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Abstract
Recent advancements in generative artificial intelligence have shown promise in producing realistic images
from complex data distributions. We developed a denoising diffusion probabilistic model trained on the
CheXchoNet dataset, encoding the joint distribution of demographic data and echocardiogram measurements.
We generated a synthetic dataset skewed towards younger patients with a higher prevalence of structural left
ventricle disease. A diagnostic deep learning model trained on the synthetic dataset performed comparably
to one trained on real data producing an AUROC=0.75(95%CI 0.72-0.77), with similar performance on an
internal dataset. Combining real data with positive samples from the synthetic data improved diagnostic
accuracy producing an AUROC=0.80(95%CI 0.78-0.82). Subgroup analysis showed the largest performance
improvement across younger patients. These results suggest diffusion models can increase diagnostic accuracy
and fine-tune models for specific populations.
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1 Introduction
Generative artificial intelligence has undergone significant advancements, particularly in the domain of image
generation. Generative adversarial networks (GANs) [1, 2], variational autoencoders (VAEs) [3], and, more
recently, Diffusion Models [4–6] have demonstrated the ability to generate high-quality images by sampling from
complex data distributions.

These methodologies have been further extended to enable conditional image generation, producing images
based on a provided input signal [7–16]. Notable examples of this include DALL-E [12, 17] and Stable Diffusion
[6] which have achieved impressive results producing images based on user provided text. Within the medical
domain, generative models have been practically applied to tasks such as image-to-image generation [18], image
denoising [19], and the generation of synthetic datasets [7–10, 20–26]. Synthetic datasets offer significant promise
to the medical field as they have been shown to accurately recreate existing data distributions across many
domains including radiology [7, 8, 21, 27, 28], dermatology [7, 29], and histopathology [7, 25] and can be utilized
to improve diagnostic accuracy and generalizability of machine learning models [7, 21, 24, 26, 27, 29].

Within the field of medical imaging, machine learning models have demonstrated significant diagnostic
potential across many different tasks and imaging modalities [30–34]. Convolutional neural networks (CNNs)
have been used to diagnose conditions such as diabetic retinopathy [35], classify skin cancer [31], and detect
pancreatic cancer on non-contrast computed tomography (CT) [32]. The application of machine learning to
chest X-rays (CXRs) alone has been profound with models being able to estimate cardiovascular risk [36], detect
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type-2 diabetes [37], predict ejection fraction [38], and screen for structural heart disease [39]. These models
have not only replicated the diagnostic capabilities of radiologists [40] but have also uncovered patterns within
images that are imperceptible to the human eye [41]. The integration of such models into clinical practice holds
the potential to address the growing shortage of board-certified radiologists in comparison to the increasing
demand for imaging studies and create new screening modalities that can be accessed from anywhere with an
internet connection.

Despite these advancements, models often fail to generalize to new datasets that differ from their training
data [42–44]. This struggle to make a clinical impact is often attributed to dataset biases [45], differences in
patient populations [46, 47], and model overfitting on provided training data. This is further exacerbated by the
scarcity of medical data and institutional barriers to data sharing [43, 48]. Generative models present a promising
approach for creating synthetic data by enabling the conditional generation of images based on features that
matter in clinical contexts, such as patient demographics and disease characteristics. For example, synthetic
data can be generated to augment the representation of underrepresented groups defined by factors such as age,
race, and sex [7, 20, 49]. By tailoring these synthetic datasets to reflect diverse patient populations, generative
models can help mitigate biases in the original data, thereby enhancing diagnostic accuracy and improving the
generalizability of machine learning models [7, 20, 49].

This work builds on the recent advancements in deep learning, specifically the model developed by Bhave et
al. [39] for identifying severe left ventricular hypertrophy (SLVH) and dilated left ventricle (DLV) using CXRs.
The authors of that study provided a dataset [39, 50, 51] linking CXRs with transthoracic echocardiogram
(TTE) measurements, including interventricular septal thickness at end-diastole (IVSd), left ventricular internal
diameter at end-diastole (LVIDd), and left ventricular posterior wall distance at end-diastole (LVPWd). In this
work, we aim to train a conditional diffusion model that learns the joint distribution of demographic data and
continuous echocardiogram measurements to generate a high-quality synthetic dataset. We demonstrate that a
diagnostic deep learning model trained on the synthetic dataset achieves similar performance to a model trained
on the real dataset, and that a model trained on a combination of real and synthetic data improves overall
diagnostic accuracy. We show that the models achieve similar performance across a cohort of patients from the
University of Pennsylvania Health System (UPHS). Finally, we show that increasing the representation of specific
age groups within the synthetic dataset substantially improves diagnostic accuracy across that population.

