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Abstract 
 
Congenital heart defects (CHD) arise in part due to inherited genetic variants that alter genes and 
noncoding regulatory elements in the human genome. These variants are thought to act during fetal 
development to influence the formation of different heart structures. However, identifying the genes, 
pathways, and cell types that mediate these effects has been challenging due to the immense diversity 
of cell types involved in heart development as well as the superimposed complexities of interpreting 
noncoding sequences. As such, understanding the molecular functions of both noncoding and coding 
variants remains paramount to our fundamental understanding of cardiac development and CHD. Here, 
we created a gene regulation map of the healthy human fetal heart across developmental time, and 
applied it to interpret the functions of variants associated with CHD and quantitative cardiac traits. We 
collected single-cell multiomic data from 734,000 single cells sampled from 41 fetal hearts spanning post-
conception weeks 6 to 22, enabling the construction of gene regulation maps in 90 cardiac cell types and 
states, including rare populations of cardiac conduction cells. Through an unbiased analysis of all 90 cell 
types, we find that both rare coding variants associated with CHD and common noncoding variants 
associated with valve traits converge to affect valvular interstitial cells (VICs). VICs are enriched for high 
expression of known CHD genes previously identified through mapping of rare coding variants. Eight 
CHD genes, as well as other genes in similar molecular pathways, are linked to common noncoding 
variants associated with other valve diseases or traits via enhancers in VICs. In addition, certain common 
noncoding variants impact enhancers with activities highly specific to particular subanatomic structures 
in the heart, illuminating how such variants can impact specific aspects of heart structure and function. 
Together, these results implicate new enhancers, genes, and cell types in the genetic etiology of CHD, 
identify molecular convergence of common noncoding and rare coding variants on VICs, and suggest a 
more expansive view of the cell types instrumental in genetic risk for CHD, beyond the working 
cardiomyocyte. This regulatory map of the human fetal heart will provide a foundational resource for 
understanding cardiac development, interpreting genetic variants associated with heart disease, and 
discovering targets for cell-type specific therapies. 
 
 
 
 
Introduction  
 
The formation of the human heart during fetal development is driven by the emergence and coordination 
of a vast array of different cell types1–3. Each of these cell types carries out distinct architectural or 
regulatory functions in forming the heart chambers, valves, conduction system, and blood vessels. These 
dynamic processes are encoded by complex regulatory programs in the human genome, involving 
different combinations of genes regulated by hundreds of thousands of noncoding regulatory elements 
and transcription factor (TFs) binding sites that are yet to be fully identified4.  
  
DNA variants that disrupt these regulatory programs can lead to congenital heart defects (CHD)2,5, which 
are the most common birth defect and affect nearly 1% of live births6. Genetic studies of patients with 
CHD have now discovered thousands of variants in both protein-coding and noncoding regions of the 
genome7,8. Studies of such coding variants have revealed important insights into the molecular regulators 
of heart development, and identified hundreds of high-confidence CHD genes that currently help to guide 
genetic diagnosis1,5,7–11. Noncoding variants are far more difficult to interpret, but some have recently 
been associated with CHD through genome-wide association studies (GWAS)12–15 or identified through 
molecular analysis of de novo variants4,16–18. 
 
Despite this progress, the genetic contributions to most CHD cases remain to be identified2,5, and key 
questions about the genes, pathways and cell types, that contribute to CHD remain to be addressed:  
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 22, 2024. ; https://doi.org/10.1101/2024.11.20.24317557doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.20.24317557
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

3 

(1) Which cell types contribute to the genetic etiology of different subtypes of CHD? CHD is a 
heterogeneous class of diseases, with subtypes involving different subanatomic structures of the heart, 
such as valve defects and malformations of the outflow tract. Early studies focused on the heart muscle 
cell, or cardiomyocyte, following the identification of CHD-causing mutations in transcription factors that 
affect myocardial specification and/or function, such as NKX2-5, TBX5, and GATA41,2,19–22. We now 
appreciate that other cell types are likely to have roles in the genetic etiology of CHD, such as 
contributions of the cardiac neural crest lineage to malformations of the outflow tract23,24 and an emerging 
role for endocardial cells in hypoplastic left heart syndrome25. The development of single-cell 
technologies, and our accompanying appreciation of the vast diversity of cell types and states in the 
human heart, provides a new opportunity to assess which cell types contribute to the genetic etiology of 
which subtypes of human CHD. 
 
(2) How do inherited noncoding variants influence risk for CHD? A primary challenge in interpreting the 
functions of noncoding variants has been the lack of appropriate regulatory maps to connect these 
variants to their target genes and cell types. Previous studies have proposed roles for de novo noncoding 
variants linked to CHD in cardiomyocytes or endothelial cells, and identified a handful of individual 
variants that affect enhancer activity or alternative RNA splicing4,16–18. More recently, GWAS have 
identified inherited noncoding variants associated with CHD12–15,26–28 and related quantitative 
measurements of cardiac morphology29–38. These recent genetic datasets provide a new opportunity to 
learn about genetic modifiers of CHD risk, severity, or subtype, if we could identify which variants regulate 
which enhancers and target genes in which of the many cell types in the developing heart.  
  
To answer these and other outstanding questions in CHD research, we require a map of gene regulation 
that captures the diverse cell types and cell states that drive human fetal cardiogenesis. Recent studies 
have begun to collect data on gene expression or chromatin accessibility during heart development in 
mouse models39–43 or from human fetal tissue4,44–51. However, existing datasets are still limited in cell 
number, sequencing depth, and developmental timepoints, precluding the application of key 
computational models to build a gene regulation map across cell types and states. Far deeper single-cell 
data, together with new computational models, is needed to interpret the functions of genetic variants 
associated with heart structure and function. 
  
Here, we create such a gene regulation map of the human fetal heart, and combine it with recent human 
genetics datasets to reveal new insights into the genetic, molecular, and cellular etiology of CHD. First, 
we collect 10x Multiome (scRNA and scATAC-seq) data from 734,000 cardiac cells from 41 structurally 
normal hearts between 6 and 22 weeks of human fetal development. This cell atlas significantly 
surpasses existing datasets, both human and mouse, in terms of cell number, sequencing depth, and the 
developmental windows captured. We identify 90 cardiac cell types and cell states with sufficient depth, 
and, in each, apply predictive models to identify thousands of novel enhancers, TF binding sites, and 
downstream target genes. By applying this map to interpret coding and noncoding variants associated 
with CHD and quantitative traits, we find that high-confidence genes harboring rare coding variants in 
CHD patients are most strongly enriched for high expression in VICs and cardiac fibroblasts—two cell 
types whose roles in CHD have been underexplored. We nominate and experimentally validate functional 
noncoding variants that impact enhancers with restricted activities specific to particular cell types or 
locations in the heart. Certain genes and pathways are affected by both rare coding variants associated 
with CHD and common noncoding variants associated with structural traits, revealing molecular 
convergence on a pathway related to cell migration in VICs.  Together, these results identify new cell 
types and pathways important for genetic regulation of heart development, and provide a framework for 
interpreting polygenic risk of CHD and other heart diseases. This gene regulation map will provide a 
foundational resource for understanding human heart development and interpreting the functions of 
genetic variants discovered in the genomes of patients with heart disease. 
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Results 
 
A gene regulation map of the human fetal heart 
 
We collected single-cell RNA and ATAC-seq data (10x Multiome) from 41 fetal heart samples spanning 
post-conception weeks 6 to 22 (Fig. 1A; Fig. S1; Table S1). These samples included 20 hearts from 
post-conception weeks (PCW) 6 to 9, a developmental stage that coincides with key events such as the 
formation of the outflow tract, valves, and conduction system. For PCW 6 through 9, we sampled cells 
from the entire heart (Methods), and profiled sections from the larger PCW 10 through 22 samples (Table 
S2). After quality control and filtering, we obtained a total of 734,000 single cells (range: 370-94,555 per 
heart), with an average of 1,682 RNA transcripts and 5,953 ATAC fragments per cell. Together, this atlas 
has a considerably higher cell count and sequencing depth compared to existing datasets. 
 
Clustering and annotation yielded 13 major cell types (Fig. 1C; Fig. S2), which were further annotated to 
a total of 101 cell populations (hereafter, “cell types”) (Fig. 1D). We labeled cell types using canonical 
cell type markers as well as genes identified in recent single-cell and spatial transcriptomic 
studies40,41,47,48,52 (see Methods; Fig. 1E; Figs. S3-7). Our atlas captures rare cell populations including 
neural crest cells and conduction cells, and assigns 42 cell types to likely subanatomic locations, for 
example distinguishing endocardial cells of the atrial septum and inflow and outflow sides of valves based 
on marker genes from recent spatial datasets48 (Fig. S4).  
 
Leveraging this deep dataset, we constructed a gene regulation map describing the relationships 
between genetic variants, TFs, enhancers, target genes, and gene programs (Fig. 1B). To do so, we 
applied a suite of predictive models, some of which we have previously developed and applied with the 
ENCODE Project and IGVF Consortium53. Importantly, these models require a depth of sequencing that 
is not available in previous datasets (minimum 3 million ATAC fragments per cell type)54,55. Here, we were 
able to construct cell type-specific gene regulation maps in 90 cell types, including cell populations with 
frequencies in our dataset as low as 0.06% (Fig. S8). 
 
Here, we briefly describe each component of this gene regulation map, and in subsequent sections 
combine all components in integrative analyses: 
 
Linking enhancers to target genes: To identify candidate enhancers and link them to their target genes 
in specific cell types, we applied scE2G — a supervised logistic regression model trained to predict the 
effects of CRISPR perturbations from single-cell multiome data54. We have previously shown that scE2G 
shows state-of-the-art performance at predicting the results of CRISPR enhancer perturbations, linking 
eQTL variants to their target genes, and linking GWAS variants to known target genes54. Applied to our 
fetal heart atlas, scE2G identified on average 58,460 enhancer-gene regulatory interactions per cell type 
(Table S3). As expected, closely related cell types shared more enhancers than distantly related cell 
types: for example, atrial and ventricular cardiomyocytes shared 80% of their enhancers, while 
lymphocytes and neural crest cells shared only 20% (Fig. 1F). Within each major cell type, we similarly 
observed a higher degree of enhancer overlap between cell types that are closely related along the 
differentiation trajectory. For example, over 60% of enhancers in pre-arterial endothelial cells 2 were also 
active in mature arterial endothelial cells (Fig. 1G). For individual genes, scE2G identifies cell-type 
specific sets of enhancers that contribute to gene expression. For example, MEF2A, a core transcription 
factor expressed in many cell types in the developing heart, has distinct sets of enhancers in endothelial 
cells, VICs, and ventricular cardiomyocytes (VCMs) (Fig. 1H).  
 
Identifying transcription factor binding sites and predicting effects of noncoding variants on 
accessibility: To identify candidate TF binding sites and predict the effects of noncoding variants, we 
applied ChromBPNet, DeepLIFT, and TF-MoDISCO55–57 — a convolutional neural network method and 
accompanying interpretation tools. This framework predicts base pair-resolution chromatin accessibility 
data (pseudobulked per cell type) from DNA sequence, identifies TF motif instances that drive 
accessibility, and predicts the effects of noncoding variants on chromatin accessibility. We have shown 
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that this approach performs well at identifying TF binding sites58 and predicting effects of CRISPR edits 
on gene expression59. Per cell type, we identified 19-39 important TF motifs and 340,000-760,000 high-
confidence TF motif instances (Table S15, Table S16), with 516 consensus motifs combined across cell 
types (Fig. 1I). Predicted TF motifs included known associations such as SOX and ETS motifs in pre-
arterial endothelial cells, and GATA motifs in VCMs (Fig. 1J). Individual regulatory elements often 
showed different TF motif instances predicted to contribute in different cell types (e.g., Fig. 1K)4. 
 
Linking genes to gene programs: To uncover sets of co-expressed genes that may work together in 
similar biological pathways, we learned gene programs (“programs”) by applying consensus non-negative 
matrix factorization (cNMF)60 to the transcriptome data and annotating TFs with correlated motifs in the 
ATAC data (Tables S4-6; see Methods). cNMF identifies sets of genes that are co-expressed across 
single cells, and has been shown to learn diverse types of biologically coherent pathways, including 
metabolic pathways, developmental trajectories, and cell identity programs60,61. We applied cNMF to 
groups of major cell types, and identified 253 total gene programs representing a wide array of biological 
processes (Fig. 1L,M). For example, in endothelial cells, Endothelial program 23 is expressed in pre-
arterial endothelial cells (Fig. 1N), includes genes previously observed to be expressed in arteriolar 
endothelial cells such as SSUH2, GABBR2, HECW2, and SLC6A641, and is regulated by TFs with known 
roles in the developing artery such as SOX17, SOX13 and MEF2A (Fig. 1O). Endocardial program 33 
(“Atrial septal endocardial cell identity”) is exclusively and uniformly expressed in atrial septal endocardial 
cells, and includes known marker genes such as LRRC4C, LSAMP, ALCAM, and NEGR1. This program 
was predicted to be regulated by GATA6, a TF where loss-of-function mutations cause ASD62, and 
NFATC2, a TF essential for atrial septum morphogenesis.63 Endocardial program 29 (“WNT signaling in 
valvular endocardial cells”) is expressed in a subset of inflow-side valvular endocardial cells (“IF valvular 
endocardial cells”), includes WNT signaling pathway genes such as WNT4, WNT2, and WNT9B, and is 
regulated by flow-responsive TFs known to regulate WNT signaling, KLF2 and KLF464 (Tables S5-6). 
 
Together, this gene regulation map of the human fetal heart describes how DNA sequences in our 
genome regulate the expression of particular genes, and how those genes work together in cell-type 
specific pathways. This map provides a rich resource for understanding the regulatory logic of heart 
development across cell types and for interpreting DNA variants that affect heart structure and function. 
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Figure 1.  A gene regulation map of the human fetal heart. 
A. Single-cell multiomic data (10x Multiome) was collected from 41 hearts spanning post-conception weeks 

6 to 22. 
B. Multiome data was used to create a gene regulation map, linking genetic variants to regulatory elements 

(enhancers), their target genes, and associated gene programs in each of 90 cell types with sufficient 
depth. The schematic illustrates the components of this map and how it can be used to interpret the 
molecular and cellular functions of coding (purple) and noncoding (orange) variants associated with 
disease. The middle panel shows cell-type-specific enhancer-gene interactions: arrows represent genes, 
with highlighted arrows indicating expression in a particular cell type; circles represent predicted 
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enhancers, with size indicating activity level, and arcs show predicted enhancer-gene interactions. Coding 
variants can be annotated based on the cell types in which the gene is expressed (purple). Noncoding 
variants can be annotated based on the cell types in which the enhancer is active, and the target gene(s) 
of that enhancer (orange). Right panel depicts gene programs, which are defined as sets of genes that 
are co-expressed across single cells that are likely to have related functions. Both coding and noncoding 
variants can be annotated based on how their target genes work together in gene programs (colored 
genes). 

C. Uniform manifold approximation and projection (UMAP) embedding of scRNA-seq of all major cell types. 
ACM: Atrial cardiomyocytes. VCM: ventricular cardiomyocytes. Tz: transitional.  

D. UMAP embedding of subset of scRNA-seq data from endothelial cells. 
E. Dot plot showing the expression of marker genes of endothelial cell types. The size of the circle represents 

the percentage of cells within a given cell type that express the gene of interest, and the color represents 
the normalized expression level of that gene across all cell types shown. 

F. Global similarity of predicted enhancers across major cell types. Color scale: Percentage of enhancer 
overlap between pairs of major cell types, with the total number of enhancers in the major cell type on the 
y-axis as the denominator (see Methods). Core cond. cells: core conduction cells. Tz cond. cells: 
transitional conduction cells.  

