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Abstract

Purpose: Sepsis, a life-threatening condition from an uncontrolled immune
response to infection, is a leading cause of in-hospital mortality. Early de-
tection is crucial, yet traditional diagnostic methods, like SIRS and SOFA,
often fail to identify sepsis in non-ICU settings where monitoring is less fre-
quent. Recent machine learning (ML) models offer new possibilities but lack
generalizability and suffer from high false alarm rates.
Methods: We developed a deep learning (DL) model tailored for non-ICU
environments, using MIMIC-IV data with a conformal prediction framework
to handle uncertainty. The model was trained on 83,813 patients and vali-
dated with the eICU-CRD dataset to test performance across hospital set-
tings.
Results: Our model predicted sepsis at 24, 12, and 6 h before onset, achiev-
ing AUROCs of 0.96, 0.98, and 0.99, respectively. The conformal approach
reduced false positives and improved specificity. External validation con-
firmed similar performance, with a 57% reduction in false alarms at the 6 h
window, supporting practical use in low-monitoring environments.
Conclusions: This DL-based model enables accurate, early sepsis predic-
tion with minimal data, addressing key clinical challenges and potentially
improving resource allocation in hospital settings by reducing unnecessary
ICU admissions and enhancing timely interventions.
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1. Introduction

Sepsis is a life-threatening condition resulting from a dysregulated im-
mune response to infection, which can lead to severe multi-organ dysfunction
and death if not promptly recognized and treated [1]. Sepsis affects over 48
million people worldwide and accounts for 11 million deaths annually, mak-
ing it one of the leading causes of in-hospital mortality [2]. Septic shock, a
severe manifestation of sepsis, carries a mortality risk of approximately 40%,
often necessitating immediate intensive care unit (ICU) admission for close
monitoring and timely intervention with antibiotics, fluids, and other sup-
portive therapies. However, patients with early-stage sepsis who are often
managed in non-ICU settings are at increased risk of deterioration due to
less frequent monitoring and delayed intervention. Early recognition in these
patients is challenging due to the complex and variable clinical presentation
of the host’s response to infection. Therefore, effective tools to identify and
prioritize patients at risk of rapid deterioration and death are crucial.

Traditional methods for diagnosing and monitoring sepsis have relied
on scoring systems such as the Systemic Inflammatory Response Syndrome
(SIRS) criteria and the Sequential Organ Failure Assessment (SOFA) score.
While these tools provide a foundation for assessing sepsis risk, they are
often inefficient in detecting early stages of the disease. Recent advances
in machine learning (ML), specifically deep learning (DL), offer promising
alternatives by leveraging electronic health records (EHR) to predict sepsis
earlier and more accurately.

The InSight ML-model has demonstrated the strong potential of using
EHR data for early sepsis detection. It uses gradient boosting to predict
sepsis six hours in advance of its occurrence, achieving an area under the
receiver operating characteristic curve (AUROC) of greater than 0.72, and
outperforming many traditional scoring systems [3]. More recent models have
incorporated DL approaches, such as recurrent neural networks (RNNs) and
gated recurrent units (GRUs), which leverage the temporal nature of clinical
data. These models, such as DeepAISE, have shown improved predictive
performance with AUROCs ranging between 0.87 and 0.90 for predictions
made 4 to 12 hours before sepsis onset [4]. Transformer models have also
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enhanced predictive accuracy using time-series data from EHRs, achieving
high accuracy while emphasizing model interpretability and transparency [5].

Despite these advances, current models for sepsis prediction face signifi-
cant challenges. Many are designed for ICU settings and may not generalize
well to patients in other hospital areas where data is less frequently col-
lected [6, 7, 8]. Additionally, most models require data imputation to handle
missing EHR data, which can introduce bias and reduce model reliability.
Techniques such as mean imputation, forward fill, and forward/backward fill
are common but do not capture the full complexity of patient data [9, 10, 5].
AI-based models also struggle with binary decision-making, leading to high
false alarm rates (FAR). To mitigate the latter issue, a conformal predic-
tion framework, such as that used by the COMPOSER model, introduces
an ”I don’t know” option for cases generating uncertain predictions. This
approach may enhance clinician confidence in AI-driven tools by avoiding
forced, potentially inaccurate decisions. [11, 12].

