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Abstract 1 

Background: Adiposity has been associated with an increased risk of head and neck cancer 2 

(HNC). Although body mass index (BMI) has been inversely associated with HNC risk among 3 

smokers, this is likely due to confounding. Previous Mendelian randomization (MR) studies 4 

could not fully discount causality between adiposity and HNC due to limited statistical power. 5 
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Hence, we aimed to revisit this using the largest genome-wide association study (GWAS) of 6 

HNC available, which has more granular data on HNC subsites. 7 

 8 

Methods: We assessed the genetically predicted effects of BMI (N=806,834), waist-to-hip 9 

ratio (WHR; N=697,734) and waist circumference (N=232,101) on the risk of HNC (N=12,264 10 

cases and 19,259 controls) and its subsites (oral, laryngeal, hypopharyngeal and 11 

oropharyngeal cancers) using a two-sample MR framework. We used the inverse variance 12 

weighted (IVW) MR approach and multiple sensitivity analyses including the weighted 13 

median, weighted mode, MR-Egger, MR-PRESSO, and CAUSE approaches. We also used 14 

multivariable MR (MVMR) to explore the direct effects of the adiposity measures on HNC, 15 

while accounting for smoking behaviour, a well-known HNC risk factor. 16 

 17 

Results: In univariable MR, higher genetically predicted BMI increased the risk of overall 18 

HNC (IVW OR=1.17 per 1 standard deviation [1-SD] higher BMI, 95% CI 1.02–1.34, p=0.03), 19 

with no heterogeneity across subsites (Q p=0.78). However, the effect was not consistent in 20 

sensitivity analyses. The IVW effect was attenuated when smoking was included in the 21 

MVMR model (OR accounting for comprehensive smoking index=0.96 per 1-SD higher BMI, 22 

95% CI 0.80–1.15, p=0.64) and CAUSE indicated the IVW results could be biased by 23 

correlated pleiotropy. Furthermore, we did not find a link between genetically predicted 24 

WHR (IVW OR=1.05 per 1-SD higher WHR, 95% CI 0.89–1.24, p=0.53) or waist circumference 25 

and HNC risk (IVW OR=0.83 per 1-SD higher waist circumference, 95% CI 0.56–1.23, p=0.35).  26 

 27 

Conclusions: Our findings suggest that adiposity does not play a role in HNC risk.  28 

 29 
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Introduction 30 

Head and neck cancer (HNC) is among the ten most common cancers in Europe, with an age 31 

standardised incidence rate of 10.3 per 100,000 person-years[1]. Around 90% of HNCs are 32 

classed as squamous cell carcinomas of the oral cavity, pharynx or larynx[2]. Tobacco 33 

smoking and alcohol consumption are well-established HNC risk factors[3-9]. High-risk 34 

human papillomavirus (HPV) infection has also been causally linked to the risk of HNC, 35 

especially oropharyngeal cancer[10-12]. In contrast, the role of adiposity in the development 36 

of HNC is less well understood.  37 

 38 

The World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) 39 

Continuous Update Project (CUP) Expert Report published in 2018 determined higher body 40 

fatness (i.e., body mass index [BMI], waist-to-hip ratio [WHR] and waist circumference) likely 41 

increases the risk of HNC[13]. The CUP panel reached this conclusion even though a higher 42 

BMI has been associated with a decreased risk of HNC[13], since they noted the inverse 43 

association appears to be limited to current smokers. They concluded the association 44 

between BMI and HNC risk may be biased among individuals who smoke (because smoking 45 

is a HNC risk factor associated with lower weight). It is thought that nicotine consumption 46 

could lead to appetite suppression and increased energy expenditure, which could in turn, 47 

lead to weight loss (and spurious inverse associations between BMI and HNC risk[14]) 48 

among smokers[15]. Among never smokers, BMI has been positively associated with HNC 49 

risk, in line with the evidence observed for measures of central adiposity (i.e., WHR and 50 

waist circumference)[14, 16]. 51 

 52 
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However, the relationship between adiposity and smoking is complex, with evidence from 53 

Mendelian randomization (MR) studies suggesting higher adiposity increases the risk of 54 

smoking[17, 18] while simultaneously suggesting smoking may lead to lower adiposity[17, 55 

19-22]. Additionally, excess adiposity, socioeconomic deprivation and (both active and 56 

passive) smoking are often strongly correlated[23-26]. Thus, the positive associations 57 

between adiposity (i.e., BMI among non-smokers, WHR and waist circumference) and HNC 58 

risk may not be as unbiased as they appear.  59 

 60 

It is important to acknowledge that previous MR studies on adiposity (i.e., BMI, WHR, waist 61 

circumference) and HNC risk were relatively small (maximum N=6,034 cases) and could not 62 

fully discount causality due to limited statistical power[27-29]. Therefore, the aim of this MR 63 

study was to revisit the link between adiposity and HNC risk using data from a HNC genome-64 

wide association study (GWAS) that includes over two times the number of cases than the 65 

