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Abstract 

Intrauterine stress exposure is associated with offspring health. DNA methylation (DNAm) is as a 

putative underlying mechanism, but large population-based studies reported limited associations 

between prenatal stress and DNAm. Recent research has shown that environmental factors in 

interaction with genetic variants are better predictors of DNAm than environment or genotype alone. 

We investigated whether interactions of maternal prenatal stress with genetic variants are 

associated with DNAm at birth. We examined 2,963 mother-child pairs from the population-based 

Generation R Study and Avon Longitudinal Study of Parents and Children, using a harmonized, 

comprehensive cumulative prenatal stress measure. We tested genome-wide genotype-by-prenatal 

stress interactions on epigenome-wide DNAm (GxEmodel), and models including only genetic 

variants (Gmodel) or prenatal stress (Emodel) as predictors. Follow-up analyses included Gene 

Ontology analyses and mediation analyses of prenatal alcohol intake, smoking, gestational age, and 

birth weight.  We report two independent gene-by-prenatal-stress interactions on DNAm after 

multiple testing correction, including five genetic variants in CHD2 and ORC5, and two DNAm sites in 

EPPK1. By comparison, the Gmodel showed 691,202 associations and the Emodel showed three 

associations in genes AHRR, GFI1, and MYO1G, which could largely explained by prenatal smoking. 

Genes linked to suggestive GxEmodel results were often involved in neuronal development. Our 

results provide some support of interaction of prenatal stress with the child’s genome on DNAm of 

genes related to neuronal development. These results do not confirm the notion that gene-by-

environment interaction models show more associations with DNAm compared to genes or the 

environment studied in isolation.   
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Introduction 

In utero stress exposure has been associated with adverse offspring mental and physical health 

outcomes, including internalizing symptoms1, adiposity2, asthma, and allergies3, and has been 

hypothesized to put children in a disadvantaged position from early life onwards. Differential DNA 

methylation (DNAm) has been suggested as a putative mechanism underlying these associations, as 

DNAm has been linked to prenatal exposures such as maternal smoking4, postnatal psycho-social 

stress5, and to child outcomes such as body mass index6, asthma7 and cortisol reactivity8. Several 

multi-cohort studies have probed epigenome-wide associations of maternal prenatal stress with 

offspring DNAm, with varying results9-11. The largest study to date, including 5,496 children from 12 

cohorts, reported limited associations for DNAm sites located in genes that have been implicated in 

neurodegeneration, immune and cellular functions, and epigenetic regulation10.  

A growing body of research, however, shows that environmental factors in interaction with 

genetic variants are better predictors of DNAm than environmental factors or genetic variants alone. 

For example, Teh, Pan 
12

 studied genome-wide interactions of 19 prenatal factors, including 

gestational age, maternal smoking and maternal depression, on highly variable neonatal DNAm sites. 

For 75% of the sites, DNAm was better predicted by the interaction between genotype and the 

environment than by either genotype or environment alone. Environment-only was never the best 

predictor of DNAm in that study. Similarly, a study by Czamara, Eraslan 
13

 in four cohorts, examining 

10 prenatal factors, showed that gene-environment interactions best predicted DNAm in variably 

methylated regions in 38-60% of analyses, while genotype-only models were best in 11-30% and 

environment-only models were best in only <1-4%. However, while these studies analyzed which 

type of model worked best, they did not aim to identify specific genetic variants, environmental 

variables or DNAm sites. Knowing which genetic variants interact with prenatal stress in relation to 

DNA methylation would help to better understand the biological pathways underlying the gene-

environment effects on health.  
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We therefore aimed to study genome-wide interactions between genetic variants and 

cumulative prenatal stress in relation to epigenome-wide DNAm at birth. We also aimed to test the 

hypothesis that DNAm is better predicted by the interaction of genetic variants and stress than by 

either factor alone. We used a comprehensive cumulative measure of psycho-social maternal stress 

during pregnancy, which has previously been related to suboptimal neurodevelopmental, mental, 

and cardiovascular outcomes14-16. We meta-analyzed data from two population-based cohorts, the 

Generation R Study in the Netherlands (Generation R) and the Avon Longitudinal Study of Children 

and Parents (ALSPAC) in the United Kingdom and followed up associations to study unique stress 

domain contributions, as well as running mediation analyses of maternal prenatal smoking, alcohol 

use, gestational age and birth weight. Lastly, we performed enrichment analyses to gain insight into 

potential biological pathways.  

 

 

Methods 

Setting 

We used three non-overlapping datasets from two prospective population-based cohorts: two 

datasets from Generation R and a third dataset from ALSPAC.  

In the Generation R Study, pregnant women residing in the study area of Rotterdam in the 

Netherlands with an expected delivery date between April 2002 and January 2006 were invited to 

participate in the study
17

. The Generation R Study is conducted in accordance with the World 

Medical Association Declaration of Helsinki and has been approved by the Medical Ethics Committee 

of Erasmus MC, Rotterdam. Informed consent was obtained for all participants. 