Considering these factors, along with the clinical need for a risk-stratification
tool specifically designed for high-risk patients in a low-monitoring setting,
we hypothesized that a DL-driven model that integrated time-series analyses
with a conformal prediction framework could effectively address major chal-
lenges in sepsis prediction. Besides potentially improving clinician trust in
AI, this approach may alleviate clinician workload while optimizing the use
of critical hospital resources, such as limited number of available ICU beds,
by preventing unnecessary admissions.

2. Results

2.1. Discovery and Internal Validation Using MIMIC-IV Dataset

The Medical Information Mart for Intensive Care (MIMIC-IV) database
includes 328,575 non-sepsis cases and 31,207 sepsis cases, by Sepsis-3 diagnos-
tic criteria [1]. Mean patient age was 58.8 ± 9.2 years, with 52.2% females.
Patients without at least 24 hours of clinical data were excluded, resulting
in 250,060 patients (8,949 sepsis and 241,111 non-sepsis).

We excluded potential model features with a high rate of missing values,
to reduce model bias. This step not only streamlined model development
but also ensured the model reflects the reality of incomplete data commonly
encountered in the real-world setting. To that end, we assigned each lab-
oratory type (blood chemistry panel, arterial blood gas, blood coagulation
profile, and complete blood count) a missingness score of one if data were
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absent at the 6 h time point before sepsis diagnosis. Patients with cumulative
missingness scores of three or four were excluded, resulting in a final cohort
of 4,632 septic and 100,135 non-septic patients, in which the mean age for
the sepsis group was 0.57 ± 0.17, 42.1% female, and the non-septic group
had a mean age of 0.53 ± 0.21 with 51.0% being female. These patients were
split into a training set of 83,813 patients and test set of 20,954 patients

At the 6 h, 12 h, and 24 h time windows prior to sepsis diagnosis, our
Discovery model demonstrated performance parameters illustrated in Fig-
ure 1 (and Appendix Table 1), with area under the receiver-operating curve
(AUROC) values of 0.99, 0.98, and 0.96, respectively (Figure 2). Although
specificity for sepsis prediction remained consistently high across all time
prediction windows, sensitivity decreased with an increased length of time,
as expected. Given the already low false alarm rate, the conformal prediction
model did not significantly reduce missed detections. More importantly, it
effectively minimized false alarms.
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Figure 1: Spider Plot Comparing Model Performance at Different Time Windows using
the MIMIC-IV Dataset. ’6 h’ denotes the model incorporating data from 24 h, 12 h, and
6 h time points prior to sepsis onset. ’12 h’ denotes the model incorporating data from 24
h and 12 h time points only.
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Figure 2: Area under the Receiver Operating Curves (AUC) at Different Sepsis Prediction
Windows in MIMIC-IV Dataset. ’6 h’ denotes model incorporating feature values from
24 h, 12 h, and 6 h time points prior to sepsis onset. ’12 h’ denotes model incorporating
features from 24 h and 12 h time points.

Models generated at time points closer to sepsis onset incorporated all
available data from earlier prediction windows. For instance, at the 6 h pre-
diction window, features with values from the 12 h and 24 h windows were
included. Similarly, the 12 h model utilized features from the 24 h window if
those values were available. Figure 3 illustrates that the importance of pre-
dictive features varied across the different time points. Gender, for example,
played a significantly stronger role earlier in the clinical course (when fewer
data points were available). However, it had minimal influence in predictions
made 6 h before sepsis onset, when more important data such as leukocyte
counts from 6, 12, and 24 h prior to sepsis onset were available. This dynamic
performance emphasizes the importance of considering temporal evolution in
feature importance when developing sepsis prediction models. As more pa-
tient data becomes available closer to the onset of sepsis, certain features that

6

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 22, 2024. ; https://doi.org/10.1101/2024.11.21.24317716doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.21.24317716
http://creativecommons.org/licenses/by-nc/4.0/


were influential earlier may diminish in significance, while others, particularly
those reflecting acute physiological changes, become more critical. This dy-
namic adjustment highlights the need for flexible models capable of adapting
to changing clinical contexts to optimize early detection and intervention.