Genetic Associations and Mechanisms in Oncology (GAME-ON) GWAS[30] used by Gormley 66 

et al.[28] (the largest to date; N=12,619, including 6,034 cases and 6,585 controls) and has 67 

more granular data on HNC subsites (i.e., oral cavity, hypopharynx, oropharynx and larynx). 68 

We also aimed to use multivariable MR (MVMR) to explore the direct effects of the adiposity 69 

measures on HNC, while accounting for smoking behaviour.  70 

 71 
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Methods 72 

Study design  73 

We used a two-sample MR framework to assess the genetically predicted effects of BMI, 74 

WHR and waist circumference on the risk of HNC and its subsites (oral, laryngeal, 75 

hypopharyngeal and oropharyngeal cancers) among individuals of European ancestry. 76 

Genetic variants associated with these adiposity traits were used as instrumental variables 77 

to estimate causal effects under the three core MR assumptions[31]: 1) the genetic variants 78 

are strongly associated with the adiposity trait of interest (relevance assumption); 2) the 79 

distribution of the genetic variants in the population is not influenced by factors that also 80 

influence HNC risk, such as population stratification, assortative mating and dynastic effects 81 

(independence assumption); and 3) the genetic variants can only influence HNC risk via their 82 

effect on the adiposity trait of interest (exclusion restriction assumption). This work was 83 

conducted and reported according to the STROBE-MR guidelines[32] (Additional File 1: 84 

Appendix). 85 

 86 

Head and neck cancer GWAS 87 

GWAS summary statistics for HNC were obtained from a European HEADSpAcE consortium 88 

GWAS that excluded UK Biobank participants (N=31,523, including 12,264 cases and 19,259 89 

controls) to avoid overlapping samples across the exposure and outcome datasets. It 90 

includes the European GAME-ON data used by Gormley et al.[30] and has more granular 91 

data on HNC subsites (i.e., oral cavity [N=21,269, including 3,091 cases and 18,178 controls], 92 

hypopharynx [N=18,652, including 474 cases and 18,178 controls], HPV positive oropharynx 93 

[N=20,146, including 1,980 cases and 18,166 controls], HPV negative oropharynx [N=19,114, 94 
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including 948 cases and 18,166 controls] and larynx [N=20,668, including 2,490 cases and 95 

18,178 controls])[33].  96 

 97 

HNC was defined based on the 10
th

 revision of the International Classification of Diseases 98 

(ICD-10)[34]. It included cancers of the oral cavity (C00.3, C00.4, C00.5, C00.6, C00.8, C00.9, 99 

C02.0–C02.9 [except C02.4], C03.0–C03.9, C04.0–C04.9, C05.0–C06.9 [except C05.1, C05.2]), 100 

the oropharynx (C01-C01.9, C02.4, C05.1, C05.2, and C09.0–C10.9), the hypopharynx (C12.0-101 

C13.0), the larynx (C32), and overlapping or not otherwise specified sites (C14, C05.8, C02.8, 102 

C76.0)[33].  103 

 104 

Further detail on the HEADSpAcE GWAS has been published elsewhere[33]. In brief, 105 

genotype data were obtained using nine different genotyping arrays. They were 106 

subsequently converted to genome build 38 for consistency across datasets. Quality control 107 

(QC) procedures were conducted by genotyping array rather than by study. Samples were 108 

excluded for the following reasons: sex mismatch (heterozygosity <0.8 for males and >0.2 for 109 

females), autosomal heterozygosity (>3 standard deviation [SD] units from the mean), 110 

missingness (>0.03), and cryptic relatedness (identity-by-decent >0.185). Single nucleotide 111 

polymorphisms (SNPs) were removed due to genotype missingness (>0.01), deviations from 112 

Hardy-Weinberg equilibrium (p <1e-05) and low minor allele count (<20). Imputation was 113 

performed using the TOPMed Imputation Server. Only SNPs with an imputation score r
2
 >0.3 114 

and a minor allele frequency (MAF) >0.005 were included in the GWAS. The analyses were 115 

conducted in PLINK using logistic regressions adjusted for sex, the top principal components 116 

and imputation batch (six in total, which account for both genotyping array and study 117 

differences). 118 
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 119 

Genetic instruments for adiposity 120 

GWAS summary statistics for waist circumference (N=232,101) in SD units were obtained 121 

from the Genetic Investigation of Anthropometric Traits (GIANT) meta-analysis by Shungin et 122 

al.[35] available via the IEU OpenGWAS platform (id: ieu-a-61). GWAS summary statistics for 123 