In ALSPAC, pregnant women resident in Avon, UK with expected dates of delivery between 

1st April 1991 and 31st December 1992 were invited to take part in the study18, 19. The ALSPAC website 

contains details of all the data that are available through a fully searchable data dictionary and 

variable search tool (http://www.bristol.ac.uk/alspac/researchers/our-data/). Ethical approval for 
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the ALSPAC study was obtained from the ALSPAC Ethics and Law Committee and the Local Research 

Ethics Committees. Informed consent for the use of data collected via questionnaires and clinics was 

obtained from participants following the recommendations of the ALSPAC Ethics and Law Committee 

at the time. Consent for biological samples has been collected in accordance with the Human Tissue 

Act (2004).  

 

Study Population 

The full selection procedure is described in the Supplemental Information. In Generation R, 9,778 

pregnant mothers gave birth to 9,749 live-born children and in ALSPAC, the initial number of 

pregnancies enrolled was 14,541. Participants were selected based on availability of genetic data 

(nGeneration R=7,502; nALSPAC=8,797), as well as cumulative prenatal stress information (nGeneration R=5,684; 

nALSPAC= 7,483), and DNAm data as measured with the Infinium HumanMethylation450 BeadChip 

(Illumina Inc., San Diego, CA) in Generation R (GENR 450K) and ALSPAC (ALSPAC 450K) or with the 

Infinium MethylationEPIC v1.0 Beadchip in Generation R (GENR EPIC) (nGENR 450K=1,231; nGENR EPIC=986; 

nALSPAC=793). Additionally, one of each pair of children with cryptic relatedness (IBD>0.15) were 

removed, based on data availability or otherwise randomly. As a result, GENR 450K included 1,224 

children, GENR EPIC included 949, and ALSPAC 450K included 790 – for a total of 2,963 children.  

 

Genotyping 

In the Generation R Study, children were genotyped with the Illumina HumanHap 610 or 660 quad 

chips. A full description has been published previously
20

. Data were imputed to the 1000 genomes 

reference panel (Phase 1 version 3). Phasing was done using MACH software, and imputation using 

Minimac software. The ALSPAC children have been genotyped with the Illumina HumanHap 550 quad 

chip21. The data were imputed to a phased version of the 1000 genomes references panel (Phase 1 

version 3) from the Impute2 reference data repository.  
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In all (sub-)cohorts, we used best-guess genotypes. Quality control was done with PLINK 1.90 

22. Autosomal variants were selected and variants with SNP call rates of <95%, with evidence for 

violation of Hardy-Weinberg equilibrium (p<1x10-07), with a minor allele frequency <5%, or with low 

imputation quality (Rsq<0.3 in Generation R and info scores <0.8 in ALSPAC, according to local 

practices20, 21) were removed. Insertions, deletions, and multi-allelic positions were also removed. 

Samples were excluded in the case of sex mismatches, minimal or excessive heterozygosity, or a 

sample call rate of <97.5%.  

This quality control procedure resulted in 5,584,862 SNPs in GENR 450K; 5,627,497 SNPs in 

GENR EPIC; and 5,797,754 SNPs in ALSPAC 450K. To reduce the multiple testing burden, SNPs were 

pruned based on linkage disequilibrium and haplotype blocks (window size=50 SNPs, step size=5 

SNPs, VIF=2) in the largest sub-cohort, GENR 450K, which resulted in 447,713 SNPs. Of these, a final 

set of 374,152 SNPs was common to all three (sub-)cohorts.  

 

Cumulative prenatal stress 

The cumulative prenatal stress score was computed from ~50 stress-related items measured during 

pregnancy. The full item list and a detailed description of the score calculation can be found 

elsewhere (https://github.com/SereDef/cumulative-ELS-score
15, 16

). Briefly, in order to maximize data 

harmonization across cohorts, stress items were selected (based on closest item-similarity), 

dichotomized (0=no risk; 1=risk) and assigned to one of four stress domains: life events (e.g. death of 

a relative), contextual risk (e.g. financial problems), personal stress (e.g. depression), and 

interpersonal stress (e.g. family conflict). Stress domain scores (ranging from 0 to 1) were then 

computed by averaging items within each domain. A total prenatal stress score was obtained by 

summing all domain scores (range: 0 to 4). Individuals with >50% of all stress items missing were 

excluded. Missing data were imputed at the individual item level using predictive mean matching 

with 60 iterations, as implemented by the mice package23 in R version 4.024. Within the selected 

samples of each (sub-)cohort, cumulative prenatal stress scores were standardized. To reduce the 
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influence of extreme outliers, we winsorized values outside the range of (25th percentile - 

3*interquartile range (IQR)) to (75th percentile + 3*IQR). 

