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Abstract 34 

Background: Combining individual-level data in genetic association studies (mega-35 

analyses) enhances statistical power for identifying gene-trait associations. However, 36 

batch effects from combining variants of different arrays pose a major limitation. 37 

Here, we developed a two-step imputation workflow to overcome the array type bias. 38 

Methods: Genotype data of 10,647 individuals generated using five different arrays 39 

were included. Intermediate array-specific panels were generated and subsequently 40 

imputed against the 1000 Genomes Project Phase3 reference panel. Genetic 41 

principal component (PC) analysis assessed batch effects in the cohort-combined 42 

imputed data. The workflow's performance was evaluated by comparing imputation 43 

quality r2 and allele frequency difference of the proposed two-step imputation to the 44 

conventional array-specific imputation as well as its matching with a whole-genome 45 

sequenced subgroup for further validation. We performed a genome-wide association 46 

study (GWAS) to test for genetic associations with goiter risk and thyroid gland 47 

volume, comparing summary statistics of both approaches. 48 

Results: The proposed workflow eliminated the batch effect from the first twenty 49 

genetic PCs. The outcome of the workflow also showed high correlation with the 50 

conventional approach for allele frequencies (r2 > 0.99). GWAS results from the two-51 

step imputation confirmed known associations on thyroid traits and revealed novel 52 

loci for thyroid volume (TG, PAX8, IGFBP5, NRG1), and one novel locus for goiter 53 

(XKR6), which was not statistically significant following the GWAS meta-analysis of 54 

conventional imputation. 55 

Conclusion: Our imputation workflow provides high-quality imputation results without 56 

technical batch effects, fostering mega-analysis involving multiple genotyping arrays 57 

for different genetic association analysis. 58 

 59 
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Introduction 61 

Genome-wide association studies (GWAS) represent an agnostic approach for 62 

identifying genetic associations with common traits and diseases by testing millions 63 

of variants with continuous outcomes or between groups. The testing checks allele 64 

frequency differences between individuals in a selected population that show 65 

different representations of the trait value 1. GWAS analyses have been utilized in 66 

more than 5,700 studies, exploring 3,300 different traits 1,2. The results of these 67 

analysis enriched our knowledge about disease risk variants, as well as identifying 68 

individuals with high disease-risk profiles through risk scores for complex heritable 69 

traits 1,3. 70 

The power to detect associations increases with sample size and number of variants 71 

tested 3,4, rare and low frequency single nucleotide variants (SNVs) are of high 72 

interest. This requires the inclusion of large sample sizes in the experimental design, 73 

which is complicated or even unrealistic for rare diseases and low number of cases in 74 

the investigated populations. One alternative approach is a meta-analysis of 75 

summary statistics from different GWAS analyses of the same trait, performed either 76 

on same or different populations 4,5. Another approach is to combine the individual-77 

level data of samples from different cohorts to perform a mega-analysis 6. 78 

Meanwhile, genetic imputation is a reliable method to estimate alleles of variants not 79 

directly genotyped on an array. Based on linkage disequilibrium (LD), genetic 80 

imputation can significantly increase coverage of the human genome when using 81 

different commercial genotyping arrays 7,8. This method is utilized as an alternative 82 

for expensive whole genome sequencing 9.  83 

GWAS on imputed variants and subsequent meta-analysis are frequently utilized 84 

cost-effective approaches for conducting large GWAS10, however, they are also 85 

associated with technical limitations 11. If the sample size or number of cases in a 86 

specific cohort especially in a (nested) case-control design is low, the analysis results 87 

are less reliable because the effective number of samples is too small for the 88 

association models like linear regression, logistic regression or mixed-effects models, 89 

particularly when it comes to low-frequency variants. In addition, the analysis 90 

workload substantially increases with the number of cohorts included in a project 12.  91 

