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Abstract  

Background 

The prospect of neuroprotective treatments for Parkinson’s disease highlights the need for early 

diagnostic tests. Specialised MRI sequences suggest changes related to Parkinson’s disease may be 

detectable. 

Objectives 

We used the Parkinson’s Progression Markers Initiative dataset to investigate whether deep learning 

can detect early brain MRI changes of idiopathic and GBA/LRRK2 prodromal Parkinson’s disease. 

Methods 

Pairs of matched cohorts were used to train convolutional neural networks to classify T2 axial 

images. Explainability methods were used to visualise drivers of model predictions. 

Results 

Models built to distinguish between idiopathic Parkinson’s disease scans (n=504) and matched 

controls exhibited good classification performance for scans taken more than four years after 

diagnosis, with a Receiver Operating Characteristic area-under-the-curve of 0.89 (n=98). Model 

performance deteriorated as time since diagnosis reduced. Models built to distinguish non-

manifesting carriers of LRRK2 (area-under-the-curve 0.92, 90% accuracy, n=115) and GBA (area-

under-the-curve 0.94, 92% accuracy, n=109) from controls exhibited excellent classification 

performance. All models demonstrated foci of interest in cerebrospinal fluid spaces surrounding the 

brainstem. Models using GBA scans also identified foci of interest in occipital lobes. 

Conclusions 

Deep learning models appear able to reproducibly detect changes in the brains of those with 

established but not early Parkinson’s disease. Conversely changes in at risk genetic cohorts are 

detectable at all stages, including in those who have not developed Parkinson’s disease. This implies 

a distinct pathological process ongoing within the brains of carriers of Parkinson’s disease genetic 

risk factors compared to those with sporadic Parkinson’s disease. 

Keywords: Artificial Intelligence; machine learning; Parkinson’s disease; Magnetic Resonance 

Imaging; SHapley Additive exPlanations  
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Introduction  

The prospect of disease-modifying treatments for Parkinson’s disease highlights the need for early 

diagnostic tests. A number of neuroprotective compounds have yielded promising results in phase II 

clinical trials.1 These have the potential to prevent the death of dopaminergic neurons and avoid the 

most debilitating movement related (motor) features of Parkinson’s disease. To be most effective, 

they would need to be administered as early as possible, ideally in the prodromal period of 

Parkinson’s disease, which can precede the onset of motor symptoms by a decade or more.2 During 

this time patients may experience a variety of non-motor features in advance of the diagnostic motor 

features of Parkinson’s disease.3 Studies suggest that 30-50% of dopaminergic neurons within the 

basal ganglia die before these motor features become clinically significant.4-6 

Much research into the prodromal phase of Parkinson’s disease has focussed on those with the 

genetic risk factors glucocerebrosidase (GBA) and Leucine-rich repeat kinase 2 (LRRK2). These risk 

factors are distinct from ‘monogenic’ forms of Parkinson’s disease, which are rare, transmit in a 

Mendelian manner with near 100% penetrance and can manifest as early as the third decade. 

Conversely GBA and LRRK2 have a penetrance of 8-10% and 28-74% respectively.7,8 LRRK2 

Parkinson’s disease manifests at an average age of 59.4,9 and is thought to progress more slowly, 

often with a milder tremor predominant phenotype. GBA manifests at an average age of 55.8,9 is 

associated with more cognitive/neuropsychiatric symptoms and tends to progress more rapidly.10 

Disease phenotype in GBA appears to be variant dependent. Based on a classification of symptoms 

documented in cases of the autosomal recessive lysosomal storage disorder Gaucher disease (caused 

by GBA variants in a biallelic state), GBA risk variants can be classified as ‘severe’, ‘mild’ and non-

Gaucher causing Parkinson’s disease risk variants. It has been shown that ‘severe’ GBA entail a 

higher disease risk with more rapid progression of Parkinson’s disease in those who develop it.10 

Parkinson’s disease remains a clinical diagnosis. MRI is not in widespread use as a diagnostic tool in 

Parkinson’s disease, although promising evidence exists of early changes detectable on specialised 