G. Global similarity of predicted enhancers across endothelial cell types. Color scale: Percentage of enhancer 
overlap, as in F. 

H. Example locus: MEF2A is regulated by distinct combinations of enhancers in endothelial cells, VICs, and 
VCMs. Signal tracks: pseudobulk scATAC-seq within each cell type. Red arcs: Elements predicted by 
scE2G to act as enhancers to regulate MEF2A. Gray arcs: Elements predicted to regulate other genes. 
Coordinates (hg38) of highlighted enhancers: chr15:99425061-99426373 (left), chr15:99454858-
99455373 (right). 

I. Compendium of TF motifs and predicted effects on chromatin accessibility across 90 cell types, as learned 
by ChromBPNet and TF-MoDISCO. Color scale: Z-score normalized effects of predicted motifs learned 
as average differences in predicted accessibility into 100 random sequences in each cell type. Core cond. 
cells: core conduction cells. Tz cond. cells: transitional conduction cells.  

J. Predicted occurrences of selected TF motifs in cell types relevant to MEF2A enhancers (see panel K). 
Color scale: motif occurrences in the corresponding cell type.  

K. ChromBPNet contribution scores highlight TF motif instances with cell-type-specific contributions to 
chromatin accessibility at two selected enhancers for MEF2A. Height of each nucleotide in the genomic 
sequence represents the predicted importance of that nucleotide to chromatin accessibility (by DeepLIFT). 
Coordinates (hg38) of the two example regions: chr15: 99425308-99425388 (left), chr15:99455071-
99455122 (right). 

L. Expression patterns of 253 gene programs across cell types. Gene programs were inferred using cNMF 
in groups of related cell types. Color scale: average gene program usage per cell type.  

M. Average expression of endothelial cell programs in each of the fine-grained endothelial cell types. 
N. Projection of Endothelial program 23 expression onto the endothelial cell UMAP.  Color scale: gene 

program usage per cell. 
O. Feature plots illustrating the expression of known arteriolar endothelial marker genes identified in 

Endothelial program 23 and the expression of predicted TF regulators of Endothelial program 23. Color 
scale: normalized gene expression level.   
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Regulatory wiring of cardiac conduction cells   
 
The high cell number and ATAC sequencing quality allowed us to examine, for the first time, the 
regulatory landscape of rare but crucial cell types in the developing human heart. For example, our atlas 
includes 8,906 cardiac conduction cells (CCS) — specialized cell types that coordinate the heart's 
rhythmic contractions — and 13,103 transitional cells, which serve as a cellular bridge between 
conduction cells and the surrounding working myocardium, previously discovered in the murine heart40 
(Fig. 2; Fig. S9). These included cell populations from the four major substructures of the conduction 
system: sinoatrial node (SAN, 1,211 cells), atrioventricular node (AVN, 2795 cells), His bundle (939 cells), 
and Purkinje fibers (PF1 and PF2, 1,830 cells and 2,130 cells, respectively) (total cell frequencies: 0.13-
0.38%; Fig. 2A; Fig. S8). Each of these populations were distinguished by established markers, such as 
ISL1 and SHOX2 for the SAN and HS3ST3A148,65 for the His bundle (Fig. 2B,C).   
 
We examined our maps to identify enhancers and TFs that distinguish these CCS cell types. As expected, 
their global profiles of enhancer-gene regulatory interactions were distinct from other cell types (e.g., 28% 
overlap for the SAN vs. capillary endothelial cells) (Fig. 2D). Among the CCS cell types, there was 
increased overlap in predicted enhancers within the nodes (SAN vs. AVN: 59% overlap) as compared to 
the ventricular conduction system (VCS) components (SAN vs. His bundle or PFs: 44-48%), consistent 
with distinct gene expression profiles and physiologic functions of these cell types (Fig. 2D). Toward 
understanding this molecular wiring, we examined the enhancers that regulate ISL1, a key TF in the 
development and function of the SAN (Fig. 2E). We identified 9 predicted enhancers for ISL1 in SAN 
cells, including the one known enhancer that has been previously characterized66. These ISL1 enhancers 
harbored predicted motif instances for other TF families involved in SAN development, including 9 for 
GATA family TFs, 6 for NF-Y, and 5 for TBX family TFs (Fig. 2F). Notably, these included several GATA 
motifs with stronger predicted contributions to chromatin accessibility in SAN cells versus other 
conduction cell types (Fig. 2F), and GATA6 and ISL1 are both predicted regulators of the gene program 
for SAN identity (Fig. S10), suggesting that GATA6 may play a role in the up-regulation of ISL1 observed 
in the SAN. 
 
Examining the gene programs that defined each CCS cell type, we unexpectedly found many genes 
previously known to be involved in neural adhesion and axon development (Fig. 2G; Fig. S11). Neuronal 
cell adhesion molecules play a crucial role in mediating cell-cell interactions to achieve cell patterning 
and discrete cellular niches within the developing brain. Their involvement in the developing CCS, 
however, is not understood. By examining gene expression patterns and exploring cell-cell interactions 
via analysis of ligand-receptor pairs with CellChat67 (see Methods; Table S7), we indeed found multiple 
ligand-receptor genes classically related to CNS development (SLIT/ROBO, NRXN/NLGN, 
EPH/EPHRIN) within the CCS and surrounding cell types (Fig. 2H-M; Fig. S10B; Fig. S11). For example, 
ligand SLIT2 was expressed in PF and SAN cells, and its receptors (ROBO1 and ROBO2) were 
expressed by surrounding cell types, including transitional SAN cells and fibroblasts (for the SAN) and 
VCMs (for PFs) (Fig. 2H,K; Fig. S10B; Fig. S11A,E). Receptors EPHA4 and EPHA7 were expressed in 
the His bundle and PF cells (Fig. 2I; Fig. S10B; Fig. S11D,E), and their ligand EFNA5 was expressed 
in surrounding VCMs as well as transitional cells (Fig. 2L). Ligands NRXN1 and NRXN3 were found in 
AVN (Fig. 2J; Fig. S10B; Fig. S11C), and their receptors, including LRRTM3 and/or NLGN1, were 
enriched within the surrounding cells of the atrial cardiomyocytes (ACM) and VCM (Fig. 2M). Consistent 
with a possible role for these factors in CCS development, variants associated with SLIT2 have been 
associated with abnormal QRS duration68, suggestive of an abnormal VCS, and ROBO1 variants have 
also been associated with abnormal EKG findings69. Further, systemic knockdown of Epha4 in rats 
resulted in, among other phenotypes, QRS prolongation70. These expression patterns showed similarities 
but also notable differences with recent single-cell studies in the mouse fetal heart65 and human adult 
CCS71, and a study also observed upregulation of SLIT2 and NRXN3 in SAN and AVN, respectively, in 
the human fetal heart48. The established role of these cell adhesion molecules in neuronal differentiation 
and establishing cell-cell interactions hints at a similar role for the normal differentiation of the VCS and/or 
patterning within the developing trabecular myocardium. Together, this provides the first regulatory map 
of these clinically important CCS cells and illustrates the insights possible with this deep atlas. 
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Figure 2.  Regulatory wiring and neural adhesion molecules in cardiac conduction cells 
A. Schematic and UMAP representations of cell types in the cardiac conduction system (CCS). SAN: 

Sinoatrial node. AVN: Atrioventricular node. PF: Purkinje fibers.  
B. Dot plot of known marker genes for major cell types in the CCS. The size of the circle represents the 

percentage of cells within a given cell type that express the gene of interest, and the color represents the 
normalized expression level of that gene across all cell types shown. 
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C. Feature plots showing the expression of marker genes. Color scale: normalized gene expression level.   
D. Percentage of enhancer overlap between the cell types on the y-axis and cell types on the x-axis. Includes 

5 cell types in the CCS and a population of capillary endothelial cells as an outgroup for comparison. Color 
scale: Percentage of enhancer overlap between pairs of cell types, with the total number of enhancers in 
the cell type on the y-axis as the denominator (see Methods). 

E. scE2G predictions and normalized ATAC-seq signals for ISL1. Predicted enhancers and the ISL1 
promoter are highlighted in shaded regions. Arcs represent the predicted enhancer-gene regulatory 
interactions. Side color bars show the transcripts per million (TPM) expression of the target genes in each 
cell type (blue) and the corresponding scE2G scores (red, and white for scores below the threshold). 

F. Per-base DeepLIFT contribution score profiles of two selected regulatory regions from subpanel E. Gray 
highlights indicate predicted TF motif instances, including for GATA, NF-Y, and TBX family TFs. Note that 
GATA motif instances have higher predicted contribution scores in SAN. The left panel shows a subregion 
of the ISL1 promoter (chr5:51,383,321-51,383,428). The right panel shows a subregion of an enhancer 
regulating ISL1 (chr5:51,475,542-51,475,802). All coordinates in hg38. 

G. Representative enriched gene ontology (GO) terms in gene programs characterizing the CCS cell types, 
showing enrichment for genes related to axon development across all CCS cell types. 

H. I. J. Feature plot showing the expression of selected neural adhesion ligands or receptors in the CCS. 
K. L. M. Predicted cell-cell interactions between CCS components and surrounding cell types. Nodes 

represent cell types, with CCS components highlighted in bold text and colored according to A. Arrows 
point from ligand-producing cells to receptor-expressing cells. Arrow color intensity reflects the interaction 
strength.  
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Expression of genes associated with congenital heart defects 
 
We next applied this gene regulation map of the human fetal heart to interpret the functions of genetic 
variants associated with CHD. Hundreds of genes have been implicated in various subtypes of CHD 
through analysis of rare or de novo coding variants in families or cohort studies2,7,8.  However, the cell 
types of action of many of these genes remain unknown. With our more complete atlas of the human 
fetal heart, we examined the expression of genes associated with CHD in an unbiased fashion and tested 
whether they were preferentially expressed in particular cell types and states.  
 
As a positive control, we first analyzed known genes for other cardiovascular diseases where the critical 
cell types are already established (Table S8). As expected, genes associated with cardiomyopathies, 
diseases of the heart muscle tissue, were significantly enriched for high expression within cardiomyocytes 
(up to 94-fold). Similarly, known genes underlying increased risk for developing aortic aneurysms were 
enriched in smooth muscle cells, the most abundant cell type in the aortic wall72 (up to 92-fold; Fig. 3A; 
Tables S8-9).  
 
For CHD, we examined a curated list of 137 known genes (hereafter, “CHD genes”) for 6 subtypes (ASD, 
ventricular septal defects (VSD), atrioventricular septal defects, functional single ventricles, malformation 
of the outflow tract, and valve defects) (Table S8), based on CHDGene8, which compiled genes with 3 
or more case reports for syndromic or isolated CHD.  
 
Overall, CHD genes were broadly expressed in many cell types in the heart (Fig. S12). Whereas most 
genes for cardiomyopathies or aortic aneurysms were expressed only in specific cell types, more than 
60% of CHD genes were expressed (transcripts per million, TPM>10) in at least one cell type in all major 
cardiac cell type groups (see Methods). This might help to explain why many CHD mutations are found 
associated with many different subtypes of heart defects. 
 
Despite that many CHD genes exhibit broad expression patterns, they showed higher expression levels 
in some cell types than in others. We identified 20 cell types that showed significant enrichment for at 
least one subtype of CHD (FDR < 0.05) (Fig. 3A; Table S9). For example, 10 out of 98 genes known to 
be associated with ASDs, including TBX5 and MYH6, were more highly expressed in atrial 
cardiomyocytes (6-fold enrichment, q = 0.007). Similarly, 9 out of these 98 genes, including NR2F2 and 
FOXP1, were highly expressed in atrial septal endocardial cells (6-fold enrichment, q = 0.041). Genes 
associated with valve defects were significantly enriched in VICs (up to 9-fold enrichment, q = 2 x 10-5; 
Fig. 3A). Genes associated with single ventricle disease, which involve valve lesions together with other 
defects, were also enriched within VICs, to an even higher degree (up to 16-fold, q = 0.02; Fig. 3A; Table 
S9).  
 
Thus, the patterns of expression of high-confidence CHD genes suggest that various different cell types, 
beyond cardiomyocytes, may play an important role in the development of different subtypes of CHD. 
 
 
CHD genes in valvular interstitial cells and cardiac fibroblasts 
 
Out of all cell types, VICs and epicardial-derived cardiac fibroblast progenitors showed the strongest 
enrichments for high-confidence CHD genes. These mesenchymal cell types are known from prior animal 
studies to have important roles in heart development (see Note S1), but their direct involvement in the 
genetic etiology of CHD in humans remains underexplored. 
 
Mesenchymal cells in the valves are crucial for the structural integrity and function of heart valves73. Our 
atlas includes 5 such cell populations: 3 populations of VICs (VIC_1-3) recently observed to be localized 
to the free segments of the valves, and two populations of valve-related mesenchymal cells recently 
observed to be located in intervalvular fibrous tissue towards the valve roots (VIC_4 and VIC_5). VIC_4 
expresses the marker of neural crest-derived mesenchymal cells, PENK48 (Fig. 3B; Fig. S5C), and VIC_5 
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expresses marker genes primarily observed around the semilunar valves48 (Fig. 3B; Fig. S5C). Together, 
VICs were significantly enriched for genes for 5 of 6 subtypes of CHD (ASD, atrioventricular septal 
defects, valve lesions, malformations of the outflow tract, and single ventricle disease) (5-16-fold 
enrichment, q <0.021; Fig. 3A; Table S9).  
 
Altogether, 23 high-confidence CHD genes were preferentially expressed in VICs, of which 12 have 
previously been shown to lead to heart defects in mouse models through conditional knockouts consistent 
with functions in VICs (Fig. 3C; Note S1; Table S10). For example, LTBP2 (Latent-transforming growth 
factor beta-binding protein 2) is the CHD gene most specifically expressed in VICs versus other cell types 
(Fig. S12), and is particularly highly expressed in VIC_4 (Fig. 3E). LTBP2 encodes an extracellular matrix 
protein that forms part of the latent TGFβ complex and interacts with microfibrils. Loss-of-function variants 
in LTBP2 have been observed in patients with bicuspid aortic valve, transposition of the great arteries, 
aortic stenosis, pulmonic stenosis, and mitral valve prolapse74,75. Consistent with these observations, 
Ltbp2 knockout in mice is embryonic lethal76, and mouse knockin of a disease-associated missense 
variant leads to mitral valve prolapse77. In our atlas, LTBP2 is part of a VIC gene program (VIC program 
27, “TGFb signaling and cell migration”) that includes 8 other high-confidence CHD genes (GATA4, 
MEIS2, TBX20, TBX5, TGFBR1, TLL1, HAND2, SMAD6) (Fig. 3C). Four genes in this program carry two 
or more de novo variants in the Pediatric Cardiac Genomics Consortium (PCGC) cohort (ANK3, 
CTNNB1, SAMD1, TBX5)7. Consistent with the necessity of these genes in normal heart development, 
loss-of-function mouse models for Gata4, Meis2, Tbx20, Smad6, and Tgfbr1 also result in valve defects 
and/of malformations of the outflow tract (see Note S1). 
 
Cardiac fibroblasts include diverse mesenchymal cell populations present throughout the heart including 
in the septa, myocardium, and valve annuli48,78. The cell type in our atlas with the strongest enrichment 
of high-confidence CHD genes (Cardiac_fibroblast_progenitors) corresponds to an epicardial-derived 
fibroblast population based on expression of TCF21, WT1 and TBX18 (Fig. 3B and Fig. S5C)4, and was 
enriched for genes associated with ASD, valve defects, and malformations of the outflow tract (8-10-fold 
enrichment, FDR < 0.001; Fig. 3A; Table S9).  
 