Former studies have shown that both meta-analyses and mega-analyses using 92 

individual participant data are mathematically equivalent 13, and also comparable 93 
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when using imputed genotypes 14. However, previous studies have mainly focused 94 

on data from cohorts genotyped on the same array type. Highlighting challenges in 95 

mega-analysis, where individual-level data from multiple cohorts genotyped on 96 

different arrays are combined.  97 

We identified a concerning technical bias when combining the imputed data of 98 

individuals from genetically homogeneous northeastern German cohorts that were 99 

genotyped using diverse array types 15,16. Principal component analysis (PCA) 100 

conducted on the quality-controlled genotype data revealed variation influenced by 101 

the array type. Notably, this variation was detected upon both imputation against the 102 

haplotype reference consortium (HRC) 17 and the 1000 Genomes v5 (1000G) 103 

reference panels 18. 104 

Here, we propose a newly developed workflow, to minimize the technical bias due to 105 

batch effect when combining genotype data from different arrays. The workflow is 106 

composed of two imputation steps. First we impute the included genotype datasets 107 

pairwise against each other and then create a panel of overlapping variants for each 108 

imputation outcome. Finally, we impute the generated intermediate panel against one 109 

of the commonly available large panels. We evaluate the outcome of the new 110 

workflow in comparison to conventional imputation approaches. In an application 111 

example, we conducted a GWAS analysis on thyroid gland volume and goiter, 112 

identifying new associations with goiter while demonstrating the robustness of our 113 

imputation workflow by validating known associations. 114 

Materials and Methods 115 

Workflow design overview 116 

In this project, three different approaches for genetic imputation have been 117 

conducted. The first proposed approach is a new two-step imputation process. The 118 

second and third approaches are conventional single-step imputation for comparison 119 

with the newly proposed method. We modified the third approach to be a single-step 120 

imputation using only the intersecting variants genotyped on all included array types. 121 

The genotype data that were used for imputation were the same in both imputation 122 

approaches. We used data from five different arrays (Affymetrix SNP 6.0, Affymetrix 123 

Axiom [Thermo Fisher Scientific, Santa Clara, CA, USA], and Illumina Omni 2.5, 124 

Illumina GSA, and Illumina PsychArray [Illumina, Inc., San Diego, CA, USA]) 125 

obtained from samples of the German GANI_MED (n= 2410), SHIP-START (n= 126 
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4070) and SHIP-TREND (n= 4119) (Figure 1) 15,16. The individuals genotyped on the 127 

Affymetrix Axiom array (n= 48) were a subset of the Affymetrix SNP 6.0 samples, 128 

whereas all other individuals were genotyped only once. Detailed information 129 

regarding the included datasets, sample sizes, and genotype arrays are provided in 130 

Figure 1 and the Supplementary Methods. For evaluation of the imputation 131 

performance, a whole-genome sequenced subset of 192 individuals from SHIP-132 

TREND has been used for genotype matching concordance checking. 133 

Data pre-processing and phasing 134 

Genotype quality control was performed using PLINK 19 as reported previously 20,21. 135 

Briefly, arrays with genotype call rate <94%, as well as variants with missing call rate 136 

>5%, Hardy-Weinberg equilibrium p-value <10-4, and monomorphic SNVs and 137 

singletons were excluded. All the included genotype datasets were aligned to 138 

reference genome build (GRCh37) using BCFtools software followed by retaining 139 

only sites with at least one alternative allele 22. Haplotype phasing preceding the first 140 

imputation round was performed for each genotype dataset using Eagle2 (5 phasing 141 

iterations and number of conditioning haplotypes = 104) and estimated to hg19 142 

mapping 23. No external reference panel was used for phasing. 143 

Two-step imputation 144 

In the first step, the intermediate imputation, each phased panel was used as a 145 

reference panel after compression with the minimac4 imputation software 24. Each of 146 

the five pre-processed genotype arrays was imputed pairwise against the other four, 147 

yielding twenty imputed datasets. Using an R scripted algorithm with VCFtools and 148 

BCFtools for variants filtration 22, each of these imputed variant sets were subset to 149 

the variants overlapping between all generated panels with high imputation quality 150 

(R2 >= 0.9), selecting the source panel with the highest imputation quality score for 151 

each variant. The outcome of the first-step imputation was one VCF file for each 152 

cohort dataset, which was then used as input for the second imputation step against 153 

1000G reference panel using the Michigan imputation server 24. Eagle2 was selected 154 

for phasing without (additional) imputation quality filters applied at this stage of the 155 

imputation. 156 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 23, 2024. ; https://doi.org/10.1101/2024.11.21.24317711doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.21.24317711


