the 5-fold
cross-validation.

III. RESULTS

Table IX summarizes the performance of the machine learn-
ing models. The RF classifier demonstrated the best overall
performance, achieving an accuracy of 0.74, an F1-score of
0.77, and an AUROC of 0.80 in classifying Normal and HDPs
cases. Fig. 7 and 8 show the confusion matrix and ROC and
PRC plots, respectively. The RF model’s superior performance
can be attributed to its ability to handle complex, non-linear
relationships and robustness against overfitting as well as its
ensemble nature, which aggregates the predictions of multiple
decision trees to improve generalization and reduce variance.
Notably, the standard deviations for all metrics were below
0.05, underscoring the model’s robustness and consistency
across different folds of cross-validation. Additionally, the
results of the best model using only time-varying features are

reported. The results showed minimal changes in most per-
formance metrics. In terms of sensitivity, the voting algorithm
outperformed the RF and all other classifiers, demonstrating a
higher ability to correctly identify records of HDPs.

Fig. 9 presents the SHapley Additive exPlanations (SHAP)
summary plot, providing a comprehensive visualization of
each feature’s contribution to the model’s predictions. Based
on the SHAP values, the following features have the highest
impact on the model: the difference in mean BMI values
between the second and first trimesters, the ratio of mean BMI
between the second and first trimesters, the mean BMI during
the second trimester, the mean BMI in the second trimester,
the mean DBP in the first trimester, and the mean MAP in
the second trimester. These features are associated with an
increased likelihood of being classified as HDPs.

In the following, we compare our results with those from
other studies. Table X summarizes the performance of various
models based on key evaluation metrics. Compared to the
model developed by Li et al. [42], which extracted features
during the early second trimester, including BMI and BP
values, laboratory data, demographic information, and medical
history, our model demonstrates a superior F1-score and
comparable precision. Although their model’s high accuracy
is notable, it is important to consider that their dataset has
a much lower prevalence of HDPs (4.3%) compared to the
dataset in this study (56%). Additionally, our model uses
only 18 features, whereas Schmidt et al. [41] developed a
model with 114 features, incorporating biomarkers such as
soluble fms-like tyrosine kinase-1, placental growth factor, and
sonography data from both the second and third trimesters.
While models trained with feature sets from the third trimester
generally perform well [55], [56], they may miss opportunities
for early intervention during pregnancy. Finally, we compared
the results of our model with the study by Yequn Chen et
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TABLE IX: Comparison of various machine learning models for predicting HDPs versus normal pregnancies in this project

Model Accuracy F1-score Precision Sensitivity Specificity NPV AUROC
KNN 0.61 0.68 0.63 0.73 0.46 0.57 0.62

±0.02 ±0.02 ±0.02 ±0.02 ±0.05 ±0.03 ±0.04
MLP 0.61 0.67 0.64 0.73 0.45 0.63 0.68

±0.02 ±0.05 ±0.03 ±0.16 ±0.21 ±0.13 ±0.04
SVM 0.63 0.68 0.66 0.71 0.54 0.59 0.66

±0.02 ±0.03 ±0.02 ±0.05 ±0.03 ±0.04 ±0.04
XGBoost 0.70 0.73 0.73 0.73 0.66 0.66 0.77

±0.02 ±0.02 ±0.01 ±0.05 ±0.03 ±0.03 ±0.03
RF 0.72 0.76 0.75 0.77 0.67 0.69 0.78

±0.03 ±0.03 ±0.03 ±0.04 ±0.05 ±0.04 ±0.03
Voting Algorithm 0.70 0.75 0.71 0.79 0.59 0.69 0.76

±0.01 ±0.02 ±0.02 ±0.05 ±0.05 ±0.04 ±0.03
RF* 0.71 0.75 0.74 0.76 0.66 0.68 0.77

±0.03 ±0.03 ±0.02 ±0.05 ±0.05 ±0.05 ±0.03
* Results of the model using only features extracted from BMI and BP values.

Fig. 7: Confusion matrix of the Random Forest model for clas-
sifying normal versus Hypertensive Disorders of Pregnancy
(HDPs), using features extracted from blood pressure mea-
surements, body mass index values recorded during the first
and second trimesters, and maternal demographic information
(Value and percentage).

al. [45], which used imbalanced datasets with only 3% HDPs
records and included features from biochemical analysis, life
stress levels, folic acid supplement intake, and medical history.
However, our model not only achieved a close AUROC score
but also demonstrated better sensitivity. In conclusion, our
model, with its streamlined feature set, offers a practical and
more effective approach for the early prediction of HDPs.

IV. DISCUSSION

This study demonstrates robust performance in classifying
HDPs defined based on both ICD-9 and ICD-10 codes, making
the model highly relevant for clinical applications. Specifically,
it can predict HDP in patients who are initially low-risk, with
normal blood pressure before pregnancy, but later develop
HDP. While our dataset includes records collected before the

adoption of ICD-10, limiting our analysis to ICD-9 codes,
this approach enhances the model’s generalizability and en-
sures compatibility with current clinical standards. To further
enhance the model’s accuracy and applicability, it would be
valuable to repeat this process with a dataset incorporating
ICD-10 codes, ensuring alignment with the latest diagnostic
standards.