Of the 16 CHD genes highly expressed in cardiac fibroblast progenitors, 4 have been shown to lead to 
heart defects in animal models using conditional knockouts in the epicardial lineage (Note S1; Table 
S10). For example, MEIS2 mutations have been observed in patients with ASD or VSD79,80, coarctation 
of the aorta81, Tetralogy of Fallot, hypoplastic right ventricle, and Ebstein’s anomaly82. In mice, Meis2 
appears to play roles in both epicardial-derived fibroblasts and in VICs. In the epicardial lineage, double 
knockout of Meis1/2 (using Cre recombinase driven by Wt1 promoter) leads to a decrease in the 
proportion of epicardial-derived cardiac fibroblasts, and leads to VSD, malalignment of the great vessels, 
asymmetric septation of the outflow tract, and defects in coronary artery development83. Relevant to VICs, 
knockout of Meis2 in the cardiac neural crest lineage (using Sox9-Cre) leads to severe defects in the 
aortic and pulmonary valves84. In our heart atlas, MEIS2 is a member of VIC program 27 (see above) 
and also of FB program 6 (“Migration of epicardial-derived cardiac fibroblasts”), a gene program 
expressed in cardiac fibroblast progenitors that includes many genes involved in cell migration (e.g., 
SPOCK1, FAT4, SEMA6D, PLXNA4, TIAM1, and ENAH). FB program 6 also includes 13 additional high-
confidence CHD genes (odds ratio=6) (Fig. 3D), including PBX1, which encodes a known interaction 
partner of MEIS285, and six genes carrying de novo variants in the PCGC cohort (ANK3, CACNA1A, 
GATA6, PTEN, SAMD11, and ZEB2)7.   
 
In summary, many high-confidence CHD genes are highly expressed in VICs and cardiac fibroblast 
progenitors, some as part of co-regulated gene programs. Together with previous evidence from mouse 
models, this unbiased enrichment analysis suggests that these mesenchymal cell types may be important 
contributors to multiple subtypes of human CHD.  
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Figure 3: Congenital Heart Disease (CHD) Genes are enriched in cardiac fibroblast cells. 
A. Enrichment for cardiovascular disease and CHD causal genes in cardiac cell types of the fetal heart map. 

Color scale: -Log10-transformed p-values. One-sided fisher exact test with Benjamini-Hochberg correction 
(*FDR < 0.05, **FDR < 0.01, ***FDR < 0.001). # High-confidence genes: the number of CHD genes 
expressed in any cell type in the heatmap (TPM>1).  

B. UMAP embedding of scRNA-seq of all fibroblast cells and UMAP embedding of scRNA-seq of VICs. DMP: 
dorsal mesenchymal protrusion; OFT: outflow tract. 

C. Ranked importance scores of genes associated with VIC program 27; The top 300 genes by importance 
scores in VIC program 27 were considered as program genes. Black: Top 5 genes associated with VIC 
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program 27; Orange: high-confidence CHD genes from CHDgene in the top 300 genes8; Blue: CHD genes 
carrying two or more de novo variants identified in the PCGC cohort7. TBX5 is both a high-confidence 
CHD gene and a gene carrying two or more de novo variants. Inset: Projection of VIC program 27 
expression on the VIC UMAP, showing expression in VIC_4 and other VIC populations. Color scale: gene 
program usage per cell. 

D. Ranked importance scores of genes associated with FB program 6. Labels denote selected program 
genes (among the 300 by importance score, see Methods).  Black: Top 5 genes associated with FB 
program 6. Orange: high-confidence CHD genes from CHDgene8. Blue: CHD genes carrying two or more 
de novo variants identified in the PCGC cohort7.  Inset: Projection of FB program 6 expression on the 
fibroblast UMAP, showing high expression in cardiac fibroblast progenitors and some cell cycling 
fibroblasts. 

E. Z-score normalized TPM values of 27 CHD genes highly expressed in VICs and/or cardiac fibroblast 
progenitors (CFB). Bold genes (MEIS2 and LTBP2) are discussed in the text. *: the gene is considered to 
be highly expressed in the corresponding cell types (see Methods). 
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Convergence of rare and common variation on VICs 
 
To further explore the role of VICs in heart development and disease, we examined common noncoding 
variants associated with valve diseases and quantitative traits through GWAS. Previous genetic studies 
have noted that certain GWAS signals for acquired valve diseases are located near known CHD genes. 
For example, a noncoding variant near LTBP2, one of the CHD genes described above, is associated 
with mitral valve prolapse86. However, the specific causal enhancers or cell types for these loci have not 
yet been identified. Accordingly, we applied our regulatory map to test whether noncoding variants 
associated with valve traits might act in VICs to regulate known CHD genes and other genes in similar 
pathways. 
 
We first assessed the overall enrichment of noncoding GWAS variants in VIC enhancers for 6 diseases 
and quantitative traits related to the valves and the aorta, including our recently conducted GWAS for 
measurements of aortic valve hemodynamics87,88 (mitral valve prolapse86, aortic stenosis89, aortic root 
diameter90, and peak velocity and mean gradient of the aortic valve88,91, see Methods; Table S11). We 
indeed observed strong enrichment for genome-wide heritability in fetal VIC enhancers, using stratified 
linkage disequilibrium score regression (S-LDSC) (up to 12.5-fold enrichment, for aortic root diameter in 
predicted enhancers in VIC_3, a population of VICs in the free segments of the valve leaflets; Fig S13; 
Table S12).  
 
Thirteen GWAS signals for valve traits contain noncoding variants linked to 8 high-confidence CHD genes 
(ELN, FBN1, GATA4, JAG1, LTBP2, NKX2-5, PIGL, TBX20) via VIC enhancers (Table S13). For 
example, variant rs989909 is associated with mitral valve prolapse, overlaps an enhancer predicted to 
regulate LTBP2 in all VIC populations (Fig. 4A), and is predicted to create a composite GATA/TAL motif 
instance92 (Fig. 4C). Variant rs6460068 is associated with aortic root diameter and aortic valve mean 
gradient, and overlaps a VIC enhancer predicted to regulate elastin (ELN)—a ubiquitous extracellular 
matrix protein in which loss-of-function mutations lead to supravalvular aortic stenosis and valve 
defects93,94 (Fig. S14A). These observations suggest that common noncoding variants may tune the 
expression of CHD genes in fetal VICs to impact valve structure.  
 
While not directly targeting a CHD gene, many other GWAS signals for valve traits were linked to genes 
that are part of the same pathways. For example, we found an enrichment of predicted target genes of 
valve trait GWAS signals in VIC program 27 (“VIC migration and TGFb signaling”) — the same program 
noted above that contains LTBP2, GATA4, and 7 other CHD genes (Fig. 4E). A total of 17 genes linked 
to valve traits via GWAS variants in VIC enhancers are members of VIC program 27 (4.7-fold enrichment, 
P = 6.2 x 10-7). For example, a noncoding variant associated with mitral valve prolapse (rs165177) is 
predicted to create an SP-like motif instance and regulate LCMD1, which encodes a TF that inhibits the 
activity of GATA6 and whose knockdown in zebrafish leads to AV valve regurgitation95 (Fig. 4B,D). 
Another variant, associated with aortic root diameter, is predicted to regulate NPR3 (Fig. S14B), a gene 
where genetic misregulation has been observed in the context of valve insufficiency96 and progressive 
aortic root dilatation in humans97 . 
 
Together, these observations suggest that noncoding variants may affect fetal VIC enhancers to regulate 
valve structure and function. The target genes include known CHD genes, where loss-of-function 
mutations lead to more severe heart defects, and other genes that are co-regulated in the same gene 
pathways. Thus, rare and common variants associated with valve diseases converge on shared genes 
and pathways in VICs. Notably, this suggests that polygenic regulation of valve structure might also 
influence risk for CHD (see Discussion). 
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Figure 4: Convergence of rare and common variants on VIC pathways 
A,B. scE2G predictions and normalized ATAC-seq signals are shown for LTBP2 (A) and LMCD1 (B), showing 
that GWAS variants associated with valve diseases or traits (red downward arrows) overlap enhancers linked 
to these genes in VICs. Enhancer predictions overlapping variants are highlighted in red. Arcs represent the 
predicted enhancer-gene regulatory interactions. Side color bars show the TPM expression of the target genes 
in each cell type (blue) and the corresponding scE2G scores (red; white for scores below the threshold). CFB: 
cardiac fibroblasts. The hg38 coordinates of the highlighted enhancer regions are as follows: LTBP2 Enh 1: 
chr14:74621382-74622571; LTBP2 Enh 2: chr14:74630908-74631785; LMCD1: chr3:8560989-8562461.  
C,D. For selected variants, predicted impact on chromatin accessibility by ChromBPNet. Top: Predicted 
ATAC-seq counts for the reference (blue) and alternative (orange) alleles. Middle: Importance scores from 
ChromBPNet in VIC_1 (free segments) and VIC_4 (VICs derived from neural crest). Bottom: Motif from TF-
MoDiSCO predicted to be altered by the variant. The alternative allele at rs989909 (G) creates a motif for TAL 
as part of a GATA/TAL heterodimer, which is predicted to have a small impact on local chromatin accessibility, 
consistent with previous studies of TAL factors, and is expected to have a larger effect on enhancer activity92. 
The alternative allele at rs165177 (C) creates an SP-like motif that is predicted to increase chromatin 
accessibility. 
E. Annotation of genes in VIC Program 27, which contains many CHD genes (red), genes linked to noncoding 
GWAS variants for valve or aortic traits (blue), or genes with both types of evidence (purple). Black genes 
represent other genes in VIC Program 27 with related functions. 
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Noncoding risk variants affect fetal enhancers with cell type- and location-specific activities 
 
Beyond valve traits, a handful of noncoding variants have been associated directly with subtypes of CHD 
through GWAS12–15, and hundreds of noncoding variants have been associated with other quantitative 
traits such as functional traits of the atria and ventricles29–38. We applied our gene regulation map to 
discover the enhancers, cell types, and TFs that mediate the effects of variants associated with 45 
structural heart diseases and traits (Fig. 5A; Table S11).  
 
In total, our regulatory map linked noncoding variants for 770 unique GWAS signals to enhancers and 
target genes (Table S13). Heritability for each trait was enriched in a distinct set of cell types (Fig. 5B; 
Table S12). At individual loci, many of the prioritized enhancers were predicted to be active in specific 
cell types and spatial locations—providing new insights into the genetic etiology of heart structure and 
function. We present insights from 2 examples: 
  
Variant rs6702619, near PALMD, is associated with a subtype of CHD (bicuspid aortic valve), as well as 
with calcific aortic valve stenosis and quantitative traits related to the aorta and aortic valve in adults (Fig. 
5C)36,89,98,99. Previous studies have shown that rs6702619 is an eQTL for PALMD in the adult aortic 
valve100, overlaps an enhancer in adult VIC, and affects a binding site for NFATC2101. The target gene, 
PALMD, has been shown to regulate endocardial-to-mesenchymal transition (EMT) and VIC 
remodeling101,102. In our map, rs6702619 overlaps an enhancer predicted to regulate PALMD not only in 
VIC but also valvular endocardial cells and aortic endothelial cells (Fig. 5D). ChromBPNet predicts that 
the disease-associated allele (G) reduces chromatin accessibility at the enhancer by 43%-68% in valvular 
cells, with the strongest reduction in endocardial cells on the inflow side of the valves (Fig. 5E), consistent 
with the direction of effect of the adult eQTL and NFATC2 binding100,101. In fetal endocardial cells, PALMD 
is part of an endocardial shear stress response gene program (“Endocardial Program 29”) that is 
regulated by KLF2/4 and includes other factors important in valve development (Fig. S15, Tables S5-6). 
Together, these data extend previous observations by showing that this variant overlaps an enhancer 
active in fetal valve cells, providing a molecular explanation for its association with congenital valve 
defects. 
 
At the MTSS1 locus, the variants rs35006907, rs34866937, and rs12541595 are in strong linkage 
disequilibrium (R2 ≥ 0.978). These variants are associated with traits related to left ventricular function, 
including decreased end-systolic and end-diastolic volumes35 and increased ejection fraction35 (Fig. 5F). 
The alternative haplotype is also associated with lower expression of MTSS1 in the left ventricle 
(GTEx)103. In our atlas, rs35006907 and rs34866937 overlap a single enhancer predicted to regulate 
MTSS1 in all VCMs and a small subset of ACMs (Fig. 5G). ChromBPNet predicts that the alternative 
allele (A) at rs35006907 reduces chromatin accessibility of the enhancer by 10-30% in VCMs, with the 
highest reduction in a population of trabecular cardiomyocytes, by altering a motif instance that matches 
USF1 and MITF (Fig. 5H). Mtss1 knockout in mice is embryonic lethal and leads to decreased LV end-
diastolic and end-systolic dimensions104, and knockout in medaka leads to a marked reduction in 
trabeculation29. Our results indicate that, because this enhancer is active early in fetal development, the 
effects of this variant on many myocardial traits could have developmental origins.  
 
To validate the cell type specificity of these enhancers, we tested the expression patterns of these 2 
enhancers in E11.5 mouse embryos using a transgenic enhancer reporter assay (Fig. 5I; Table S14). 
Both enhancers had spatially restricted activities that were consistent with the predicted cell types of 
action above (Fig. 5J,K). The PALMD enhancer showed specific activity in the outflow tract, consistent 
with the scE2G-predicted activity in aortic and valvular endocardial cells in our human atlas (Fig. 5I). The 
MTSS1 enhancer showed specific activity in the ventricular septum (Fig. 5K). We further tested the 
effects of PALMD variants on enhancer activity, and found that introducing the alternative allele for 
rs6702619 and tightly linked rs11166276 led to undetectable enhancer activity, consistent with its strong 
predicted effect on accessibility (Fig. S16). 
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Together, these analyses suggest that noncoding variants can influence risk for CHD and other structural 
traits by regulating gene expression in specific cell types and subanatomic locations in the developing 
heart. Including the examples presented here, annotations of 770 GWAS signals for cardiac diseases 
and traits will provide a rich resource for future study (Table S13). 
 

 
Figure 5: Noncoding variants affect enhancers with cell type and spatially restricted activities 
A. Selected GWASs of quantitative measurements of the heart (gray) and cardiac diseases (blue) included 

in this analysis. 
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B. Heritability enrichment (S-LDSC) of quantitative measurements of the heart and cardiac diseases in 
scE2G predicted enhancers of each cell type. Representative cell types are shown. See also Table S12. 

C. Trait associations for rs6701619. Beta: Per unit change in the outcome associated with the alternative 
allele. The alternative allele increases the risk for aortic and aortic valve related diseases, and increases 
the quantitative measurement of aortic traits except for aortic valve area. 

D. rs6701619 overlaps an enhancer (hg38: chr1:99580436-99581202) predicted to regulate PALMD in 
valvular cells (red highlight and arcs). Signal tracks represent chromatin accessibility from ATAC-seq. 
Gray arcs represent other predicted enhancer-gene regulatory interactions in the locus. The side color 
bars show the TPM expression of PALMD in each cell type (blue), scE2G scores (red, and white for scores 
below the threshold), and ChromBPNet predicted log2 fold changes in chromatin accessibility upon 
substitution of the reference allele (T) with the alternative allele (G) (green indicates reduced accessibility, 
brown indicates increased accessibility). IF: inflow. 