Figure 3: Feature importance at different prediction windows prior to sepsis onset.

2.2. External Validation Using eICU-CRD Dataset

Of the 195,276 patients with data in the eICU-Collaborative Research
Database (CRD), 23,479 (12%) had a diagnosis of sepsis. The mean age of
this Validation cohort was 64 ± 15, and 46.0% were female. Patients over the
age of 89 were counted as 89 years old. Following the exclusion of patients
who didn’t have clinical data from at least 24 h prior to sepsis onset, the
cohort consisted of 178,137 patients (of whom 14,587 (8.1%) had sepsis). As
with the MIMIC-IV dataset, we removed potential model features with high
missingness, resulting in a final external validation cohort of 4,687 septic with
a mean age of 0.71 ± 0.18 and 46.8% female and 77,799 non-septic patients
with a mean age of 0.71 ± 0.19 and 45.2% female.

At the 6 h, 12 h, and 24 h sepsis prediction windows, AUROC values
from the eICU-CRD model were 0.99, 0.98, and 0.96, respectively (Figure 4
and Appendix Table 2). However, precision and sensitivity were signifi-
cantly lower when compared with performance assessed using the MIMIC-IV
dataset. Notably, unlike the minimal performance enhancement observed by
adding the conformal prediction framework to MIMIC-IV data, addition of
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this same framework caused 16% of eICU-CRD patients to have an ’indeter-
minate’ sepsis prediction.

We also observed a 4% decrease in the FAR with the use of the conformal
prediction framework as well as an increase in specificity across each time
window (Figure 5). At the 6 h time point, there was a 57% reduction in false
positive predictions and a 20% reduction in false negatives, and a similar
pattern was observed across subsequent time points.

Figure 4: Spider Plot Comparing Model Performance at Different Time Windows in eICU-
CRD Dataset. ’6 h’ denotes model incorporating feature values from 24 h, 12 h, and 6 h
time points prior to sepsis onset. ’12 h’ denotes model incorporating features from 24 h
and 12 h time points.
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Figure 5: False Alarm Rate (FAR) comparison when using conformal prediction on eICU-
CRD

3. Discussion

Despite substantial investment in sepsis healthcare and research over the
past few decades, there has been limited progress in developing new disease
therapies [13, 14, 15] or prognostic tools [16, 17]. The well-established princi-
ple of early detection for prompt implementation of sepsis bundles therefore
remains the essential cornerstones for reducing sepsis-associated morbidity
and mortality [18]. The present analysis directly addresses this continued
need to identify high-risk patients for early implementation of these clin-
ical bundles, while being cognizant of existing barriers to the widespread
implementation of AI-driven clinical tools. We have demonstrated that an
RNN-based risk-stratification tool that uses easily available data parameters
can identify patients who will develop sepsis with a high degree of precision,
even 24 hours in advance of diagnosis. This time window provides ample time
for clinicians to develop and enact diagnostic and therapeutic measures to
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improve outcomes in these high-risk patients. We have further demonstrated
that our results could be generalized to a completely different patient popu-
lation, making this approach clinically feasible.