BMI (N=806,834) and WHR (N=697,734) in SD units were obtained from the latest GIANT 124 

consortium’s GWAS meta-analysis by Pulit et al.[36] available at 125 

https://zenodo.org/records/1251813. The meta-analysis is the biggest to date, as it 126 

combines the meta-analysis by Shungin et al.[35] with UK Biobank data. The UK Biobank 127 

GWAS[36] was conducted using imputed data and the BOLT-LMM software[37]. The linear 128 

mixed models (LMMs) were solely adjusted for genotyping array. GIANT and UK Biobank 129 

data were meta-analysed[36] using an inverse-weighted fixed-effect meta-analysis in 130 

METAL[38]. 131 

 132 

We extracted GWAS-significant SNPs for waist circumference using the standard threshold 133 

(p<5e-08). For BMI and WHR, we extracted them according to the stringent threshold 134 

recommended by Pulit et al.[36] to account for denser imputation data (p<5e-09). We then 135 

performed LD-clumping to select independent lead SNPs for each exposure (r
2
=0.001, 136 

10,000 kb). In total, 458 and 283 and 41 SNPs remained for BMI, WHR and waist 137 

circumference, respectively. 138 

 139 

Data harmonisation 140 

We extracted HNC GWAS summary statistics that corresponded to the list of SNPs selected 141 

as instruments for the exposures. Proxy SNPs (r
2
>0.8) were used when the instrumental 142 
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SNPs were not available in the outcome datasets. Proxies were identified using the 143 

“extract_outcome_data” function of the “TwoSampleMR” R package and the 1000 Genomes 144 

Project European reference panel. We harmonised the exposure and outcome datasets 145 

using the “harmonise_data” function of the “TwoSampleMR” R package[39]. Positive strands 146 

were inferred using allele frequencies and ambiguous palindromic SNPs with MAFs ≥0.3 147 

were removed. The harmonised data used in the analyses are available in Supplementary 148 

Tables 1 to 6 (Additional File 2). 149 

 150 

We calculated mean F-statistics and total R
2
 values to assess the strength of our genetic 151 

instruments after data harmonisation[40, 41].  152 

 153 

Statistical analysis 154 

Main analyses 155 

The multiplicative random effects inverse-variance weighted (IVW) MR approach[42] (the 156 

default IVW method of the “TwoSampleMR” package[39]) was used to investigate the 157 

genetically predicted effects of BMI, WHR and waist circumference on HNC risk. We did not 158 

correct our results for multiple testing, as all our exposures are strongly correlated[35, 36]. 159 

 160 

Sensitivity analyses 161 

Because the IVW method assumes all genetic variants are valid instruments[42], which is 162 

unlikely the case, three pleiotropy-robust two-sample MR methods (i.e., MR-Egger[43], 163 

weighted median[44] and weighted mode[45]) were used in sensitivity analyses. We also 164 

performed tests for SNP heterogeneity (i.e., Q statistic test)[46] and directional horizontal 165 

pleiotropy (i.e., MR-Egger intercept test)[43]. When directional horizontal pleiotropy was 166 
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identified, we used the intercept value to evaluate the extent of the bias. The MR-167 

PRESSO[47] method was used to identify outliers (outlier test p<0.05) and calculate outlier-168 

corrected causal estimates when there was evidence of SNP heterogeneity. The MR-PRESSO 169 

distortion test was used to evaluate differences between the outlier-corrected and IVW 170 

estimates. 171 

 172 

In addition, we ran MVMR[48] analyses to evaluate the direct effects of adiposity measures 173 

with evidence of a total effect in our main analyses. The aim of the MVMR analyses was to 174 

separate the effect of adiposity from smoking behaviour (a well-known HNC risk factor 175 

which has a complex relationship with adiposity) in the development of HNC. We obtained 176 

genetic instruments for smoking behaviour from two different sources: a smoking initiation 177 

GWAS (N=805,431 excluding 23andme) derived by the GWAS and Sequencing Consortium of 178 

Alcohol and Nicotine use (GSCAN)[49] and a comprehensive smoking index (CSI; a measure 179 

of lifetime smoking that captures smoking heaviness, duration and cessation) GWAS 180 

(N=462,690) conducted by Wootton et al.[50]. Each was separately investigated in a MVMR 181 

framework. For each smoking trait, we selected SNPs that passed the GWAS-significance and 182 

independence thresholds (p<5e-08, r
2
=0.001, 10,000 kb) and combined them with the list of 183 

