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ABSTRACT 

Background:  

Post-pandemic surveillance data on COVID-19 infections may help inform future public 

health policies regarding SARS-CoV-2 testing, vaccinations or other COVID-19 measures. 

We estimate the total SARS-CoV-2 infections in Austria after the end of the pandemic (May 

5, 2023, per WHO) up to May 2024 from wastewater data. Those estimates are used in an 

agent-based model (ABM) to estimate average national levels of SARS-CoV-2 infection 

protection (IP) and COVID-19 death protection (DP). 

Methods:  

We use a previously published model estimating total infections in Austria from wastewater 

data and extrapolate the approach up to May 2024. Utilizing those estimates in an ABM, we 

estimate daily national average IP and DP. These estimates are based on waning immunity 

estimates of previous literature and incorporate documented vaccinations. 

Findings:  

We estimate approximately 3·2 million infections between May 6, 2023, and May 23, 2024, 

with a total of 17·8 million infections following May 12, 2020. The ABM estimates that 95% 

of people in Austria were infected with SARS-CoV-2 at least once. It also shows very high 

levels of national average DP a year after the end of the pandemic. National IP remained 

relatively low after the onset of Omicron. 

Interpretation:   

The estimated high number of SARS-CoV-2 infections since the end of the COVID-19 

pandemic in Austria has kept the national average DP very high. These findings should be 

considered for public health decisions on SARS-CoV-2 testing practices and vaccine booster 

administrations.  

Funding:  

Austrian Science Fund (FWF) KLI 1188. 
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INTRODUCTION 

Immune conferring events by SARS-CoV-2 vaccinations and infections were critical to 

mitigate the COVID-19 disease burden resulting in significantly declining infection fatality 

rates (IFR) and the declaration by the WHO of the end of the COVID-19 pandemic by May 5, 

2023. Thereafter, active national surveillance data based on SARS-CoV-2 testing and tracking 

of severe and fatal COVID-19 cases are largely missing. Post-pandemic surveillance data on 

COVID-19, however, may be required to inform future public health policies regarding 

SARS-CoV-2 testing, vaccinations or other COVID-19 measures. In particular estimates of 

the potential COVID-19 disease burden such as the IFR are important to guide us on how to 

balance the risks and benefits of any recommendation regarding COVID-19. 

Estimating the number of SARS-CoV-2 infections based on wastewater data in the post-

pandemic phase provides a measure on the extent of immune conferring events and thus on 

the immunological protection against COVID-19 in the general population.1,2 Immunological 

protection conferred after SARS-CoV-2 infections, termed natural immunity, may be superior 

to vaccine induced immunity as it wanes slower regarding protection against infection.3 

Importantly, immunity by SARS-CoV-2 vaccination, infection and a combination thereof, 

termed hybrid immunity, all provide significant long-term protection against severe and fatal 

COVID-19 that shows little evidence of waning compared to the relatively short-lived 

protection against infections.3–6 In line with this, SARS-CoV-2 infection rates were still 

relatively high towards the end of the COVID-19 pandemic, boosting immunity in the general 

population, whereas IFR continuously declined. How immunity to SARS-CoV-2 and IFR 

further evolved in the post-pandemic phase is, however, largely unknown. 

In this study we used a previously published model on national wastewater data to estimate 

the number of all SARS-CoV-2 infections that occurred in Austria after the declared end of 

the COVID-19 pandemic from May 6, 2023 to May 23, 2024.1 In addition, we estimate the 

nationwide average protection against COVID-19 death (DP) and protection against SARS-
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CoV-2 infections (IP) by using an agent-based model (ABM) as an extension of an SIR 

(susceptible - infectious – recovered) model that estimates waning immunity according to 

literature-based data and incorporates the estimated total infections and documented 

vaccinations.3–5,7–14 

 

METHODS  

Design and analysis  

We conducted a retrospective estimation of total SARS-CoV-2 infections in the entire 

population of Austria from May 12, 2020 to May 23, 2024, based on wastewater monitoring 

data.1,2,15 Additionally, an ABM was constructed to estimate the temporal changes of the 

nationwide level of immunization in form of DP and IP. DP and IP reflect how much lower 

the probability of death and infection, respectively, is when compared to immunity-naïve 

individuals. This is akin to how vaccine effectiveness is often calculated (1- Hazard 

Ratio).16,17 The model was based on individual levels of DP and IP after a previous infection, 

previous vaccination (one, two and three or more doses), a hybrid immunization (at least one 

infection and one vaccination) and their respective rates of waning, retrieved from the 

literature.3–5,7–14 We used the 4-month moving average DP and regressed them onto 4-month 

moving average IFR estimates after April 2020.18 We also similarly regressed estimates from 

January 2022 onward, coinciding with Omicron dominance. The IFRs were estimated by 

dividing all COVID-19 deaths that occurred within a 4 month range around a date, by all first 

positive tests of an infection that occurred in that same period. To account for time lag 

between infection and death, we handled deaths as if they occurred on the first day of the last 

recorded SARS-CoV-2 infection which led to the death. Subsequent positive tests were 

counted as new infections if they occurred at least 90 days later. For the estimates we used 30-

day COVID-19 mortality.19 
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The study was approved by the ethics committee at the Medical University of Graz (no. 33-

144 ex 20/21). Analyses were pre-specified and agreed among authors before any data were 

analysed. The statistical analyses and simulations were conducted using R (version 4.4.1).20 

 

Study data 

Wastewater data from the Austrian SARS-CoV-2 wastewater monitoring initiative was 

provided by the Austrian Federal Ministry of Social Affairs, Health, Care and Consumer 

Protection for the period from November 1, 2022, to May 31, 2024. Estimates of daily active 

infections between May 2020 and December 2022 were provided by a previous publication.1 

Data on nationwide daily vaccinations and number of doses was publicly available for the 

time period between December 27, 2020 and January 1, 2024.21 As in previous publications, 

documented SARS-CoV-2 infections and COVID-19 deaths were provided by the Austrian 

Agency for Health and Food Safety (German: Österreichische Agentur für Gesundheit und 

Ernährungssicherheit; AGES) and acquired through the Austrian epidemiological reporting 

system (German: Epidemiologisches Meldesystem; EMS).16,22 

 

Models 

Infection estimation from wastewater data 

For the estimation of total SARS-CoV-2 infections, we applied a previously published 

approach, that estimated infections in Austria based on wastewater data from May 2020 to 

December 2022.1 The model showed high overlap with two different approaches estimating 

total infections based on IFRs and test positivity (testing rate and reported cases).1 Active 

infection estimates from the original publications were available between April 30, 2020, and 

December 17, 2022, and the model was extrapolated up to May 31, 2024, using the respective 

wastewater data. Usage of backpropagation for estimation of daily new infections (see 
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Supplements) led to the earliest estimates of new daily infections on May 12, 2020, and latest 

on May 23, 2024.  