While artificial intelligence (AI) tools are beginning to be integrated into
clinical practice [12], their adoption is hindered by clinicians’ concerns about
false alarms, imperfect algorithms and limited transparency[19]. In direct
response to these barriers, we have developed a diagnostic tool specifically
optimized for use with the limited data that is available for patients receiving
care outside an ICU settings—those same patients who are most vulnerable
to delays in sepsis care due to undetected clinical deterioration. Our time-
series model predicts sepsis at 24 hours prior to its occurrence with precision,
accuracy, and specificity comparable to models based on data measured just
6 hours prior. Key features of our model include the use of a minimal set
of inputs and the incorporation of a recently described conformal prediction
framework that prioritizes an ”I don’t know” response over false predictions
[11]. We believe that these attributes are responsive to major physician
concerns regarding AI-guided clinical care. Furthermore, we propose a con-
ceptual framework that would make similar tools valuable in a patient care
setting (Fig. 6).
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Figure 6: Proposed Systems-Level Use Implementation of Sepsis Prediction Model in the
Setting of an Integrated Healthcare Setting.

External validation is one of the most challenging and time-consuming
components of ML-based model prediction. While EHR-based ML studies
have focused on avoiding pitfalls that lead to unreliable model generation
(e.g., data missingness, inappropriate patient inclusion/exclusion, prediction
bias), [20, 21] external model validation is still notably lacking in most stud-
ies. In the field of infectious diseases, a systematic review identified 232 pre-
diction models for the diagnosis and prognosis of COVID-19 infection [22].
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However, only two of these models were validated through collaborative ef-
forts and data sharing [22]. Another systematic review of 34 publications
that examined ML methods in clinical settings reported that only two per-
formed external validation [23]. These findings may explain a lack of buy-in
by healthcare professionals regarding the generalizability of ML predictions,
and were a specific focus of the present investigation.

MIMIC-IV and eICU-CRD databases differ notably in the patient popula-
tions they describe. MIMIC-IV contains data from a single tertiary academic
medical center—the Beth Israel Deaconess Medical Center in Boston, Mas-
sachusetts—collected over a period from 2008 to 2019. This data represents
a more homogeneous patient population with standardized clinical practices
and consistent data recording, but it is localized to an urban setting and
may not capture the regional variability found elsewhere. In contrast, eICU-
CRD includes data from over 200 hospitals across the United States, collected
during 2014–2015 and capturing a broad and diverse patient population with
variations in geography, hospital types, and clinical practices. While eICU-
CRD’s nationwide scope enhances the generalizability of research findings, it
introduces complexity due to variability in data recording and clinical prac-
tices compared to the consistency found in MIMIC-IV. The most relevant
difference between datasets for our application, however, was the fact that
MIMIC-IV allowed us to identify septic patients according to current, Sepsis-
3 criteria [1], while the eICU-CRD did not. Hence, we relied on EMR-listed
problems to identify sepsis patients within the latter dataset. This was a
limitation of our study, although it also allowed us to leverage the conformal
prediction framework to full effect.

Our conformal prediction framework was based on the approach recently
described by Shashikumar et al. [11]. Trust sets were constructed by selecting
cases based on levels of data missingness and cross-entropy error, focusing
on those that achieved the highest F2 score. Unseen data was subsequently
assessed for ”typicalness” with respect to the trust set. If the P -value for
any differences fell below a predefined threshold, the hypothesis that unseen
data fits within the same distribution of the trust set is rejected, leading to
an ”I don’t know” response. This simple but effective approach improved
the FAR by only <1% in the MIMIC-IV test dataset, although almost 17%
of patients in the eICU-CRD were labeled as indeterminate for a diagnosis of
sepsis. This translated, for example, into a 2.2% increase in specificity and
a 93% decrease in the FAR at the 12 h prediction window.

Our study has several limitations, including its reliance on laboratory
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data. Vital signs are key physiologic indicators of illness, although they were
not available in MIMIC-IV for patients receiving care outside the ICU setting.
We prioritized the clinical need for identifying early-sepsis patients over the
inclusion of vital signs, being cognizant of the more dire clinical repercussions
of missing a diagnosis of evolving sepsis in a less monitored clinical setting.