E. ChromBPNet predictions for rs6702619 in (IF) inflow valvular endocardial cells. The alternative allele is 
predicted to lead to a decrease in chromatin accessibility across the element (top). Middle and bottom 
tracks show contribution scores for the reference and alternative alleles. Inset: NFATC1 motif learned de 
novo by TF-MoDISCO, and contribution scores for the reference and alternative alleles. 

F. Trait associations for rs35006907. Beta: Per unit change in the outcome associated with the alternative 
allele. The alternative allele increases LV ejection fraction, and decreases both the maximum LV volume 
and the minimum LV volume.  

G. rs35006907 overlaps an enhancer (hg38: chr8:124846865-124849334) predicted to regulate MTSS1 in 
VCMs (red highlight and arcs). Similar to E. 

H. ChromBPNet predictions for rs35006907 in right trabecular VCMs. The alternative allele is predicted to 
lead to a decrease in chromatin accessibility across the element (top). Middle and bottom tracks show 
contribution scores for the reference and alternative alleles. Inset: Motif learned de novo by TF-MoDISCO 
(similar to USF1 and MITF motifs), and contribution scores for the reference and alternative alleles. 

I. Schematics for the mouse transgenic assay. The predicted enhancer is cloned to drive the expression of 
LacZ.  

J. The enhancer overlapping rs6702619 is active in the outflow tract of the developing mouse heart at E11.5. 
K. The enhancer overlapping rs35006907 is active in the interventricular septum of the mouse heart at E11.5. 
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Discussion 
 
Here, we illuminate the genetic and cellular etiology of CHD using a comprehensive gene regulation map 
of the human fetal heart. Considering 90 cell types in the human fetal heart, we implicate new cell 
populations in the genetic etiology of CHD subtypes, discover noncoding risk variants with cell type- and 
location-specific activities, and identify molecular convergence of variants associated with CHD and 
quantitative valve traits. These insights will help to guide future studies of CHD, provide a resource for 
interpreting the functions of variants observed in patient genomes, and may inform the development of 
therapies based on novel cell or molecular targets. 
 
This study, by combining a comprehensive multiomic atlas of the fetal heart with known CHD genes and 
genetic variants, provides key evidence for the hypothesis that VICs and cardiac fibroblasts play direct 
roles in the genetic etiology and development of CHD2,13,39,48,105. In an unbiased analysis of 90 cell types 
in the human fetal heart, VICs and cardiac fibroblasts show the strongest enrichment for high-confidence 
CHD genes, including for multiple subtypes of CHD (Fig. 3A). Consistent with this finding, previous 
studies have studied individual genes with effects on mesenchymal cells and heart development in animal 
models (Note S1), noted the expression of candidate CHD genes in mesenchymal cells in other 
datasets2,13,39,48, and observed differences in cardiac fibroblasts in the hearts of CHD patients after 
birth106. Our data expand on these observations by prioritizing specific genes and connecting them into 
molecular pathways in these cell types (Fig. 3), linking evidence from lineage-specific murine knockouts 
to unbiased analysis of human cell types (Note S1), and identifying noncoding variants associated with 
valve traits that link to known CHD genes in VICs (Fig. 4). Together, our results suggest that a large 
fraction of CHD genes, including genes such as LTBP2, GATA4, and MEIS2, may lead to heart defects 
through primary effects in mesenchymal cells. This has implications for our fundamental understanding 
of how heart defects arise beyond disease of the working myocardium, and motivates further 
development of appropriate cell and animal models to study the contributions of these cell types to CHD. 
 
We identify, for the first time, convergence of rare variants associated with CHD and common variants 
associated with quantitative measurements of valve structure and function—in particular, on a gene 
program in neural-crest derived VICs (Figs. 3C,4E). This identifies a specific pathway that could mediate 
polygenic contribution to CHD. Indeed, recent studies have suggested the possibility of polygenic or 
oligogenic architectures for CHD in which different heart defects might arise from combinations of causal 
genetic variants in a given individual12–15,33,107,108. Patients or family members with rare variants in the 
same genes are often observed to have different types of CHD, and combining causal variants in animal 
models have directly confirmed certain genetic interactions107. Previous studies have noted individual 
cases where GWAS loci for quantitative cardiac traits are located near CHD genes36, and observed 
genome-wide genetic correlations between certain quantitative traits and CHD risk, such as between 
interventricular septum structure and risk for VSDs33. However, specific molecular pathways that mediate 
such convergence have not previously been identified. Our data suggest a possible model in which 
common, inherited genetic variation tunes the structure of the valve by influencing VICs during fetal 
development. In this model, the severity or form of CHD would be influenced by the combination of rare, 
high-effect variants (e.g., in genes such as LTBP2, GATA4, and MEIS2) and common, mostly noncoding 
variants that regulate some of these same genes or other genes in the same molecular pathways (Fig. 
4E).  
 
Our comprehensive atlas of noncoding regulatory elements enabled the first systematic assessment of 
the roles of inherited noncoding variants associated with CHD and quantitative cardiac traits during fetal 
development. We link hundreds of such noncoding variants to candidate enhancers, cell types, genes, 
and pathways (Table S13). Individual variants are predicted to act in specific cell types (e.g., VICs and 
valvular endocardial cells for bicuspid aortic valve), but collectively span dozens of different cell types, 
highlighting the importance of considering the diverse totality of cell types present during cardiogenesis. 
Functional testing of two of these enhancers revealed unique, spatially constrained activity patterns, 
suggesting that specific spatial patterns of enhancer activity could explain how some noncoding variants 
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affect specific aspects of heart structure (Fig. 5). These specific patterns also highlight the utility of our 
cell type-specific enhancer catalog for identifying and testing enhancers with spatial specificity, which 
may be leveraged to develop expression vectors for gene therapies that target specific cell types, 
locations, or developmental timepoints. 
 
Our study illustrates the importance of high-depth single-cell atlases for building gene regulation maps to 
interpret the impact of human genomic variation on function. Leveraging cutting-edge predictive models, 
we construct regulatory maps of noncoding variants (with ChromBPNet) and enhancers (with scE2G) in 
cell types with at least 3 million fragments. Accordingly, we are able to annotate impacts of chromatin 
accessibility and target genes across 90 cell types and cell states present in the fetal heart, including rare 
but clinically relevant cell types such as the cardiac conduction system. However, deeper data will be 
required to identify rarer cell types, or cell states that occur only at certain time points during development. 
For example, we observe rare subpopulations of migratory epicardial cells (Fig. S5), which are too rare 
even in this dataset to build accurate maps of gene regulatory elements. Our atlas also lacks hearts 
earlier than post-conception week 6, timepoints that are critical to the formation of the heart and that may 
include additional cell types and states important for the genetic etiology of CHD. As such, the variants 
and genes we describe here may have functions in other cell types or stages not included in our atlas. 
Expanding single-cell multiomic studies to include earlier time points would provide a more 
comprehensive understanding of how our genome encodes heart development, enabling additional 
discoveries that were previously only possible in model systems. 
 
Together, this work provides new insights into the genetic etiology of CHD, and a foundational map for 
interpreting effects of genetic variants on heart structure and function. As genome sequencing and 
association studies of CHD continue to expand, we anticipate that this map will enable many additional 
discoveries about the genes, pathways, and cell types that contribute to heart development and disease. 
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Methods 

Human Heart Tissue Sample Collection 
Human fetal heart tissue samples were collected from three primary sources: Stanford University, Cercle 
Allocation Services, Inc. (IRB 20111833), and the University of Washington (UW) Birth Defects Research 
Laboratory (BDRL). Each collection adhered to the ethical and legal guidelines specific to the institution, 
including obtaining written maternal consent. The research followed the ethical and legal standards of 
the Stanford University Research Compliance Office, ensuring compliance with policies at Stanford and 
other collaborating institutions. All collected tissues were screened and confirmed to be negative for 
trisomies and other non-single ventricle defects based on prenatal screening. The post-conceptional age 
(PCW) of the tissue was determined through ultrasound assessment and by referencing the date of the 
last menstrual period prior to pregnancy termination. A total of 41 structurally normal human fetal hearts, 
ranging from 6 to 22 post-conception weeks, were collected from these sources. Samples from Cercle 
and BDRL were stored in 1X HBSS+/+ (Gibco 14025-092) before being flash-frozen and shipped 
overnight on dry ice for cryobanking at -80°C. Samples collected directly from Stanford University were 
flash-frozen in-house and cryobanked at -80°C. Most samples were flash-frozen within 2 hours of the 
procedure. 

Sample Preparation for Single-Cell Multiome 
Three protocols were developed to process samples, each tailored to meet specific sample conditions 
and experimental needs. Protocol 1 (http://dx.doi.org/10.17504/protocols.io.rm7vzjez5lx1/v1) is designed 
for fresh tissue, providing high-quality nuclei for downstream analyses due to its ability to preserve sample 
integrity. Protocol 2 (http://dx.doi.org/10.17504/protocols.io.rm7vzjez5lx1/v2) is optimized for handling 
small or limited tissue samples and is preferred when nuclei retention is critical, ensuring that even 
minimal sample inputs yield viable results. Protocol 3 
(http://dx.doi.org/10.17504/protocols.io.rm7vzjez5lx1/v3), which was used for processing the majority of 
the samples in this study, provides consistency and scalability across larger sample sets due to its ability 
to maintain good quality nuclei and effective purification steps. The methods described within this 
subsection are based on Protocol 3, and all three protocols can be accessed via Protocols.io for detailed 
step-by-step guidance. Details on which samples were processed using Protocols 1, 2, or 3 can be found 
in Table S2. 
 
Human fetal heart samples from 41 cases, ranging from 6 to 22 post-conception weeks, were processed 
(see Table S1 for sample attribute information and Table S2 for sample metadata details). These 
samples were flash-frozen before being processed for the experimental pipeline. Each sample was 
mechanically homogenized separately in a 15 mL pre-chilled Dounce tissue grinder (Millipore Sigma 
D9938) with 4 mL of 1x Homogenization Buffer, which consisted of 260 mM sucrose, 30 mM KCl, 10 mM 
MgCl2, 20 mM Tricine-KOH pH 7.8, 1 mM dithiothreitol (DTT), 0.5 mM spermidine, 0.15 mM spermine, 
0.3% NP40, 60 U/mL Ribolock RNase Inhibitor, 1% BSA, and 0.5–1 tablet of cOmplete Protease Inhibitor. 
To begin, 20–100 mg of flash-frozen tissue was cut with a razor blade in a tissue culture dish placed on 
an ice block over dry ice to prevent premature thawing. The tissue was then transferred to the Dounce 
tissue grinder. The tissue was allowed to thaw for 5 minutes in the chilled buffer before homogenization. 
Homogenization was performed using 10–20 strokes with pestle A (loose), followed by 10–20 strokes 
with pestle B (tight), depending on the tissue amount and developmental stage (older tissue required 
more strokes). The homogenized solution was then filtered through a 100-µm cell strainer (PluriSelect 
43-50100-51) into a pre-chilled 50 mL conical tube. To rescue any remaining nuclei, an additional 400 
µL of 1x Homogenization Buffer was used to rinse the Dounce tissue grinder and passed through the 
same 100-µm cell strainer. The sample was further filtered by gently pipetting in 400–500 µL increments 
through a 70-µm Flowmi cell strainer (Bel Art H136800070) into a new 5 mL Eppendorf low-binding tube. 
Nuclei were pelleted by centrifugation at 350g for 5 minutes at 4°C, after which all but 50 µL of 
supernatant above the pellet was removed. The nuclei were then resuspended in 750 µL of 1x 
Homogenization Buffer, bringing the total volume to 800 µL. Further purification was achieved using an 
Iodixanol density gradient. Each sample was mixed with an equal volume (800 µL) of 50% Iodixanol 
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Solution (60% Iodixanol, 150 mM KCl, 30 mM MgCl2, 120 mM Tricine-KOH pH 7.8, nuclease-free water), 
resulting in a 25% nuclei mixture. The mixture was gently pipetted to ensure thorough mixing. A layer of 
1000 µL of 30% Iodixanol Solution (1x Homogenization Buffer, 50% Iodixanol) was carefully added 
beneath the 25% nuclei mixture, followed by 1000 µL of 40% Iodixanol Solution to create a third layer. 
To prevent mixing between layers, the sides of the pipette tip were wiped with a kimwipe, and the tube 
was kept upright throughout the process. The sample was centrifuged at 3500g for 15 minutes at 4°C 
with the brake off (deceleration 0, acceleration 5). This process resulted in three distinct layers: the top 
layer (debris), the middle nuclei layer (target layer), and the bottom layer (more debris). The top layer 
was aspirated down to within 200–300 µL of the nuclei band. A maximum of 200 µL was collected from 
the target layer and transferred to a fresh 1.5 mL Eppendorf low-binding tube, avoiding excess debris. 
The nuclei were washed in 1 mL of 1x Homogenization Buffer, topped off to 1.5 mL, and centrifuged at 
1200g for 5 minutes at 4°C. The supernatant was removed, and 700 µL of ATAC-RSB-Tween buffer (10 
mM Tris-HCl pH 7.5, 10 mM NaCl, 3 mM MgCl2, nuclease-free water, 0.1% Tween-20, 1% BSA, 1 U/µL 
RNase Inhibitor) was added to resuspend the nuclei pellet. The solution was gently mixed by pipetting 
and filtered through a 40-µm Flowmi cell strainer (Bel Art H136800040) into a new 1.5 mL Eppendorf low-
binding tube. Nuclei quality was assessed using Trypan Blue staining and manual counting with a 
hemocytometer (Hausser Scientific 1490)49,109. 