A description on the wastewater monitoring data as well as the pre-processing and 

normalization methodology is presented in the Supplements, and more detailed in previous 

publications.1,2,15,23,24 In short, the data was filtered, outlier corrected, averaged and 

interpolated before the model estimation. The model is based on a parameter estimate that 

represents a combined shedding and loss factor (how many gen copies can actually be 

identified per infection) which the original paper estimates for multiple timeframes.1 We 

adopted the last used parameter estimate (from May 2022 onward) to extrapolate the analysis 

up to May 31, 2024. We conducted preliminary analyses to recalibrate the parameter by 

varying degrees and incorporated these adjustments into the agent-based model (ABM) that 

accounts for reinfection risk. Our findings indicated that reducing the parameter estimates by 

25% (equivalent to increasing the estimated daily infections by 25%) produced population 

outcomes aligned with later seroprevalence studies (Table S3).25 Consequently, we adopted 

these recalibrated estimates for the main analysis. 

We correlated recorded infections with the estimated total infections between December 17, 

2022, and June 30, 2023, as an indication of how well documented fluctuations in infections 

are represented in the estimates. This marks the period in which the previous study did not 

estimate total infections, but infections were still officially documented. For a detailed 

description of the model see Supplementary Methods and the original publication.1  

  

Agent-based model  

We constructed an ABM to simulate the immunity level (DP and IP) of the general population 

of Austria between May 12, 2020, and May 23, 2024. It was conceptualized as an extended 

SIR model where the individual state of every agent is tracked, and previously estimated 

infections are probabilistically distributed based on the individual IP levels (individual 
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susceptibility = 1-IP) (Figure 1). We additionally included the option of vaccination to move 

from S to R. The state tracks number of previous infections, number of previous vaccinations, 

days since last infection and days since last vaccination for every agent in R (Figure 1). From 

this state we categorized every agent into one of five compartments (natural immunity; 

vaccinated once; twice; three or more times; and hybrid immunity). Agents in these categories 

have a non-zero IP which wanes over time, the rate of which is based on published data 

estimates of IP waning in the respective category.3–5,7–14 Agents in S have an IP of zero. 

Infected agents are in I for 14 days before moving to their respective R compartment. In this 

time they cannot be infected or vaccinated. We additionally tracked the daily individual DP, 

also based on published data estimates of DP specific waning.3–5,10–13 By averaging the 

individual IP and DP respectively, excluding currently infected individuals, we calculated the 

level of daily average national IP and DP. Vaccinations were lagged 14 days to account for 

the time needed to become effective. We set the population to 9,020,000.1 

Waning protection was implemented using a Gompertz function.4 To estimate the parameter 

for the function based on waning estimates, we fitted the Gompertz curve to the waning 

estimates using non-linear least squares.4 

We retrieved individual estimates of waning immunity for first, second and three or more 

vaccinations, as well as estimates for previous infections and hybrid immunity from previous 

publications.3–5,7–14  For a description of waning immunity estimates including sources and 

values, see Supplementary Methods (Table S1 and S2, Figure S1). If hybrid immunity 

occurred, or a subject with hybrid immunity had an additional event, protection against 

reinfection and death were increased to the same level irrespective of number of infections, 

vaccination dose and event order.9 Studies show much lower IP in the Omicron period than 

before. So we researched separate estimates for pre-Omicron and Omicron periods and 

continuously transitioned waning estimates of individual IPs between them throughout a 

month in early 2022, at the onset of Omicron.4 There is no randomized data about the 
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effectiveness about COVID-19 vaccines in the setting of the Omicron variant. Existing 

literature does not indicate that Omicron led to a decrease of protection from death, however 

the methodology used to assess for vaccine effectiveness against death may be inherently 

biased.27,28 For more details and a full mathematical description of the model please see the 

Supplementary Methods. 

Our pre-analyses showed that variability of estimates decreased with lower simulation scaling 

(see Supplementary Methods; Figure S3). Thus, we decided to run the main simulation 15 

times at a scale factor of 10. Scaling was performed by dividing daily estimated infections, 

vaccinations and the population by the scaling factor and rounding. The approach in this paper 

constitutes a conceptual extension to previously published investigations on gradual waning 

of immunity.29–31 We accounted for various sorts of bias like healthy vaccinee bias in the 

sensitivity analyses.16,17,32–34 

 

Sensitivity analyses 

We conducted sensitivity analyses on the parameters of waning in previously infected, one 

two or more times vaccinated and hybrid immunized individuals, by rerunning the simulation 

with waning DP 110%, 90% and 75% the magnitude of the original waning estimates. We 

also decrease IP estimates for previous infection IP only, infection plus hybrid IP and all three 

vaccination IP conditions to 75% to see the effects on infection distributions. We addressed 

the possibility of overestimating or underestimating the number of infections after the end of 

the pandemic by performing the main analysis with 125%, 110%, 90% and 75% of the 

estimated daily infections. To investigate the possibility of over and underestimating 

infections throughout the whole pandemic we also ran it with 125%, 110%, 90% and 75% of 

the estimated daily infections. We addressed healthy vaccinee bias by running the simulation 

with decreased DP for vaccinated individuals (including the one; two; and three or more 

vaccination categories), using 75% and 50% of the main simulation magnitude. Some 
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literature indicates no waning of DP in previously infected and vaccinated.4,5 To address this 

possibility we ran the simulation with alternative estimates for infection and hybrid DP with 

no waning and estimates that were between these and the original estimates. Lastly, we ran 

the simulation without vaccinations. To decrease computational demand, we downscaled the 

sensitivity analyses by a factor of 200 while still running them 15 times each.  

 

RESULTS 

Infection estimation from wastewater data  

The model estimated a total of approximately 3·2 million infections between May 6, 2023, 

and May 31, 2024. Between May 12, 2020, and May 23, 2024, 17·8 million total infections 

were estimated in Austria (Figure 2; see Table S3 for exact estimates used in ABM; also see 

Figure S4 and Supplementary results for confidence intervals). Including the 20,208,999 

documented vaccinations, this totals close to 38 million immune conferring events (Figure 2). 

Extrapolated estimates for the period between December 17, 2022, and June 30, 2023, were 

correlated by r = 0.985 with seven day averaged documented infections (Figure S5) 

 

Agent based model 

The agent-based model shows the steady rise of the relative protection of the Austrian 

population throughout the pandemic, with ongoing high average DP a year after the 

pandemic’s end (Figure 2 and 3). On March 5, 2023, and March 23, 2024, the estimated 

national average DP was approximately 90% and 82% respectively. Thus, the protection is 

still at 92% of the level it was at, by the end of the pandemic (Table S3).  

Our model estimated that by May 23, 2024, a total of 99% of the Austrian population have 

had at least one immune conferring event, including 95% with at least one infection (Table 

S3). About 69% of the infected had multiple SARS-CoV-2 infections (Figure S8), and 47% of 

the population had their first infection before or without vaccination (Figure S9). 
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IFR decreased over the course of the pandemic, especially with the onset of Omicron (Figure 

3). The last estimated IFR (April 1, 2023) was 0·03%. Four month rolling window DP 

predicted IFR estimates after June 29, 2020 significantly (R2 = 0·5246, F(1,1005) = 1104 , p < 

·001). Estimates after the onset of Omicron (January 2022) were also significantly predictive 

of IFR (R2 = 0·7681, F(1,454) = 1504, p < ·001) (Figure S10).   