Second, while the conformal prediction framework integrated into our
model helps reduce false-positive and false-negative predictions by providing
an ”I don’t know” response, this approach also introduces ambiguity into
clinical decision-making. The potential impact of this uncertainty on clinical
workflows and decision-making processes has not been fully assessed and may
require further exploration.

Third, our model’s reliance on time-series data introduces challenges re-
lated to data completeness and quality. Although we implemented a custom
masking layer to handle missing data, our approach still depends on the
availability of sufficient and reliable historical data to generate accurate pre-
dictions. In real-world clinical environments, data entry errors, variations
in laboratory test ordering, and other data quality issues could affect the
model’s performance.

4. Conclusion

The present analysis introduces an AI-driven model informed by EMRs to
address an important clinical need. While the performance metrics demon-
strate the model’s ability to reduce false alarms and missed detections, its
novelty lies in its potential applicability in non-ICU settings, its effectiveness
with incomplete datasets, and its reliance on temporal data. This work il-
lustrates how the effective implementation of ML, when guided by clinical
needs, can be designed to enhance patient care.

5. Methods

5.1. Data Collection

To train and internally validate our sepsis prediction model, we used the
MIMIC-IV dataset v2.2 (accessed June 10, 2024). This relational database
contains patient information both within and outside the ICU, for any given
hospital admission at Beth Israel Deaconess Medical Center. Vital signs are
only included for ICU stays, and given that our goal was to develop an effec-
tive, ’early alert’ tool with clinical utility outside the closely monitored ICU
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setting, vital signs were therefore not included as features in our predictive
models.

The primary outcome variable was a diagnosis of sepsis using Sepsis-3
criteria [1]. Thus, the model was trained to predict sepsis at 24 h, 12 h, and
6 h prior to diagnosis of the primary outcome. For non-septic controls, a
’non-sepsis’ time was randomly generated such that at least 24 h of clinical
data for that hospitalization was available prior to this time. For septic
patients, this meant ensuring the patient had a hospital stay of at least 1
day until sepsis onset.

Laboratory data for the feature of interest within 6 h prior to the time
point of interest was used for model training. For example, if serum creatinine
concentration was not measured at exactly 12 hours prior to sepsis diagnosis,
the algorithm searched for the temporally closest, measured value between
12 - 18 h prior to sepsis.

We generated our validation dataset by applying the same extraction cri-
teria to the eICU-CRD and using the same model features and time windows.
Due to limitations in data availability, we identified septic patients using di-
agnosis strings. In the eICU-CRD dataset, the diagnosis string, along with
the ICD-9 Code, is a text field that categorizes and describes a patient’s
diagnosis, progressing from broad categories to specific terms. For example,
a patient’s diagnosis string might read: ”infectious diseases—systemic/other
infections—signs and symptoms of sepsis (SIRS)—due to infectious process
with organ dysfunction.” Patients with the term ”sepsis” in their diagnosis
string were classified as septic.

5.2. Data Pre-processing

We removed model features having a high rate of missingness in one or
more of the following categories: blood chemistry, arterial blood gas, blood
coagulation parameters, or complete blood count. Every system missing data
at the 6 h time point prior to sepsis diagnosis was assigned a cumulative
missingness score of one. The 6 h time point was selected to account for
the fact that data is most likely to be available at the time point that is
most proximal to the primary outcome. Based on the distribution of these
scores from all patients, we eliminated patients with missingness scores of
two or three. The final feature set consisted of 18 dynamic features and two
demographic variables.

Further data correction techniques included winsorization (Winsor coeffi-
cient of 0.05%) to reduce the impact of outliers and consideration of variance
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inflation factors and correlation scores to ensure data robustness. Features
exhibiting high skewness and kurtosis, such as white blood cell counts, were
log-transformed. We normalized all numeric features, including age, and
used one-hot encoding to convert gender into binary columns. To support
our time-series-based deep learning approach, we avoided traditional imputa-
tion. Instead, we filled missing values with -1, allowing the model to handle
these independently through a masking layer that skips over the time points
for a missing feature, preventing the model from learning from that pattern.
We employed a train-test split of 80:20 for internal model validation.