 

 

DNA methylation 

For both cohorts, DNA extracted from cord blood was bisulfite converted. Samples were processed 

with the Illumina Infinium HumanMethylation450 BeadChip (Illumina Inc., San Diego, CA) in GENR 

450K and ALSPAC 450K and with the Infinium MethylationEPIC v1.0 Beadchip in GENR EPIC.  

 In GENR 450K and GENR EPIC, the CPACOR workflow25 was applied for quality control. Arrays 

with observed technical problems such as failed bisulfite conversion, hybridization or extension as 

well as arrays with a sex mismatch were removed. Arrays with a call rate >95% per sample were 

carried forward into normalization.  

In ALSPAC 450K, quality control was done using the meffil package26 in R version 3.4.3. 

Samples with mismatched genotypes, mismatched sex, incorrect relatedness, low concordance with 

samples collected at other time points, extreme dye bias and poor probe detection were removed 

and carried before normalization.  

 In order to minimize cohort effects, the data from GENR 450K and ALSPAC 450K have been 

previously normalized as a single dataset 
27

 and data from GENR EPIC were normalized using the 

same procedure. Functional normalization was performed (using 10 control probe principle 

components with slide included as a random effect) with the meffil package in R
26

. Probes were 

excluded if they had a detection p>0.01 or low bead count (<3) in >10% of the samples. In total, 

472,450 autosomal methylation sites (CpGs) passed these quality control filters in GENR 450K and 

ALSPAC 450K. To reduce the computational burden of the genome-wide analyses on the methylome, 

only probes that were previously identified as having epigenome-wide significant (p<1x10-7) inter-

individual variation in DNAm at birth in these cohorts were carried forward into analyses, leaving 

100,687 CpGs27. Of these, cross-reactive probes (n=14,451 CpGs) were removed28. Last, only probes 
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present and passing quality control on both array types were selected, resulting in a final set of 

86,236 CpGs. DNAm levels were represented as beta values, indicating the ratio of methylated signal 

relative to the sum of methylated and unmethylated signal per CpG. To reduce the influence of 

extreme outlying values, beta values of each CpG outside the range of (25th percentile - 

3*interquartile range (IQR)) to (75th percentile + 3*IQR) were winsorized. 

 

Covariates 

All models were adjusted for sex of the child as determined at birth, the first 5 genetic principle 

components, estimated blood cell composition (CD4+ T-lymphocytes, CD8+ T-lymphocytes, natural 

killer cells, B-lymphocytes, monocytes, granulocytes, and nucleated red blood cells) as based on a 

cord blood reference panel29, and DNAm batch effects (25 sample plates in GENR 450K, 12 sample 

plates in GENR EPIC, and 20 surrogate variables in ALSPAC 450K
26, 30). 

 

Statistical analyses 

Analyses were performed with an adapted version
16

 of the GEM software package
31

 in R
24

 version 

4.0.5. This package applies large matrix operations allowing for fast analysis of genome-wide SNPs 

and CpGs and enabling us to test the following models: (i) a GxEmodel – our primary model of 

interest – in which the interaction effect of each SNP with cumulative prenatal stress was iteratively 

regressed on DNAm at each CpG site. For comparative purposes, we also tested (ii) a Gmodel, in 

which each SNP was iteratively regressed on DNAm at each CpG site, and (iii) an Emodel, in which 

cumulative prenatal stress was iteratively regressed on DNAm at each CpG site. A dominant model 

was applied to the GxEmodel and Gmodel, meaning that heterozygous and homozygous minor 

genotypes were contrasted against homozygous major genotypes, in order to make the models more 

robust against outlying values. The three models were performed in each (sub-)cohort separately, 

and results were meta-analyzed using inverse-variance weighted fixed effects with METAL32. The 

significance threshold of the meta-analyses was Bonferroni-corrected for the number of tests. For 
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the GxEmodel and Gmodel (nSNPs=374,152, nCpGs=86,236: 32,265,371,872 tests) the threshold was set 

to p<1.55x10-12, and for the Emodel (86,236 tests), the threshold was set to p<5.80x10-07. To assess 

heterogeneity between (sub-)cohort results, the I2 statistic was used, with 75% taken as indication of 

considerable heterogeneity33.   

 

 

Model comparisons 

Earlier studies tested SNP-by-environment interactions with CpGs only among SNPs or CpGs for 

which an association was found in a genotype-only. We tested whether SNPs/CpGs that showed 

suggestive associations in the Gmodel or Emodel had a higher chance of being part of a suggestive 

association in the GxEmodel. Associations in the Gmodel and the GxEmodel with p<5x10-08 (i.e. 

genome-wide threshold), and associations in the Emodel with p<1x10-05 were considered suggestive. 

We performed enrichment analyses comparing suggestive versus non-suggestive SNPs and CpGs 

using Fisher’s exact tests (significance threshold: p<0.05).   