2 Results

2.1 Experiment Overview
Our experimental approach (Figure 1) consisted of training a denoising diffusion probabilistic model (DDPM)
on a subset of the CheXchoNet dataset, then using this model to generate a synthetic dataset with a differing
distribution from the base dataset. To evaluate the effectiveness of the synthetic dataset, we replicated Bhave
et al.’s [39] methodology of training a deep learning model to detect the presence of severe left ventricular
hypertrophy (SLVH) and dilated left ventricle (DLV). Within the paper, the terms synthetic and generated are
used interchangeably when describing the dataset produced by the diffusion model.

We analyzed the performance of the model across four data partitions which included: a) the base dataset
(Base), b) the generated dataset (Gen), c) a combination of the base and generated dataset (Base+Gen), and
d) the base dataset combined with positive samples from the generated dataset (Base+Gen(Pos)). To prevent
data leakage, we split the CheXchoNet dataset into training, validation, and testing partitions randomized by
patient. The training dataset was used to train both the diffusion and diagnostic inference models, with the
validation dataset used for model selection, and the testing dataset reserved for the final model evaluations.

2.2 Base Dataset vs Generated Dataset
The CheXchoNet dataset consisted of 64,277 Chest X-Rays and corresponding echocardiogram measurements
taken from 22,220 unique patients. The mean age of the dataset was 62.3 (sd=16.0) with 37.8% of the patients
being under the age of 60. Women were more accounted for in the dataset consisting of 56.6% of patients. The
dataset had prevalence of SLVH and DLV of 8.6% and 6.0%, respectively. The dataset had echocardiogram
measurements of IVSd 1.12 cm (sd=0.27), LVIDd 4.60 cm (sd=0.67), and LVPWd 1.07 cm (sd=.23).

The generated dataset was sampled to have a greater number of positive samples across a younger patient
demographic. The mean age of the generated dataset was 58.6 (sd=13.4) with 57.5% of the samples being under
the age of 60. Women accounted for 49.5% of samples. The dataset had prevalence of SLVH and DLV of 38.8%
and 25.5%, respectively. The dataset had echocardiogram measurements of IVSd 1.26 cm (sd=0.32), LVIDd 5.01
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Fig. 1 Overview of methodology consisting of diffusion model training, synthetic dataset generation, and diagnostic
model evaluation. A. An overview of our methodology which consists of: 1. Training the DDPM by first adding gaussian
noise to the CXRs, then estimating the added noise conditioned on the input features of demographic data and echocardiogram
measurements. 2. Generating a synthetic dataset using the trained diffusion model by sampling from a specified distribution of
gaussian noise and input features, then iteratively denoising the gaussian input conditional on the features to produce the output
images. 3. Training a deep learning model to predict the labels of SLVH, DLV, and composite on different partitions of real and
synthetic data. B. Base (blue) and Generative (green) dataset distributions for age, IVSDd, LVIDd, and LVPWd.

cm (sd=0.86), and LVPWd 1.21 cm (sd=.29). We focused on this demographic because the original dataset had
the highest proportion of negative samples across this age group. Further, accurately detecting structural heart
disease at a younger age offers the benefits of earlier intervention and potentially greater long-term impact on
patient outcomes.

We isolated positive samples from the generated dataset to create a more focused, combined dataset. The
mean age of this positive sample dataset was 55.5 (sd=10.8), with patients below the age of 60 accounting
for 70.7% of the total samples. The dataset had echocardiogram measurements of IVSd 1.44 cm (sd=0.321),
LVIDd 5.48 cm (sd=0.82), and LVPWd 1.35 cm (sd=.29). Women accounted for 59.5% of samples. This gender
imbalance occurred because echocardiogram measurements were uniformly sampled from a standard normal
distribution, but the criteria for assigning SLVH and DLV labels are lower for women, resulting in their higher
representation in these categories.
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Fig. 2 Visual comparison of generated images and real images using cross-matched features. Comparison of generated
CXR images with cross-matched training and testing images based on age, sex, and echocardiogram measurements of IVSd, LVIDd,
and LVPWd (displayed below each image). Each row of three images corresponds to a different grouping based on label (DLV, SLVH,
composite, and none) and sex (male, female). The generated images can be observed to resemble the real images, demonstrating
the model’s ability to produce realistic and demographically accurate images. A more detailed comparison of these images can be
found in Supplementary Table 3.