SNPs identified as instruments for the relevant exposure. We then performed LD-clumping 184 

across the combined list of SNPs, to then use these independent SNPs in MVMR analyses. 185 

The exposure and outcome datasets were harmonised to the same effect allele using the 186 

“harmonise_data” function of the “TwoSampleMR” R package[39]. We formatted the data 187 

using the “format_mvmr” function of the “MVMR” R package, calculated the conditional F-188 

statistics for the MVMR instruments using the “strength_mvmr” function and ran the MVMR 189 

analyses using the “ivw_mvmr” function.  190 
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 191 

Since we used large GWAS datasets for the selection of our genetic instruments, our 192 

analyses are at an increased likelihood of being biased due to correlated horizontal 193 

pleiotropy (sometimes referred to as heritable confounding), which occurs when the genetic 194 

instruments are associated with the exposure through their effect on confounders of an 195 

exposure-outcome association[51, 52]. To mitigate this bias, we used Steiger filtering[53] to 196 

remove SNPs that are more strongly associated with smoking behaviour (a confounder of 197 

the exposure-outcome association) than the exposure of interest, as proposed by Sanderson 198 

et al.[54]. We also used Causal Analysis using Summary Effect Estimates (CAUSE)[52], 199 

another pleiotropy-robust MR method, to further investigate whether our results could be 200 

biased by correlated horizontal pleiotropy. CAUSE uses Bayesian expected log pointwise 201 

posterior predictive densities (ELPDs) to compare null, sharing and causal models. A higher 202 

ELPD represents a better model fit, so a positive delta ELPD (where delta ELPD = ELPD model 203 

1 - ELPD model 2) suggests model 1 fits the data better than model 2, while a negative delta 204 

ELPD suggests the opposite. If we find evidence to reject the null hypothesis that the sharing 205 

model (i.e. causal effect fixed at zero) fits the data at least as well as the causal model (i.e. 206 

causal effect can differ from zero), our findings would be consistent with a causal effect. 207 

Steiger filtering and CAUSE analyses were only conducted for adiposity measures with 208 

evidence of a total effect in our main IVW analyses. 209 

 210 

Moreover, we used the MR-Clust algorithm[55] to find distinct SNP clusters underlying the 211 

relationship between adiposity measures with evidence of a total effect in our main analyses 212 

and HNC. The identification of substantial clusters could provide insight into potential causal 213 

mechanisms. It could also flag pleiotropic variables that are associated with SNPs in each 214 
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cluster. We filtered SNPs with conditional probabilities <0.8. At least four SNPs needed to 215 

remain per cluster for a substantial cluster to be reported.  216 

 217 

Secondary analyses 218 

In secondary analyses, we investigated the role of BMI, WHR and waist circumference on the 219 

risk of HNC by subsite (i.e., oral cavity, hypopharynx, HPV positive oropharynx, HPV negative 220 

oropharynx and larynx). We used a Cochran's Q test to examine heterogeneity across HNC 221 

subsites. 222 

 223 

We also explored the role of other adiposity-related anthropometric measures on the risk of 224 

HNC and its subsites. These anthropometric measures included: 1) four body shape principal 225 

components[56], 2) childhood and adulthood body size[57], 3) metabolically favourable and 226 

unfavourable adiposity[58], 4) body fat percentage, and 5) brain and adipose tissue-specific 227 

BMI[59]. The data sources for these traits are summarised in Table 1. 228 

 229 

Table 1. Data sources and instruments for other adiposity-related anthropometric measures. 230 

Study  Year Data source Trait Unit Download link or 

OpenGWAS ID 

Ried et al.[56] 2016 GIANT Body shape PC1 (overall 

adiposity) 

SD https://www.joelhirsc

hhornlab.org/giant-

consortium-results Body shape PC2 (tall and 

slim vs short and plump) 

SD 

Body shape PC3 (tall 

with small hip vs short 

with big hip) 

SD 

Body shape PC4 (high 

BMI and weight with 

small hip and waist vs 

low BMI and weight 

with big hip and waist) 

SD 

Richardson et al.[57] 2020 UKB Childhood body size Change in body 

size category 

“ieu-b-5107” 

Adulthood body size Change in body 

size category 

“ieu-b-5118” 

Martin et al.[58] 2021 UKB Metabolically favourable 

adiposity 

SD https://doi.org/10.23

37/figshare.14555463
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Metabolically 

unfavourable adiposity 

SD .v1  

MRC-IEU (Elsworth) 2018 UKB Body fat percentage SD “ukb-b-8909” 