MRI sequences.11 Analysis of MRI brain scans undertaken for other purposes might provide a cost-

effective means of identifying some with early Parkinson’s disease, particularly if such changes were 

present in prodromal cases. There is evidence to suggest that this might be feasible. Prodromal brain 

changes have been observed in other imaging modalities. Dopamine active transporter (DAT) scans 

carried out in subjects with hyposmia, REM sleep behaviour disorder (RBD) and non-Parkinson’s 

disease manifesting LRRK2 variant carriers have demonstrated abnormal dopamine uptake compared 

to controls.12 
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A subset of machine learning known as deep learning may be able to detect patterns in scans 

imperceptible by the human visual system. Machine learning describes algorithms that improve 

themselves without explicit instruction through exposure to data. There are different types of 

machine learning, many of which require manual feature selection. Deep learning describes the use 

of layered neural networks to build representations of complicated concepts out of simpler concepts. 

A distinctive aspect of deep learning is that, unlike traditional machine learning, it does not require 

manual feature selection or engineering, so it can learn more abstract representations that might not 

have been anticipated by human practitioners. In diagnostic imaging, deep learning has shown great 

promise in the last decade, being able to match and in some cases outperform human medical 

practitioners for routine radiological reporting.13 Traditional pre-defined feature systems have not 

generally met the stringent performance requirements for clinical utility,14 but deep learning methods 

have achieved higher performances, allowing the deployment of artificial intelligence (AI) based 

applications in a number of defined clinical contexts. 

Previous studies have used the Parkinson’s Progression Markers Initiative (PPMI) to investigate 

whether deep learning might be used to distinguish between Parkinson’s disease and control MRI 

scans.15 Such studies have reported accuracies as high as 100%16. However, a lack of explainability 

as to the regions of interest in these studies has led to major sources of confounding being 

overlooked. For example, in a substantial proportion of studies, serial scans from the same patient 

were included in both training and test datasets, creating a source of data leakage.17 There has also 

been little focus on the PPMI genetic cohorts.  

In this report, we describe the development of deep learning models in both idiopathic Parkinson’s 

disease and GBA/LRRK2 populations with and without Parkinson’s disease, designed to allow 

differentiation from age matched control scans. These models control for potential sources of data 

leakage, and leverage state of the art explainable artificial intelligence techniques to understand the 

predictions made, producing models with a greater level of sophistication and assurance.  

Materials and methods  

Study design and participants 

This study uses data from the PPMI cohort.18 PPMI is an international observational study recruiting 

patients through outpatient neurology practices at academic centres in Austria, Canada, France, 

Germany, Greece, Israel, Italy, the Netherlands, Norway, Spain, the UK, and the USA, with the goal 
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of identifying clinical and biological markers of disease heterogeneity and progression in Parkinson’s 

disease. The PPMI study is registered with ClinicalTrials.gov (number NCT01141023). Detailed 

information about inclusion criteria, informed consent, demographic data, and study design can be 

found on the PPMI website. 

Participants in this study were included in one of four cohorts: idiopathic Parkinson’s disease (non-

carriers of genetic variants associated with Parkinson’s disease), healthy controls,  Parkinson’s 

disease manifesting carriers of GBA and LRRK2 risk variants, and non-Parkinson’s disease 

manifesting carriers of GBA and LRRK2 risk variants. The diagnosis for each group was made by site 

investigators who are movement disorder specialists and confirmed by a central consensus 

committee review. The PPMI study was approved by the institutional review board at each site, and 

participants provided written informed consent. 

Data selection 

All available MRI studies (n=5988) were downloaded from the PPMI website on 25 November 

2020, along with demographic and clinical data, including genetic status and date of Parkinson’s 

disease diagnosis. From this full MRI dataset, all T2-weighted axial scans were identified 

automatically using MRI parameters (Echo Time, Repetition Time) contained within the DICOM 

tags.  

Data organisation 

The data were grouped into pairs of cohorts for the constructing of binary classification models. 

Cohorts to be compared were matched by age and sex. Ten-fold cross-validation was used to develop 

and assess models, with the data divided into 90% training data and 10% validation data in each fold. 