5.3. Model Construction

5.3.1. Masking Layer

To address persistent data missingness in the selected model features, we
implemented a custom masking layer. This layer effectively ignores missing
values by skipping the corresponding time point for that patient, thus ensur-
ing that the model is not biased by incomplete training data. We designated
missing values as -1 (the mask value) to enable the masking layer to eas-
ily identify them. This approach allowed us to conduct time series analysis
without relying on extensive data imputation and associated model bias.

5.3.2. Weighted Input Layer

Clinicians frequently order additional diagnostic tests as a patient’s con-
dition deteriorates, focusing on more recent data to make timely decisions.
To emulate this clinical practice, we designed a custom weighted input layer
in our model that assigns higher weights to measurements taken closer to the
sepsis prediction window. This weighting is based on ”delta time” values,
which quantify the time elapsed before the prediction window. For example,
in a 6 h prediction window, measurements taken at 6, 12, and 24 h before
sepsis onset would have delta time values of 0, 6, and 18 h, respectively.
This method prioritizes more recent and relevant data, thereby improving
the model’s predictive accuracy.

The layer uses two trainable parameters, α and β, to uniformly initialize
the weights, where α controls the importance of each lab feature, and β is
used to scale the weights. The weights are computed using an exponential
decay function based on α, β, and the delta values. Specifically, for each
feature measured at different time points, the weight is calculated as follows:

weightt = β · e−α·∆t (1)
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where ∆t represents the time delta before the sepsis prediction win-
dow and t represents the sepsis prediction window (24 h, 12 h, 6 h). The
weighted features for each time point are concatenated with demographic,
non-weighted features. This results in the final input tensor for the model.

5.3.3. Recurrent Neural Network

Given the time series-based sepsis prediction task, recurrent neural net-
works (RNNs) are well-suited because they can effectively model sequences
and handle time series data. RNNs excel in capturing both long-term and
short-term dependencies, which are crucial for analyzing the complex rela-
tionships between sepsis predictors and their respective time points.

Our approach incorporated an encoder-decoder framework with a Long
Short-Term Memory (LSTM) layer as the encoder with 64 units. The layer
processes the input sequence step by step, retaining information through
memory cells. Then, the LSTM encoder returns both the sequence of hidden
states for attention processing and the final hidden and cell states, which
summarize information from all previous steps to capture long-term depen-
dencies across the entire input sequence. This enables the model to learn
and retain important patterns in the data over time.

We integrated an attention mechanism to enhance the model’s focus on
relevant time steps. Moreover, learned attention weights can be used to
interpret the output risks, which is helpful for application to practical clinical
settings. The self-attention mechanism takes the outputs of the encoder
LSTM and computes a weighted sum. This mechanism allows the model to
hone in on past and present features indicative of sepsis, thereby improving
prediction accuracy.

The decoder consists of a fully connected dense layer of 64 units with
Rectified Linear Unit (ReLU) activation, followed by a sigmoid activation
function. The attention-enhanced context vector is passed through this dense
layer, which refines the information and helps generate the final output. The
sigmoid activation at the output layer produces a sepsis risk probability rang-
ing from zero to one, indicating the likelihood of sepsis onset for each patient
(Fig. 7). The model was compiled with the Adam optimizer, a learning rate
of 0.001, and used binary cross-entropy as the loss function.
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Figure 7: Predictive Model Architecture Using Time Series Input

5.4. Conformal Prediction Framework

To mitigate the effect of AI overconfidence in clinical practice, where false
alarms in the hospital may increase resource consumption, overload hospi-
tal staff, and hinder clinical buy-in, we incorporated a conformal prediction
framework within the context of our temporally aware sepsis prediction algo-
rithm. This framework was based on the model employed by Shashikumar et
al.’s COMPOSER (COnformal Multidimensional Prediction Of SEpsis Risk)
model [11].