Leyden et al.[59] 2022 GIANT + UKB Brain tissue-specific BMI SD https://www.ncbi.nlm

.nih.gov/pmc/articles

/PMC8874216/bin/m

mc2.xlsx  

Adipose tissue-specific 

BMI 

SD 

Abbreviations: BMI, body mass index; GIANT, Genetic Investigation of Anthropometric Traits; N, number; PC, principal 231 
component; SD, standard deviation; SNP, single-nucleotide polymorphism; UKB, UK Biobank. 232 
 233 

 234 

Statistical software  235 

We completed all MR analyses using R software version 4.4.0 and the “TwoSampleMR” 236 

v0.6.3, “MRPRESSO” v1.0, “MVMR” v0.4, “cause” v1.2.0 and “mrclust” v0.1.0 R packages. 237 

The “ggplot2” v3.5.1 and “ggforestplot” v0.1.0 R packages were used to create forest plots. 238 

The code used to run the MR analyses is available at 239 

http://github.com/fernandam93/adiposity_HNC_MR.  240 

 241 

Results 242 

Genetic instruments for BMI, WHR and waist circumference 243 

After data harmonisation and the removal of ambiguous palindromic SNPs, 442 genetic 244 

variants remained as instruments for BMI, while 267 remained for WHR and 37 for waist 245 

circumference (Additional File 2: Supplementary Table 1). The mean F-statistic for BMI was 246 

77 (range 33–844) and the total variance explained was 4.8%. For WHR, the mean F-statistic 247 

was 73 (range 33–820) and the total variance explained was 3.1%. For waist circumference, 248 

the mean F-statistic was 50 (range 29–144) and the total variance explained was 0.8%.   249 

 250 

The F-statistics and R
2
 values for the other adiposity-related anthropometric measures have 251 

been summarised in Table 2.  252 
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 253 

Table 2. F-statistics and variance explained for other adiposity-related anthropometric 254 

measures. 255 

Trait N SNPs before/after 

harmonisation 

Total R
2
 Mean F-statistics (range) 

Body shape PC1 (overall adiposity) 29/28 16% 54 (28–302) 

Body shape PC2 (tall and slim vs short and plump) 84/81 3.4% 54 (30–211) 

Body shape PC3 (tall with small hip vs short with big 

hip) 

28/27 0.9% 41 (30–82) 

Body shape PC4 (high BMI and weight with small hip 

and waist vs low BMI and weight with big hip and 

waist) 

10/ 10 24.7% 42 (30–98) 

Childhood body size 206/198 3.4% 78 (28–1102) 

Adulthood body size 339/324 4.2% 59 (30–1109) 

Metabolically favourable adiposity 34/31 0.4% 64 (25–400) 

Metabolically unfavourable adiposity 29/27 0.8% 131 (25–400) 

Body fat percentage 377/360 4.7% 59 (30–682) 

Brain tissue-specific BMI 140/133 1.2% 61 (29–270) 

Adipose tissue-specific BMI 86 /81 0.7% 63 (30–270) 

Abbreviations: BMI, body mass index; N, number; PC, principal component; SNP, single-nucleotide polymorphism. 256 

 257 

 258 

Genetically predicted effects of BMI, WHR and waist circumference on HNC 259 

risk 260 

In univariable MR, higher genetically predicted BMI increased the risk of overall HNC (IVW 261 

OR=1.17 per 1 standard deviation [1-SD] higher BMI, 95% CI 1.02–1.34, p=0.03), with no 262 

heterogeneity across subsites (Q p=0.78) (Figure 1, Supplementary Figure 1 and Additional 263 

File 2: Supplementary Table 7). However, the positive relationship between genetically 264 

predicted BMI and HNC risk was not consistent across the MR-Egger, weighted median and 265 

weighted mode analyses, with point estimates in opposing directions and confidence 266 

intervals including the null. The Q statistic and MR-Egger intercept tests suggested that there 267 

was heterogeneity across individual SNP estimates (Q=609, p<0.001) and a minor degree of 268 

unbalanced horizontal pleiotropy (intercept=0.007, p=0.03) that could have biased the main 269 

IVW results (Additional File 2: Supplementary Tables 8 and 9). Although the MR-PRESSO 270 

analysis identified two outliers (i.e., rs11611246 and rs9603697), the distortion test 271 
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suggested the outlier-corrected estimate (outlier-corrected IVW OR=1.14 per 1-SD higher 272 

BMI, 95% CI 1.00–1.30, p=0.05) was not statistically different to the main IVW estimate 273 