As a sensitivity analysis, we performed similar enrichment analyses to assess if suggestive findings in 

the GxEmodel were more or less likely to have been identified as (SNPs) or associated with (CpGs) a 

methylation quantitative trait locus (meQTL) in an earlier large-scale study of DNAm at different 

ages
34

.  

 

Follow-up analyses 

Multiple follow-up analyses were performed. Since the Gmodel has been tested extensively 

previously in search of methylation quantitative trait loci (meQTLs)21, 34, we only followed-up results 

from the GxEmodel and Emodel. First, we looked up significant CpGs in the GxEmodel and/or Emodel 

in the EWAS Catalog for previously reported associations35. Second, we looked up genes annotated 

to significant SNPs and CpGs in the GxEmodel and/or Emodel via phenome-wide association studies 

(PheWASs) using the online GWAS Atlas tool (https://atlas.ctglab.nl/PheWAS)36, including 4,756 
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GWASs, using a Bonferroni corrected p<1.05x10-05. Annotation of SNPs and CpGs was performed 

using ANNOVAR linking variants reported in the 1000 Genomes Project and SNPdb37 and the Illumina 

HumanMethylation450 v1.2 Manifest (Illumina Inc.), respectively. Third, significant associations in 

the GxEmodel (p<1.55x10-12) and/or Emodel (p<5.80x10-07) were followed up with linear regressions 

containing the effects of the four stress domains (life events, contextual risk, personal stress, and 

interpersonal stress) in one model to identify unique associations of each of these stress types, 

independent of the other types. Here, associations with p<0.05 were interpreted as a unique 

contribution to the GxE association on DNAm for that stressor. Fourth, significant associations in the 

GxEmodel and/or Emodel were tested for potential mediation of prenatal stress effects on DNAm by 

maternal prenatal smoking, maternal prenatal alcohol intake, gestational age, and birth weight (each 

modeled separately), using the Lavaan package in R38. Mediation was deemed to be significant if the 

AB path (predictor -> mediator, mediator -> outcome) has a p-value below a Bonferroni-corrected 

threshold of 0.0125 (corrected for the number of mediators). Last, functional enrichment analysis of 

associated biological pathways was performed with Gene Ontology for models for which results 

could not be explained by a mediator. Genes annotated to suggestive unique SNPs and CpGs were 

interrogated using the GOfuncR package
39

 in R, using the built in family-wise error rate correction for 

multiple testing.  

 

Mediators 

In Generation R, mothers reported on prenatal tobacco smoking and alcohol consumption via 

questionnaires in the first, second, and third trimester. In ALSPAC, mothers reported via 

questionnaires on tobacco smoking in the second and third trimester and on alcohol consumption in 

the first and second trimester. For both cohorts, gestational age at birth was determined using fetal 

ultrasound examinations or last menstrual period, and birth weight was obtained from midwife and 

hospital registries.   
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Results 

GENR 450K, GENR EPIC, and ALSPAC 450K included 49.9%, 47.7%, and 49.1% boys, and mothers were 

32.2, 32.0, and 29.7 years old at birth, respectively. After winsorizing, mean cumulative prenatal 

stress scores were 0.36 (SD=0.28, min=0.00, max=1.48), 0.44 (SD=0.35, min=0.00, max=1.48), and 

0.51 (SD=0.28, min=0.00, max=1.69), respectively, with a theoretical maximum score of 4 

(Supplemental Figure 1).  
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Table 1. Sample characteristics 

 GENR 450K GENR EPIC  ALSPAC 450K 

N 1224 949  790 

Cumulative prenatal stress (mean (SD)) 0.36 (0.28) 0.44 (0.35)  0.51 (0.28) 

      Life events domain (mean (SD)) 0.10 (0.09) 0.11 (0.09)  0.09 (0.09) 

      Contextual risk domain (mean (SD)) 0.16 (0.18) 0.20 (0.20)  0.25 (0.14) 

      Personal risk domain (mean (SD)) 0.03 (0.07) 0.05 (0.09)  0.11 (0.12) 

      Interpersonal risk domain (mean (SD)) 0.07 (0.09) 0.09 (0.13)  0.05 (0.09) 

Child sex, boys (n (%)) 611 (49.9) 453 (47.7) 
 

388 (49.1) 

Gestational age at birth, weeks (mean (SD)) 40.2 (1.5) 40.1 (1.4) 
 

39.6 (1.5) 

Gestational weight at birth, grams (mean (SD)) 3557 (506) 3529 (507) 
 

3495 (479) 

Maternal age at birth, years (mean (SD)) 32.2 (4.2) 32.0 (4.3) 
 

29.7 (4.4) 

Maternal tobacco smoking during pregnancy (n (%))* 

    

      Never smoked during pregnancy 857 (70.0) 665 (70.1) Never a smoker 481 (60.9) 

      Smoked until pregnancy was known 109 (8.9) 78 (8.2) Former smoker 219 (27.7) 

      Continued smoking in pregnancy 159 (13.0) 146 (15.4) Current smoker 90 (11.4) 