2.3 Conditional Diffusion Results
The performance of the diffusion model was evaluated through metrics that measured both the quality and
diversity of the generated dataset, as well as the diagnostic accuracy in detecting structural heart disease.
To assess image quality, the generated dataset was compared against the training and test datasets using the
Frechet Inception Distance (FID) and Inception Score (IS). The FID metric measures the distance between two
distributions and focuses more on image quality with the best possible score being 0, while the IS metric uses a
pre-trained Inception [52] model to classify images into different categories which measures quality and diversity.

Our diffusion model produced an FID score of 9.62 compared to the training dataset and 13.5 compared to
the testing dataset. For reference, the training dataset compared to the testing dataset produced an FID score
of 4.07, which indicates that the synthetic dataset produces images that are similar to the base distribution.
Our diffusion model produced an IS of 5.83 which was similar to the IS for the training and testing datasets
of 5.71 and 5.82, respectively, indicating good quality and diversity of generated images. We have provided
examples of generated images compared to real images that have been cross-matched based on age, sex, and
TTE measurements (Figure 2). As can be observed, the generated images closely resembled the cross-matched
images from the training and testing datasets. We have provided further details on the demographics of these
images, as well as the results from the diagnostic models in Supplementary Table 3.
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Fig. 3 AUROC and AUPRC for the labels of SLVH, DLV, and composite across the four diagnostic models for
the CheXchoNet dataset. a) The ROC curves and corresponding AUROC metrics for each of the diagnostic models for labels
SLVH (left), DLV (middle), and composite (right). Each plot shows the performance of the models trained on the base (Base),
generative (Gen), combined base and generative (Base+Gen), and combined base and positive generative samples (Base+Gen(Pos)).
The Base+Gen(Pos) model produced the best overall performance with an AUROC of 0.80 (95% CI of 0.78-0.82, 2.3% above the
base model) for the composite label. b) The precision-recall curves and corresponding AUPRC metrics for each of the diagnostic
models for labels SLVH (left), DLV (middle), and composite (right). Each plot shows curves for each of the models listed above.
The Base+Gen(Pos) model had the best overall performance with an AUPRC of .48 (95% CI .44-.53, 7.2% above baseline) for the
composite label.

2.4 Baseline Diagnostic Inference Results
We first established a baseline diagnostic performance by training a CNN model on the base dataset. The model
produced an area under the receiver operating characteristic curve (AUROC) (Figure 3A) of 0.73 (95% CI of
0.71-0.76) for SLVH, 0.82 (95% CI of 0.79-0.84) for DLV, and 0.78 (95% CI of 0.76-0.80) for composite. The
model produced an area under the precision-recall curve (AUPRC) of .45 (95% CI of .41-.48) for composite
(Figure 3B). The full set of performance metrics can be observed in Supplementary Table 2.

2.5 Generative Diagnostic Inference Results
Next, we assessed the diffusion model’s ability to encode demographic and echocardiogram data within generated
images by training a model on this synthetic dataset. The model produced an AUROC of 0.71 (95% CI of 0.68-
0.74, 3.6% below the base model) for SLVH, 0.80 (95% CI of 0.77-0.83, 2.9% below the base model) for DLV,
and 0.75 (95% CI of 0.74-0.77, 3.3% below the base model) for composite (Figure 3A). The model produced an
AUPRC of .42 (95% CI of .38-.46, 5.8% below the base model) for composite (Figure 3B). The results showed
that the performance of the synthetic dataset was comparable to the base dataset, indicating that the diffusion
model effectively encoded the input features.

2.6 Combined Diagnostic Inference Results
We evaluated two different combinations of synthetic and real data. The first combined the base data with all
samples from the generated data, while the second combined the base data with only the positive samples from
the generated data. The datasets were resampled with replacement such that they contained the same number
of samples1. Using the total combined dataset, the model produced an AUROC of 0.73 (95% CI of 0.71-0.76,

1Please see methods for a more detailed description of how the datasets were assembled.
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.15% below the base model) for SLVH, 0.82 (95% CI of 0.79-0.84, .3% below the base model) for DLV, and 0.79
(95% CI of 0.77-0.81, 0.7% above the base model) for composite (Figure 3A). The model produced an AUPRC
of .46 (95% CI .42-.49, 2.2% above baseline) for composite (Figure 3B).