(p=0.94) (Additional File 2: Supplementary Table 10). 274 

 275 

Furthermore, we did not find a link between genetically predicted WHR and HNC risk (IVW 276 

OR=1.05 per 1-SD higher WHR, 95% CI 0.89–1.24, p=0.53) and there was no heterogeneity 277 

across subsites (Q p=0.15) (Figure 2, Supplementary Figure 2 and Additional File 2: 278 

Supplementary Table 7). MR-Egger, weighted median and weighted mode results were 279 

consistent with a null effect. The Q statistic and MR-Egger intercept tests suggested that 280 

there was some evidence of SNP heterogeneity (Q=332, p=0.004) and unbalanced horizontal 281 

pleiotropy (intercept=0.008, p=0.03) (Additional File 2: Supplementary Tables 8 and 9). The 282 

MR-PRESSO analysis did not identify any significant outliers (Additional File 2: 283 

Supplementary Table 10). 284 

 285 

Similarly, we did not find a genetically predicted effect of waist circumference on HNC risk 286 

(IVW OR=0.83 per 1-SD higher waist circumference, 95% CI 0.56–1.23, p=0.35) or evidence 287 

of heterogeneity across subsites (Q p=0.60) (Figure 3, Supplementary Figure 3 and 288 

Additional File 2: Supplementary Table 7). The MR-Egger, weighted median and weighted 289 

mode consistently suggested the absence of an effect of waist circumference on HNC risk. 290 

The Q statistic and MR-Egger intercept tests suggested SNP heterogeneity (Q=89, p<0.001) 291 

but no unbalanced horizontal pleiotropy (intercept=-0.019, p=0.30) (Additional File 2: 292 

Supplementary Tables 8 and 9). The MR-PRESSO analysis identified three outliers (i.e., 293 

rs3127553, rs6440003 and rs806794) but the distortion test suggested the outlier-corrected 294 

estimate (outlier-corrected IVW OR=0.77 per 1-SD higher waist circumference, 95% CI 0.59–295 
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1.01, p=0.07) was not statistically different to the main IVW estimate (p=0.73) (Additional 296 

File 2: Supplementary Table 10). 297 

 298 

MVMR estimates for BMI on HNC risk after accounting for smoking behaviour 299 

The effect of BMI on HNC risk was attenuated when smoking behaviour was included in the 300 

MVMR model (OR accounting for CSI=0.93 per 1-SD higher BMI, 95% CI 0.78–1.12, p=0.47; 301 

OR accounting for smoking initiation=1.09 per 1-SD higher BMI, 95% CI 0.88–1.34, p=0.43) 302 

(Figures 4 and 5 and Additional File 2: Supplementary Table 11). Genetically predicted 303 

smoking behaviour increased the risk of HNC even after accounting for BMI (CSI OR 304 

accounting for BMI=4.25 per 1-SD higher CSI, 95% CI 3.18–5.67, p<0.001; SI OR accounting 305 

for BMI=2.10 per 1-SD higher SI, 95% CI 1.61–2.73, p<0.001). The conditional F-statistics for 306 

the BMI estimates were 30.5 and 30.3 in the CSI and smoking initiation analyses, 307 

respectively (Additional File 2: Supplementary Table 11). They were slightly lower for the 308 

smoking behaviour estimates conditioning on BMI (13.4 and 19.5 in the CSI and smoking 309 

initiation analyses, respectively). 310 

 311 

MR estimate for BMI on HNC risk after Steiger filtering SNPs more strongly 312 

associated with smoking behaviour than BMI 313 

After removing six SNPs (i.e., rs10002111, rs2503185, rs264941, rs10858334, rs225882, 314 

rs2273175) that were more strongly associated with smoking behaviour (i.e., CSI or smoking 315 

initiation) than BMI, the genetically predicted effect of BMI on HNC risk slightly attenuated 316 

towards the null (Steiger filtered IVW OR=1.14 per 1-SD higher BMI, 95% CI 1.00–1.31, 317 

p=0.05) (Additional File 2: Supplementary Table 12).  318 

 319 
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CAUSE estimate for BMI on HNC risk 320 

We did not find evidence against bias due to correlated pleiotropy, since the causal model 321 

did not fit the data much better than the sharing model (CAUSE OR 1.12 per 1-SD higher BMI, 322 

95% credible interval 0.93–1.34, delta ELPD for sharing vs causal=-0.07, p=0.47) 323 

(Supplementary Figure 4). Interestingly, neither the sharing nor the causal model fitted the 324 

data much better than the null model (delta ELPD for null vs sharing=-0.39, p=0.36; and 325 

delta ELPD for null vs causal=-0.46, p=0.41).  326 

 327 

MR-Clust estimates for the relationship between BMI and HNC risk 328 

After filtering SNPs with conditional probabilities <0.8 and clusters with fewer than four 329 