As many subjects have contributed more than one scan to the dataset, scans were grouped by subject 

before being divided so that the same subject never appeared in both the training and the test data. 
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Compared cohorts Cohort 

size 

Median age 

(interquartile 

range) 

% 

male 

Median 

symptom 

duration in 

months 

(interquartile 

range) 

% 

Dementia 

% Mild 

cognitive 

impairment 

IPD < 1 year 

Matched controls 

151 

151 

63 (55-69) 

62 (56-69) 

69 

69 

14 (10-25) 

- 

0 

0 

16 

1 

IPD 1-2 years 

Matched controls 

122 

122 

63 (54-69) 

62 (54-69) 

69 

69 

28 (23-40) 

- 

0 

0 

19 

2 

IPD 2-4 years 

Matched controls 

133 

133 

65 (56-71) 

65 (56-70) 

67 

67 

41 (35-55) 

- 

1 

0 

21 

2 

IPD > 4 years 

Matched controls 

98 

98 

65 (56-73) 

65 (56-72) 

66 

66 

67 (59-83) 

- 

0 

0 

21 

3 

LRRK2 nPD 

Matched controls 

115 

115 

60 (56-65) 

60 (56-65) 

49 

49 

- 

- 

0 

0 

3 

0 

LRRK2 nPD < average age of onset 

Matched controls 

52 

52 

56 (53-57) 

56 (53-57) 

58 

58 

- 

- 

0 

0 

0 

0 

LRRK2 nPD > average age of onset 

Matched controls 

63 

63 

64 (62-68) 

64 (60-69) 

40 

40 

- 

- 

0 

0 

6 

0 

LRRK2 PD 

Matched IPD 

95 

95 

65 (57-70) 

65 (57-70) 

56 

56 

55 (37-82) 

35 (23-59) 

0 

1 

7 

18 

LRRK2 PD 

Matched LRRK2 nPD 

95 

95 

65 (57-70) 

65 (57-70) 

56 

56 

55 (37-82) 

- 

0 

0 

7 

7 

GBA nPD 

Matched controls 

109 

109 

63 (57-67) 

63 (57-67) 

46 

46 

- 

- 

0 

0 

2 

1 

GC GBA nPD 

Matched controls 

101 

101 

63 (57-67) 

60 (55-65) 

47 

47 

- 

- 

0 

0 

2 

0 

GBA nPD > average age of onset 

Matched controls 

91 

91 

64 (61-69) 

62 (57-66) 

45 

45 

- 

- 

0 

0 

2 

1 

GBA PD 

Matched IPD 

127 

127 

62 (55-71) 

62 (55-71) 

58 

58 

41 (23-65) 

35 (24-62) 

1 

1 

18 

15 

GBA PD 

Matched GBA nPD 

109 

109 

63 (57-67) 

63 (57-67) 

54 

54 

58 (26-77) 

- 

0 

0 

12 

2 

Table 1: Patient data for compared cohorts. PD = Parkinson’s disease. IPD = idiopathic PD. LRRK2 PD = LRRK2 PD 

manifesting carriers. LRRK2 nPD = LRRK2 non PD manifesting carriers. GBA PD = GBA PD manifesting carriers. GBA 

nPD = GBA non PD manifesting carriers. GC GBA nPD = Gaucher causing GBA variants non manifesting carriers. 
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Image preprocessing 

Scans were registered to a standard MNI template and skull-stripped using the FMRIB Software 

Library.19 All further preprocessing was carried out using the Python programming language. 

Volumes were cropped to the outermost dimensions of the brain and resized to 32x32x16 voxels. 

Voxel values were scaled between zero and one. 

Neural network architecture 

Python-based deep neural networks were built with Keras using the TensorFlow backend.20 Graphics 

processing unit hardware acceleration was used for neural network training. 

For each pair of cohorts, a three-dimensional convolutional neural network was trained from scratch, 

due to a lack of available pre-trained three-dimensional classification networks. To approximate the 

optimal network structure for these data, different hyperparameter configurations were trialled in the 

early stages. These hyperparameters were tuned following curve analysis at each iteration. Once no 

further reductions in the validation loss could be achieved, the hyperparameter configuration was 

finalised, and this architecture was used for all models (Supplementary Fig. 1).  

Model training 

The models were trained for a maximum of 10000 epochs using stochastic gradient descent with the 

Adam optimisation algorithm.21 The binary cross-entropy loss function was utilised. Images were 

augmented with horizontal flip. Other augmentation methods were trialled but did not result in any 

further increase in performance. Early stopping with a patience of 500 was utilised. The models 

achieving the lowest loss on the validation sets during training were saved using checkpoints. A 

classification threshold was then chosen for the models which best balanced accuracy, sensitivity, 

and specificity. 