 

Sensitivity analyses 

Sensitivity analysis (Table S3 and Figure S11-S16) shows that the relative change in DP 

between May 5, 2023, and May 23, 2024, was DP never changed by more than 10%, 

irrespective of condition, with the biggest impact on this relative change being the potential 

overestimation and underestimation of infections and using alternative DPs that don’t wane 

(Table S3). Investigation of possible healthy vaccinee bias (downscaling protection against 

death provided by 1, 2 and 3+ vaccinations) showed little effect on national DP by May 2024 

(Figure S14). Figure 2 shows the positive effect of vaccination in the population, as 

estimations excluding vaccinations show a much slower increase in DP across 2021 and 2022. 

The conditions with alternative DP estimates (slower or no waning) showed less to virtually 

no waning in national DP between May 2023 and May 2024 (Figure S15). For all results see 

Table S3 and Supplementary Results. 

 

DISCUSSION 

We estimated that 3·2 million SARS-CoV-2 infections (about 35% of the population) 

occurred in Austria between May 6, 2023, and May 23, 2024. The ABM indicates high 

national DP from COVID-19 throughout this period even with the low number of recent 

vaccinations and no data on vaccination after January 2024. Sensitivity analyses showed that 

these findings are mostly robust to fluctuations in parameter choice. Reducing vaccination DP 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 23, 2024. ; https://doi.org/10.1101/2024.11.20.24317646doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.20.24317646
http://creativecommons.org/licenses/by-nd/4.0/


13 
 

to account for a potential healthy vaccinee bias did not alter our findings that protection 

against death is high up to May 2024.  

The findings suggest that Austria has maintained a high level of post pandemic protection 

against COVID-19 deaths, irrespective of vaccine boosters. The high number of estimated 

infections points to a high number of asymptomatic or mild cases of COVID-19, which is in 

line with very low IFR estimates at end of the pandemic. This may be due to a combination of 

very low IFR for the currently prevailing variants plus a high level of national DP. Our 

findings should be considered for public health policy regarding COVID-19 measures such as 

weighing the potential benefits and potential harms of SARS-CoV-2 testing.35–38 

It further highlights the need to critically scrutinize the continued application of booster 

vaccines. As the number of individuals who have never been SARS-CoV-2 infected dwindles, 

and study data from Austria show that booster vaccinations may have no significant effect on 

the COVID-19 death risk for those who were previously infected, it is critical to cautiously 

balance the benefits with the risks and costs of further COVID-19 vaccine doses.16 Such 

considerations must take into account various adverse health consequences of SARS-CoV-2 

infections beyond COVID-19 mortality but also the small but existing harms of vaccinations 

and the overall cost-effectiveness. 

Results from the ABM further show that, even when accounting for possible infection 

overestimation, underestimation of waning and vaccine effectiveness overestimation, average 

national DP remains high. This may be in part due to the fact that since protection against 

infection wanes faster than protection against death, which leads to new infections in 

individuals before their DP can wane significantly. The very high number of asymptomatic or 

mild cases and the very low IFR support the hypothesis that the more time elapses since the 

beginning of the COVID-19 pandemic, the more SARS-CoV-2 resembles the endemic 

characteristics of the other human coronaviruses.39,40 This may raise the question, whether 
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public health policy regarding SARS-CoV-2 should be similar as for the other endemic 

human coronaviruses.41 

 

Limitations 

Extrapolation of total SARS-CoV-2 infection estimates was based on parameters value 

estimates from 2022, thus potentially limiting the validity of our estimates on the new daily 

infections from 2023 onward. We tried to address this in the pre-analyses and sensitivity 

analyses, by recalibrating parameter estimates and varying estimated infections (Figure S11). 

These estimates themselves are based on seroprevalence studies.42,43 Thus, potential errors 

may also be reflected in our ABM. While seroprevalence wanes and estimates late in the 

pandemic are potentially underestimations, the percentage of vaccinated individuals was 

unrepresentatively high leading to a potential overestimation. Consequently, individual 

seroprevalence estimates are not perfect indicators of population-level protection; however, 

the referenced seroprevalence estimates and our findings show significant alignment with 

estimates from various other countries..44,45  

We also do not have total infection estimates before May, 12, 2020, even though this marks 

the period with the highest percentage of unidentified infections.42 As these should make up a 

relatively small part of overall infections, we do expect this to change our main conclusions, 

but it may mean the true rate of DP is higher than reported in this paper. 

General limitations of infection estimation from wastewater data and differences in 

preprocessing regimes have been documented in previous publications 46,47 

The ABM has multiple limitations based on available data and assumptions. For example, 

there are no data available on vaccination after January 1, 2024. As such the national 

protection against death may be underestimated thereafter, although vaccination rates were 

already exceedingly low by the end of 2023, e.g. only 62,172 (0·69%) people received a 
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vaccine dose in November or December 2023 (Figure S2). We did not consider variations in 

effectiveness of different vaccine types.  

Vaccine effectiveness estimates were, out of necessity, based on observational data, which is 

prone to multiple types of biases. Thus, there is inherent uncertainty about the amount and 

duration of IP and DP during the entire study period. We are not able to determine with our 

current methodology the exact extent to which vaccinations, prior infections and intrinsic 

virulence of the Omicron variant have independently affected the currently very low IFR 

(0·03%). 

The model further doesn’t account for probabilities of infection and rates of waning 

moderated by age, comorbidities or other risk factors. As such, average national protection 

against death may be high, but some individuals may still have low levels of protection. It is 

unclear though whether vaccine boosters by late 2024 and thereafter might be effective even 

in this population sub-segment. The model also doesn’t account for changes in population 

based on births, deaths, immigration, emigration or aging. Additionally, simulation of 

protection trajectories without the application of vaccines do not consider any changes in the 

number of infected that such a scenario might have led to. 

 

Conclusion   

This national investigation in Austria based on wastewater data estimates a high number of 

SARS-CoV-2 infections and thus a high level of immunological protection against COVID-19 

deaths after the official end of the COVID-19 pandemic (i.e. May, 5, 2023). In light of 

previous studies on the potential harm of SARS-CoV-2 testing and studies showing booster 

vaccinations may not significantly increase protection from COVID-19 death in previously 

infected individuals, our findings support the ongoing recommendation against widespread 

SARS-CoV-2 testing and boosters for large parts of the general population.16,35–38 Further 

research on booster efficiency, average national protection levels and harm of testing as well 
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as economical pressure of ongoing COVID-19 policies on the health care system is needed, to 

address possible up- and downsides of changes in those policies. 
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Figure 1: IP and DP estimation model concept. Agents can be in state S, I or R. Recovered 

agents save state information about previous events to group them into natural immunity, 

vaccinated with 1, 2 or 3+ doses and hybrid immunity. Group specific waning rates and 

information on days since last infection are then used to calculate the daily IP and DP.   
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Figure 2: DP (red) and protection from infection (green). Dashed lines are simulated 

estimates of protection levels without vaccinations.  
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Figure 3:  Comparison of average estimated protection from death (red) and IFR (blue). The 

IFR is based on the infection estimates and 30-day mortality data. DP and IFR represent 4-

month moving averages. Note the difference in scales between IFR and DP. 
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Supplements: Estimates of SARS-CoV-2 infections and population immunity after the 
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Supplementary Methods 

Wastewater Model 

 

Data Description 

The data from April 30, 2020 to December 17, 2022 were taken from Rauch et al., (2024).1 The extrapolation of 

this approach to March 30, 2024, is also based on this paper.   