SNPs (e.g., cluster 1, as only three of 17 SNPs remained after probability filtering), only a null 330 

cluster including 372 SNPs (424 before filtering) remained in the MR-Clust output for BMI 331 

and HNC risk (Supplementary Figure 5 and Additional File 2: Supplementary Table 13). 332 

Hence, the MR-Clust analysis did not reveal any mechanistic pathways underlying the effect 333 

observed. 334 

 335 

Genetically predicted effects of other adiposity-related anthropometric 336 

measures on HNC risk 337 

We did not find consistent evidence of genetically predicted effects of other anthropometric 338 

measures on HNC risk (Supplementary Figures 6–10 and Additional File 2: Supplementary 339 

Table 14). The IVW estimate for PC2 capturing a combination of taller height and slimmer 340 

waist suggested this body shape decreased HNC risk (OR=0.86, 95% CI 0.75–0.99, p=0.04) 341 

(Supplementary Figure 6b). Similarly, the IVW estimate for PC3 capturing a combination of 342 

taller height and narrower hips suggested this body shape also reduced HNC risk (OR=0.73, 343 
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95% CI 0.55–0.97, p=0.03) (Supplementary Figure 6c). However, these inverse relationships 344 

were not consistent with results obtained using pleiotropy-robust methods (i.e., MR-Egger, 345 

weighted median and weighted mode). 346 

 347 

Discussion 348 

In this MR study, we reaffirmed that there is no clear evidence of a genetically predicted 349 

effect of adiposity (i.e., BMI, WHR and waist circumference) or related anthropometric 350 

measures on the risk of HNC or its subsites. Although we found higher genetically predicted 351 

BMI increased the risk of overall HNC in the main univariable MR analysis, this was not 352 

consistent across the sensitivity analyses. Notably, the MVMR results suggested the main 353 

analysis may have been biased by smoking (and/or related traits), as the effect disappeared 354 

after accounting for smoking behaviour. The results obtained after Steiger filtering SNPs 355 

more strongly associated with smoking behaviour than BMI suggested correlated pleiotropy 356 

may have been partly biasing the BMI-HNC estimate. CAUSE, which is more robust to 357 

correlated pleiotropy than the IVW method, further supported this hypothesis.  358 

 359 

Our results are consistent with previous MR studies that suggest adiposity does not 360 

influence HNC risk[27-29]. Gormley et al.[28] did not find a genetically predicted effect of 361 

adiposity on combined oral and oropharyngeal cancer when investigating either BMI 362 

(OR=0.89 per 1-SD, 95% CI 0.72–1.09, p=0.26), WHR (OR=0.98 per 1-SD, 95% CI 0.74–1.29, 363 

p=0.88) or waist circumference (OR=0.73 per 1-SD, 95% CI 0.52–1.02, p=0.07) as risk factors. 364 

Similarly, a large two-sample MR study by Vithayathil et al.[29] including 367,561 UK 365 

Biobank participants (of which 1,983 were HNC cases) found no link between BMI and HNC 366 
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risk (OR=0.98 per 1-SD higher BMI, 95% CI 0.93–1.02, p=0.35). Larsson et al.[27] meta-367 

analysed Vithayathil et al.’s[29] findings with results obtained using FinnGen data to increase 368 

the sample size even further (N=586,353, including 2,109 cases), but still did not find a 369 

genetically predicted effect of BMI on HNC risk (OR=0.96 per 1-SD higher BMI, 95% CI 0.77–370 

1.19, p=0.69). 371 

 372 

In our study, we found some evidence that the genetically predicted effect of BMI on HNC 373 

risk was influenced by smoking. This could be due to the bidirectional relationship between 374 

smoking and adiposity reported in previous MR studies[17-22] or due to their shared genetic 375 

architecture[60, 61]. A strength of our study was that it was the first to exploit MVMR to 376 

disentangle the effects of BMI and smoking behaviour on the risk of HNC and its subsites. An 377 

advantage of our approach compared to conducting univariable MR analyses stratified by 378 

smoking status is that the former does not induce collider bias and provides estimates of 379 

direct effects irrespective of horizontal pleiotropy or mediation. Yet, we acknowledge the 380 

smoking behaviour traits used in our MVMR analyses likely capture more than just smoking, 381 

since some of the SNPs used to instrument these traits have been associated with risk-taking 382 

phenotypes and socioeconomic factors[62-65]. This places limits in the inferences that can 383 

be made about smoking in the context of mediation.  384 

 385 

An important strength of our study was that the HEADSpAcE consortium GWAS used had a 386 

large sample size which conferred more statistical power to detect effects of adiposity on 387 