Using the focused combined dataset containing only positive generated samples, the model produced an
AUROC of 0.75 (95% CI of 0.72-0.77, 1.8% above the base model) for SLVH, 0.82 (95% CI of 0.79-0.84, .5% above
the base model) for DLV, and 0.80 (95% CI of 0.78-0.82, 2.3% above the base model) for composite (Figure 3A).
The model produced an AUPRC of .48 (95% CI .44-.53, 7.2% above baseline) for composite (Figure 3B). The
results showed that diagnostic performance can be increased through the selective sampling of synthetic data.

Fig. 4 AUROC and AUPRC for the labels of SLVH, DLV, and composite across the four diagnostic models for the
internal cohort collected at UPHS. a) The ROC curves and corresponding AUROC metrics for each of the diagnostic models.
The models achieve similar performance, with Base and Base+Gen (Pos) producing the best overall results. b) The precision-recall
curves and corresponding AUPRC metrics for each of the diagnostic models. The Base model produces the best overall results.

2.7 Internal Cohort Analysis
The performance of the models was validated on an internally collected dataset of patients from the University
of Pennsylvania Health System. The internal cohort consisted of 315 CXRs from 265 patients and followed a
similar age distribution to the CheXchoNet evaluation dataset, although was more evenly distributed across
gender, as can be seen in Table 1. The dataset was constructed to have a more even distribution of labels, with
60% of samples having a positive composite label and 40% having no label. Each of the four diagnostic models
was evaluated on this dataset. Overall, the models performed better on this dataset compared to the baseline
CheXchoNet dataset and followed a similar trend with the base and focused combined models producing the
best performance as can be seen in Figure 4. Both models producing an AUROC of 0.84 (95% CI of 0.80-0.89)
on the composite label while the base model produced a better overall AUPRC of 0.87 (95% CI of 0.82-0.93)
compared to 0.86 (95% CI 0.80-0.91) for the focused combined model.

2.8 Subgroup Analysis
The performance of the models was further evaluated across different age subgroups to assess the impact of
sampling the generated dataset for increased representation of patients under the age of 60. As displayed in
Figure 5, models trained on the combined real and generated data outperformed the base model in all subgroups
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Fig. 5 AUROC comparisons of the composite label across different age groups for each of the diagnostic models.
Comparison of AUROC metrics for each of the four diagnostic models stratified by age group. The Base+Gen (Positive) model
consistently outperforms the other models across all age groups besides 80-90 years. The model shows the most significant improve-
ment in the under 60 age group with an AUROC of 0.86 indicating better discrimination within this subgroup as compared to the
other groups.

except for patients aged 80-90. The largest performance improvement was observed in patients under the age
of 60. Specifically, the model trained on a combination of real data and positive generated samples achieved
an AUROC of 0.86 (95% CI .84-.88), reflecting a 3.7% improvement over the base model. Improvements in
other age subgroups were more modest, with increases of 1.5% and 1.4% for the 60-69 and 70-79 age groups,
respectively, while the 80-90 age group saw a 1.5% decrease in performance.

We additionally evaluated the diagnostic models across males and females (Supplementary Figure 8). We
found that the model trained on generated data performed better on males than females; however, the model
trained on the combined real and generated dataset produced similar performance between the two groups with
a mean AUROC=0.79. The model trained on the combined real and positive generative samples displayed the
best performance, achieving an AUROC=0.79 (95% CI of 0.76-0.82) on males and AUROC=0.81 (95% CI of
0.78-0.83) on females.

3 Discussion
In this work, we developed a diffusion model that encodes the joint distribution of demographic and echocar-
diogram measurements, enabling the generation of realistic and diverse images. We used this model to create
a synthetic dataset with a distinct distribution from the original dataset, specifically by increasing the propor-
tion of patients under 60 and the prevalence of SLVH and DLV. Our results demonstrated that training a deep
learning model exclusively on synthetic data can closely approximate the performance of models trained on real
data. Moreover, combining synthetic and real data led to improved overall diagnostic accuracy, with the most
significant gains observed in the targeted demographic. Finally, we found that focusing on positive samples
within the synthetic dataset resulted in the most substantial performance improvements.

This study serves as an extension of the previous work of developing the CheXchoNet [50] dataset and
deep learning methodologies to detect structural heart disease [39]. Our results show how CheXchoNet can be
further leveraged to create a generative model that has broad applicability. Most directly, this work further
validates the use of diffusion models for creating synthetic datasets as has been demonstrated by previous
studies [7, 8, 10, 21, 24–26]. This work distinguishes itself from previous studies by the incorporation of both
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categorical and continuous variables into the model, and leveraging these distributions to increase the signal of
positive samples across a targeted demographic.