Maternal alcohol consumption during pregnancy (n (%))* 

    

      Never drank during pregnancy 351 (28.7) 302 (31.8) <1 Glass per week  >357 (>45.2) 

      Drank until pregnancy was known 170 (13.9) 136 (14.3) 1+ Glass per week  170 (21.6) 

      Continued drinking occasionally 551 (45.0) 381 (40.1) 1-2 Glasses per week 11 (1.4) 

      Continued drinking frequently (1+ glass/week for 2+ trimesters)† 152 (12.4) 130 (13.7) >3 Glasses per week <5 (<0.6) 

*Maternal alcohol consumption and tobacco smoking was applied as continuous average score over two trimesters. Shown here as categorical for descriptive purposes.  

†Where needed, approximate cell sizes are shown to ensure that exact cell sizes <5 (which may include zero) cannot be recovered from other information provided in this figure, in line with ALSPAC requirements.
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GxEmodel: SNP by prenatal stress interactions and DNA methylation 

Five SNP-by-prenatal-stress interactions on DNAm were identified after Bonferroni correction, 

including five unique SNPs and two unique CpGs. Firstly, an association in cis of rs12901653 in CHD2 

in interaction with cumulative prenatal stress was found for DNAm at a nearby (64862 bp) 

cg24317086 (B=-0.026, SE=0.003, p=4.07x10
-16

), for which CHASERR, or CHD2 Adjacent Suppressive 

Regulatory RNA is the nearest gene. Secondly, trans-associations of 4 SNPs in or near ORC5 in 

interaction with cumulative prenatal stress were found for DNAm at cg06592260, which is located in 

EPPK1 (rs7642426: B=-0.013, SE=0.002, p=1.12x10
-13

; rs10279675: B=-0.012, SE=0.002, p=2.76x10
-13

; 

rs2188287: B=-0.013, SE=0.002, p=1.85x10
-13

; rs10251976: B=-0.012, SE=0.002, p=7.32x10
-13

). As 

these SNPs correlated highly (>0.9 in all [sub-]cohorts), these were not independent. Results are 

depicted in Table 2 and Figure 1. For all associations except the interaction of rs12901653 with 

cumulative prenatal stress on cg24317086, heterogeneity between (sub-)cohorts was low (I
2
=0.0). 

Rs12901653 showed considerable heterogeneity (I
2
=93.5), as associations for GENR 450K and GENR 

EPIC were negative, whereas it was positive (although not significant) for ALSPAC 450K (forest plot in 

Supplemental Figure 2).  

 

Gmodel: SNPs and DNA methylation 

In the Gmodel, after Bonferroni correction, we found 691,202 associations between SNPs and DNAm, 

including 181,133 unique SNPs and 54,809 unique CpGs. As such, nearly half of all investigated SNPs 

(48%) could be marked as meQTLs, and more than half (59%) of the examined CpGs are under 

genetic control. In these results we find evidence of both polygenicity, i.e. multiple SNPs affecting the 

same CpG, as well as pleiotropy, i.e. the same SNP affecting multiple CpGs. Furthermore, 91% of SNP-

CpG associations were in cis, 9% were in trans (distance of >1,000,000 bp). For 28% of associations, 

heterogeneity between (sub-)cohort results was considerable (I
2
>75). 

 

Emodel: Cumulative prenatal stress and DNA methylation 
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Three DNAm sites at birth were associated with exposure to cumulative prenatal stress after 

Bonferroni correction, including cg05575921 (B=-0.009, SE=0.001, p=3.81x10
-18

), located in AHRR, 

cg09935388 (B=-0.016, SE=0.002, p=2.79x10
-11

) in GFI1, and cg04180046 (B=-0.007, SE=0.001, 

p=6.73x10
-08

) in MYO1G (Table 3; Figure 2). For cg05575921, there was considerable heterogeneity 

between (sub-)cohort results (I
2
=78.1), for cg09935388 and cg04180046 no heterogeneity was 

detected (I
2
=0.0; forest plot in Supplemental Figure 3).  
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Table 2. Genome- and epigenome-wide associations of SNP by cumulative prenatal stress interactions and DNA methylation 

SNP SNP CHR:BP CpG CpG CHR:BP B (SE) p direction I
2
 gene SNP gene CPG 

rs12901653 15:93488404 cg24317086 15:93423542 -0.0262 (0.0032) 4.067x10
-16 --+ 93.5 CHD2 -  

rs76542426 7:103856777 cg06592260 8:144941878 -0.0128 (0.0017) 1.12x10
-13 --- 0.0 - EPPK1 

rs10279675 7:103846781 cg06592260 8:144941878 -0.0123 (0.0017) 2.76x10
-13 --- 0.0 ORC5 EPPK1 

rs2188287 7:103867883 cg06592260 8:144941878 -0.0126 (0.0017) 1.85x10
-13 --- 0.0 - EPPK1 

rs10251976 7:103834690 cg06592260 8:144941878 -0.0124 (0.0017) 7.32x10
-13

 --- 0.0 ORC5 EPPK1 

Direction indicates direction of estimate for GENR 450K, GENR EPIC, and ALSPAC 450K, respectively 