Conventional imputation 157 

To validate the outcome of the proposed workflow, we imputed the genotype data of 158 

each array directly against 1000G reference panel using the same parameters and 159 

quality control procedures as described in the two-step imputation. 160 

Conventional imputation with overlapping genotypes 161 

To evaluate a simple approach for removing the array type specific batch effect, we 162 

ran a single-step imputation by restricting the input variants to those assessed on all 163 

array types. This approach was tested for three (Affymetrix SNP 6.0, Illumina Omni 164 

2.5 and Illumina GSA) and all five array types. We compared the imputation quality of 165 

these imputations to the conventional and the two-step imputation exemplarily for the 166 

SHIP-TREND.  167 

Batch effect assessment 168 

Technical bias was assessed by estimating genetic principal components of the 169 

imputed and quality-controlled genotype data. Quality control filters included missing 170 

variant call rates above 5%, Hardy-Weinberg equilibrium p-values less than 10-4, 171 

minor allele frequency (MAF) less than 1%, correlated variants were removed by LD 172 

pruning with a window size of 50, step size of 5 SNVs and R2 threshold of 0.2. 173 

Genetic principal components, along with their explained variances were compared 174 

between two-step imputation and conventional imputation. To check the robustness 175 

of the two-step imputation approach for rare variants, we further ran PCA on rare 176 

variants (MAF < 1%). All PCAs are performed using PLINK 2.0 software 19. Principal 177 

components (PC) of the first twenty components were plotted with ggplot2 package 178 

of R software. 179 

Evaluation of imputation performance 180 

Genotype data attributes, including differences in MAF and imputation quality R2 181 

measure between the two-step and conventional imputation were compared for each 182 

included cohort after stratification by minor allele frequency. We additionally checked 183 

the concordance (number of matching genotypes/total number of genotypes 25) of the 184 

imputed best-guess (hard call) genotypes with their whole-genome sequencing data 185 

of a subset of 192 individuals from SHIP-TREND (Omni 2.5) for which whole genome 186 

sequencing (WGS) data was also available.  187 
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GWAS and results comparison 188 

We evaluated the results of GWAS analyses using genotype dosage information from 189 

both two-step and conventional imputation approaches using thyroid gland volume 190 

and goiter risk as outcomes as described before 26, and summarized in the 191 

Supplementary Methods. 192 

All GWAS were conducted with the EPACTS 3.3.2 software using dosages 27. 193 

Inverse-variance weighted meta-analysis of the single cohort GWAS summary 194 

statistics based on the conventional imputation approach was done using the METAL 195 

software 4. We compared the summary statistics p-values, effect estimates and its 196 

standard errors. A detailed description of the GWAS analysis plan is available in the 197 

Supplementary Methods. Independent (lead) variants associated with thyroid traits 198 

were identified using the clumping function of PLINK with a threshold of p < 5 x 10-8, 199 

r2 > 0.01 and 1 Mb distance, and compared across the imputation approaches. For 200 

biological validation of the findings, lead variants were investigated by checking their 201 

association with thyrotropin to support their biological plausibility 20. 202 

Results 203 

Genotype datasets of 10,647 individuals genotyped on five different array types were 204 

included in the workflow (Figure 1). After the intermediate imputation, 1,942,499 high-205 

quality overlapping autosomal variants were generated for each of the included five 206 

datasets, and subsequently used for the second imputation step against the 1000G 207 

reference panel. In contrast, only 58,091 autosomal genotyped variants were 208 

available as imputation input in the three cohorts using the conventional imputation 209 

approach with overlapping variants. This number further dropped to 12,265 variants 210 

when including the Affymetrix Axiom and Illumina PsychArrays. Supplementary Table 211 

1 provides the distribution of these variants for each chromosome in the two-step 212 

imputation, the conventional imputation and conventional imputation using 213 

overlapped variants.  214 

Batch effect investigation (PCA analysis) 215 

For the conventional imputation, 939,802 variants with a total genotyping rate of 216 

0.988 were included in the PCA analysis, with 2,314,205 variants removed due to 217 

missing genotype threshold, 9,118 variants due to Hardy-Weinberg equilibrium, and 218 

38,008,458 variants due to the MAF threshold. Projecting the first two principle 219 
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components of the imputed genotypes clustered the samples by array types with a 220 

combined explained variance of 0.242 (Figure 2a, b, Supplementary Figure 1a). 221 