Before analyzing the downstream benefits of the model, we first assessed the quality of images within the
synthetic dataset. Our analysis showed that the diffusion model was capable of producing both high-quality and
diverse images. The synthetic dataset’s FID score of 9.62, compared to the training dataset, indicated that the
generated images are similar in appearance to the base distribution and that the model is capable of producing
high-quality images. Additionally, the synthetic dataset’s FID score of 13.5, compared to the testing dataset,
suggests a slight reduction in quality and some overfitting to the training data. Despite this, the strong FID
scores demonstrate the model’s overall ability to capture the distribution of CXRs and produce realistic images.
Finally, the similar IS metrics across the synthetic, training, and testing datasets confirm that the diversity of
the generated images matches that of the real data.

Our analysis of the diagnostic models trained across the base, synthetic, and combined datasets showed robust
performance with the synthetic data. The diagnostic model trained on the synthetic dataset alone performed
similarly to the base model, with results differing by only a few percentage points, indicating that synthetic
data can approximate real data effectively. The diagnostic model trained on the combined dataset showed slight
improvements in AUROC and AUPRC, compared to the base model. However, the base dataset combined with
positive samples from the generated dataset showed substantial improvement in nearly all measured metrics.
Notably, the diagnostic model trained on this dataset had increases in AUROC and AUPRC of 2.3% and 7.2%,
respectively. This effect was most pronounced in patients under the age of 60, which showed an increase in
AUROC of 3.7%. Additionally, the model trained on the combined datasets demonstrated similar performance
between males and females, with AUROCs of 0.79 and 0.81, respectively. These results indicate that synthetic
data can improve diagnostic model performance and that targeted synthetic datasets can be effectively designed
to increase accuracy across specific populations or demographics.

We validated the performance of the diagnostic models on an internal dataset to assess reproducibility.
All models demonstrated improved performance on this dataset, with the most notable gains observed for the
composite label. However, the combined synthetic diagnostic models produced similar or worse performance
compared to the base model. This lack of improvement with synthetic data could be attributed to the older
average age of the internal cohort, which would affect model generalizability, or be caused by an underpowered
study. Despite this, the synthetic models maintained strong performance, supporting the reproducibility and
usefulness of this approach for diagnostic tasks.

These results demonstrate that generative models can be a powerful tool for combatting data scarcity within
medicine. While collecting diverse real-world data remains the most effective way to improve model performance
[24], this study highlights how diffusion models can create datasets with focused distributions, allowing for
models to be fine-tuned for specific patient populations. We additionally believe that diffusion models and
synthetic data have broad applications in medicine beyond just improving diagnostic model performance. Privacy
concerns often limit data sharing between hospitals and health systems, but generative models can produce
high-quality synthetic datasets that facilitate sharing while preserving patient privacy [23, 26]. However, further
research is needed to fully understand the differential privacy aspects of diffusion models, as there is evidence
that they may inadvertently memorize training data [53].

Diffusion models have additionally shown significant potential in advancing patient care by enabling the
reconstruction of imaging data from specific input features. While existing research has focused on reconstructing
MRI and CT images [18, 54–57], our work shows that patient-specific data can be used to generate realistic
CXRs. By conditioning the model on values such as age, sex, and echocardiogram measurements, we were able
to produce images that were specific to and representative of individual patients. Our approach demonstrates
that, with a robust and descriptive set of input features, diffusion models can generate realistic and clinically
relevant images tailored to the unique profiles of patients.

While diffusion models show significant promise for clinical applications, their deployment has limitations.
Generating high-quality data using the DDPM methodology is computationally intensive and requires high-
performance graphics processing units (GPUs). For example, generating a batch of synthetic data requires 1,000
forward passes using the model. Alternative methodologies, such as denoising diffusion implicit models (DDIMs)
[58], offer a more efficient alternative approach to generating images and warrants further investigation to assess
the quality trade-offs between these methodologies. Although we used standardized metrics to evaluate image
quality and diversity, we did not have radiologists review the generated images to assess their realism as this
was beyond the scope of our paper which focused on demonstrating improved performance of a diagnostic deep
learning model.
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Looking forward, this work not only demonstrates the feasibility of enhancing diagnostic performance but
also lays the groundwork for validating this approach on external datasets. There is significant potential to
refine this methodology by developing diffusion models that encode a wider range of input signals, enabling the
generation of outputs that more accurately reflect patient demographics and clinical conditions. Incorporating
a more complex feature vector that includes additional demographic details, vital signs, and other diagnostic
results such as electrocardiograms could significantly improve the fidelity and utility of generated data that
more accurately reflects individual patients.