HNC risk compared to previous MR analyses[27-29], increasing one’s confidence in the null 388 

nature of the estimates. Furthermore, the availability of data on more HNC subsites, 389 

including oropharyngeal cancers by HPV status, allowed us to investigate the relationship 390 
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between adiposity and HNC risk in more detail than previous MR studies which limited their 391 

subsite analyses to oral cavity and overall oropharyngeal cancers[28, 66]. This is relevant 392 

because distinct HNC subsites are known to have different aetiologies[67], although we did 393 

not find evidence of heterogeneity across subsites in our study.  394 

 395 

We acknowledge that a major limitation of MR studies, including ours, is that several 396 

untestable assumptions are required to make accurate causal inferences. It is unlikely that 397 

our findings were influenced by weak instrument bias (i.e., violating the relevance 398 

assumption) because we used strong genetic instruments to proxy our adiposity traits. 399 

However, the independence assumption of no genetic confounding and the exclusion 400 

restriction assumption of no horizontal pleiotropy could have been violated.  401 

 402 

While our study contributes valuable evidence on the role of adiposity in the development 403 

of HNC, we recognise there is a need for additional research on the subject. Our study was 404 

limited to individuals of European ancestry, so our findings should be replicated in other 405 

ancestry groups before being generalised to non-European populations. Moreover, further 406 

research is needed to understand the biology underlying the complex relationship between 407 

smoking and adiposity, especially since it may be difficult to intervene on one without 408 

influencing the other[17].  409 

 410 

Conclusions 411 

In conclusion, this study indicates that adiposity does not play a role in HNC risk. Although 412 

we did not find strong evidence of a causal effect of adiposity on HNC, obesity is an 413 
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established risk factor for multiple cancers and other chronic diseases[27, 68, 69]. Hence 414 

there is still value in aiming to reduce the levels of excess adiposity in the population. 415 

 416 
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Availability of data and materials 646 

All the GWAS datasets used in our study are publicly available. The GWAS summary statistics 647 

for waist circumference by Shungin et al. are available via the IEU OpenGWAS platform (id: 648 

ieu-a-61). The GWAS summary statistics for BMI and WHR by Pulit et al.[36] can be 649 

downloaded from https://zenodo.org/records/1251813. The data sources for the other 650 

adiposity-related measures have been specified in Table 1. The smoking behaviour traits 651 

GWAS data were downloaded from 652 

https://data.bris.ac.uk/data/dataset/10i96zb8gm0j81yz0q6ztei23d (for CSI) and 653 

https://doi.org/10.13020/przg-dp88 (for smoking initiation). The outcome datasets used in 654 

our analyses have been uploaded to the IEU OpenGWAS project platform for reproducibility. 655 

However, because the data was originally in build GRCh38, some multiallelic SNPs that could 656 

not be aligned with GRCh37 Human Genome reference sequence were dropped when lifting 657 

the data to build HG19/GRCh37 (which was required at the time of upload: April 2024). The 658 

following IEU OpenGWAS id’s were assigned to the European HEADSpAcE HNC GWAS 659 

datasets including/excluding UK Biobank: ieu-b-5129/ieu-b-5123 for overall HNC, ieu-b-660 

5132/ieu-b-5126 for oral cavity cancer, ieu-b-5130/ieu-b-5124 for hypopharynx cancer, ieu-661 

b-5134/ieu-b-5128 for HPV positive oropharynx cancer, ieu-b-5133/ieu-b-5127 for HPV 662 

negative oropharynx cancer, and ieu-b-5131/ieu-b-5125 for larynx cancer. The R code used 663 

to run the MR analyses is available at http://github.com/fernandam93/adiposity_HNC_MR. 664 
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Figures 
 

 
Figure 1. Forest plot for the genetically predicted effects of body mass index on the risk of head and neck cancer and its 

subsites. 
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Figure 2. Forest plot for the genetically predicted effects of waist-to-hip ratio on the risk of head and neck cancer and its 

subsites. 

 
Figure 3. Forest plot for the genetically predicted effects of waist circumference on the risk of head and neck cancer and its 

subsites. 
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Figure 4. Forest plot for the genetically predicted effects of BMI on the risk of HNC and its subsites, before (univariable-black) 

and after (multivariable-blue) accounting for comprehensive smoking index (CSI). 

 
Figure 5. Forest plot for the genetically predicted effects of BMI on the risk of HNC and its subsites, before (univariable-black) 

and after (multivariable-blue) accounting for smoking initiation (SI). 
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