The two-step imputation included 1,360,834 variants with a total genotyping rate of 222 

0.989 in the PCA analysis after removing 725,008 variants due to missing genotype 223 

threshold, 5,363 variants due to Hardy-Weinberg equilibrium, and 37,753,448 224 

variants due to the MAF threshold. Using this approach, the first 20 principal 225 

components of the imputed genotypes did not show any array type specific clusters 226 

(Figure 2c, d, Supplementary Figure 1b). PCA restricted to the rare genotypes 227 

imputed with the two-step approach did not show clustering by the array type 228 

(Supplementary Figure 2). 229 

The conventional imputation using only overlapping variants also removed the batch 230 

effect (Supplementary Figure 3), but led to a drastic decrease in the quality of the 231 

imputed variants for all allele frequency groups in comparison to the other 232 

approaches (Supplementary Figure 4). Median R2 of the overlapping variants was 233 

0.011, while for two-step imputation and conventional imputation using all variants 234 

was 0.993 for variants with MAF > 0.05, which was the main reason for not 235 

considering this approach any further in the performance evaluation and GWAS 236 

analysis, focusing only on the two-step imputation against conventional imputation 237 

using all variants.  238 

Two-step imputation outcome parameters comparison with conventional imputation 239 

Our newly developed two-step imputation approach showed higher overall quality for 240 

the imputation outcome of rarer variants (MAF < 0.01) than the conventional 241 

imputation (Figure 3, Supplementary Figure 5). For less-common variants with MAF 242 

between 0.04 and 0.05, the median R2 increased by 0.19 when using the two-step 243 

imputation approach for the GANI_MED Illumina PsychArray. It also shows 244 

comparable allele frequencies to the conventional approach, judging by the absolute 245 

difference in allele frequencies for each imputed variant in both approaches (Figure 246 

4). Detailed statistics about median R2 and MAF differences are presented in 247 

Supplementary Table 2. 248 

Hard call genotype concordance results in the subgroup of SHIP-TREND with 249 

matching WGS data showed strong correlation between two-step imputation and 250 

sequenced genotypes. The Pearson correlation coefficients with the homozygous 251 
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reference, heterozygous, and homozygous alternative genotypes were 0.996, 0.981, 252 

and 0.979, respectively (Table 1, Supplementary Figure 6).  253 

GWAS on thyroid traits 254 

A total number of 6,894 individuals from SHIP-START and SHIP-TREND (both array 255 

types) with thyroid measurement information were included in the GWAS analysis, all 256 

participants were of European ancestry. Detailed information about cohort 257 

characteristics is presented in Table 2. The estimated genomic control for all 258 

conducted GWAS analysis showed no signs of inflation, with a minimum and 259 

maximum �GC = 1.001 and 1.038, respectively (Supplementary Figure 7). 260 

Meta-analysis of the GWAS analysis on goiter risk using conventionally imputed 261 

genotypes revealed four significantly associated loci (p < 5 x 10-8). Confirming the 262 

results from previously conducted GWAS analysis26. Two of the loci are located at 263 

the CAPZB region in chromosome 1, the other two at the FAM227B and MAFTRR 264 

regions on chromosome 15 and 16, respectively (Figure 5b). However, the GWAS 265 

analysis of the combined two-step imputed genotype data revealed another 266 

associated locus at the XKR6 region on chromosome 8 (Figure 5c), which did not 267 

attain statistical significance using the conventional meta-analysis approach (Figure 268 

5a). 269 

The conventional approach of the GWAS meta-analysis of thyroid volume revealed 270 

four novel associations at the PAX8 region on chromosome 2, at IGFBP5, NRG1 and 271 

TG (Figure 6b,c), and confirmed all known associations with this trait20. Genome-272 

wide significance for these regions were also obtained with the GWAS using the 273 

combined two-step imputed genotype data, with the exception of NRG1 (p-value = 274 

5.22 x 10-8). (Figure 6a). Except the PAX8 region, all associated loci were also 275 

associated with thyroxin in recently published multi-trait GWAS meta-analysis 276 

analysis for thyroid function 20.  277 

Table 3 summarizes the results of the SNVs with the strongest association of both 278 