Single-Cell Multiome Library Preparation and Sequencing 
The nuclei suspension was adjusted to a concentration of 10,000 nuclei/µL and processed using the 10x 
Genomics Chromium Controller. Nuclei were prepared for single-cell multiome sequencing following the 
Chromium Single Cell Multiome ATAC + Gene Expression kit (10x Genomics, CG000338 Rev F) with 
the Chromium Single Cell Multiome ATAC + Gene Expression Reagent Bundle (PN-1000283), and the 
Chromium Next GEM Chip J Single Cell Kit (PN-1000234). Libraries were uniquely indexed with Single 
Index Kit N Set A (PN-1000212) for snATAC-seq and Dual Index Kit TT Set A (PN-1000215) for snRNA-
seq. Quality control for the cDNA and final libraries was performed using the Bioanalyzer High Sensitivity 
DNA Analysis Kit (Agilent, 5067-4626), and the Qubit™ 1X dsDNA High Sensitivity (HS) Assay Kit 
(Thermo Fisher Scientific, Q33231). Sequencing libraries were pooled and sequenced on Illumina 
NextSeq 550, NovaSeq, NovaSeq X and NovaSeq X Plus instruments, achieving a cumulative mean 
read depth of at least 20,000 total reads per nucleus for RNA and 25,000 total reads per nucleus for 
ATAC (or 20,000–30,000 reads per nucleus).  
 

scRNA-seq alignment and background removal  
The raw sequencing data was converted to FASTQ format using bcl2fastq. ScRNA-seq reads were 
aligned to GENCODE v29 (https://woldlab.caltech.edu/~diane/genome/GRCh38-V29-male-
2.7.8a.tar.gz) using STARSolo110 (v2.7.11a) following the parameters specified in starsolo.snakefile 
(https://github.com/detrout/woldlab-rna-seq/tree/main, commit f592629).  For the downstream analysis, 
we used the “GeneFull_Ex50pAS” count matrix, which contains all reads overlapping genes' exons and 
introns. We used CellBender111 (v0.3.0) to remove ambient RNA from the count matrices with a false 
positive rate (0.01). The “expected-cells” and “total-droplets-included” parameters were set based on 
knee plots of UMI counts per cell barcode, as recommended by the CellBender user manual. We set "--
learning-rate" and "--epochs" to 0.00002 and 150, respectively. CellBender's evaluation was used to 
determine if reruns with different parameters were necessary. In such cases, the learning rate was halved 
and epochs were increased to a maximum of 300 until the performance was evaluated to be satisfying. 
 

scATAC-seq alignment 
The raw sequencing data were converted to FASTQ format using bcl2fastq. Barcode matching was 
performed using matcha112 (v0.0.2) with the maximum hamming distance to tolerate between overserved 
and whitelisted barcodes set to 1. The scATAC-seq reads were aligned to the GRCh38 reference genome 
(ENCODE: GRCh38_no_alt_analysis_set_GCA_000001405.15) using bowtie2113 (v2.4.4). The aligned 
reads were filtered using samtools114 (v1.13) view with the parameters -F 524 -f 2” to only keep properly 
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paired mapped reads that passed platform/vendor quality checks. Read pairs mapped to more than 4 
locations were discarded. Duplicate reads were removed using Picard's MarkDuplicates115 (picard-slim 
v2.35.7) with lenient validation stringency. We further filtered for primary alignments and discarded reads 
mapped to the mitochondrial genome. Finally, the alignment was sorted by coordinates and was 
converted to the fragment file format, during which the reads were shifted + 4 bp and − 4 bp for positive 
and negative strand respectively to account for Tn5 transposase insertion during library preparation. 
 

scATAC-seq quality control  
We calculated the nucleosome signal for each cell by computing the ratio of mononucleosomal (147–294 
bp) to nucleosome-free (<147 bp) fragments sequenced for each cell. Only cells called by STARSolo 
(see ScRNA-seq alignment and background removal) and with nucleosome signals lower than 2 were 
considered for further analysis. These cells were read into the ArchR116 (v1.0.2) and filtered based on 
two criteria: a minimum transcription start site (TSS) enrichment score of 6 ("minTSS=6") and at least 
1000 mapped ATAC-seq fragments per cell ("minFrags=1000"). We then reviewed the log-transformed 
unique nuclear fragments versus TSS enrichment score plots of each library. For libraries with higher 
sequencing depth or distinct clusters of cells with low fragment counts, we increased the minimum 
fragment threshold to either 2000 or 3000 fragments to exclude low-quality cells.  
 

scRNA-seq quality control and normalization 
After calling cells using STARSolo and removing cells that did not pass the ATAC quality control (see 
scATAC-seq quality control), to account for variations in sequencing depth and library quality, we 
performed library quality control for each library. We examined the distribution of three key metrics: 

1. Number of UMIs per cell: we filtered out cells with very low (cutoffs ranged from 200 to 2000 UMIs 
per cell) or very high (thresholds ranged from 20000 to 50000 UMIs per cell)  

2. Number of genes detected per cell: Cells with too few detected genes were filtered out (thresholds 
ranged from 300 to 1000 genes per cell). 

3. Percentage of UMIs originated from the mitochondrial genes: cells with more than a library-
specific threshold (ranged from 2% to 30%) for mitochondrial UMI percentage were filtered out.  

 
The count matrix of each library was then normalized by proportional fitting prior to log transformation 
followed by an additional proportional fitting, as recommended117 
(https://github.com/pachterlab/BHGP_2022).  
 

Doublet removal 
Four doublet removal methods were used to detect doublets, using both RNA and ATAC modalities. For 
ATAC-seq data, we used ArchR’s “addDoubletScores()” with the default parameters to identify doublets 
based on their similarity to the synthetic doublets created by mixing reads from combinations of individual 
cells. Additionally, we used AMULET118 (commit 9ce413f) with default parameters to detect multiplets 
(including homotypic ones) by identifying nuclei with significantly more loci containing more than two 
reads. For RNA-seq data, for each library, we initially assigned doublet scores to each cell using Scrublet 
with the default parameters. The automatically generated doublet score thresholds were then evaluated 
by plotting the assigned doublet scores in histograms and visualizing the scores on the 2D embedding of 
the cells. The automatically detected thresholds were retained for doublet annotation if they were 
supported by the visualization; otherwise, we adjusted the thresholds based on the visualization. 
Furthermore, for libraries containing cells from multiple donors, we detected doublets by clustering cells 
based on their genotype using Souporcell119 (commit 54fd312) default parameters. This method allowed 
us to identify doublets originating from genetically distinct samples, regardless of their gene expression 
profiles. Nuclei annotated as a multiplet by any of these four methods were removed from the downstream 
analysis. 
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Sample demultiplexing 
To control for technical variability, maximize flow cell utilization, and facilitate doublet detection, we used 
a combinatorial pooling strategy for samples with sufficient quantity. This strategy allowed us to decode 
the original donors of the cells downstream by the unique genotype information of each donor. 
Specifically, this pooling strategy involved mixing cells from multiple donors (typically 2 or 3) in various 
combinations (e.g., A+B, B+C, and C+B). To attribute the cells to their original donor, we leveraged the 
cell clustering by genotype generated by Souporcell. For each pooled library, we selected at least 15 
informative loci with homozygous genotypes (reference or alternative) across the cell clusters generated 
by Souporcell. We then combined cell clusters from libraries with overlapping donors and clustered the 
cell clusters based on their genotypes at the selected loci. Finally, cell clusters from different libraries with 
matching genotypes were assigned to donors shared by these different libraries. For samples that were 
insufficient for different pooling combinations, we pooled them together by their post conception weeks.  

Sex determination of the donors 
We determined the sex of the donors by evaluating the expression levels of sex specific genes in the 
cells from the donors. Genes used for identification of male samples included ZFY, DDX3Y, UTY, USP9Y. 
XIST was used for identifying female samples.  
  
Assignment of cells to major cell types 
Following quality control and doublet removal, cells from all libraries were combined for cell type 
identification. The combined count matrix was normalized using the method described in scRNA-seq 
quality control and normalization. Clustering was performed at three resolutions (0.2, 0.4 and 0.6) 
using the original Louvain algorithm implemented in the “FindClusters()” function of Seurat120 (v4.3.0). 
We visualized the relationships between clusters across these resolutions using Clustree121 (v0.5.0) and 
selected 0.2 as the resolution for downstream analysis. The clusters were assigned to the following 
preliminary cell types based on the expression of known marker genes: ACM (MYH6, GJA5, NPPA), 
VCM (MYH7, MYL2, FHL2), Endothelial and endocardial cells (PECAM1, CDH5, UNC5B), mural cells 
and fibroblast-like cells (COL1A1, COL1A2, DCN, LUM, MYH11, ELN), epicardial cells (TBX18, UPK3B, 
WT1), immune cells (CD69, SKAP1, LEF1, LYVE1, CD68, PTPRC, CD74), and neuron and neural crest 
cells (NRXN1, SOX10, TFAP2B, TH, FOXD3). Clusters highly express genes indicative of contamination, 
such as HBG1, TSPAN5, ALB, were removed.  
 

Clustering and cell type annotation 
For all cell clustering and cell type annotation analysis, we used count-splitting122. Specifically, we split 
the count matrix of each preliminary cell type into a training set and a test set of equal sizes using negative 
binomial splitting implemented in countsplit122 (v4.0.0). The gene-specific overdispersion parameters 
were estimated for all genes using the “vst()” function from sctransform117,123 (v0.3.5) with the “n_genes” 
parameter set to NULL. 
 
Normalization of the training matrix was performed as described previously in scRNA-seq quality 
control and normalization. To cluster the cells, we first identified the top 2000 variable genes using 
Seurat’s “FindVariableGenes()” function. We then excluded from the list ribosomal genes 
(“^RPS.*|^RPL.*”), mitochondrial genes (“^MT-*”), genes associated with cell cycling (provided by 
cc.genes in Seurat), and sex-specific genes (identified by extracting genes unique to the X or Y 
chromosome from GENCODE v29 made available by ENCODE). This step aimed to prevent these genes 
from driving clustering while allowing them to be detected as differentially expressed genes. Clustering 
was performed at 10 resolutions (0.1 to 1) using the original Louvain algorithm implemented in the 
“FindClusters()” function of Seurat120 (v4.3.0). The resolution was selected based on the relationships 
between clusters across these resolutions as visualized by Clustree121 (v0.5.0).  
 
For each identified cluster, we used the test matrix to identify differentially expressed genes (calculated 
by Wilcoxon rank-sum test) and evaluate the expression of known marker genes. Additionally, using the 
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original matrix, we evaluated the UMI count scaled by the corresponding sequencing library. Clusters 
with compromised quality were removed. These include clusters with high expression of genes indicative 
of contamination (e.g., HBG1, TSPAN5, ALB), mitochondrial or ribosomal genes, markers not consistent 
with the assigned preliminary cell types (e.g., cardiomyocyte markers in immune cell types), or a high 
proportion of cells with high UMI counts from each library (these might be doublets or multiplets). After 
removing these compromised clusters, normalization and clustering were repeated to identify and 
annotate fine-grained cell types/states.  This process was repeated if any newly formed clusters showed 
signs of compromised quality. The markers used for each fine-grained cell type and state can be found 
in Figs. S3-7. The 2-dimensional representations of the cells were generated using uniform manifold 
approximation and projection (UMAP) as implemented in Seurat120 (v4.3.0). 
 
Of note, we opted to not correct for batch effects associated with experiment or donor due to concerns 
of removing biological variation by over-correction. We noted that the clustering results were largely not 
influenced by experiment or donor: no clusters exclusively comprised cells from a specific library or donor.  

Predicting enhancer-gene regulatory interactions with scE2G  
We used the scE2G model (https://github.com/EngreitzLab/sc-E2G)54 to predict enhancer–gene 
regulatory interactions within each cell type. The scE2G model builds upon the previously established 
Activity-by-Contact (ABC) and ENCODE-rE2G models and is adapted for single-cell applications. The 
scATAC-seq fragments of each fine-grained cell type were pseudo-bulked. Cell types with less than 3 
million fragments were excluded, affecting 11 cell types. The pseudo-bulked scATAC-seq signals 
(“activity”) and a Hi-C contact map averaged across human cell types (“contact”)124 were used to compute 
the ABC score for each cell type. To incorporate the gene expression information and take advantage of 
the single-cell nature of the input dataset, the Kendall correlation between chromatin accessibility and 
gene expression across single cells within each fine-grained cell type was calculated. These correlation 
coefficients were subsequently integrated with corresponding ABC scores to improve calibration across 
varying sequencing depths. 
 
The integrated ABC score and Kendall correlation, along with 5 additional features, were used as input 
logistic regression models to predict CRISPRi-validated enhancer-gene pairs in K562 cells. The 
additional features include 1) the number of transcription start sites (TSSs) between each enhancer and 
the promoter of the target gene, 2) the number of peaks between each enhancer and the promoter of the 
target gene, 3) chromatin accessibility at the promoter, 4) number of peaks within 5 kb of the enhancer, 
and 5) whether the target gene is ubiquitously expressed. The trained scE2G model was applied to score 
each peak-gene pair in the 90 cell types.  
 
The resulting scE2G scores were then quantile normalized. In our analysis, excluded genes that are in 
the following categories: long noncoding RNAs (‘^LINC’), gene isoforms (‘-AS’), microRNAs (‘^MIR’), 
small nuclear RNAs (‘RNU’), genes of uncertain functions (‘^LOC’), and also genes with TPM less than 
1 in the respective cell type. Enhancer-gene pairs with quantile-normalized scE2G scores greater than 
or equal to 0.174 were considered as predicted enhancer-gene regulatory interactions. 

 

Identification of overlapping enhancers 
To identify predicted enhancers likely representing the same active chromatin regions, we grouped 
enhancers into enhancer groups based on location. Specifically, we sorted all predicted enhancers 
(including all cell types) by length and iteratively merged pairs that overlapped by at least 50% of the 
shorter enhancer's length. After each merge, the merged enhancer became the new candidate for 
subsequent merging. This process continued until no further overlaps were found. All predicted 
enhancers contributing to the same merged enhancers were considered to be in the same enhancer 
groups and were considered overlapping (Figs. 1F,G; Fig. 2D). 
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Learning models to predict base-resolution cell type-specific scATAC-seq profiles from DNA 
sequence and identifying transcription factor motif instances with ChromBPNet 
We applied the ChromBPNet model58 to identify TF motif instances and predict the effects of noncoding 
variants on chromatin accessibility. Our application of this model to identify important TF motifs per cell 
type and specific TF motif instances involves four steps: (1) Training a model to predict chromatin 
accessibility from DNA sequence in each cell type; (2) Identifying sequences predicted to be important 
for chromatin accessibility by the model; (3) Identifying recurrent sequences (motifs) from the model de 
novo, and annotating them with possible TFs using existing motif databases; and (4) Identifying specific 
instances of these motifs across all chromatin accessible elements: 
 
(1) To predict single nucleotide-resolution read count profiles from scATAC-seq data, we trained 
ChromBPNet (v0.1.7) models (https://github.com/kundajelab/chrombpnet)58 — sequence-to-profile 
convolutional neural networks — for each of the cell types. ChromBPNet uses one-hot-encoded DNA 
sequence (A = [1, 0, 0, 0], C = [0, 1, 0, 0], G = [0, 0, 1, 0], T = [0, 0, 0, 1]) in a 2,114-bp window around 
scATAC-seq peaks (specifically, candidate elements defined by scE2G above) and is trained to predict 
scATAC-seq pseudobulk Tn5 insertion counts for the central 1,000 bp. In order to correct for the Tn5 
bias, the ChromBPNet model also uses a Tn5 bias track as input, which was obtained from the ENCODE 
Project (ENCSR868FGK). The ChromBPNet model has two heads, which correspond to the total Tn5 
insertion counts over the 1000 bp region and to the profile — a multinomial probability of Tn5 insertion 
counts at each position of the 1000 bp sequence, respectively. We used a 5-fold chromosome hold-out 
cross-validation with the training, evaluation, and test chromosomes used for each fold as follows. Test 
chromosomes: fold 0: [chr1], fold 1: [chr19, chr2], fold 2: [chr3, chr20], fold 3: [chr13, chr6, chr22] & fold 
4: [chr5, chr16]. Validation chromosomes: fold 0: [chr10, chr8], fold 1: [chr1], fold 2: [chr19, chr2], fold 3: 
[chr3, chr20] & fold 4: [chr13, chr6, chr22]. Performance of the count head was evaluated based on 
Pearson and Spearman correlation of observed and predicted log(total counts). Performance of the 
profile head was evaluated using the Jensen Shannon Distance between the normalized base-resolution 
coverage profile (converted to a probability distribution over positions) and the predicted multinomial 
profile distribution from the model (Table S17). 
 
(2) We used the DeepLIFT/DeepSHAP algorithm56 in order to interrogate ChromBPNet models and 
estimate the predictive contribution of each nucleotide in a query sequence to the predicted log(total 
counts) from the model. The base-resolution contribution scores across any query sequence are an 
additive decomposition of the difference of the predicted log(total counts) for the query sequence and the 
predicted log(total counts) for 20 dinucleotide preserving shuffled versions (neutral reference) of the 
query sequence i.e. a log fold change. For each cell type, we obtained DeepLIFT/DeepSHAP contribution 
scores for fold 0. 
 
(3) We then used TF-MoDISco (0.5.16.4.1) (https://github.com/kundajelab/tfmodisco)57 to identify non-
redundant motifs by clustering high-confidence subsequences with high contribution scores (seqlets) 
across all open chromatin peak regions for each cell type (Table S15). The 500-bp windows surrounding 
the peak centers were considered for motif discovery with fifty thousand maximum seqlets per 
metacluster. Following identification of motifs de novo, we annotate these motifs to candidate TFs or TF 
families by comparing their contribution scores against the MEME version 4 motif database using 
TOMTOM125. 
 