 

Table 3. Epigenome-wide associations of cumulative prenatal stress and DNA methylation 

CpG CHR:BP B (SE) p direction I
2
 gene 

cg05575921 5:373378 -0.0086 (0.0010) 3.810x10
-18

 --- 78.1 AHRR 

cg09935388 1:92947588 -0.0161 (0.0024) 2.788x10
-11

 --- 0.0 GFI1 

cg04180046 7:45002736 0.0070 (0.0013) 6.732x10
-08

 +++ 0.0 MYO1G 

Direction indicates direction of estimate for GENR 450K, GENR EPIC, and ALSPAC 450K, respectively
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Figure 1. Scatterplots of genome- and epigenome-wide associations of SNP-by-prenatal-stress 

interactions and DNA methylation 
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Figure 2. Scatterplots of epigenome-wide associations of cumulative prenatal stress and DNA 

methylation  

 

Enrichments of main effect model associations in GxEmodel 

Suggestive SNPs and CpGs in the GxEmodel (3,248 SNPs and 2,613 CpGs) and Gmodel (223,254 SNPs 

and 62,826 CpGs) were compared to test whether a suggestive association in the Gmodel increased 

the chance of a suggestive association in the GxEmodel. This did not seem to be the case, as 

suggestive SNPs in the Gmodel were as likely to have been identified in the GxEmodel as other SNPs 

were (1% vs 1%; OR=0.9 [95% CI=0.9-1.0], p=0.13). Similarly, suggestive CpGs in the Gmodel were as 

likely to be identified in the GxEmodel as other CpGs were (3% vs 3%; OR=1.0 [95% CI=0.9-1.1], 

p=0.74). As a sensitivity analysis, we also checked for enrichment of SNPs and CpGs associated with 

meQTLs identified by others34, and similarly found that suggestive SNPs and CpGs in the GxEmodel 

were as, or even less, likely to have been linked to an meQTL, whereas suggestive hits in the Gmodel 

were more likely to have previously been linked to an meQTL (Supplemental Results S1).   
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Furthermore, suggestive CpGs in the Emodel were as likely to have been identified as a 

suggestive CpG in the GxEmodel (7%) as other CpGs were (3%; OR=2.5 [95% CI=0.1-16.4], p=0.35), 

although it should be noted that the number of suggestive findings for the Emodel was low.  

 

 

CpG look-ups 

From the GxEmodel, variation at cg24317086 has been previously associated with gestational age40, 

age in childhood27, 41, tissue type42, Down syndrome43, and C-reactive protein levels44. Variation at 

cg06592260 has been associated with age in childhood27 and tissue type42.  

 Full results for the lookup of the previously reported EWAS associations for the three CpGs 

found in the Emodel can be found in Supplemental Table 1. In brief, variation at cg05575921, 

cg09935388, and cg04180046 was related to maternal smoking during pregnancy with reported 

associations stemming from 6, 8 and 9 studies, respectively, and to smoking behavior (not in 

pregnancy) with reported associations in 27, 19, and 10 studies, respectively. Other associations 

were found, among others, for age in childhood27, tissue type42, alcohol consumption45-47, maternal 

educational attainment during pregnancy48, lung function49-52 and post-traumatic stress syndrome53, 

54. 

 

Annotated gene look-up 

The full results of the PheWASs are depicted in Supplemental Figures 4 to 9. In brief, genetic variants 

at CHD2 were related to use of sun/UV protection, resting heart rate, free thyroxine levels, 

educational attainment, measures of body composition, uric acid levels, processed meat intake, pork 

intake, napping during the day, (standing) height, and schizophrenia. Genetic variants at ORC5 have 
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been related to risky behaviors, left and right entorhinal cortex volume, and drinking behavior. 

Genetic variants in or close to EPPK1 (annotated to several CpGs of the significant GxEmodels) have 

been related to resting heart rate, skin tanning, body composition measures, and height.  

 Genetic variants at AHRR were related to skin colour, hair colour, male balding patterns, 

ulcerative colitis, hematocrit, hemoglobin, aspartate, fat measures, and height. Genetic variants 

annotated to GFI1  were related to coronary artery disease, white blood cell measures, fat measures, 

multiple sclerosis, being a morning person, height, lung function, and asthma, eczema, and allergy 

related measures. Genetic variants at MYO1G were related to thyroid function, white blood cell 

measures, and height.  