Overall, this work demonstrates the potential of diffusion models to generate realistic, diverse, and clinically
relevant images, thereby addressing data scarcity and enhancing diagnostic model performance across targeted
demographics.

4 Methods

4.1 Dataset Preparation
We used the CheXchoNet [50] dataset as the basis of our model training. The total dataset consisted of 71,589
CXRs collected from 24,689 different patients at the Columbia University Irving Medical Center (CUIMC)
between January 2013 to August 2018. Each CXR was paired with a TTE performed within 12 months of
each other. Inclusion criteria required each CXR to have at least one TTE pairing within the specified time
frame. The dataset consisted of only posteroanterior (PA) films and were extracted in their complete DICOM
format. Each DICOM was preprocessed by first cropping the image to a 1:1 aspect ratio then downsampling
the image to 224x224 pixels using bicubic interpolation. The echocardiograms were accessed using the Syngo
Dynamics system and the measures of IVSd, LVIDd, and LVPWd were extracted from the parasternal long axis
view. Binary diagnosis labels for SLVH and DLV were determined using echocardiographic thresholds based on
current guidelines. SLVH was defined as IVSd or LVPWd > 1.5 cm in men and > 1.4 cm in women, while DLV
was defined as LVIDd > 5.9 cm in men and > 5.3 cm in women. A composite label indicated the presence of
either condition [39, 50].

We initially divided the dataset into partitions for training, validation, and testing with partition sizes
of 90%, 5%, and 5% randomized by patient to ensure no data leakage between testing and evaluation. The
corresponding datasets consisted of 64,277 CXRs across 22,220 patients for training, 3,736 CXRs across 1,235
patients for validation, and 3,576 CXRs across 1,234 patients for testing. The full set of metrics for each of these
partitions can be found in Table 2.

We further validated the performance of the models across an internally collected dataset consisting of UPHS
patients. This dataset was collected by first identifying all patients who had a CXR performed within 12 months
of a TTE between September 1st, 2023 and September 1st, 2024. A total of 312,610 possible CXR studies were
identified. Labels of SLVH, DLV, and composite were assigned to each of these studies using the matching TTE
measurements and thresholds specified by CheXchoNet. We then randomly sampled 200 normal CXRs, 100
with strictly LVH, 100 with strictly SLVH, and 100 with both a composite of DLV and SLVH for a total of 500
studies. Out of those studies, 185 were not able to be included because of privacy reasons or difficulty accessing
the image, leaving a total of 315 studies which were included in our analysis. The full set of metrics for this
cohort can be found in Table 1.

4.2 Diffusion Model Architecture and Training
The goal of the work was to develop a generative model capable of producing realistic images conditioned on
the provided input data. We selected to use a DDPM [4, 5] because of its demonstrated ability to produce
high quality outputs and the ease of training compared to other architectures such as GANs [59]. Training a
diffusion model consists of an initial forward process where gaussian noise is sequentially added to an image
followed by a reverse process where the model tries to estimate and incrementally remove the added noise with
goal of recreating the original image [60]. We used a cosine-beta scheduler [5] to add noise to the images and
set the maximum number of steps to be 1,000. We conditioned the model by providing an input feature vector
containing the demographic and echocardiogram measurements which allowed the model to learn to generate
images specific to the provided features. Sex was converted to a one-hot input vector while all continuous
variables were normalized using a z-score taken from the training dataset.

Our selected model used a U-Net [61] architecture consisting of encoder and decoder components and has
been commonly used for medical image segmentation [62]. The U-Net took as input a 224x224 pixel image
with one grayscale channel and output a 224x224 vector representing the estimated noise added to the image.
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Our model consists of multiple downsampling and upsampling blocks with residual connections and attention
layers. The model additionally takes as input a timestep embedding which provides temporal context during
the step-wise process and a state embedding which encodes the conditional features.

We trained the model using a combination of mean squared error (MSE) loss and perceptual loss [63, 64].
MSE loss is computed by taking the mean of the squared error between the noise estimated by the model
and actual noise added to the image. Perceptual loss is computed by calculating differences between high-level
features of the predicted and target images extracted using a pre-trained VGG16 [65] model. The final loss is
computed using a weighted average between MSE loss and perceptual loss. This loss function was used to ensure
that generated images were both accurate at the pixel level and perceptually similar to the original images. This
method has been shown to improve overall image generation quality. We recorded this loss for both the training
images during each gradient update step and for validation images during scheduled intervals. We additionally
recorded a generative validation loss which measured the MSE between a fixed set of validation images and
generated images. The generated images were conditioned using the corresponding features i.e. demographics,
echocardiogram measures from the validation images.