(4) In order to call the predictive instances (sequence matches with high contribution) of these motifs with 
high sensitivity and specificity, we scanned through contribution scores in open chromatin regions with 
the FiNeMo (v0.25) hit caller (https://github.com/austintwang/finemo_gpu), using alpha 0.7 and 5 as a hit 
coefficient threshold for reporting the instances (Table S16). 
 
Predicting effects of noncoding variants on chromatin accessibility with ChromBPNet 
In order to score and identify variants predicted to affect chromatin accessibility, we used the 
ChromBPNet models for each cell type to predict base-resolution scATAC-seq coverage profiles for 1 kb 
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genomic sequence windows containing reference and alternate alleles of selected variants. The effect 
size of each variant was estimated using two measures: the log2 fold change of the total predicted 
coverage (total counts) over each sequence window containing the reference and alternate allele, and 
the Jensen Shannon distance (JSD) between the base-resolution predicted probability profiles for the 
reference and alternative sequences to measure a change in the profile shape. 
 
Statistical significance was estimated for both of these scores on empirical null distributions of variant 
scores that were computed as follows. We shuffled the 2114 bp sequence centered at each variant 
multiple times while preserving the dinucleotide frequency, made 2 copies of each shuffled sequence, 
then inserted each allele of the variant at the center of the shuffled sequence to create a set of 100 
thousand null variants in total. We scored each of these null variants with each model using the same 
procedure that we used to score each observed variant. Then, for each observed variant, we calculated 
the proportion of the null variants that had an equally high or higher (more extreme) score to generate an 
empirical p-value for both the log2 fold change and JSD scores. The code base for scoring variants is at 
https://github.com/kundajelab/variant-scorer.  
 

Defining gene programs with consensus non-negative matrix factorization 
To identify co-expressed genes  (programs) within the heart atlas, we used consensus cNMF60 (v1.3.4). 
To increase the resolution of the programs identified, the cells in the heart atlas were grouped into cell 
type groups as specified in Table S4.  

To create the input count matrix for cNMF for each cell type group, we first excluded gene categories that 
are less informative for the analysis. These categories include long noncoding RNAs (‘^LINC’), gene 
isoforms (‘-AS’), microRNAs (‘^MIR’), small nuclear RNAs (‘RNU’), genes of uncertain functions (‘^LOC’), 
and genes lacking Ensembl stable ID or Entrez ID (bioconductor-org.hs.eg.db, v3.17.0). Furthermore, we 
filtered out cells with low gene abundance (fewer than 200 expressed genes). This threshold was more 
lenient than standard recommendations because the cell had been through the quality control step as 
described in scRNA-seq quality control and normalization. Finally, genes expressed in less than 10 
cells were removed to focus on genes with a broader expression pattern (260-8000 genes after filtering). 
 
The implementation of cNMF is described in Kotliar et al60. Briefly, NMF decomposes each count matrix 
(cell × gene) into two lower rank matrices. One matrix represents the contribution of each gene to each 
program (gene contribution matrix), and the other represents the proportions in which the programs are 
combined within each cell (usage matrix). To overcome the non-deterministic nature of NMF and achieve 
robust results, cNMF ran multiple replicates of NMF on the same normalized dataset with different 
randomly chosen seeds while using the same K, a parameter that determines the number of programs. 
The results are then averaged over multiple replicates after the outlier programs are removed. 
 
Following the recommendation outlined by Kotliar et al60, the “prepare” step of the algorithm was run with 
the following parameters: ‘cnmf prepare  -k 15 18 21 24 27 30 33 36 39 41 43 45 47 --n-iter 100 --seed 
42”. This step tested 13 different K values with 100 replicates for each K. Seed 42 was used to initialize 
the random seeds for the replicates. The “consensus” step was run with the parameter “--local-density-
threshold 0.1”, where 0.1 is the Euclidean distance threshold used to identify outlier programs and was 
chosen based on the clustergram diagnostic plot generated by cNMF.  
 
Finally, to determine the optimal K for each cell group, we sought the smallest K that maximized the 
number of unique gene ontology (GO) terms enriched in the programs calculated by Gene Set 
Enrichment Analysis (clusterprofiler126, v4.10.0; r-msigdbr127 v7.5.1: category: C5, subcategory: BP), and 
at the same time, minimizing the difference between the original transcripts per million (TPM) matrix and 
the matrix reconstructed by multiplying the gene contribution matrix (in TPM unit) with the usage matrix. 
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Programs representing ribosomal contamination, cardiomyocyte contamination, or expressing other 
markers indicative of contamination (e.g., ABL1, HBG1), as well as programs expressed in less than 5% 
of any cell type, were removed from further analysis. This resulted in a total of 253 programs for 
downstream consideration 
 
The K chosen for each cell type group are listed below: 
ACM: 39; core_conduction: 36; Endocardial_endothelial: 49; Epicardial: 39; FB: 39; MuralCells: 41; NC: 
41; VCM: 43; Lymphatic_EC: 15; TzConductionCells: 30; ImmuneCells: 41.  
 
 
Identifying transcription factors regulating gene programs  
We projected each cell to the motif space (cisbp, chromvarmotifs128 v0.2.0) using chromVar129 (v1.16.0). 
Next, we identified TFs whose per-cell motif accessibility significantly correlated (Spearman correlation > 
0.1) with the expression of the program and were among the top 300 genes most highly associated with 
the program. 
 

Cell-cell interactions 
We employed CellChat (v2.1.2)67 to infer cell-cell interaction (CCI) relationships, and more precisely the 
cell-type to cell-type interaction in this study (Table S7). The log1p transformed sequencing-depth 
normalized gene expression counts and cell type annotations (all except for pulmonary endothelial cells) 
were used as primary inputs. We performed the cell-cell interaction analysis one week at a time and 
selected the post conception week 8 data for visualization (Fig. 2K) because we have the largest number 
of total cells collected from whole hearts at this time point. 
 
CellChat curated a comprehensive database of ligand-receptor pairs, which serves as the knowledge 
foundation for analyzing the intercellular communications. Each record in this database consists of a 
ligand-receptor pair and their corresponding encoding genes. As a single ligand or receptor protein may 
have multiple subunits, it may correspond to multiple genes. These ligand-receptor pairs are 
systematically categorized into distinct cell-cell interaction (CCI) pathways. For instance, interactions 
such as DLL1-NOTCH1 and JAG1-NOTCH2 are consolidated into the "NOTCH" pathway, while pairs 
involving WNT ligands (e.g., WNT1-FZD1, WNT3-FZD5) are grouped into the "WNT" pathway. In our 
analysis, we subset the database records to the expressed ligand and receptor genes in our atlas. 
 
CellChat implements a computational approach to analyze cell-cell interactions. The analysis generates 
a three-dimensional tensor of ligand-receptor interaction strengths with dimensions K × K × N, where K 
represents the number of cell types, and N denotes the number of ligand-receptor pairs. The interaction 
strength calculation involves several steps: 1) computation of ensemble average gene expression within 
each cell type; 2) Implementation of a Hill function-based model to quantify interaction strengths. The Hill 
function model integrates multiple biological factors: expression levels of ligands and receptors; cell type 
population size; protein subunits; presence of co-stimulatory and inhibitory receptors; effects of 
extracellular agonists and antagonists. This comprehensive modeling approach ensures that the 
calculated interaction strengths reflect the biological complexity of cell-cell communication systems. 
 
CellChat aggregates ligand-receptor pair level activities to pathway level activities to quantify cell-cell 
communication through three main steps. First, it identifies significant ligand-receptor pairs through 
statistical tests that randomly shuffle cell type labels, keeping only pairs with p-value <0.05. Then, using 
the the computeCommunProbPathway() function, these significant pairs are grouped by their signaling 
pathways and their strengths are summed, creating two matrices (incoming and outgoing signals) where 
rows represent types, columns represent CCI pathways, and values show the summed strengths of all 
the corresponding ligand-receptor in that pathway. Note that the row sum of these two matrices are used 
for feature selection. Finally, these two matrices are added together to create a final signaling strength 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 22, 2024. ; https://doi.org/10.1101/2024.11.20.24317557doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.20.24317557
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

31 

matrix, which reveals both the primary communication modes used by cells and the similarities in their 
communication behaviors. 
 
Reproducible Jupyter notebook for the CCI analyses can be found in the GitHub repository 
https://github.com/chansigit/heartmap-cci-reproduction. 

Annotation of disease genes for CHD and adult-onset cardiac diseases 
We downloaded the initial list of CHD genes and their associated CHD phenotypes and classifications 
from CHDGene8 (https://chdgene.victorchang.edu.au/, accessed May 16th, 2024). In CHDGene, “Genes 
are only included in the database if variants in the respective gene have been reported as the monogenic 
cause for CHD (isolated or in the context of a syndrome) in at least 3 independent familial or sporadic 
cases in one or more separate publications.”8 We modified the original CHD classification as follows 
(Table S8): 

● ASD: we merged genes linked to ASD and ASD with minor abnormalities into a single "ASD" 
category. We removed LTBP2 and TMEM260 from this category because ASD is not a listed 
phenotype for LTBP2, and TMEM260 is associated with persistent left superior vena cava, which 
might cause ASD through a different mechanism from other ASD causal genes.  

● VSD: we combined genes linked to VSD and VSD with minor abnormalities into a "VSD" category 
and excluded genes associated with patent foramen ovale, patent ductus arteriosus (PDA), and 
bicuspid aortic valve (BAV). We included DNAH5 into the list for its VSD association.  

● Valve defects: we renamed the "Obstructive lesions” category to "Valve defects” category. This 
group now includes all genes with valve lesions in their CHD phenotypes. Genes solely 
associated with interrupted aortic arch or coarctation of the aorta but not any of the valve lesions 
were moved to the malformation of the outflow tract category. 

● Malformations of the outflow tract: genes associated with interrupted aortic arch or coarctation 
of the aorta were added to this category.  

We also analyzed high-confidence CHD genes from whole-exome sequencing by the Pediatric Cardiac 
Genomics Consortium, specifically the list of genes in which two or more de novo variants were detected 
in the cohort7. 

We obtained the causal genes for adult-onset cardiac diseases from ClinVar: 
https://ftp.ncbi.nlm.nih.gov/pub/clinvar/gene_condition_source_id  (downloaded on July 29th, 2024). 

Testing disease genes for preferential expression in particular cell types 
We defined preferentially expressed genes as the top 300 most highly expressed genes among those 
with z-score > 1 (top 16%) across all cell types, after excluding all cell cycling cell types, pulmonary 
endothelial cells and lymphoid cells, as well as genes that are in the following categories: long noncoding 
RNAs (‘^LINC’), gene isoforms (‘-AS’), microRNAs (‘^MIR’), small nuclear RNAs (‘RNU’), genes of 
uncertain functions (‘^LOC’), and ribosomal genes ("^RPS" and "^RPL"). To test whether the disease 
genes are enriched in any particular cell type, we conducted a one-sided Fisher's exact test. Background 
genes were defined as those expressed in any of the considered cell types (TPM>1). We corrected for 
multiple testing across all cell types within each disease category (high-confidence CHD genes from 
CHDGene and adult-onset cardiac diseases) using Benjamini-Hochberg correction.  

Assessing cell type heritability enrichment with stratified LD score regression 
We used stratified LD score regression130 (S-LDSC, v1.0.1) to estimate the enrichment of disease or trait 
heritability within cell type-specific enhancers. These enhancers were defined as all distal enhancers 
predicted by scE2G for each cell type. We preprocessed each GWAS summary statistics using the 
munge_sumstats.py provided by LDSC131 and filtered to retain only SNPs curated by HapMap 3 as 
recommended72,131. We then performed S-LDSC with our cell type-specific scE2G enhancer annotations 
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along with the  baseline model (v.2.2). The 1000 Genome EUR Phase 3 genotype data was used as the 
LD reference panel. Full S-LDSC results can be found in Table S12. 

Fine-mapping of GWAS signals for quantitative cardiac traits 
Genome-wide association studies (GWAS) were conducted for deep learning-based left atrial (LA) 
measurements132 and left ventricular (LV) measurements133. Deep learning semantic segmentation (pixel 
labeling) models for UK Biobank cardiovascular magnetic resonance imaging (MRI) 2-, 3-, and 4-
chamber long-axis views and short axis stacks were trained using PyTorch134. These were reconstructed 
into 3D surfaces separately for the left atrium135 and left ventricle36 using Poisson surface 
reconstruction136, permitting volume measurements in systole and diastole. GWAS was conducted with 
REGENIE using data from 63,196 participants with LA and LV measurements who did not have atrial 
fibrillation (which alters cardiac chamber volumes due to eliminating atrial filling and contraction). 
Adjustment was made for covariates including age, age2, genetic PC1-10, sex, the genotyping array, and 
the imaging device. 
  
Semantic segmentation was performed to measure aortic root diameter and ascending aortic diameter 
from UK Biobank MRI, and GWAS was conducted with REGENIE using data from 62,936 participants 
with aortic root diameter measurements, 62,716 with ascending aortic diameter measurements137. A 
meta-analysis of thoracic aortic aneurysm disease GWAS was produced using the METAL software 
package138 on data from three sources: Million Veteran Program139, FinnGen release #10, and UK 
Biobank (effective sample size: 53,516). Multi-trait analysis of GWAS (MTAG)140 was conducted using 
summary statistics from the three measurements (root diameter, ascending and descending thoracic 
aortic diameter) and the thoracic aortic aneurysm meta-analysis90 .  
  
Semantic segmentation was performed to measure aortic valve hemodynamic measurements (aortic 
valve area (AVA), mean gradient, and peak velocity) from UK Biobank MRI88, and GWAS was conducted 
with REGENIE using data from 59,569 participants with AVA measurements and 59,571 with mean 
gradient and peak velocity measurements87. Adjustment was made for covariates including age, age2, 
genetic PC1-10, sex, the genotyping array, and the imaging device. A meta-analysis of aortic stenosis 
disease GWAS was produced using the METAL software package configured to account for overlapping 
samples138 on data from four sources: Million Veteran Program141, FinnGen release #12, the TARGET 
multi-cohort GWAS142, and UK Biobank (maximum effective sample size: 164,971). MTAG140 was 
conducted using summary statistics from the hemodynamic measurements (AVA, mean gradient, and 
peak velocity) and the aortic stenosis meta-analysis89. 
  
We defined fine-mapping regions based on a 3 Mb window around each lead variant and merged regions 
if they overlapped143. LD was then computed using LDstore v2.0144 for these regions using in-sample UK 
Biobank imputed genotypes. Fine-mapping was then performed using SuSiE-inf145 (v1.2) with default 
settings on the phenotypes derived from UK Biobank MRI data with in-sample, covariates-adjusted LD 
(see sections above for covariates). Credible set coverage is set to 0.95 and purity is set to 0.5, meaning 
that 95% of the credible sets contain a true causal variant and that the minimal pairwise LD between all 
variants in each credible set is 0.5.  
  

Preparing variants for overlapping with scE2G-predicted enhancers 
We included three sets of variants for our analysis. The first set was fine-mapped using SuSiE-inf as 
described in Methods above.  The second set was fine-mapped using SuSiE as implemented by 
FINNGEN99. The third set underwent Linkage Disequilibrium (LD) expansion. See Table S11 for the 
methods used for each trait.   
 