GWAS approaches and traits. The significant GWAS results of both approaches were 279 

comparable, judging by the magnitude of the estimates. However, the standard errors 280 

of the GWAS results obtained from the two-step imputed genotypes where generally 281 

lower, where the natural log p-values were slightly higher in the linear regression and 282 

lower in the logistic regression based analyses compared to the conventional 283 

imputation and subsequent meta-analysis. (Supplementary Figures 8 and 9).  284 
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Discussion 285 

Genome-wide association studies have helped identify genetic factors for many traits 286 

and diseases. Since the 1960s, collecting genotype samples from diverse 287 

populations has grown in importance 28,29. Imputation techniques now address gaps 288 

in whole-genome sequencing 30. However, variations in these methods across 289 

cohorts reduce the accuracy of genetic analyses due to biases from differing array 290 

technologies 31,32. For instance, in our genotyped samples where we compared the 291 

allele frequencies of the SHIP-TREND subgroup genotyped using Illumina Omnia 2.5 292 

with the corresponding whole genome sequencing variants (Supplementary Figure 293 

10), this array-specific variation in the allele frequency, both in common and rare 294 

variants, can affect LD estimation in haplotype phasing and genotype imputation. Our 295 

newly developed imputation method addresses the additional variation induced by 296 

including multiple array types. By forming an intermediate panel of high-quality 297 

variants, the method enables high imputation accuracy while removing the array type 298 

induced batch effects. 299 

The developed workflow was inspired by the use of only overlapping variants in the 300 

included cohorts (Supplementary Table 1), which eliminated the observed bias, yet 301 

led to a significant decrease in the imputation quality due to removal of informative 302 

tag SNVs (Supplementary Figure 3), the influence of informative SNVs on imputation 303 

quality has been shown in previous research work 33. Based on that, we introduced 304 

an intermediate imputation step to generate a panel that can retain the same 305 

genotype information of the included arrays and thus preserving its LD structure. 306 

Selecting an appropriate threshold for the imputation R2 (≥ 0.9) of the overlapping 307 

variants in the intermediate panel was essential for having reliable genotype 308 

information upon imputing against 1000G panel. The value of the threshold was 309 

decided following the output of several imputations using different thresholds. We 310 

aimed to use the highest possible value for imputation quality R2 without affecting 311 

haplotype phasing results due to removing too many variants. Supplementary Table 312 

1 shows the number of included variants per chromosome when the R2 threshold 313 

was adjusted to 0.8 as well as 0.9. Both approaches led to similar imputation outputs 314 

as seen after plotting genetic PCs of the imputation outcomes (Figure 2 and 315 

Supplementary Figure 11). 316 
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To evaluate the existence of the array type bias, we used genetic PCs to capture the 317 

main variance in the allele frequencies, which can be seen as the influence of the 318 

array type after projecting the PCs of the eigenvectors and evaluate the homogeneity 319 

of the projected points on PC axis 34. The imputation following the developed two-320 

step approach showed its capability to overcome the array type differentiation 321 

whenever existing in the first twenty components, compared to conventional 322 

imputation outcomes where a clear clustering effect by the array type was observed 323 

(Figure 2). 324 

To test the performance of the imputation outcomes, we focused on comparing allele 325 

frequency and imputation quality parameters of the cohort genotypes. These 326 

parameters are particularly relevant for conducting trait-association studies. The 327 

developed imputation flow showed strong matching of the allele frequency, 328 

represented by minimized difference in allele frequency for each variants between 329 

the imputation approaches (Figure 4 and Supplementary Table 2). The developed 330 

imputation workflow was successful in providing more reliable genetic predictions for 331 

imputed rarer alleles (Figure 3). Moreover, a strong correlation in the median R2 of 332 

the two imputation approaches using the SHIP-TREND Omni 2.5 arrays was 333 

observed in comparison to other cohorts. This could be due to the high variant 334 

coverage of the array used for genotyping the cohort’s samples. Further analysis of 335 

the allele frequency variance for each variant from both imputation outcomes of this 336 

specific cohort shows the strong correlation in the autosomal allele frequency 337 