We trained the model across 20 epochs with a batch size of 16 and used the AdamW optimization algorithm
[66] to perform gradient descent. The models were trained using a single NVIDIA A100 GPU. Supplementary
Figure 6 shows the loss per each epoch and the progression of generated validation images. As can be observed,
the model’s loss converged around epoch 15 which corresponded with stabilization of image quality.

4.3 Synthetic Dataset Generation and Evaluation
The synthetic dataset was generated using the fully-trained diffusion model. The process began by sampling
random noise from a standard normal distribution and conditional features from their respective distributions.
These values were then input into the diffusion model, which conditionally denoised the images over 1,000
iterations, guided by the provided features and timestep embeddings. During each iteration, the model estimated
the noise present in the image, which was subsequently removed by the scheduler, and the image was resampled
from the resulting distribution. This iterative process continued for the specified number of steps to produce
the final generated image [60].

We generated the input features by randomly sampling from normal distributions for the continuous variables
(age, IVSd, LVIDd, LVPWd) and randomizing between males and females. For age, we sampled from a normal
distribution with a lower mean than that of the training dataset, and higher means for IVSd, LVIDd, and
LVPWd. Overall, we produced a synthetic dataset consisting of 20,290 unique CXRs with full features as listed
in Table 1. We added binary labels using the same thresholds specified by CheXchoNet.

We evaluated the quality and diversity of the synthetic dataset using FID [67] and IS [68] metrics. FID
compares the mean and covariance of feature vectors extracted from a pre-trained Inception network [52] between
a synthetic and real dataset with a lower score indicating higher-quality images. We performed this comparison
between the synthetic dataset and both the training and testing datasets. IS evaluates both diversity and quality
by passing images through an inception network and computing the entropy of the predicted classes.

4.4 Diagnostic Model Training and Evaluation
We used the same model architecture and training process detailed by Bhave et al. [39] for our diagnostic
evaluation. The goal of the diagnostic evaluation was to train a CNN to detect the presence of SLVH, DLV, and
the composite label. The methodology used the DenseNet-121 architecture [69] to process the input image and
produce a feature vector. The feature vector was combined with the patient’s demographic data which was then
used to estimate the three continuous variables of LVIDd, IVSd and, LVPWd which were subsequently used to
compute the probabilities of the binary labels [39] .

We created four different datasets for this evaluation. The first dataset consisted of the base images, the
second dataset consisted of the synthetic images, the third dataset consisted of the base and synthetic images,
and the final dataset consisted of the base images combined with the positive samples from the generated
dataset. As shown in Table 1, fewer base images were used for training the diagnostic model compared to
the diffusion model. This discrepancy arose because we downsampled the base dataset to match the number
of unique CXRs in the generated dataset in order to standardize model training. Since the synthetic dataset
consisted of 20,290 CXRs, we used this as the sampling benchmark when selecting images from the real dataset.
We then resampled with replacement all datasets to ensure they had the same total number images. Since the
combined dataset contained 40,580 images (20,290 real and 20,290 synthetic), we resampled all other datasets
to match this number.
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We trained the diagnostic models using the same parameters with a batch size of 32 across 10 epochs using
the Adam optimizer [70] with early stopping. The models were trained using a single NVIDIA L4 GPU. For each
dataset, we performed a total of 5 training runs and stored the model from each run which produced the lowest
validation loss, as measured on the validation dataset. For our final evaluation, we used the withheld testing
dataset to compute probabilities for each class of SLVH, DLV, and composite. Final probabilities were computed
by mean-averaging the outputs of the five models for each dataset. We compared the models using standard
metrics including log loss, brier loss, AUROC, and AUPRC. We computed the specificity and precision for each
of the models using a fixed recall of 50%. We used bootstrapping methods to compute confidence intervals for
the metrics. We performed a similar analysis across the different subgroups of patient ages.

5 Data Availability
This study uses the CheXchoNet dataset which is hosted on Physionet under a restricted access use policy. The
dataset is available to registered users who sign the specified data use agreement. The study also uses an internal
dataset from the University of Pennsylvania Health System. This dataset cannot be shared for ethical/privacy
reasons.