After training the prediction model at each time point, we focused on
cases where the model predictions had maximized error in the respective
sepsis and non-sepsis patients. Specifically, clustered non-sepsis patients with
predicted high-risk scores and sepsis patients with low predicted scores were
grouped. Thereafter, we filtered these two groups only to include patients
with more than 20% missing data. This methodology created two trust
sets of size N , randomly under-sampled. The conformal sets were used to
determine how similar a newly shown patient is to the model’s training data
at a specified prediction time (Fig. 8).
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Figure 8: Dimensional analysis of the conformal sets at the 12 h prediction window.

We used a nonconformity measure by taking a test example and comput-
ing the average Euclidean distance between that sample and all other samples
in the trust sets. The p-value represents the typicalness of the test sample
within the probability distribution of the respective trust set. To calculate
the p-value, the test example is added to the trust sets, and nonconformity
scores for all examples in the combined set are computed. Subsequently, the
proportion of nonconformity scores in the combined set that are greater than
or equal to the test sample’s score is calculated.

Formally, let τseptic and τnon-septic denote the trust sets for septic and non-
septic cases, respectively. For a test example x, we define the nonconformity
score η as:

η(x, τ) =
1

|τ |
∑
y∈τ

∥x− y∥ (2)

where ∥x− y∥ is the Euclidean distance between x and y.
The P-value for the test example x with respect to the trust set τ is then

calculated as:

p(x, τ) =
1

|τ ∪ {x}|
∑

z∈τ∪{x}

I(η(z, τ) ≥ η(x, τ)) (3)
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where I is the indicator function.
For each test sample, the P-value is calculated with respect to both trust

sets, τseptic and τnon-septic. If the P-value is greater than our selected sig-
nificance level (ϵ = 0.05) for either trust set, the example is conformant
(accepted), meaning it falls within the same probability distribution of at
least one of the trust sets. Mathematically, this can be expressed as:

Accepted if p(x, τseptic) > ϵ or p(x, τnon-septic) > ϵ (4)

If the P-value with respect to both trust sets is less than ϵ, then the
sample is non-conformant (rejected), meaning it does not fit in either septic
or non-septic distribution:

Rejected if p(x, τseptic) ≤ ϵ and p(x, τnon-septic) ≤ ϵ (5)

Accepted samples proceed to the sepsis prediction algorithm for a prog-
nostic risk score, while rejected samples are classified as indeterminate.
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8. Glossary

Sepsis A life-threatening condition arising from the body’s dysregulated im-
mune response to an infection, potentially leading to tissue damage,
organ failure, and death.

Systemic Inflammatory Response Syndrome (SIRS) A clinical syn-
drome characterized by systemic inflammation.

Sequential Organ Failure Assessment (SOFA) A scoring system that
assesses the extent of a patient’s organ function or rate of failure.
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Appendix A. Supplementary Material

Table A.1: Performance Metrics for Predictions at 6h, 12h, and 24h Before Sepsis Onset
in MIMIC-IV Dataset
Prediction Time Precision Sensitivity Specificity F1 Score ROC AUC Accuracy

6h Window 0.879 0.830 0.995 0.854 0.997 0.989
12h Window 0.877 0.469 0.997 0.611 0.978 0.976
24h Window 0.874 0.321 0.998 0.470 0.956 0.967

Table A.2: Performance Metrics for Predictions at 6 h, 12 h, and 24 h Before Sepsis Onset
in eICU-CRD
Prediction Time Precision Sensitivity Specificity F1 Score ROC AUC Accuracy

6 h Window 0.623 0.774 0.974 0.690 0.971 0.964
12 h Window 0.498 0.387 0.978 0.435 0.959 0.946
24 h Window 0.270 0.411 0.930 0.326 0.904 0.900
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