Explainability 

SHapley Additive exPlanations (SHAP) were used to explain the models' predictions. SHAP uses the 

game theory concept of Shapley values to calculate the contribution of a factor to a machine learning 

model output.22 In this case, SHAP was used to calculate and visualise the contribution of individual 

pixels to the deep learning model's prediction. To visualise areas of interest, the Shapley values were 

used to generate explainable heatmaps for samples of individual cases, as well as average heatmaps 
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for each comparison. All heatmaps were scaled to the same range of values, and average heatmaps 

were overlaid on a scan from a 64-year-old control subject (the average age of included subjects). 

Results  

Idiopathic Parkinson’s disease 

In this analysis, 504 scans from 193 subjects with idiopathic Parkinson’s disease were used. All 

subjects had undergone genetic testing for LRRK2, GBA or SNCA mutations with no pathological or 

PD risk factor variants found. To investigate whether model performance is affected by disease 

progression, these scans were stratified by time since diagnosis: those acquired more than four years 

after diagnosis (n=98), those acquired two to four years after diagnosis (n=133), those acquired one 

to two years after diagnosis (n=122), and those acquired less than a year after diagnosis (n=151). 

Each of these cohorts was matched on age and sex with healthy control scans in a ratio of 1:1. 

Demographic data for these cohorts are shown in Table 1. Classification thresholds were chosen to 

maximise accuracy and balance sensitivity and specificity (Supplementary Fig. 5). 

In idiopathic Parkinson’s disease subjects who had been diagnosed more than 4 years previously, 

relatively high accuracies (88%, 95% CI [81%, 94%]) and AUC scores (0.89, 95% CI [0.83, 0.96]) 

were achieved. These scores reduced successively as duration from diagnosis decreased (Table 2), 

with scans undertaken less than one year from diagnosis yielding an accuracy of 67%, 95% CI [60%, 

75%], and an AUC of 0.73, 95% CI [0.63, 0.83] (Supplementary Fig. 2). All idiopathic Parkinson’s 

disease models demonstrated similar regions of interest, notably in cerebrospinal fluid voxels 

surrounding the brainstem (Figure 1). 
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Compared cohorts Mean test ROC 

AUC [95% CI] 

Mean test 

accuracy [95% 

CI] 

Mean test 

sensitivity [95% 

CI] 

Mean test 

specificity [95% 

CI] 

IPD < 1 year vs controls 0.73 [0.63, 0.83] 0.67 [0.60, 0.75] 0.67 [0.56, 0.78] 0.67 [0.58, 0.75] 

IPD 1–2 years vs controls 0.73 [0.64, 0.82] 0.70 [0.61, 0.79] 0.70 [0.60, 0.81] 0.69 [0.56, 0.83] 

IPD 2–4 years vs controls 0.81 [0.74, 0.88] 0.82 [0.76, 0.88] 0.80 [0.69, 0.92] 0.80 [0.68, 0.92] 

IPD > 4 years vs controls 0.89 [0.83, 0.96] 0.88 [0.81, 0.94] 0.88 [0.78, 0.98] 0.87 [0.76, 0.98] 

LRRK2 nPD vs controls 0.92 [0.83, 1.00] 0.90 [0.80, 1.00] 0.90 [0.80, 0.99] 0.91 [0.78, 1.00] 

LRRK2 nPD < average age of onset 

vs controls 

0.98 [0.94, 1.00] 0.94 [0.87, 1.00] 0.93 [0.82, 1.00] 0.94 [0.87, 1.00] 

LRRK2 nPD > average age of onset 

vs controls 

0.96 [0.93, 1.00] 0.95 [0.91, 0.99] 0.96 [0.90, 1.00] 0.96 [0.92, 1.00] 

LRRK2 PD vs IPD 0.85 [0.79, 0.92] 0.84 [0.79, 0.90] 0.84 [0.74, 0.93] 0.83 [0.72, 0.95] 

LRRK2 PD vs LRRK2 nPD 0.78 [0.69, 0.87] 0.75 [0.67, 0.83] 0.74 [0.63, 0.86] 0.76 [0.62, 0.89] 