(correlation r2 >0.999) (Supplementary Figure 12). Nevertheless, SHIP-TREND 338 

imputed genotypes showed strong concordance with the corresponding genotyped 339 

variants in the whole-genome sequenced subgroup, indicating the representation of 340 

well estimated genotypes in both rarer and common variants (Table 1 and 341 

Supplementary Table 3). Using the allele frequencies of the WGS subgroup as a gold 342 

standard for comparison of the imputation results is somewhat misleading because 343 

differences in the genotype frequencies exist already between genotyped variants on 344 

the arrays and the WGS (Supplementary Figure 10). 345 

The aim of conducting GWAS as part of the imputation workflow evaluation is to 346 

compare regression analyses results of the combined two-step imputed datasets to 347 

the conventional inverse-variance meta-analysis of the same samples. Goiter risk 348 

and thyroid volume are both suitable traits for our evaluation as they represent 349 

different trait datatypes with a true positive genetic association in SHIP 26. The results 350 
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of GWAS analysis for the two-step imputed data showed two key advantages. First, 351 

we were able to identify a new association in the XKR6 gene region with goiter risk 352 

as a dichotomous trait which did not reach statistical significance in the conventional 353 

meta-analysis. Variants in this locus were also associated with thyroxin in a former 354 

GWAS, making this association biologically reasonable 20. A slightly better 355 

performance of the mega-analysis vs. a meta-analysis for a logistic regression 356 

GWAS is in line with the results of a former study 14. The second point was its 357 

consistency with conventional imputation GWAS meta-analysis in revealing a novel 358 

locus associated with thyroid gland volume (PAX8). PAX8 is a paired box family gene 359 

member that was found to be associated with the development of thyroid gland in 360 

embryonic development, and its transcription is a diagnostic marker for anaplastic 361 

thyroid carcinoma 35–37, and thus represents also a plausible association with thyroid 362 

volume in adults. All other significant GWAS findings represent also plausible true 363 

positive associations as they confirmed former findings of these traits (including 364 

replication in an independent cohort)26, or were associated with thyroid function20. 365 

The comparison of the estimates and standard errors of both GWAS approaches did 366 

not show signs of p-value inflation. However, it showed that the GWAS of the two-367 

step imputation data had a slight decrease in standard errors, in comparison to the 368 

meta-analysis outcomes. 369 

Besides its role in discovering more hits in case-control GWAS analysis, our 370 

developed two-step imputation workflow is not restricted to a specific array, the 371 

inclusion of different arrays with different sequencing technologies in the workflow 372 

has proven its robustness in overcoming the array bias regardless of the number or 373 

the type of the array. It is also applicable for other generalized imputation panels like 374 

TOPMed or HRC reference panels 24. These two strengths shall enable the utilization 375 

of combined genotype information for better understanding of rare diseases or 376 

genetic associations in populations that are represented in small sample sizes.  377 

Although the array type specific batch effect in GWAS mega-analyses might be 378 

reduced in specific scenarios by adjusting for genetic PCs, such a correction will not 379 

be possible in all analyses. Such analyses include the ones using polygenic scores. 380 

Our two-step imputation provides a powerful solution for combining datasets while 381 

reducing technical bias also for analyses of polygenic scores.  382 
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Comparing the imputation outcomes to the whole genome-sequenced data had 383 

limitations for evaluating the proposed workflow, either due to the relatively small 384 

sample size of individuals who underwent WGS (n = 192 after QC) and its exclusivity 385 

for one of the included five cohorts. Although the total sample size provided us the 386 

possibility of analysing low frequency alleles, it was likely too small for evaluating the 387 

performance of the different approaches for very rare alleles. However, our two-step 388 

imputation approach seems to be on average superior to the classical imputation with 389 

regard to the imputation quality measure (Figure 3), while the difference in allele 390 

frequency is small particularly for rarer variants (Figure 4 and Supplementary Table 391 

2). As indicated also in these results, the average difference in allele frequency 392 

seems to depend also on the density and design of the underlying genotyping array. 393 