The dataset on wastewater data provided by the Austrian Federal Ministry of Social Affairs, Health, Care and 

Consumer Protection spanned the period from October 30, 2022, to May 31, 2024. It included 48 wastewater 

treatment plants (WWTP) from 2023 onward (24 before), with 7039 measurements total. These treatment plants 

cover approximately 58% of the Austrian population. Wastewater samples were collected twice a week. 

Viral concentration is determined and processed as previously explained.2 Additionally, different hydrochemical 

parameters were used for characterizing the catchment population of the monitored wastewater treatment plants. 

For the chemical oxygen demand (COD) estimates, per capita equivalents were calculated using 120 g/d/person. 

Ammonia-nitrogen (NH4-N) estimates were calculated using 8.0 g/d/person. Total-nitrogen (Ntot) estimates 

were calculated using 11.0 g/d/person.3 

 

Data Preprocessing 

For a detailed description of preprocessing see previous publications.1,2  

To compensate for inherent measurement noise, Rauch et al. (2021) suggest the approach to exclude outliers if 

the flow volume (Q) exceeds the 90 percentile of the long term recorded inflow data of a WWTP (needs at least 

a year of data points).4 

Estimates are normalized based on population-size markers, to compensate for population fluctuations within a 

catchment area. Following Arabzadeh et al. (2021), we used NH4-N prioritised over COD and Ntot.3 We 

computed the daily weighted averages of viral load levels per federal state. The weights correspond to the design 

capacity of the respective WWTPs, prioritising large plants over smaller ones. The design capacity of each 

WWTP is a parameter, that serves as a weighting factor when computing the weighted average of multiple 

measurements in spatial aggregation. In principle, the preferred weighting factor is the exact catchment 

population. However, this information is currently unavailable to us.  

This results in a scattered time-series from WBE measurements that are not gapless on a daily basis. To 

distribute the timeseries data equally both, up- and downsampling approaches are viable.5 Here we used 

upsampling to get daily estimates by linearly interpolating gaps before applying data smoothing. Lastly, data 

filtering techniques are applied to reduce the signal noise and provide a mechanism to obtain the underlying 

information of the signal.  

 

Model Description 

The measured virus load at the monitoring point is related to the population drained with the sewer system: 

𝐿𝑣𝑖𝑟𝑢𝑠 =
𝑐𝑣𝑖𝑟𝑢𝑠 ∗ 𝑄

𝑁
 

Where Lvirus is the population normalized virus load in gene copies/person/day, Q is the flow volume in L/d, cvirus 

is the virus concentration in the sample in copies/L and N is the catchment population. 

Under the assumption that each infected person is shedding a certain load of gene copies per day (Lshed in gene 

copies/P/d) into the sewer system and additionally introducing a general loss term floss we get: 

 

𝐼(𝑡 + 𝑡𝑙𝑒𝑎𝑑) =
𝐿𝑣𝑖𝑟𝑢𝑠(𝑡) × 𝑁

𝐿𝑠ℎ𝑒𝑑 × 𝑓𝑙𝑜𝑠𝑠

=
𝐿𝑣𝑖𝑟𝑢𝑠(𝑡) × 𝑁

𝐿𝑐𝑜𝑟𝑟
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Where I is the number of infected individuals in the watershed, tlead is the time lead and floss is a dimensionless 

loss factor. 

Rauch chose tlead = 7 in the original publication, based on cross correlation with documented infections.1 We 

found that the cross correlation of our estimates was highest with tlead = 0, so we used that. Rauch and colleagues 

estimated different Lcorr values for different timeframes. We chose to apply their estimate for the most recent 

timeframe (Lcorr = 10^10.090). The population was set to N = 9.02 × 106. As these values represent currently 

infected, we needed to apply a backcasting algorithm to estimate daily new infections. 

Backcasting 

The backcasting methodology used here is designed to estimate daily infections based on daily active cases. The 

key assumption is that an infection lasts 14 days on average. 

We first smoothed the estimated undocumented daily infection counts via 14 days centred moving average. The 

core of the backcasting process involves iteratively refining the infection level estimates, which were initially 

based on the smoothed data. Potential estimation errors from variability in counting method was addressed by 

setting negative testing values to 0. Lastly, after refining the estimates, a secondary smoothing step was applied 

to the calculated infection values.  
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ABM Model  

Model Description 

Our novel ABM is an extension of the classic SIR framework that accounts for multiple immunity states, 

vaccination, and time-dependent waning immunity. It tracks recovery states for infections, different vaccination 

statuses and hybrid immunity, allowing for a nuanced representation of population-level immunity dynamics. 

The model uses a Gompertz function to simulate waning immunity based on time since last infection or 

vaccination, providing a novel approach to long-term epidemic modelling of national immunity levels. 

Note: Conceptually this model is closer to the literature on extended SIRS model (Susceptible-Infected-

Recovered-Susceptible) than on SIR frameworks.6,7 We decided to not introduce the possibility to move from R 

so S for multiple reasons: (1) mathematically the Gompertz function asymptotically approaches its upper limit. 

Thus, waning immunities would never truly be back to base level after an event. This may be addressed by 

setting a range at which immunity can be considered to have reached 0. (2) In the context of our data, it seems 

unreasonable that more than a few agents avoided infections for long enough for the waning to progress this far. 

(3) Most importantly, immunity levels against infection may wane enough to be comparable to agents in S, but 

waning of protection from death is estimated to be so slow that it won’t reach 0 in the timeframe of this study 

(more than 4 years). Thus, categorizing previous R grouped individuals into S, would be a misrepresentation of 

the underlying state. In other words: We do not think that grouping individuals with no IP but some level of DP 

into the category “Susceptible” is a sensible practice. This should be (re-)considered by researchers that plan to 

use this model on longer timescales, with lower infection rates, on different diseases or with different waning 

functions.  

Model Structure: 

For each agent i at time t: 

1. Ci(t): State variable (0: Susceptible, 1: Infected, 2: Recovered) 

2. Ii(t): Infection status (0, 1+) 

3. Vi(t): Vaccination status (0, 1, 2, or 3+ doses) 

4. Ti(t): Time since last immunity-affecting event 

5. PR,i(t): Protection level against infection 

6. PD,i(t): Protection level against death 

7. IMi(t): Immunity type  

a. no immunity (0) 

b. infection (1)  

c. vaccination doses 

i. one (2) 

ii.  two (3)   

iii.  Three or more (4) 

d. hybrid immunity (5) 

 

Model Implementation 

1. Initialize all N agents with all states = 0. 

2. For each time step t: 

a. Update immunity levels PR,i(t) and PD,i(t) for all agents based on their immunity type IMi(t). 

b. Apply the Infection Process using infection data. 

c. Apply the Vaccination Process using vaccination data. 

d. Apply the Recovery Process for infected agents. 

e. Update immunity timer Ti(t) for all agents. 

f. Collect population-level statistics, including distributions of immunity types and protection 

levels. 