GBA nPD vs controls 0.94 [0.90, 0.99] 0.92 [0.86, 0.98] 0.91 [0.82, 1.00] 0.92 [0.84, 1.00] 

GC GBA nPD vs controls 0.96 [0.93, 0.99] 0.94 [0.87, 1.00] 0.94 [0.87, 1.00] 0.93 [0.83, 1.00] 

GBA nPD > average age of onset vs 

controls 

0.96 [0.93, 1.00] 0.94 [0.90, 0.99] 0.93 [0.88, 1.00] 0.94 [0.88, 1.00] 

GBA PD vs IPD 0.72 [0.62, 0.83] 0.69 [0.61, 0.78] 0.67 [0.54, 0.82] 0.66 [0.51, 0.82] 

GBA PD vs GBA nPD 0.83 [0.69, 0.96] 0.82 [0.72, 0.94] 0.78 [0.64, 0.99] 0.79 [0.62, 0.96] 

Table 2: Model performance results. PD = Parkinson’s disease. IPD = idiopathic PD. LRRK2 PD = LRRK2 PD 

manifesting carriers. LRRK2 nPD = LRRK2 non PD manifesting carriers. GBA PD = GBA PD manifesting carriers. GBA 

nPD = GBA non PD manifesting carriers. GC GBA nPD = Gaucher causing GBA variants non manifesting carriers. 
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A. IPD < 1 year from diagnosis vs matched controls 

 

B. IPD 1-2 years from diagnosis vs matched controls 

 

C. IPD 2-4 years from diagnosis vs matched controls 

 

D. IPD > 4 years from diagnosis vs matched controls 

  

Figure 1: Mean SHapley Additive exPlanation (SHAP) maps for correct predictions of idiopathic Parkinson’s disease (IPD). Pixels highlighted in red have contributed to the 

prediction. 
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LRRK2 

In this analysis, 210 scans from 159 carriers of LRRK2 risk variants were used. These were stratified 

into Parkinson’s disease manifesting carriers (n=95) and non-Parkinson’s disease manifesting 

carriers (n=115). In the case of the non-manifesting carriers, scans were further stratified by time of 

scan and divided into those acquired after the age of 59.4 (the average age of onset of LRRK2 

Parkinson’s disease)9 (n=63), and those taken before (n=52). Each pair of compared cohorts was 

matched on age and sex in a ratio of 1:1. Demographic data for these cohorts are shown in Table 1. 

Classification thresholds were chosen to maximise accuracy and balance sensitivity and specificity 

(Supplementary Fig. 6). 

Models performed well in all cases (Table 2 and Supplementary Fig. 3). Ninety percent of non-

manifesting LRRK2/control scans, 95% CI [80%, 100%], (AUC 0.92, 95% CI [0.83, 1.00]) were 

predicted correctly. This rose to 95%, 95% CI [91%, 99%] (AUC 0.96, 95% CI [0.95, 1.00]) in the 

scans from non-manifesting LRRK2 subjects over the age of onset. Notably the model comparing 

LRRK2 and idiopathic Parkinson’s disease performed well, predicting LRRK2 scans with 84% 

accuracy, 95% CI [79%, 90%] (AUC 0.85, 95% CI [0.79, 0.92]). Average SHAP heatmaps 

demonstrated predominant interest in pixels immediately adjacent to the brainstem parenchyma 

(Figure 2).
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A. LRRK2 nPD vs matched controls 

 

B. LRRK2 nPD < average age of onset vs matched controls 

 

C. LRRK2 nPD > average age of onset vs matched controls 

 

D. LRRK2 PD vs matched IPD 
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E. LRRK2 PD vs matched LRRK2 nPD 

 

Figure 2 Mean SHapley Additive exPlanation (SHAP) maps for correct predictions of LRRK2 carriers. Pixels highlighted in red have contributed to the 

prediction. LRRK2 PD = LRRK2 Parkinson’s disease manifesting carriers. LRRK2 nPD = LRRK2 non Parkinson’s disease manifesting carriers. IPD = idiopathic 

Parkinson’s disease. 
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GBA 

In this analysis, 236 scans from 159 carriers of a GBA variant were used. These were stratified into 

manifesting carriers (n=127) and non-manifesting carriers (n=109). The scans were also stratified 

into 184 scans from carriers of Gaucher causing GBA variants and 51 scans from carriers of the non-

Gaucher causing variants p.E326K (alternative nomenclature p.E365K) and p.T369M (p.T409M). 