While the imputed genotypes generated from the proposed workflow will be utilized 394 

for identifying novel genetic associations in SHIP and GANI-MED, it will be interesting 395 

to evaluate the impact of the developed workflow on other cohorts, especially those 396 

comprising diverse ancestries. Thus far, all the included cohorts are of European 397 

ancestry from the North-East of Germany, highlighting the need to test the workflow's 398 

efficacy on genotyped cohorts from other or multiple genetic ancestries. Such 399 

evaluations will help to determine the generalizability and robustness of the 400 

imputation method across different genetic backgrounds, ultimately enhancing its 401 

utility in global genomic research. 402 

In conclusion, our developed two-step imputation workflow aims to overcome the 403 

array type bias, by creating an intermediate panel of high-quality overlapping imputed 404 

variants. This approach enables the conduction of mega-analysis by combining 405 

genotype information from different arrays without inducing a technical array type 406 

effect. Our workflow will increase statistical power for conducting large-scale GWAS 407 

mega-analyses and other genetic analyses like polygenic risk score calculations, 408 

playing an important role in genetic research and its application in individualized 409 

medicine. 410 
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Figure Legends 604 

Figure 1. Overview of the designed workflow. Variants colored in dark green 605 

represent the variants imputed in the intermediate imputation phase (first imputation), 606 

while variants colored in white are imputed from general 1000G reference panel in 607 

both two-step and conventional imputation. 608 

Figure 2. Genetic PCA of the included cohorts in the workflow. The samples are 609 

colored by the cohorts with their unique array type. Panel A and B show the first four 610 

genetic components of the conventional imputation approach (variance explained for 611 

the components combined is 0.34). Panels C and D show the first four components 612 

of the proposed approach (variance explained for the components combined is 0.17).  613 

Figure 3. Median R2 of the imputation outcomes of genotype data of the included 614 

cohorts, using conventional (dotted) and two-step imputation (full line). 615 

Figure 4. Boxplots grid of the absolute difference in allele frequency (AF) between 616 

conventional and two-step imputation outcomes for the included cohorts. Each 617 

column represents an allele frequency group (rare, low, common) and each row 618 

represents one of the included cohorts. 619 

Figure 5. Manhattan plot of the GWAS analysis of goiter risk using combined two-620 

step imputation genotypes (A) and conventional imputation and meta-analysis 621 

approach (B). Variants are plotted on the x axis and –log10 p-values of the 622 

association testing on the y axis. Associations significant after correction for multiple 623 

testing (p < 5 ×10-8) are colored in red. Regional association results and 624 

recombination rates for the XKR6 gene from two-step imputation GWAS are 625 

presented in part C, −log10 p-values (y-axis) of the single nucleotide variants 626 

according to their chromosomal positions (x-axis) with lead variant (rs7005680) is 627 

shown as a purple diamond. 628 

Figure 6. Manhattan plot of the GWAS analysis of log thyroid volume using 629 

combined two-step imputation genotypes (A) and conventional imputation and meta-630 

analysis approach (B). Variants are plotted on the x axis and –log10 p-values of the 631 

association testing on the y axis. Associations significant after correction for multiple 632 

testing (p < 5 ×10-8) are colored in red. Regional association results and 633 

recombination rates for the NRG1 gene from conventional imputation GWAS are 634 

presented in part C, –log10 p-values (y-axis) of the single nucleotide variants 635 
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according to their chromosomal positions (x-axis) with lead variant (rs7000397) is 636 

shown as a purple diamond. 637 
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Tables 639 

Table 1. Genotype concordance (number of matching genotypes/total number of 640 
genotypes) of the hard call imputed genotypes with sequenced data for homozygous 641 
reference (HomRef), homozygous alternative (HomAlt), and heterozygous (Het) calls, 642 
all variants followed by stratification by minor allele frequency (MAF) group of the 643 
imputed data. (n) represents number of variants represented per group in both 644 
imputed and sequenced genotypes. 645 
 646 

Group All variants MAF 0.05-0.5 MAF 0.01-0.05 MAF 0.0-0.01 

Conventional Two-step Conventional Two-step Conventional Two-step Conventional Two-step 

HomRef 0.9963 

(618,453,288) 

0.9962 

(613,997,680) 

0.9913 

(224,034,629) 

0.9910 

(222,769,137) 

0.9959 

(171,621,821) 

0.9988 

(183,771,150) 

0.9993 

(222,756,838) 

0.9994 

(207,703,823) 

Het 0.9814 

(116,274,486) 

0.981 

(116,144,961) 

0.9897 

(105,647,496) 

0.9893 

(105,617,755) 

0.9424 

(8,530,966) 

0.9418 

(8,903,479) 

0.7875 

(2,139,474) 

0.7525 

(1,695,994) 

 

HomAlt 0.9783 

(21,587,792) 

0.9787 

(21,408,323) 