Immunity Dynamics 

Gompertz-based waning immunity: Immunity wanes according to a Gompertz function, depending on immunity 

level i: 
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𝐺𝑖(𝑇𝑖(𝑡)) = 𝑎𝑖 ∗ 𝑒−𝑏𝑖∗𝑒−𝑐𝑖∗𝑇𝑖(𝑡)
 

Protection from infection: 

𝑃𝑅,𝑖(𝑡) = 𝑎𝑅,𝐼𝑀𝑖
∗ 𝑒−𝑏𝑅,𝐼𝑀𝑖

∗𝑒
−𝑐𝑅,𝐼𝑀𝑖

∗𝑇𝑖(𝑡)

 

Protection from death: 

𝑃𝐷,𝑖(𝑡) = 𝑎𝐷,𝐼𝑀𝑖
∗ 𝑒−𝑏𝐷,𝐼𝑀𝑖

∗𝑒
−𝑐𝐷,𝐼𝑀𝑖

∗𝑇𝑖(𝑡)

 

Immunity Type Update Rules 

Upon infection: 

𝐼𝑓 𝑉𝑖(𝑡) = 0: 𝐼𝑀𝑖(𝑡 + 1) = 1 

𝐼𝑓 𝑉𝑖(𝑡) > 0: 𝐼𝑀𝑖(𝑡 + 1) = 5 

Upon vaccination: 

𝐼𝑓 𝑅𝑖(𝑡) = 0 ∨  𝐼𝑓 𝑉𝑖(𝑡) = 0: 𝐼𝑀𝑖(𝑡 + 1) = 2 

𝐼𝑓 𝑅𝑖(𝑡) = 0 ∨  𝐼𝑓 𝑉𝑖(𝑡) = 1: 𝐼𝑀𝑖(𝑡 + 1) = 3 

𝐼𝑓 𝑅𝑖(𝑡) = 0 ∨  𝐼𝑓 𝑉𝑖(𝑡) ≥ 2: 𝐼𝑀𝑖(𝑡 + 1) = 4 

𝐼𝑓 𝑅𝑖(𝑡) > 1: 𝐼𝑀𝑖(𝑡 + 1) = 5 

 

Infection Process 

For each time step t: 

1. Get the number of new infections Inew(t) from estimate data. 

2. Create a pool of potentially infectable individuals: 

𝑃𝑜𝑜𝑙 = {𝑖 | 𝐶𝑖(𝑡) = 0 𝑜𝑟 𝐶𝑖(𝑡) = 2} 

3. For each new infection (from 1 to Inew(t)): 

a. Calculate selection probabilities for each individual i in Pool: 

𝑝𝑟𝑜𝑏𝑖 =
(1 − 𝑃𝑅,𝑖(𝑡))

∑ (1 − 𝑃𝑅,𝑗(𝑡))𝑗

    for all 𝑗 ∈ Pool 

 

b. Randomly select an individual based on these probabilities 

c. Update selected individual: 

𝐶𝑖(𝑡 + 1) = 1 

𝐼𝑖(𝑡 + 1) = 𝐼𝑖(𝑡) + 1 

d. Update the immunity type IMi (t+1) according to Immunity Type Update Rules 

e. Reset immunity timer Ti(t+1) = 0 

 

Vaccination Process 

For each time step t: 

1. Get the number of new vaccinations for each dose Vnewx
(𝑡), where x=1,2,3,4+ from vaccination data. 

2. For each vaccination dose x from 1 to 4+: 

a. Create a pool of eligible individuals for each dose: 
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If x = 1: PoolV𝑥
= {𝑖 | 𝑉𝑖(𝑡) = 0 and 𝐶𝑖(𝑡) ≠ I} 

If x = 2: PoolV𝑥
= {𝑖 | 𝑉𝑖(𝑡) = 1 and 𝐶𝑖(𝑡) ≠ I} 

If x = 3: PoolV𝑥
= {𝑖 | 𝑉𝑖(𝑡) = 2 and 𝐶𝑖(𝑡) ≠ I} 

If x = 4 + : PoolV𝑥
= {𝑖 | 𝑉𝑖(𝑡) ≥ 3 and 𝐶𝑖(𝑡) ≠ I} 

 

 

b. For each new vaccination of dose x (from 1 to Vnewx
(𝑡)):i. If PoolVx

 is not empty: 

i. Randomly select an individual i from PoolVx
 

ii. Update vaccination status: Vi(t+1) = Vi(t) + 1 

iii. Update immunity type IMi(t+1) according to Immunity Type Update Rules 

iv. Reset immunity timer: Ti(t+1) = 0 

v. Update protection levels PR,i(t+1) and PD,i(t+1) 

3. Update population-level vaccination statistics 

 

Recovery Process 

For each agent i with Ii(t) = 1: 

If the agent has been infected for 14 days: 

1. Set Ci(t+1) = 2 

2. Update immunity type IMi(t+1) according to Immunity Type Update Rules 

3. Reset immunity timer Ti(t+1) = 0 
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Gompertz Curve Parameters 

The parameter choice for the national protection from infection and death model was based on multiple 

previously published estimates.8–18 Estimation of Gomperz Curves Parameters were performed for pre-Omicron 

Era and Omicron Era. Protection was continuously changed from the pre-Omicron curve estimates to the 

Omicron curve estimates between December 25th 2021 and January 25st 2022. Different estimates for hybrid 

immunity showed consistently higher values than from a previous infection only.12 Interestingly, all of them 

showed relatively faster waning, this inevitably leads to a lower immunity level for hybrid immune than from 

previous infections. As waning estimates do are usually not performed or reliable on the time scale of multiple 

years, we expect that the hybrid immunities are approaching the immunity of previously infected. As such we set 

the lower bound for hybrid immunity at the respective waning immunity of the previous infected immunity 

(Figure S1). 

Pre-Omicron Era 

Table S1 show the waning estimates with their respective time points (in days) and the respective estimated start 

values and the reference from which this value was taken. Note that waning values of protection against 

infection were continuously reduced between December 25th 2021 and January 25st 2022 to Omicron period 

levels. This transition is not shown in the following figures as transition is infection time specific (Figure S1). 

The most reliable estimates on vaccination data in pre-Omicron Era were available for vaccine dose 2 (primary 

vaccination). As such we used point estimates for vaccination dose 1 and 3 to scale the dose 2 waning curve 

appropriately. 
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Figure S1: Waning curves for protection against infection pre-Omicron (a), protection against infection in 

Omicron (b), main protection against death (c), in-between alternative and main protection against death 

estimates (infection and hybrid immunity) (d) and alternative protection against death estimates (e). Hybrid 

immunity wanes faster than protection from a previous infection. We assumed that hybrid immunity wanes to the 

level of infection from a previous protection and then stays at that level. 

 

Post-Omicron Era 

The most reliable estimates on vaccination data in Omicron Era were available for vaccine dose 3 (booster 

vaccination). As such we used point estimates for vaccination dose 1 and 2 to scale the dose 3 waning curve 

appropriately (Figure S1b). 

While some studies show small decreases in protection against death of previously infected in Omicron time 

periods, compared to pre-Omicron periods these estimates have two problems.19 First, the number of deaths in 

Omicron periods is so low, even for people without immunity, that a single death can already cause smaller 

protection estimations than in previous variants. Second, and more importantly, at this point of the pandemic, 

partially driven by the Omicron itself, the number of hidden infections is so high that even in test-negative 
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designs the non-infected population is likely permeated by previously infected persons. Thus, indirectly 

decreasing the protection estimate. As most of the DP values for previously infected, are still extremely high, we 

thus concluded that the difference between pre-Omicron and Omicron DP estimates is likely to be an artefact. As 

such we did not adjust DP for previously infected, vaccinated or hybrid immune individuals at the onset of 

Omicron.  
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Table S1: Estimates of infection protection waning rates, references and reasoning of Gompertz functions. 