There were insufficient numbers to build models using cases stratified into ‘mild’ and ‘severe’ 

variants. The non-manifesting GBA group was also further stratified by time of scan: divided into 

those acquired after the age of 55.8 (the average age of onset of GBA related Parkinson’s disease)9 

(n=91), and those taken before (n=18). The latter cohort was not large enough to build a model. Each 

pair of compared cohorts was matched on age and sex in a ratio of 1:1. Demographic data for these 

cohorts are shown in Table 1. Classification thresholds were chosen to maximise accuracy and 

balance sensitivity and specificity (Supplementary Fig. 7) 

GBA models performed well (Table 2 and Supplementary Fig. 4). The model built for the combined 

non-manifesting GBA cohort was able to successfully predict GBA scans with an accuracy of 92%, 

95% CI [86%, 98%] (AUC 0.94, 95% CI [0.90, 0.99]). This increased marginally to 94%, 95% CI 

[87%, 100%] (AUC 0.96, 95% CI [0.93, 0.99]) in the combined ‘mild’ and ‘severe’ non-manifesting 

GBA cohort. In the cohort of non-manifesting GBA participants over the average age of onset, 

performance was slightly higher than the main model (94% accuracy, 95% CI [90%, 99%], AUC 

0.96, 95% CI [0.93, 1.00]). In common with idiopathic Parkinson’s, SHAP heatmaps demonstrated 

interest in non-parenchymal pixels surrounding the brainstem (Figure 3). Additionally, there was a 

focus on pixels adjacent to the posterior occipital lobe.
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A. GBA nPD vs matched controls 

 

B. GC GBA nPD vs matched controls 

 

C. GBA nPD > average age of onset vs matched controls 

 

D. GBA PD vs matched IPD 
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E. GBA PD vs matched GBA nPD 

Figure 3 Mean SHapley Additive exPlanation (SHAP) maps for correct predictions of GBA carriers. Pixels highlighted in red have contributed to the 

prediction. GBA PD = GBA Parkinson’s disease manifesting carriers. GBA nPD = GBA non Parkinson’s disease manifesting carriers. GC GBA nPD = Gaucher 

causing GBA variants non manifesting carriers. IPD = idiopathic Parkinson’s disease. 
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Discussion  

Our models reliably differentiated Parkinson’s disease from control scans. The findings suggest that 

deep learning can identify progressive changes in both idiopathic and genetic Parkinson’s disease. 

The trained models exhibited good performance for established cases of idiopathic Parkinson’s 

disease, which steadily decreased for models trained on earlier cases of Parkinson’s disease.  

Most of the interest of our models appears focused on cerebrospinal fluid spaces surrounding the 

brainstem. Models might have detected enlargement in the cerebrospinal fluid spaces caused by 

cortical atrophy. Cerebral atrophy has previously been found in Parkinson’s disease, with reported 

reductions in grey matter volume in the frontal and temporal lobes,23 and diffuse gyral atrophy 

throughout the temporal, parietal and frontal cortices.24 A recent study has found enlargement of the 

interpeduncular and right ambient cisterns in patients with Parkinson’s disease.25 Another possibility 

is that the models have detected ventricular enlargement caused by cortical changes. Asymmetric 

lateral ventricular enlargement has been reported in Parkinson’s disease, associated with 

progression.26 Ventricular enlargement has also been associated with cognitive decline in 

Parkinson’s disease.27 Such progressive patterns might explain the models' higher performance for 

later stages of Parkinson’s disease. 

To investigate whether these changes were visible in the genetic cohorts, we built models for the 

non-manifesting carriers of LRRK2 and GBA variants, both genetic risk factors for Parkinson’s 

disease. Between 28–74% of LRRK2 and 8–10% of GBA carriers will develop Parkinson’s disease,7,8 

hence a significant portion of these subjects would be expected to be within the prodromal phase. 