0.9802 

(21,463,336) 

0.9807 

(21,290,637) 

0.7979 

(128,442) 

0.7862 

(124,359) 

0.2512 

(5,149) 

0.1389 

(2,369) 

 647 

Table 2. Cohort characteristics for GWAS analysis of thyroid volume and goiter risk. 648 
BSA: body surface area. 649 

 650 

  651 

Cohort N Age 

(mean ± SD) 

Sex BSA 

(mean ± SD) 

Current 

smoker 

Log thyroid volume 

(mean ± SD) 

Goiter 

cases(%) 

SHIP START 3,611 49.1 (16.3) 47.4% Male, 

52.6% Female 

1.9 (0.2) 31.6% 2.9 (0.5) 1322 (36.6%) 

SHIP-TREND 784 49.2 (13.9) 51.5% Male, 

48.5% Female 

1.9 (0.2) 22.2% 2.9 (0.4) 253 (32.3%) 

SHIP-TREND 

batch II 

2,499 51.3 (16) 56.9% Male, 

43.1% Female 

1.9 (0.2) 29.8% 2.9 (0.4) 737 (29.5%) 
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Table 3. Loci lead SNVs with the strongest association with thyroid volume (A), and 652 
goiter risk (B) in GWAS analysis using both two-step imputed and conventionally 653 
imputed genotypes.  654 
Novel loci are marked in bold. A1: coded allele, AF: frequency of coded allele, SE: 655 
standard errors, R2: linkage disequilibrium in the top SNVs of the same locus in both 656 
imputation outcomes 657 
 658 

A) Volume    Two-step imputation GWAS  Conventional imputation GWAS 

meta-analysis 

  

Locus Lead SNP CHR A1 AF Effect SE P-value Lead SNP CHR A1 AF Effect SE P-value R2 

CAPZB rs4911994 1 A 0.64 0.057 0.01 1.63E-18 rs4911994 1 A 0.63 0.055 0.01 5.93E-19 Same SNP 

rs10799824 1 A 0.15 0.086 0.01 1.82E-22 rs12410532 1 T 0.14 0.092 0.01 6.14E-24 0.978 

PAX8 rs7560701 2 C 0.48 -0.036 0.01 1.12E-08 rs1110839 2 T 0.48 0.038 0.01 6.35E-10 0.576 

IGFBP5 rs2712172 2 A 0.27 0.041 0.01 1.46E-08 rs2712172 2 A 0.26 0.039 0.01 1.95E-08 Same SNP 

NRG1 rs7000397 8 G 0.35 0.035 0.01 5.22E-08 rs7000397 8 G 0.34 0.04 0.01 1.42E-08 Same SNP 

TG rs114322847 8 T 0.03 0.122 0.02 1.90E-09 rs79676842 8 T 0.03 0.135 0.02 2.06E-11 1 

FAM227B rs17477923 15 C 0.26 0.054 0.01 9.55E-14 rs73398264 15 T 0.75 -0.052 0.01 7.73E-14 1 

MAFTRR rs3813579 16 A 0.53 0.056 0.01 2.57E-19 rs562609617 16 G 0.66 -0.064 0.01 1.85E-22 0.413 

B) Goiter    Two-step imputation GWAS  Conventional imputation GWAS 

meta-analysis 

  

Locus Lead SNP CHR A1 AF Effect SE P-value Lead SNP CHR A1 AF Effect SE P-value R2 

CAPZB rs4911994 1 A 0.64 0.614 0.68 8.89E-14 rs4911994 1 A 0.62 0.302 0.04 1.13E-13 Same SNP 

rs10799824 1 A 0.15 0.135 0.19 6.68E-16 rs12410532 1 T 0.14 0.450 0.06 1.25E-15 0.978 

XKR6 rs7005680 8 T 0.35 -0.218 0.04 7.98E-09 rs11778398 8 T 0.46 -0.200 0.04 4.35E-07 0.761 

FAM227B rs75929244 15 T 0.24 0.321 0.04 2.17E-13 rs73398264 15 T 0.75 -0.313 0.04 1.61E-12 0.897 

MAFTRR rs3813579 16 GT 0.35 0.29 0.04 4.44E-13 rs562609617 16 G 0.34 0.064 0.01 1.85E-22 Same SNP 
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