  
Estimated protection 

at day 1 (in percent) 

Values (days: 

protection(%)) Reference Comment 

pre-Omicron IP     

  waning after infection 93.24 

14: 90.5, 487: 70,   

669: 50 Chemaitelly et al., 20228 These are projected estimates 

  waning after 1 vaccination dose 38.01  Chemaitelly et al., 20219 

  
We scaled the Gompertz curve estimates of 2 vaccination dose waning by the ratio between initial 

protection of 1 dose and 2 doses as given by Chemaitelly et al., 2021; 36.8% / 80.5%=0.457 

  waning after 2 vaccination doses 83.18 

30: 80.5, 183: 54.6, 

274: 45.9 Menegale et al., 202310  

  waning after 3 or more vaccination doses 87.0   Braeye et al., 202311 
We scaled the Gompertz curve estimates of 2 vaccination dose waning by the ratio between initial 
protection of 3 doses and 2 doses as given by Braeye et al., 2023; 87% / 83.18% = 1.05 

  waning after hybrid immunity 97.53 

30: 96.58,    91: 96.1,    

152: 90.25, 213: 
89.17  Goldberg et al., 202212 

Goldberg provides rate ratios with 2 vaccine doses as a reference value. We used the relative protection of 2 
vaccine doses stated above to calculate these values from the rate ratios of hyrbid immunity. 

Omicron IP     

  waning after infection 80.77 

40: 77.3  , 126: 53.0, 

196: , 45.5 266:  37 , 

336: 37 , 406: 37 

Covid-19 Forecasting 

Team, 202313 

Used values from Table S2 category: Protection against Omicron  

BA.2 reinfection 

  waning after 1 vaccination dose 22.88  Chemaitelly et al., 20219 

We scaled the Gompertz curve estimates of 2 vaccination dose waning by the ratio between initial 

protection of 1 dose and 2 doses as given by Chemaitelly 2021 (pre Omicron ratio);  36.8% / 80.5%=0.457 

.We used the same ratio as pre Omicron as to our knowledge, there are no studies on effectiveness of partial 
vaccination against infection in the Omicron period. 

  waning after 2 vaccination doses 50.06 

30:44.4, 182: 20.7, 

274: 13.4 Menegale et al., 202310 

These values present the estimates to calculate the value at day 1, not the values used for the actual 

Gompertz curves. We used the here estimated value to calculate a scaling from 3 vaccine doses. Menegale 
provides waning estimates for two doses, but these are likely biased to people that did not get a third 

vaccination dose. This is also indicated by the waning of IP which is much slower in the estimate of 2 doses 

than the estimate of 3 doses; 50.06% / 64.6%  = .775 

  waning after 3 or more vaccination doses 64.6 
30: 55.4, 183: 36.0, 
274: 28.9 Menegale et al., 202310  

  waning after hybrid immunity 86.38 

30: 80.1, 61: 74.8  

91: 68.6 , 122: 61.6  
183: 46.5  Bobrovitz et al., 202314 

We used the values for hybrid immunity (first booster vaccination) from Table 2. As these match more 
coherently with the waning after infection estimations, and are likely more reflective of omicron effects. 

Note: the inverse of the protection value (susceptibility) is used to estimate the Gompertz function 

Figure S1 shows the respective Gompertz curves 
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Table S2: Estimates of death protection waning rates, references and reasoning of Gompertz functions 

  

Estimated 
protection at day 1 
(in percent) 

Values (days: 
protection(%)) Reference Comment 

protection against death     

  waning after infection 97.27 

40: 97.7,  126: 95.9, 
196: 92.9, 266: 
91.0, 336: 88,7, 
406: 88,7 

Covid-19 Forecasting 
Team, 202313 Used values from Table S2 category: Protection against ancestral, Alpha, and Delta severe disease 

  waning after 1 vaccination dose 68.35 x Rahmani 202215 

To our knowledge, there are no papers on waning of a single vaccination dose. Thus, we scaled the 
Gompertz curve estimates of 2 vaccination dose waning by the ratio between "initial protection" of 1 
dose and 2 doses as found by Rahmani 2022 (68%/92%=0.739%) 

  waning after 2 vaccination doses 92.48 
28: 91.0, 131: 91.0, 
154: 85.0, 182: 86.0 Wu 202316  

  waning after 3 or more vaccination doses 94.89 
18: 88.0, 45: 86.0, 
75: 80.0, 105: 82.0 Grewal 202317 

Studies on waning of third vaccine dose (first booster dose) show similar values to the second vaccination 
dose, but consistently faster waning. We expect that this is due to the period and nature of the 
conducted studies. As Omicrons increased immune evasion led to an extremely high number of cases, it 
is likely that the number of unidentified cases was also high. Leading to waning estimates that are based 
on group comparisons where more and more control group members actually had a previous infection. 
Thus, we decided to use the estimated initial death protection(day1) from Berec 202218: 94.89 (all 
estimates 31: .92; 91: .93; 182: .90, 243: .83) and scale waning estimates given by two vaccine doses to its 
level (94.89 / 92.48 = 1.03). 

  waning after hybrid immunity 98.39 

30: 98.0, 61: 97.6, 
91: 97.2, 122: 96.7, 
183: 95.3 Bobrovitz 202314 

We used the values for hybrid immunity (first booster vaccination) from Table 2. The other option (hybrid 
immunity (primary series vaccination)) actually shows increasing protection over 12 months. Probably 
due to noise. 

alternative estimates     

  waning after infection 95.00 
122: 93.4, 213: 94.3        
274: 94.2, 304: 98.1 Chemaitelly 20228 

Estimates as seen in Figure 2c. We only used estimates that had at least one death. We did not use the 
14+ month estimate as we do not have a medium estimate on the days this category encompasses 

  waning after hybrid immunity 96.39 

30: 95.7, 61: 95.9, 
91: 96.0, 122: 96.2, 
183: 96.5, 274: 97, 
365: 97.4 Bobrovitz 202314 Used the "primary series vaccination" estimates 

Note: the inverse of the protection value (susceptibility) is used to estimate the Gompertz function 
Figure S1 shows the respective Gompertz curves 
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Vaccination 

Figure S2: (7 Day Average) Vaccinations by Dose 

 

Effects of Scaling on Variance between Runs 

Early scaled analyses showed clearly that variations in IP and DP between multiple runs are small and keep 

decreasing with lower scaling. We calculated Root Mean Square Error (RMSE) to quantify the difference 

between multiple runs and based on these ever-decreasing variations (Figure S3),20 we concluded that using a 

low number of runs with a relatively smaller scaling is preferable (for computational viability) to higher scale, 

high run number averages. 

 

Figure S3: RMSE of DP (a) and IP (b) from 15 runs for different scaling factors. 
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Supplementary Results 

Infection Estimation 

As the original publication provided lower and upper bound estimates (5% and 95%) for the Lcorr parameter. As 

with the main analysis data, the estimates for these bounds prior to December 17, 2022 were acquired directly 

form Rauch et al.,(2024).1 After rescaling as explained in the main manuscript, we estimated a total of 

18,701,194 and 17,165,579 infections for the 5% and 95% bounds respectively (Figure S4). 