6 Code Availability
The full code used to develop the diffusion model and generate the synthetic dataset is available at:
https://github.com/cstreiffer/cxr_ddpm. The code used to recreate the diagnostic experiment is available at:
https://github.com/sbhave77/CheXchoNet.
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10 Supplementary Material

Fig. 6 Training loss plots and evolution of generated images across epochs. a) Depicts the training progression of the
diffusion model, showing the training loss, validation loss, and generative validation loss. The training and validation losses are
computed using perceptual loss, while the generative validation loss is calculated by generating a batch of images from the validation
dataset and computing the MSE loss between the generated and original images. All three loss values converge and stabilize around
epochs 15-20, indicating a steady state in training. b) Shows the progression of generated validation images across different epochs,
with image quality stabilizing at a high level between epochs 15-20.
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Fig. 7 Calibration curves for the composite label across the four diagnostic models. The calibration plot compares
the predicted probabilities of positive cases for the composite label against the fraction of positive results, with the dotted line
representing a perfectly calibrated model. The graph shows calibration results for the four different models of Base, Gen, Base+Gen,
and Base+Gen (Positive). The Base+Gen (Positive) model demonstrates the closest alignment to the optimal calibration, indicating
more confident predictions. In contrast, the Gen model shows underconfident predictions more focused in the higher probability
ranges. The histogram plots show the distribution of predicted probabilities for each model.
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Table 4 Diagnostic model performance for the composite label across different age groups.
Performance metrics for each of the four diagnostic models on the composite label stratified by age group. Reported
metrics include comparing brier loss, log loss, AUROC, and AUPRC.

Brier loss Log loss AUROC AUPRC

Age < 60

Base 0.170 [0.147 - 0.190] 0.527 [0.460 - 0.587] 0.637 [0.574 - 0.700] 0.285 [0.193 - 0.356]
Gen 0.162 [0.141 - 0.181] 0.510 [0.450 - 0.564] 0.618 [0.552 - 0.686] 0.281 [0.180 - 0.349]
Base+Gen 0.162 [0.139 - 0.184] 0.517 [0.445 - 0.582] 0.610 [0.547 - 0.676] 0.259 [0.164 - 0.322]
Base+Gen (Positive) 0.161 [0.138 - 0.181] 0.508 [0.443 - 0.571] 0.628 [0.562 - 0.693] 0.286 [0.192 - 0.356]

Age 60-69

Base 0.137 [0.121 - 0.152] 0.451 [0.401 - 0.497] 0.782 [0.746 - 0.819] 0.569 [0.498 - 0.634]
Gen 0.157 [0.143 - 0.170] 0.484 [0.450 - 0.518] 0.767 [0.730 - 0.806] 0.536 [0.467 - 0.604]
Base+Gen 0.138 [0.122 - 0.152] 0.447 [0.401 - 0.492] 0.781 [0.745 - 0.819] 0.586 [0.519 - 0.656]
Base+Gen (Positive) 0.132 [0.117 - 0.146] 0.438 [0.386 - 0.486] 0.793 [0.758 - 0.830] 0.610 [0.548 - 0.674]

Age 70-79

Base 0.137 [0.120 - 0.153] 0.424 [0.373 - 0.472] 0.762 [0.721 - 0.806] 0.419 [0.324 - 0.507]
Gen 0.143 [0.128 - 0.157] 0.442 [0.402 - 0.478] 0.744 [0.700 - 0.792] 0.431 [0.341 - 0.519]
Base+Gen 0.131 [0.115 - 0.146] 0.413 [0.367 - 0.455] 0.764 [0.718 - 0.809] 0.433 [0.347 - 0.513]
Base+Gen (Positive) 0.131 [0.114 - 0.148] 0.409 [0.365 - 0.453] 0.773 [0.731 - 0.815] 0.435 [0.345 - 0.518]

Age 80-90

Base 0.170 [0.147 - 0.190] 0.527 [0.460 - 0.587] 0.637 [0.574 - 0.700] 0.285 [0.193 - 0.356]
Gen 0.162 [0.141 - 0.181] 0.510 [0.450 - 0.564] 0.618 [0.552 - 0.686] 0.281 [0.180 - 0.349]
Base+Gen 0.162 [0.139 - 0.184] 0.517 [0.445 - 0.582] 0.610 [0.547 - 0.676] 0.259 [0.164 - 0.322]
Base+Gen (Positive) 0.161 [0.138 - 0.181] 0.508 [0.443 - 0.571] 0.628 [0.562 - 0.693] 0.286 [0.192 - 0.356]

Fig. 8 AUROC comparisons of the composite label stratified by sex for each of the diagnostic models. Comparison
of AUROC metrics for each of the four diagnostic models stratified by sex. The Gen model shows improved performance for males
compared to females; however, the Base+Gen model shows equal performance across both demographics. The Base+Gen (Positive)
model consistently outperforms all other models for both males and females.
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