 

Stress-domain-specific results  

In the GxEmodel, none of the individual stress domains (life events, contextual risk, personal risk, 

interpersonal risk) provided a unique SNP-by-prenatal-stress contribution (p<0.05) to the association 

with DNAm, over and above co-occurring domains (Supplemental Table 2). In the Emodel, contextual 

risk provided a unique contribution to DNAm at cg05575921 (AHRR, B=-0.008, SE=0.001, p=4.42x-14), 

cg09935388 (GFI1, B=-0.015, SE=0.003, p=6.18x10-09), and cg04180046 (MYO1G, B=0.005, SE=0.001, 

p=7.36x10-05). In addition, interpersonal risk provided a unique contribution to cg05575921 (B=-

0.003, SE=0.001, p=7.53x10-03) and cg09935388 (B=-0.007, SE=0.003, p=5.44x10-03). Life events and 

personal risk did not provide unique contributions in the significant Emodel associations 

(Supplemental Table 3). 

 

Mediation  

In the GxEmodel, none of the significant SNP-by-prenatal-stress associations with DNAm were 

mediated by maternal tobacco smoking or alcohol consumption during pregnancy, gestational age, 
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or birth weight. In the Emodel, all three cumulative prenatal stress associations with DNAm were 

mediated by maternal prenatal smoking (cg05575921: Bindirect=-0.007, 95% CI=-0.008;-0.006, 

p=4.17x10-60; cg09935388: Bindirect=-0.010, 95% CI=-0.011;-0.008, p=3.21x10-30; cg04180046: Bindirect=-

0.006, 95% CI=-0.005;-0.007, p=8.94x10-40), and not by any of the other mediators (Figure 3).  

 

 

Pathway enrichments 

A Gene Ontology analysis of 3,248 suggestive (p<5x10-08) SNPs in the GxEmodel yielded 145 

overrepresented pathways and 12 underrepresented pathways (Supplemental Table 4). The 

overrepresented pathways were predominantly linked to neuronal development and synaptic 

transmission. The underrepresented pathways were linked, amongst others, to DNA repair 

processes. A Gene Ontology analysis of 2,613 suggestive CpGs in the GxEmodel yielded 35 

overrepresented pathways (Supplemental Table 5), among which neuronal development-related 

pathways were predominant.  
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Figure 3. Mediation of cumulative prenatal stress associations with DNA methylation by maternal 

tobacco smoking during pregnancy (prenatal smoking) 

 

 

Discussion 

In this study, we investigated SNP-by-prenatal-stress interactions on DNAm at birth, for the first time 

at the genome- and epigenome-wide level. From the GxEmodel, we report five SNP-by-prenatal-
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stress interactions on DNAm after multiple testing correction, including five unique, of which two 

independent, SNPs in CHD2 and ORC5, and two unique CpGs in EPPK1. By comparison, the Gmodel 

yielded 691,202 associations of SNPs and DNAm, including 181,133 unique SNPs (48% of investigated 

SNPs) and 54,809 unique CpGs (59% of investigated CpGs), and the Emodel identified three 

associations between cumulative prenatal stress and DNAm at CpGs in AHRR, GFI1, and MYO1G, 

which are known DNAm loci for smoking exposure. Together, these results do not support the notion 

that GxEmodels better predict DNAm than G- or E-models alone12, 13, 55.  

Significant results for the GxEmodel were scarce, which might in part be explained by the 

stringent Bonferroni multiple testing correction in which analyses were considered as independent. 

Due to the scale of the analyses, this resulted in a very low p-value threshold. However, a Bonferroni 

threshold might be overly stringent as there was a correlational structure among SNPs and among 

CpGs, and we also tested the same SNP 86,236 times, and the same CpG 374,152 times. Using a 

suggestive (genome-wide) significance threshold, Gene Ontology analyses pointed to enrichment of 

neuronal development related pathways. Moreover, previous GWASs have associated variation in 

ORC5, in or near which four of the associated SNPs were located with entorhinal cortex volume56, an 

area important for memory processing, bordering the hippocampus and particularly rich in corticoid 

receptors57. These findings fit the developmental origins of health and disease perspective58, which 

poses that the prenatal environment programs organ structure and function (in this case in 

interaction with the offspring genotype), as well as findings from our own lab that cumulative 

prenatal stress is related to childhood subcortical brain volumes16, and that prenatal stress, beyond 

postnatal stress, predicts internalizing symptoms in childhood15.  

In contrast to the GxEmodel, significant associations in the Gmodel were abundant, 

indicating that many common SNPs are involved in epigenetic programming and in turn, that DNAm 

is under strong genetic control. This confirms earlier meQTL studies, which also identified numerous 

genetic effects on the epigenome21, 34. The abundance of genetic effects and far fewer GxE 
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associations are contrary to the notion put forward by other studies that gene-environment 

interaction studies perform better than studies of genetic main effects alone in terms of predicting 

DNA metylation12, 13, 55. The difference may lie in the different approach; in these studies of genetic 

interaction effects with multiple prenatal environments12, 13 and with adverse childhood 

experiences55, models were compared based on fit indices without adjustment for multiple testing, 

and results were found to be convergent between cohorts (e.g. GxEmodel to be superior over 

Gmodel or Emodel) for a CpG even if the SNP or environmental variable differed for that CpG. By 

contrast, we did not directly compare the different models, yet compare the amount of Bonferroni 

corrected significant results of each model type.  