 

Figure S4: Daily infections estimated from wastewater data including lower and upper bounds as Confidence 

Intervals. 

The wastewater model follows the trend of documented infections (7 day average) even in timeframes it was not 

previously applied to (Figure S5). The correlation between these two is r = .985 indicating perfectly matching 

trends. 

Figure S5: Documented and estimated infections between December 17, 2022 and June 30, 2023. Documented 

infections were averaged over 7 days. 
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Agent-based model 

 

Figure S6: Time series of S, R, daily infections and daily vaccinations. 

 

Figure S7: Percentage of people with no infection, stratified by number of vaccinations, by day. 

 

Figure S8: Percentage of people with at least one infection and stratified by number of infections, by day. 
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Figure S9: Cumulative percentage of population, stratified by vaccination status on day of first infection. 

 

IFR Regression 

 

 

Figure S10: Regression lines of 4 month rolling window IFR on 4 month rolling window DP. 
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Sensitivity Analyses 
Table S3: Different outcome values based on parameter choice  

 
Total 

infected  DP  (95% CI)   IP  (95% CI)  

At least one immune conferring event  

(95% CI)  At least one infection (95% CI) 

Parameter Overall 

After May 

23 May 5, 23 May 23, 24 Relative Change (%) May 5, 23 May 23, 24 May 15, 22 March 15, 23 May 23, 24 May 15, 22 March 15, 23 May 23, 24 

Main Analysis 17 771 418 3 226 417 

89.86% (89.86% - 

89.87%) 

82.37% (82.36% - 

82.37%) 

91.66% (91.65% - 

91.66%) 

37.41% (37.40% - 

37.41%) 

22.67% (22.67% - 

22.67%) 

96.25% (96.25% - 

96.26%) 

98.78% (98.78% - 

98.79%) 

99.31% (99.31% - 

99.32%) 

75.98% (75.96% - 

75.99%) 

91.17% (91.15% - 

91.18%) 

94.97% (94.95% - 

94.98%) 

Varied infected              
  overall:              

75% 13 328 564 2 419 813 

85.85% (85.82% - 

85.88%) 

77.46% (77.43% - 

77.50%) 

90.23% (90.20% - 

90.26%) 

31.29% (31.26% - 

31.31%) 

18.04% (18.03% - 

18.05%) 

92.98% (92.91% - 

93.04%) 

96.65% (96.62% - 

96.68%) 

97.75% (97.72% - 

97.78%) 

62.04% (61.97% - 

62.11%) 

80.48% (80.40% - 

80.56%) 

86.79% (86.71% - 

86.87%) 

90% 15 994 276 2 903 775 

88.55% (88.52% - 

88.58%) 

80.69% (80.66% - 

80.72%) 

91.13% (91.10% - 

91.15%) 

35.14% (35.12% - 

35.17%) 

20.88% (20.87% - 

20.90%) 

95.11% (95.05% - 

95.17%) 

98.14% (98.11% - 

98.18%) 

98.87% (98.85% - 

98.90%) 

70.85% (70.76% - 

70.93%) 

87.68% (87.60% - 

87.76%) 

92.45% (92.38% - 

92.52%) 

110% 19 548 560 3 549 059 

90.90% (90.88% - 

90.92%) 

83.74% (83.72% - 

83.76%) 

92.13% (92.11% - 

92.14%) 

39.40% (39.37% - 

39.43%) 

24.35% (24.34% - 

24.37%) 

97.21% (97.17% - 

97.25%) 

99.23% (99.21% - 

99.26%) 

99.60% (99.58% - 

99.61%) 

80.48% (80.37% - 

80.60%) 

93.81% (93.77% - 

93.85%) 

96.75% (96.71% - 

96.79%) 

125% 22 214 272 4 033 021 

92.06% (92.04% - 

92.07%) 

85.42% (85.40% - 

85.44%) 

92.79% (92.77% - 

92.81%) 

42.10% (42.08% - 

42.13%) 

26.74% (26.72% - 

26.75%) 

98.28% (98.25% - 

98.31%) 

99.65% (99.64% - 

99.66%) 

99.84% (99.83% - 

99.85%) 

86.14% (86.08% - 

86.19%) 

96.58% (96.53% - 

96.62%) 

98.41% (98.38% - 

98.45%) 

  after pandemic              

75% 16 964 814 2 419 813 

89.87% (89.84% - 

89.89%) 

80.66% (80.64% - 

80.68%) 

89.76% (89.73% - 

89.78%) 

37.38% (37.37% - 

37.40%) 

19.01% (19.00% - 

19.02%) 

96.26% (96.22% - 

96.31%) 

98.79% (98.76% - 

98.82%) 

99.21% (99.19% - 

99.23%) 

76.02% (75.95% - 

76.10%) 

91.19% (91.14% - 

91.24%) 

94.22% (94.18% - 

94.26%) 

90% 17 448 776 2 903 775 

89.87% (89.84% - 

89.89%) 

81.69% (81.67% - 

81.71%) 

90.90% (90.88% - 

90.92%) 

37.38% (37.37% - 

37.40%) 

21.21% (21.20% - 

21.22%) 

96.26% (96.22% - 

96.31%) 

98.79% (98.76% - 

98.82%) 

99.27% (99.25% - 

99.29%) 

76.02% (75.95% - 

76.10%) 

91.19% (91.14% - 

91.24%) 

94.69% (94.64% - 

94.73%) 

110% 18 094 060 3 549 059 

89.87% (89.84% - 

89.89%) 

83.01% (83.00% - 

83.03%) 

92.38% (92.35% - 

92.40%) 

37.38% (37.37% - 

37.40%) 

24.09% (24.07% - 

24.10%) 

96.26% (96.22% - 

96.31%) 

98.79% (98.76% - 

98.82%) 

99.35% (99.33% - 

99.37%) 

76.02% (75.95% - 

76.10%) 

91.19% (91.14% - 

91.24%) 

95.27% (95.23% - 

95.32%) 

125% 18 578 022 4 033 021 

89.87% (89.84% - 

89.89%) 

83.98% (83.96% - 

84.00%) 

93.45% (93.42% - 

93.47%) 

37.38% (37.37% - 

37.40%) 

26.17% (26.15% - 

26.18%) 

96.26% (96.22% - 

96.31%) 

98.79% (98.76% - 

98.82%) 

99.41% (99.39% - 

99.43%) 

76.02% (75.95% - 

76.10%) 

91.19% (91.14% - 

91.24%) 

95.70% (95.66% - 

95.74%) 

Decreased 

vaccination DF*              

50% 17 771 418 3 226 417 

87.16% (87.13% - 

87.20%) 

81.14% (81.12% - 

81.17%) 

93.09% (93.06% - 

93.12%) 

37.38% (37.37% - 

37.40%) 

22.64% (22.63% - 

22.66%) 

96.26% (96.22% - 

96.31%) 

98.79% (98.76% - 

98.82%) 

99.31% (99.29% - 

99.33%) 

76.02% (75.95% - 

76.10%) 

91.19% (91.14% - 

91.24%) 

94.97% (94.92% - 

95.01%) 

75% 17 771 418 3 226 417 

88.51% (88.49% - 

88.54%) 

81.75% (81.73% - 

81.77%) 

92.36% (92.33% - 

92.38%) 

37.38% (37.37% - 

37.40%) 