Specifically, for variants that were fine-mapped using SuSiE-inf, we first removed all variants that are not 
in a credible set (cs= -1) and have PIP values below 0.9. In the remaining variants that are in credible 
sets (cs != -1), the variants with the highest PIP (posterior inclusion probability) were designated as the 
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lead variants of their respective credible sets. Additionally, variants outside credible sets (cs= -1) but with 
PIP greater or equal to 0.9 were individually considered as lead variants. 
 
For variants fine-mapped by FINNGEN99, the summary statistics and variants within 95% credible sets 
were downloaded from gs://finngen-public-data-r8. Both fine-mapped datasets were filtered to include 
only variants with PIP over or equal to 0.1. 
 
For GWAS results with only summary statistics or lead SNPs available, we performed LD clumping using 
PLINK (v1.9) with parameters “--clump-p1 5e-8 --clump-p2 0.01 --clump-r2 0.1” to identify a single most 
significant SNP per LD block. These SNPs were defined as the lead SNPs and subsequently expanded 
to include variants in LD (r² ≥ 0.9) using PLINK parameters “--ld-window-kb 1000 --ld-window 99999 --ld-
window-r2 0.9” and the 1000 Genome EUR Phase 3  reference panel.  
 

Linking GWAS variants to enhancers, target genes, cell types, and gene programs 
We applied our gene regulation map to interpret noncoding GWAS variants by linking them to target cell 
types, enhancers, genes, and gene programs. To do so, we started with the list of fine-mapped or LD-
expanded variants described above. We then linked variants to genes and cell types with scE2G. 
Specifically, we overlapped variants with scE2G-predicted enhancer-gene regulatory interactions and 
filtered for the top two target genes with the highest quantile-normalized scE2G scores for each enhancer. 
For this step, we also included variants linked to GWAS signals that overlapped coding regions or splice 
sites (n=129 GWAS signals) (“AnyVariantInCSOverlapCoding” and “AnyVariantInCSOverlapSpliceSite” in 
Table S13). This approach builds on previous methods we have developed to interpret GWAS signals 
using enhancer-to-gene maps54,61,124,146, extending them to enable interpreting variants across a tissue 
atlas including many dozens of cell types. This yielded a list of 770 unique GWAS signals linked to one 
or more target genes (Table S13).  
 
To further annotate this set of 770 GWAS signals, we assessed whether the predicted target genes were 
part of a cNMF gene program in the same cell type as the scE2G prediction. We considered a gene to 
be part of a gene program in a given cell type if the gene was ranked among the top 300 genes in the 
program based on importance scores and at least 10% of cells expressing the gene program (defined as 
having a program usage score > 10%) belonged to the corresponding cell type.  
 
For a subset of variants of interest, we interpreted the local effect of the variant on chromatin accessibility 
in that cell type using ChromBPNet. Specifically, we predicted the fold-change in chromatin accessibility 
at the predicted enhancer by substituting the alternative allele into the center of the ~2-Kb input sequence 
of ChromBPNet. We also examined contribution scores of nucleotides across the window for both the 
reference and alternative alleles, and applied FiNeMo to identify predicted motif instances that are 
affected by the variant (see Methods above). 

Assessing enrichment of genes associated with valve traits in VIC program 27 
Genes associated with valve traits are defined as ones that are predicted to be regulated by GWAS 
variants linked to aortic stenosis, aortic valve area, aortic root diameter, aortic valve peak velocity, aortic 
valve mean gradient, mitral valve prolapse. To test whether these genes are enriched in VIC program 
27, we conducted a one-sided Fisher's exact test. Background genes were defined as those expressed 
in any of the 5 VIC cell types (TPM>1). 
 

Enhancer reporters: Mouse transgenic assay 
Transgenic E11.5 mouse embryos were generated as described previously147. Briefly, super-ovulating 
female FVB mice were mated with FVB males and fertilized embryos were collected from the oviducts. 
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Enhancer sequences were selected to encompass the relevant epigenetic signal and regions of high 
evolutionary conservation. The selected sequences were synthesized by Twist Biosciences and cloned 
into the donor plasmid containing minimal Shh promoter, lacZ reporter gene and H11 locus homology 
arms (Addgene, 139098) using NEBuilder HiFi DNA Assembly Mix (NEB, E2621). The sequence identity 
of donor plasmids was verified using long-read sequencing (Primordium). Plasmids are available upon 
request. A mixture of Cas9 protein (Alt-R SpCas9 Nuclease V3, IDT, Cat#1081058, final concentration 
20 ng/μL), hybridized sgRNA against H11 locus (Alt-R CRISPR-Cas9 tracrRNA, IDT, cat#1072532 and 
Alt-R CRISPR-Cas9 locus targeting crRNA, gctgatggaacaggtaacaa, total final concentration 50 ng/μL) 
and donor plasmid (12.5 ng/μL) was injected into the pronucleus of donor FVB embryos. The efficiency 
of targeting and the gRNA selection process is described in detail in Osterwalder 2022.147 

Embryos were cultured in M16 with amino acids at 37oC, 5% CO2 for 2 hours and implanted into 
pseudopregnant CD-1 mice. Embryos were collected at E11.5 for lacZ staining as described 
previously147. Briefly, embryos were dissected from the uterine horns, washed in cold PBS, fixed in 4% 
PFA for 30 min and washed three times in embryo wash buffer (2 mM MgCl2, 0.02% NP-40 and 0.01% 
deoxycholate in PBS at pH 7.3). They were subsequently stained overnight at room temperature in X-gal 
stain (4 mM potassium ferricyanide, 4 mM potassium ferrocyanide, 1 mg/mL X-gal and 20 mM Tris pH 
7.5 in embryo wash buffer). The stained transgenic embryos were washed three times in PBS and imaged 
from both sides using a Leica MZ16 microscope and Leica DFC420 digital camera.  

PCR using genomic DNA extracted from embryonic sacs digested with DirectPCR Lysis Reagent 
(Viagen, 301-C) containing Proteinase K (final concentration 6 U/mL) was used to genotype the 
embryos147,148. Specifically, a PCR spanning the 3' H11 homology arm was used to confirm successful 
integration of the reporter construct at the H11 locus and a PCR to detect the presence of the bacterial 
backbone of the reporter plasmid was used to classify the embryo as harboring a "tandem" 
(concatameric) rather than "single" integration. Only embryos with donor plasmid integration at H11 were 
used. Embryos with "tandem" integrations tend to have stronger reporter activities than those with "single" 
integrations, which was taken this into consideration when assessing the impact of genetic variant 
introduction on enhancer activity. 

 

Data Availability 
 
Processed, de-identified 10x Multiome data are available at 
https://www.synapse.org/Synapse:syn63997960. Raw sequencing data (10x Multiome) will be available 
via dbGaP, in compliance with the study design and consent. 
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Supplementary Notes 
 
Note S1. Evidence linking CHD genes to functions in VICs and cardiac fibroblasts 
 
We found that genes previously associated with multiple subtypes of CHD were enriched for high 
expression in valvular interstitial cells and cardiac fibroblast progenitors (Fig. 3). In total, 27 genes were 
highly expressed in either VICs or cardiac fibroblasts. Many of them have been studied using mouse 
knockouts, including via conditional knockouts in relevant cell lineages (endocardial lineages, neural 
crest, and epicardial for VICs149; and epicardial lineage for cardiac fibroblasts78. This supports the notion 
that CHD genes can have direct effects on these cell types to lead to heart defects. We describe these 
previous studies below, and summarize in Table S10. 
 

● BMPR2: BMPR2 (bone morphogenetic protein receptor type 2) plays an essential role in heart 
valve development, particularly through its involvement in endocardial and regulation of 
valvulogenesis. Conditional knockout studies using Cre-loxP lineage tracing have revealed 
tissue-specific functions of BMPR2 during cardiogenesis. Specifically, conditional deletion of 
Bmpr2 with Tie2-Cre, which targets endocardial cells and derived mesenchymal cells, leads to 
atrioventricular cushion defects, including membranous VSDs and thickened valve leaflets, but 
does not block EMT150. In addition to its function in the endocardial lineage, neural crest lineage 
deletion of Bmpr2 (Wnt1-Cre) leads to abnormal positioning of the aorta150. In contrast, myocardial 
lineage knockout of Bmpr2 did not affect heart development150. In humans, mutations in BMPR2 
are observed in patients with pulmonary arterial hypertension (PAH)150,151, ASD, VSD, patent 
ductus arteriosus (PDA), and malformation of the outflow tract151. 
 

● FGFR2 - FGFR2 (Fibroblast Growth Factor Receptor 2) is important for cardiac development, 
particularly in the formation and alignment of the cardiac outflow tract (OFT). In humans, 
mutations in FGFR2 are associated with CHD, including VSD, double-outlet right ventricle 
(DORV), and hypoplastic ventricles152–155. Conditional knockout studies in mice using the Cre-
loxP system have shown tissue-specific roles of FGFR2 during cardiogenesis. Fgfr2 deletion in 
mesodermal cells of the second heart field (SHF) using Nkx2.5-Cre, which targets SHF-derived 
OFT progenitors, results in severe OFT defects, such as overriding aorta, DORV, and persistent 
truncus arteriosus (PTA). These defects show FGFR2's role in OFT morphogenesis155. Notably, 
dual inactivation of Fgfr1 and Fgfr2 in the second heart field (SHF) lineage further confirms Fgfr2's 
function in regulating endocardial epithelial-to-mesenchymal transition (EMT) and neural crest 
cell recruitment to the OFT cushions155. Germline knockout of Fgfr2b resulted in thin-walled 
myocardium and smaller hearts at embryonic day 17.5 (E17.5), indicating that Fgfr2b signaling is 
essential for proper heart development156. In a conditional knockout study, Fgfr1 and Fgfr2 were 
inactivated in the epicardium and epicardial-derived cells of mice using Wt1-Cre. These mice 
exhibited reduced epicardial Fgfr2 expression, decreased myocardial proliferation, and thinner 
myocardial walls156.  
 

● GATA4: GATA4 (GATA Binding Protein 4) is a transcription factor essential for heart 
development, particularly in heart valve formation and maturation, through its involvement in 
endocardial epithelial-to-mesenchymal transition (EndoMT) and mesenchyme formation within 
atrioventricular cushions. Conditional knockout studies using Tie2-Cre lineage tracing, which 
targets endocardial cells and endocardial cell-derived VICs, show that Gata4 deletion disrupts AV 
cushion development157. This disruption results in hypoplastic valves with few VICs, leading to 
defective AV septation, hypocellular cushions, and malformed valves. Specifically, Gata4 
inactivation in the endocardial lineage impairs EndoMT, reducing mesenchymal cell formation 
and resulting in unseptated ventricular inlets and incomplete cushion remodeling157. In our atlas, 
GATA4 is expressed across multiple cell types, including VICs, where it is predicted to regulate 
gene programs involving other CHD-related genes, such as LTBP2, MEIS2, and TBX20. Human 
GATA4 mutations are associated with various CHDs, including atrioventricular septal defects, 
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pulmonic stenosis, and hypoplastic right ventricle, as well as ASDs and VSDs and valve 
malformations157,158. 
 

● GATA6: GATA6 (GATA Binding Protein 6) is a transcription factor involved in heart development, 
especially in valve formation and septation. GATA6 mutations in humans are also associated with 
PTA, ASDs, and DORV, which are linked to defects in outflow tract development and valve 
morphogenesis23,159. Wnt1-Cre-mediated conditional Gata6 knockout in neural crest-derived cells 
in mice results in CHD, such as PTA and interrupted aortic arch. These defects arise from 
disrupted morphogenetic patterning and impaired migration of cardiac neural crest cells, 
accompanied by downregulation of key signaling molecules like semaphorin 3C essential for 
cardiac neural crest cell function159. Additionally, deletion of Gata6 with an Isl1-Cre mouse model 
targeting second heart field (SHF) progenitors leads to defects in the atrioventricular canal, 
including valve malformations and ASD, by impacting the proliferation and differentiation of SHF-
derived cells160. Epicardial-specific knockout of Gata4/Gata6 causes a thin compact myocardium 
and coronary artery formation defects, which are present in some patients with Tetralogy of Fallot. 
Furthermore, GATA6 is highly expressed in epicardial-derived fibroblasts, regulating gene 
programs vital for myocardial and coronary vessel development158,161. 
 

● GLI3: Disruption in GLI3's (GLI Family Zinc Finger 3) activity, often linked to ciliopathies, is 
associated with defects in heart valve development, such as myxomatous mitral valve and 
bicuspid aortic valve162,163. These conditions are marked by abnormal extracellular matrix 
composition and VIC differentiation162. Primary cilia, which are present on VICs during early 
development, play a mechanosensory and signaling role163. Ablation of genes critical for 
ciliogenesis, like Ift88, results in loss of cilia and subsequent valve enlargement, ECM disruption, 
and fibroblast-like cell differentiation163. Genetic models using Cre drivers like NfatC1-Cre 
(targeting endocardial cels and VICs) to knock out cilia-related genes show a higher prevalence 
of CHD, including bicuspid aortic valve and myxomatous mitral valve, with affected mice 
displaying altered valve morphology, increased ECM components like collagen and 
proteoglycans, and decreased cell density162,163.  
 

● GPC3:  To our knowledge, GPC3 (Glypican-3) has not yet been studied in conditional knockout 
models within endocardial, neural crest and epicardial lineages. In humans, mutations in GPC3 
result in Simpson-Golabi-Behmel syndrome (SGBS), an X-linked disorder that presents a range 
of cardiac defects. These include ASDs, VSDs, PDA, patent foramen ovale, bicuspid aortic valve, 
dysplastic tricuspid and pulmonary valves, hypoplastic left pulmonary artery, and, in some cases, 
arrhythmias like supraventricular tachycardia and conduction defects164. In Gpc3 knockout mouse 
models, the loss of Gpc3 function leads to similar structural defects, including VSD, common 
atrioventricular canal, double outlet right ventricle, and coronary artery fistulas165. Valve 
abnormalities observed in Gpc3-deficient mice involve atrioventricular canal defects, with bridging 
valve leaflets and fibrous discontinuity between the aortic and mitral valves165. In our atlas, GPC3 
is expressed primarily in mesenchymal cells, with high expression in epicardial-derived cardiac 
fibroblasts, outflow tract fibroblasts, and VICs (Fig. S12). 
 

● INVS: In mouse models, global INVS (inversin) mutation (insertional mutagenesis) leads to a 
range of CHD, including pulmonary infundibular stenosis, VSDs, and abnormalities in the right 
ventricular outflow tract166. To our knowledge, this gene has not been studied using conditional 
knockouts in the endocardial, neural crest, or epicardial, lineage. INVS  (also known as NPHP2) 
mutations in humans are associated with VSDs167,168, mitral insufficiency, and pulmonary valve 
stenosis168. 
 

● LTBP2: In LTBP2 (Latent-transforming growth factor beta-binding protein 2) knockout mouse 
models, absence of LTBP2 results in a high prevalence of  mitral valve prolapse77. To our 
knowledge, this gene has not been studied using conditional knockouts in the endocardial, neural 
crest lineage, or epicardial. In humans, mutations in LTBP2 have been linked to CHD such as 
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mitral valve prolapse and polyvalvular heart dysplasia74,77. 
 