The SHAP value analysis showed that the model considers
race to be less important for predicting HDPs compared to
other features. This suggests that while race may contribute to
health disparities in maternal outcomes, the model prioritizes
features such as BMI and BP measurements. Additionally,
the dataset is relatively homogeneous in terms of race, and
it includes pregnancies with visits available in both the first
and second trimesters. This finding could be indicative of
the model’s focus on more direct, physiologically relevant
variables that are strong indicators of HDPs risk. However, the
role of race in pregnancy outcomes should not be overlooked,
as it may still have indirect effects on health outcomes due
to factors like socioeconomic status and access to healthcare,
which are not directly captured in the model.

The dataset utilized in this study was collected from
Georgia, and its racial composition reflects the demographic
characteristics of the region. Consequently, the dataset lacks
sufficient diversity to capture the full spectrum of BP variations
across different racial groups of pregnant women. This feature
might affect the generalizability of our results and should
be considered when evaluating the broader applicability of
the model. Regarding age, more than 80 percent of maternal
records fall within the age range of 25-39, and the distribution
of records within these two groups shows a degree of balance.
However, SHAP values indicate that with increasing age, the
probability of being classified as Normal increases, while
decreasing age is associated with a higher probability of
HDPs. This observation is consistent with the dataset’s age
distribution, as indicated by Table VI, which shows that the
percentage of Normal records is about twice that of HDPs
records in the age range of 40-56 years, while the percentage
of HDPs records in the 16-24 age range is about 1.5 times
that of Normal records. Thus, similar to race and ethnicity,
it appears that we lack sufficient records in the youngest
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Fig. 8: Receiver Operating Characteristic (ROC) and Precision-Recall Curve (PRC) curves of the random forest model
for classifying Normal versus Hypertensive Disorders of Pregnancy (HDPs), using features extracted from blood pressure
measurements, body mass index values recorded during the first and second trimesters, and maternal demographic information.

Fig. 9: SHAP value of the random forest model for classifying Normal versus Hypertensive Disorders of Pregnancy (HDPs),
using features extracted from blood pressure measurements, body mass index values recorded during the first and second
trimesters, and maternal demographic information.
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TABLE X: Comparison of the best classifier for predicting HDPs in this study with those from other studies rely on costly
methods, such as blood and urine tests, ultrasound, and genetic tests, and often extract features from data gathered throughout
the entire gestational term of pregnancy, causing delays in the optimal time for medical intervention.

Studies Ges-Age N F F1-score Accuracy Precision Sensitivity Specificity NPV AUROC
The best model of this research (1,28) 18 0.76 0.72 0.75 0.77 0.67 0.69 0.78

±0.03 ±0.03 ±0.03 ±0.04 ±0.05 ±0.04 ±0.03
Yi-xin Li et al. (2021) [42] 2nd trimester 38 0.57 0.92 0.45 0.79 - - 0.96

Leon J. Schmidt et al. (2022) [41] (23-35) 114 0.76 0.89 - 0.66 0.97 0.89 0.82
Shilong Li et al. (2022) [56] (1-37) 78 - - 0.16 - 0.95 - 0.87

Muhlis Tahir et al. (2018) [55] (1-37) 17 0.90 0.95 0.90 0.90 - - -
Yequn Chen et al. (2023) [45] (1-14) 11 - - - 0.65 0.85 - 0.80

and oldest age groups. Addressing this limitation in future
studies could enhance the robustness and generalizability of
the model.

In addition, in this study, we categorized the data based on
trimesters and calculated the mean BP and BMI values for
the relevant weeks within each trimester. By increasing the
frequency of measurements, such as conducting assessments
weekly, the reliability of the extracted features from the dataset
is expected to improve. Consequently, this approach enhances
the model’s predictive accuracy, thereby providing a valuable
tool for the early detection of HDPs.

V. FUTURE WORKS

Future research should aim to validate the model with larger
datasets and investigate its integration into clinical workflows
to support its applicability and effectiveness further. Addition-
ally, for future work, we propose integrating this model to
the mhealth systems [57], [58] to facilitate collecting weekly
or monthly BP and BMI measurements during pregnancy.
Providing BP measurement devices and weight scales, which
are economical methods and commonly available in most
households, could facilitate early intervention, making this
approach practical and accessible for broader use.

Furthermore, this approach would help mitigate sources of
bias, such as masked or white-coat hypertension, by enabling
more consistent and frequent monitoring in the comfort of the
patient’s home.

VI. CONCLUSION

This study developed an ML model for the early prediction
of HDPs, specifically preeclampsia and GE, utilizing BP
and BMI data from only the first and second trimesters. By
incorporating innovative features such as the BMI ratio from
the second to the first trimester, the difference in BMI values
between the first and second trimesters, and the mean DBP
and MAP in the first trimester, alongside the mean SBP in the
second trimester, the model demonstrated a notable accuracy
of 0.74. This approach not only reduces the complexity and
cost of data collection but also makes the model highly prac-
tical for use in low-resource settings by relying on accessible
BP and BMI measurements. The promising results suggest
that this model has the potential to significantly improve early
detection, intervention, and management of HDPs.
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