22.64% (22.63% - 

22.66%) 

96.26% (96.22% - 

96.31%) 

98.79% (98.76% - 

98.82%) 

99.31% (99.29% - 

99.33%) 

76.02% (75.95% - 

76.10%) 

91.19% (91.14% - 

91.24%) 

94.97% (94.92% - 

95.01%) 

All DFs varied              

75% 17 771 418 3 226 417 

67.40% (67.38% - 

67.42%) 

61.77% (61.75% - 

61.78%) 

91.64% (91.62% - 

91.66%) 

37.38% (37.37% - 

37.40%) 

22.64% (22.63% - 

22.66%) 

96.26% (96.22% - 

96.31%) 

98.79% (98.76% - 

98.82%) 

99.31% (99.29% - 

99.33%) 

76.02% (75.95% - 

76.10%) 

91.19% (91.14% - 

91.24%) 

94.97% (94.92% - 

95.01%) 

90% 17 771 418 3 226 417 

80.88% (80.86% - 

80.90%) 

74.12% (74.10% - 

74.14%) 

91.64% (91.62% - 

91.66%) 

37.38% (37.37% - 

37.40%) 

22.64% (22.63% - 

22.66%) 

96.26% (96.22% - 

96.31%) 

98.79% (98.76% - 

98.82%) 

99.31% (99.29% - 

99.33%) 

76.02% (75.95% - 

76.10%) 

91.19% (91.14% - 

91.24%) 

94.97% (94.92% - 

95.01%) 

110% 17 771 418 3 226 417 

96.01% (95.98% - 

96.03%) 

88.92% (88.90% - 

88.94%) 

92.62% (92.60% - 

92.64%) 

37.38% (37.37% - 

37.40%) 

22.64% (22.63% - 

22.66%) 

96.26% (96.22% - 

96.31%) 

98.79% (98.76% - 

98.82%) 

99.31% (99.29% - 

99.33%) 

76.02% (75.95% - 

76.10%) 

91.19% (91.14% - 

91.24%) 

94.97% (94.92% - 

95.01%) 

IPs at 75%              

infection 17 771 418 3 226 417 

89.49% (89.46% - 

89.52%) 

82.04% (82.01% - 

82.06%) 

91.67% (91.65% - 

91.69%) 

34.72% (34.70% - 

34.75%) 

21.05% (21.03% - 

21.06%) 

95.84% (95.80% - 

95.89%) 

98.55% (98.53% - 

98.57%) 

99.17% (99.14% - 

99.19%) 

74.13% (74.05% - 

74.22%) 

89.95% (89.88% - 

90.03%) 

94.18% (94.12% - 

94.24%) 

vaccinations 17 771 418 3 226 417 

89.80% (89.77% - 

89.82%) 

82.34% (82.32% - 

82.36%) 

91.70% (91.68% - 

91.72%) 

37.42% (37.39% - 

37.44%) 

22.66% (22.65% - 

22.67%) 

95.76% (95.71% - 

95.81%) 

98.64% (98.61% - 

98.66%) 

99.23% (99.21% - 

99.25%) 

76.90% (76.84% - 

76.97%) 

91.80% (91.75% - 

91.86%) 

95.34% (95.29% - 

95.40%) 

infection + hybrid 17 771 418 3 226 417 

88.53% (88.50% - 

88.56%) 

81.15% (81.13% - 

81.18%) 

91.67% (91.64% - 

91.70%) 

27.07% (27.06% - 

27.09%) 

16.51% (16.49% - 

16.52%) 

95.02% (94.97% - 

95.07%) 

98.00% (97.97% - 

98.04%) 

98.81% (98.79% - 

98.84%) 

70.66% (70.59% - 

70.73%) 

86.97% (86.88% - 

87.05%) 

92.16% (92.11% - 

92.21%) 

Alternative DPs              

decreased waning 17 771 418 3 226 417 

91.64% (91.61% - 

91.66%) 

87.81% (87.79% - 

87.83%) 

95.83% (95.81% - 

95.85%) 

37.38% (37.37% - 

37.40%) 

22.64% (22.63% - 

22.66%) 

96.26% (96.22% - 

96.31%) 

98.79% (98.76% - 

98.82%) 

99.31% (99.29% - 

99.33%) 

76.02% (75.95% - 

76.10%) 

91.19% (91.14% - 

91.24%) 

94.97% (94.92% - 

95.01%) 

no waning 17 771 418 3 226 417 

93.41% (93.38% - 

93.44%) 

93.59% (93.56% - 

93.61%) 

100.19% (100.17% - 

100.21%) 

37.38% (37.37% - 

37.40%) 

22.64% (22.63% - 

22.66%) 

96.26% (96.22% - 

96.31%) 

98.79% (98.76% - 

98.82%) 

99.31% (99.29% - 

99.33%) 

76.02% (75.95% - 

76.10%) 

91.19% (91.14% - 

91.24%) 

94.97% (94.92% - 

95.01%) 

No Vaccination 17 771 418 3 226 417 

82.04% (82.00% - 

82.09%) 

78.02% (77.97% - 

78.07%) 

95.09% (95.05% - 

95.14%) 

33.22% (33.20% - 

33.24%) 

21.53% (21.52% - 

21.54%) 

75.11% (75.02% - 

75.21%) 

90.70% (90.65% - 

90.75%) 

94.63% (94.57% - 

94.70%) 

75.11% (75.02% - 

75.21%) 

90.70% (90.65% - 

90.75%) 

94.63% (94.57% - 

94.70%) 

Reference 

Values**               

96.3% (95.6%- 

96.9%) 97.9% (96.4%-98.8%)       

* as a proxy for possible healthy vaccinee bias 

** Seroprevalence data as reported by Siller et al. (2024)21 

All estimates based on 15 runs 
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Sensitivity Figures 

 

Figure S11: Changed overall daily infections, to (a) 75%, (b) 90%, (c) 110% and (d) 125% of the original 

estimate. 
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Figure S12: Changed daily infections after May 6, 2023, to (a) 75%, (b) 90%, (c) 110% and (d) 125% of the 

original estimate. 
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Figure S13: Varied all DP to (a) 75%, (b) 90% and (c) 110% of the original estimate.  
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Figure S14: Reduced vaccination DP to (a) 75% and (b) 50% of the original estimate. 
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Figure S15: Alternative DP estimates. (a) DP mean of the main estimates and estimates without waning. (b) DP 

estimates without waning.  
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Figure S16: Reduced IP to 75% for different conditions. (a) IP of previous infection. (b) IP of all vaccination 

conditions. (c) IP of previous infection and hybrid immunity. 
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Supplementary Discussion 

 

Limitations 

Wastewater 

There are measurement errors in the determination of the hydrochemical parameter concentration. While outliers 

are addressed as mentioned in the pre-processing steps, smaller errors, akin to noise, cannot be avoid. 

The shedding rate varies from person to person. The average shedding rate is also not constant. The 

immunization rate and the virus variant are potential factors that can also influence the average shedding rate. 

 

Agent Based Model 

We did not account for time between vaccinations. While there were suggestions set on time between first 

second and third vaccination, many early cases were rushed on purpose for high-risk groups. This could be 

addressed using a probability distribution based on the time since last vaccination, but we deemed the added 

complexity and runtime not worth the likely miniscule (if any) changes in values. 
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