Given the findings of our idiopathic Parkinson’s disease models, we predicted that these models 

would not perform well, as any brain changes were anticipated to be early and subtle. However, the 

performance of these models was remarkably high for both non-manifesting GBA and non-

manifesting LRRK2 groups. Once again, explainability techniques suggested a focus on pixels 

adjacent to the brainstem. In the case of the non-manifesting GBA carriers, the models also 

demonstrated interest in pixels adjacent to the posterior parieto-occipital lobe. GBA-associated 

Parkinson’s disease has been shown to be associated with a higher frequency of cognitive deficits in 

the visuospatial domain as well as visual hallucinations,28 hence atrophic changes within the wider 

visual processing regions would seem to be of particular relevance.  

We are unable to make more certain judgement on the drivers of these very high model performances 

for both non-manifesting GBA and non-manifesting LRRK2. The high performance does however 
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suggest that there is scope to use such techniques to identify carriers of these genetic risk factors 

using machine learning models. It may also suggest that early brain changes in GBA and LRRK2 

carriers are distinct from early brain changes in idiopathic Parkinson’s disease, which would support 

speculation that genetic and idiopathic Parkinson’s disease are separate disease pathways that 

converge on a broadly shared phenotype.29  

To further investigate these findings for potential progressive changes, we subdivided the non-

manifesting GBA and LRRK2 cohorts again by age, to assess whether there was any difference in the 

performance of models built to distinguish scans before and after the average age of onset of 

GBA/LRRK2 Parkinson’s disease. Unfortunately, among the GBA carriers, there were only enough 

scans taken after the average age of onset to build models for these. These had a slightly higher 

performance than models built for all GBA non-manifesting ages. For the LRRK2 carriers, models 

built for scans from the older carriers yielded a marginally higher accuracy than the younger carriers. 

In both cases this may suggest that the brain differences become more pronounced with time. 

Limitations 

The size of the dataset is a limitation of this research. Dividing the PPMI dataset according to scan 

type, genetic status, and timing of scan in relation to diagnosis produces subgroups that may be too 

small to reliably train classification models. If it were possible to obtain more data, this might enable 

the development of even more accurate and generalisable models. We have mitigated this limitation 

to an extent by augmenting the training data with horizontal flip, thus artificially increasing the size 

of the dataset using a well-established technique.30 

A further limitation of this study is the likelihood of variability in the idiopathic Parkinson’s disease 

cohort. Imaging from these subjects will be more heterogeneous in terms of disease cause and MRI 

profile than imaging from the genetic Parkinson’s disease cohorts. This may partially explain the 

comparatively high performances for the models trained on the genetic Parkinson’s imaging. 

Another limitation is the lack of external validation. External validation sets are difficult to obtain as 

appropriate publicly available databases do not exist. Our research team is in the process of planning 

and gaining governance clearance for such accessible studies. In this study we have mitigated this 

limitation as far as possible by using ten-fold cross-validation and reporting the mean validation 

metrics. However, the validation data originate from the same source as the training data, and the 

metrics reported may not be representative of the models' performance on data from a different 

distribution. For example, these models trained on a controlled research dataset may not generalise 
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well to data routinely collected in a clinical setting. An external validation set would allow for more 

accurate assessment of the models' capability to generalise to other populations. 

Future work 

In the future, these results should be validated in an external dataset. Our research team is in the 

process of collecting such a dataset of routinely-collected brain imaging. Routinely-collected 

imaging from carriers of genetic variants associated with Parkinson’s disease would be more difficult 

to collect, but would also be of value to validate these results. 

In addition, the inclusion of more data sources might improve predictive performance. Other 

modalities and functional imaging should be considered in future work. 

Conclusions 

The findings suggest that deep learning can identify progressive changes in both idiopathic and 

genetic Parkinson’s disease. Differences in the brains of non-manifesting genetic variant carriers are 

even more obvious, which may reflect distinct starting points and progression pathways in genetic 

Parkinson’s disease. 

Data availability  

Data used in the preparation of this article were obtained from the Parkinson’s Progression Markers 

Initiative (PPMI) database (https://www.ppmi-info.org/access-data-specimens/download-data). For 

up-to-date information on the study, visit https://www.ppmi-info.org. All data used in this study, as 

well as a data dictionary, are free and publicly available at the PPMI website. Additional related 

documents including the study protocol and assay methods are also available. Data access can be 

requested on the website. There are no restrictions on who can request access. 
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