What emerges from our results, however,  is that the GxEmodel yields different results than 

when looking at genetic or environmental main effects alone. Follow-up analyses showed that SNPs 

and CpGs brought forward by the GxEmodel were not more likely to have been identified as, or 

related to an meQTL. For future GxE studies on DNAm, this means that only testing GxE interactions 

among significant findings in the Gmodel12, would reduce the multiple testing burden, but might 

result in selective findings and may miss true GxE effects.   

The Emodel yielded limited evidence of associations between cumulative prenatal stress and 

DNAm, which is in line with previous studies9-11. Moreover, whereas associations in the GxEmodel did 

not seem to be related to prenatal smoking and drinking behavior, gestational age or birthweight, 

the Emodel associations all could be largely explained by smoking behavior of the mother during 

pregnancy. Indeed, the look-up of related CpGs showed that these are top-hits in smoking EWASs59-

61. Furthermore, whereas the GxEmodel results could not be explained by one of the types of 

stressors in particular, thereby ascribing to the notion that associations were due to the cumulative 

nature of prenatal stress rather than to the unique contribution of a specific stressor, contextual risk 

and interpersonal risk provided unique contributions to the results from the Emodel. These results fit 

with a recent EWAS meta-analysis of maternal educational attainment, often taken as an indicator of 
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socio-economic position, which was also enriched for CpGs related to prenatal smoking48 as well as 

an EWAS on victimization stress in children, of which results could also largely be explained by 

smoking62. Taken together, we conclude that prenatal maternal stress associations with the offspring 

epigenome are not independent of maternal smoking behavior.  

Results of this study should be interpreted in light of several limitations. First, effect sizes 

were small and Gene Ontology enrichment analysis of suggestive hits seemed to indicate that 

subthreshold findings are informative – hence larger sample sizes will likely be necessary to identify 

relevant gene-by-prenatal stress interactions with greater statistical power. However, to the best of 

our knowledge, this is the largest effort thus far to identify gene-by-prenatal stress effects on the 

epigenome. Moreover, we included a comprehensive measure of cumulative prenatal stress, 

capturing multiple domains of stress that often co-occur together – which has been uniquely 

harmonized between Generation R and ALSPAC, making it difficult to include a larger sample size at 

this time point. Second, there was heterogeneity between the (sub-)cohorts in the GxE association of 

a SNP in CHD2 with a nearby CpG, which reduces the robustness of the finding. However, as the I2 

measure that was used for heterogeneity is relatively sensitive, this does not necessarily mean the 

finding is a false positive. Future studies are needed to examine this association in more detail, 

preferably in multiple cohorts. Third, whereas SNPs and CpGs included in these models span the full 

genome, we reduced the number of probes based on intercorrelation and/or variability to minimize 

the burden of multiple testing. This does mean, however, that it is possible that we missed 

associations. Fourth, DNA methylation is tissue-specific and interactive effects of prenatal stress and 

offspring genotype on DNA methylation may differ between blood, which we used as an easily 

accessible tissue in population-based studies, and other, potentially more relevant tissues, such as 

brain – however, even in blood we found an epigenetic pattern of neurodevelopmental pathways. 

Fifth, the Generation R and ALSPAC are populations are generally selected towards being slightly 

healthier and more affluent than the general population, which may affect the generalizability of 

findings. It may also have reduced variation in prenatal stress and thereby the power to detect true 
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associations. Also, as the epigenetic samples only include children of European ancestry, 

generalizability to populations of other ancestries may be limited. In the future, studies in 

populations of other ancestries are necessary to understand how genotype-by-prenatal-stress 

associates with DNAm at birth across different populations. Last, this is an observational study. 

Intervention studies on reducing prenatal stress63-65 might help understand the degree to which 

gene-by-prenatal stress associations are causal in nature. Furthermore, more research would be 

necessary to understand the consequences of genotype-by-prenatal-stress associations found. The 

enrichment analyses indicated that neuronal development might be involved, yet more research is 

necessary to understand for which aspects of neuronal development this would be the case and to 

what degree.  

 In conclusion, in this comprehensive study of genotype-by-prenatal stress interactions on 

DNAm, we report suggestive findings that cumulative prenatal stress interacts with the child’s 

genome on DNA methylation in or close to genes related to neuronal development. Importantly, 

these results do not support the idea that gene-environment interactions on the epigenome are 

more abundant than gene effects alone, as we found many more associations in our genetic main 

effect model than in our interactive model. In the future, larger studies and studies including 

participants of different genetic ancestries are needed to identify associations with smaller effect 

sizes and generate results that are more generalizable.  
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