● MEIS2: MEIS2 (Meis homeobox 2) is a transcription factor involved in heart and craniofacial 
development, particularly influencing the morphogenesis of neural crest-derived tissues. In 
humans, MEIS2 haploinsufficiency has been associated with a range of CHD, including VSD, 
ASD, coarctation of the aorta, Tetralogy of Fallot, hypoplastic right ventricle, and Ebstein's 
anomaly82. Conditional knockout studies in mice have shown the essential roles of MEIS2 across 
different cardiac lineages. Neural crest-specific deletion of Meis2 (AP2α-Cre) leads to CHD such 
as PTA, where the aorta and pulmonary arteries fail to separate, as well as valve malformations 
including defects in the aortic, pulmonary, tricuspid, and mitral valves. These defects are 
associated with embryonic lethality around E14 due to hemorrhaging and impaired cardiac neural 
crest migration84. Additionally, epicardial-specific deletion of both Meis2 and its paralog, Meis1, 
using Wt1-Cre has been shown to reduce the proportion of epicardial-derived cardiac fibroblasts, 
leading to VSDs, misalignment of the great vessels, asymmetric septation of the outflow tract, 
and abnormalities in coronary artery development84 
 

● NF1: NF1 (neurofibromatosis type 1) plays a role in heart development, in particular by regulating 
EndoMT during valvulogenesis169. In humans, mutations in NF1 are associated with CHD, 
including pulmonary valve stenosis, ASD, and VSD. Conditional knockout studies in mice using 
Cre-loxP lineage tracing have shown tissue-specific functions of NF1 in cardiogenesis: epicardial-
specific deletion of Nf1 using Wt1CreERT2 results in accelerated EMT, leading to an increased 
number of epicardial-derived cells, such as fibroblasts, migrating into the myocardium and 
contributing to defects in the ventricular septum and atrioventricular valves169. Additionally, 
endothelial cell-specific knockouts show thickened endocardial cushions due to enhanced EMT, 
which correlates with CHD like ventricular septal defects and outflow tract abnormalities169,170. 
 

● NOTCH2: NOTCH2 (Neurogenic locus notch homolog protein 2) plays a role in heart 
development, particularly through its involvement in neural crest-derived mesenchymal cells and 
the morphogenesis of the outflow tract. In humans, mutations in NOTCH2 are associated with 
CHD such as peripheral pulmonary stenosis, aortic coarctation, and complex cardiac anomalies 
linked to Alagille syndrome171. Conditional knockout studies in mice using Cre-loxP lineage tracing 
have uncovered tissue-specific functions of NOTCH2 during cardiogenesis. Specifically, deletion 
of Notch2 with Pax3-Cre, which targets cardiac neural crest cells, results in narrowed aorta and 
pulmonary arteries, mimicking defects seen in Alagille syndrome. Similarly, Tag1-Cre-mediated 
inactivation of Notch2 also leads to outflow tract defects, characterized by smaller vessel 
diameters due to decreased proliferation of smooth muscle cells derived from mesenchymal cells. 
In contrast, deletion of Notch2 in secondary heart field derivatives using Mef2c-AHF-Cre did not 
cause outflow tract abnormalities, suggesting a neural crest lineage-specific function for 
Notch2171. 
 

● PBX1: PBX1 (PBX Homeobox 1) is a TALE-class homeodomain transcription factor that 
contributes to the septation of the OFT, endocardial development, VSDs, conotruncal 
malformations, semilunar valves, and patterning of the great arteries85,172. In Pbx1-null mouse 
models, severe cardiovascular anomalies are observed, including PTA, VSDs, and abnormal 
great artery patterning. These defects primarily result from the failure of OFT septation, which 
leads to the formation of a single arterial trunk, as well as impaired valve development, where a 
single valve forms instead of distinct semilunar valves. Pbx1 mutants also display additional 
vascular abnormalities, such as cervical aortic arch and aberrant subclavian artery origins, 
indicating a broader role in arterial patterning. Lineage tracing studies using a Wnt1-Cre mouse 
model, which targets neural crest cells, shows that cardiac neural crest cells can still migrate to 
the OFT in Pbx1-null embryos85,172. 
 

● PRKD1: In humans, PRKD1 (Protein kinase D1) mutations are linked to CHD such as 
atrioventricular septal defects, bicuspid aortic valve, pulmonary stenosis, and coarctation of the 
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aorta173. In a Prkd1 transgenic model with a CRISPR/Cas9-mediated deletion of exon 2, 
homozygous mice exhibited severe CHD, such as atrioventricular septal defects, bicuspid aortic 
valve, dysplastic pulmonary valves, and VSDs173. 
 

● RBFOX2: RBFOX2 (RNA Binding Fox-1 Homolog 2) is an RNA-binding protein that regulates 
alternative splicing networks essential for cardiac development, particularly in the formation of 
heart chambers and valves in humans. Conditional deletion of Rbfox2 with Nkx2.5-Cre, which 
affects early cardiac progenitors, disrupts chamber heart structure and valve development174. 
RBFOX2 loss impairs cell-ECM adhesion and endocardial-to-mesenchymal transition, processes 
critical for valve formation and the proliferation of endocardial and myocardial cells. The model 
also suggests that RBFOX2 is required across multiple cardiac cell lineages, as demonstrated by 
its broad expression in myocardial, endocardial, and contractile cells, which collectively contribute 
to normal cardiovascular morphogenesis174. 
 

● SETD5: SETD5 (SET Domain Containing 5) haploinsufficiency is linked to CHD, including VSDs 
and outflow tract abnormalities in humans175. Deletion of Setd5 using the Mesp1-Cre driver, which 
targets early mesodermal progenitors including the first and second heart fields, results in severe 
cardiac malformations, such as shortened outflow tracts, abnormal chamber ballooning, and 
embryonic lethality by E12.5175. 
 

● SMAD6: During valve development, SMAD6 (SMAD Family Member 6) is expressed in 
endocardial and mesenchymal cells, contributing to regulated mesenchymal cell proliferation. In 
humans, disruptions in SMAD6 function have been associated with CHD, including septation 
abnormalities and valve malformations. In SMAD6-deficient knockout mouse models, a lack of 
SMAD6 leads to hyperplasia of the cardiac valves, marked by excessive mesenchymal cell 
proliferation and an enhanced endocardial-to-mesenchymal transformation. Additionally, mutants 
show OFT defects, often resulting in a narrowed ascending aorta or an enlarged pulmonary 
trunk176.  
 

● TBX20: TBX20 (T-Box Transcription Factor 20) plays a role in cardiac valve development, 
exerting lineage-specific influences that contribute to CHD across endocardial, myocardial, and 
VIC lineages. TBX20 mutations in humans are linked with a wide array of congenital heart 
anomalies, such as ASD, VSD, tetralogy of Fallot, total anomalous pulmonary venous connection, 
and cardiomyopathies with defective valvulogenesis177–179. In murine models, conditional 
knockout studies illustrate cell-specific roles of Tbx20 during valvulogenesis. Nfatc1-Cre-
mediated knockout, targeting endocardial cells and their mesenchymal derivatives, leads to valve 
elongation defects, shortened leaflets, and structural abnormalities in all four cardiac valves 
without inhibiting EMT initiation178. This deletion disrupts Wnt/β-catenin signaling, resulting in 
reduced cellular proliferation and impaired extracellular matrix organization within valve cushions. 
In contrast, myocardial lineage deletion of Tbx20, important for early cardiac patterning, shows 
no effect on valve formation178. Partial knockdown of Tbx20 in mice also results in severe valve 
developmental defects180. Furthermore, TBX20's role may extend into regulatory functions within 
VICs, where it could influence factors like VIC program 27. 
 

● TGFBR1: TGFBR1 (transforming growth factor-beta (TGF-β) receptor type 1) plays a role in 
myocardial wall formation and cardiac morphogenesis181. In humans, TGFBR1 mutations are 
linked to VSDs, Marfan syndrome, and Loeys–Dietz syndrome.181. Conditional deletion of Tgfbr1 
with Tie2-Cre, targeting endocardial cells, results in hypoplastic atrioventricular cushions, 
impaired EMT, and thin myocardium, indicating its role in endocardial EMT and myocardial 
proliferation182. Epicardial-specific knockout using Gata5-Cre leads to detached epicardium, 
reduced myocardial proliferation, and defective smooth muscle formation around coronary 
vessels, showing its importance in epicardial-mesenchymal transformation182. Studies using 
myocardial-specific inactivation of Tgfbr1 with cTnt-Cre mice demonstrate that while most 
embryos do not show overt cardiac defects due to compensation by other TGFβ receptor genes, 
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constitutively active TGFBR1 expression can arrest heart development at the looping stage and 
lead to ventricular hypoplasia181. In neural crest cells, targeted deletion of Tgfbr1 with a Wnt1-Cre 
model results in severe aortic arch malformations and PTA, showing its role in outflow tract 
development181. Furthermore, Tgfbr1 expression in VICs and its regulation by miRNAs show its 
importance in maintaining proper signaling balance during heart development to prevent non-
compaction and spongy myocardial wall defects181.  
 

● ZFPM2: ZFPM2 (Zinc finger protein), also known as FOG2, regulates coronary vessel formation 
and morphogenesis. In humans, mutations or disruptions in ZFPM2 have been implicated in 
septal defects and outflow tract malformations183. Knocking out ZFPM2 in mice leads to multiple 
CHD, including ventricular myocardium thinning, ASD, and features of tetralogy of Fallot, such as 
VSDs, overriding aorta, and subpulmonic stenosis183,184. The absence of ZFPM2 disrupts 
epithelial-to-mesenchymal transition in epicardium-derived cells, which affects the development 
of coronary vasculature, fibroblasts, and other mesenchymal derivatives. Rescue experiments 
indicate that ZFPM2 function in the myocardium is essential for inducing signals required for 
vascular formation183,184.  
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Supplementary Figures 
 

 
 
Fig. S1. Experimental pipeline and quality control metrics for single-cell 10x Multiome data 
A. Experimental pipeline: Illustration of the workflow used to process 41 human fetal hearts ranging from 6 

post-conception weeks (PCW) to 22 PCW. After cryopreservation, specific heart tissue regions were 
dissected, followed by homogenization and lysis to release nuclei. A density gradient was applied to purify 
nuclei. The nuclei were used for 10x Multiome library preparation, generating single-cell RNA sequencing 
(scRNA-seq) and single-cell ATAC sequencing (scATAC-seq) libraries185. 

B. Number of cells: Violin plot depicting the distribution of cell counts per 10x lane. 
C. Number of genes: Violin plot showing the total number of genes detected per 10x lane. 
D. Barcode rank plot: UMI counts across barcodes in a representative sample (FT033_FT047_3). 
E. TSS enrichment scores: Violin plot illustrating the enrichment scores for transcription start site (TSS) 

regions in the sample FT033_FT047_3, indicating the quality of ATAC-seq data. 
F. Unique ATAC fragments: Violin plot displaying the distribution of unique ATAC fragment counts per cell 

on a log10 scale for the sample FT033_FT047_3. 
G. TSS enrichment profiles: Line graph showing the normalized insertion profile centered around transcription 

start sites for sample FT033_FT047_3. 
H. ATAC-seq fragment size distribution: Histogram representing the distribution of ATAC-seq fragment sizes 

for sample FT033_FT047_3. This fragment size distribution shows that the ATAC-seq data has 
successfully captured a range of open chromatin regions, including nucleosome-free DNA and 
nucleosome-bound DNA.  
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Fig. S2: Annotation of major cell types.  
Dot plot of known marker genes for major cell types in the fetal heart atlas. Size of the circle represents the 
percentage of cells within a given cell type that express the gene of interest, and the color represents the 
normalized expression level of that gene across all cell types shown. 
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Fig. S3: Annotation of cardiomyocytes.  
A. UMAP of atrial cardiomyocytes (ACM).  
B. Dot plot of ACM marker genes. The size of the circle represents the percentage of cells within a given cell 

type that express the gene of interest, and the color represents the normalized expression level of that 
gene across all cell types shown. Left ACMs were identified using markers PITX2 and TRPM347. Right 
ACMs were identified using marker ANGPT1. As expected, ACMs with high PITX2 and TPRM3 expression 
exhibited lower ANGPT1 expression, and vice versa. In addition to mapping ACMs to their spatial location 
(left vs. right atrium), ACMs can be categorized by their expression levels of Troponin (TNNI1 and TNNI3). 
Certain ACM subtypes, termed “_high_TNNI,” express Troponin at a much higher level compared to 
others, designated “_low_TNNI.” CNN1, CRABP2, and BMP2, markers of cardiomyocytes in 
atrioventricular (AV) valve leaflets, were not significantly expressed in most ACMs, except for slightly 
elevated expression levels in ACM_right_high_TNNI_1. MKI67 was used to identify cells undergoing 
active cell cycling.  

C. UMAP of ventricular cardiomyocytes (VCM). 
D. Dot plot of VCM marker genes. The size of the circle represents the percentage of cells within a given cell 

type that express the gene of interest, and the color represents the normalized expression level of that 
gene across all cell types shown. SLC13A and PRRX1 were used to distinguish left and right ventricular 
cardiomyocytes, respectively47. IRX347 and NPPA186 were used to label trabecular VCM, while HEY2 and 
RABGAP1L were used to annotate compact VCM. The “VCM_left_hybrid” cluster expressed both 
trabecular and compact VCM markers,  suggesting a transitional (hybrid) state between the two cell types. 
Notably, trabecular VCM cell types exhibited much higher expression levels of Troponin compared to 
compact VCM. Additionally, CRABP2, CNN1, and BMP2 were markers for cardiomyocytes in 
atrioventricular (AV) valve leaflets, and CXCL12 was a marker for trabecular VCM near the lumen. MKI67 
was used to identify cells undergoing active cell cycling.  
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Fig. S4: Annotation of endocardial cells and endothelial cells.  
A. UMAP of endocardial cells and endothelial cells (excluding lymphatic endothelial cells). IF: inflow. OF: 

outflow. 
B. UMAP of lymphatic endothelial cells.  
C. Dot plot of the marker genes for endocardial cells and endothelial cells. The size of the circle represents 

the percentage of cells within a given cell type that express the gene of interest, and the color represents 
the normalized expression level of that gene across all cell types shown. The expression of NPR3, 
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POSTN, and BMX were used to distinguish endocardial cells from endothelial cells. NSG1, COL26A1, 
and SHISA347 were used to identify chamber-specific endocardial cells. Endocardial cells highly 
expressed NSG1 but have low or no expression of COL26A1 were labeled as ventricular endocardial cells, 
while endocardial cells highly expressed SHISA3 were annotated as atrial endocardial cells. Atrial septal 
endocardial cells were identified based on the expression levels of ALCAM, MSX1, NEGR1, and LEF148. 
We identified endocardial cells on the inflow (IF) side of the valves based on the expression of WNT2, 
WNT4, WNT9B, DKK2, and PTHLH, while those on the outflow (OF) side were identified by BMP4, BMP6, 
LGR5, and CNR1 expression. Finally, endocardial cells transitioning to endothelial cells (“transition”) were 
identified by the expression of APLNR, ACKR1, and NR2F2 52,187. Venous endothelial cells were identified 
by expression of NR2F2, PLVAP, and APLNR52. A cluster of cells likely to be pulmonary endothelial cells 
were labeled based on their expression of DKK3 and CPE188. CA4 and KIT were used to identify capillary 
endothelial cells. UNC5B, HEY1, GJA4 and GJA5 were used to identify arterial endothelial cells, with 
GJA5 specifically marking mature arterial endothelial cells 41,52. Both EDN1189 and BMX190 were used to 
identify aortic endothelial cells. MKI67 was used to identify cells undergoing active cell cycling.  
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Fig. S5: Annotation of mesenchymal and epicardial cells 
A. UMAP of cardiac fibroblasts and valvular interstitial cells (VICs). OFT: Outflow tract. DMP: Dorsal 

mesenchymal protrusion.  
B. UMAP of VICs.  
C. Dot plot of the marker genes for fibroblasts and valvular interstitial cells. The size of the circle represents 

the percentage of cells within a given cell type that express the gene of interest, and the color represents 
the normalized expression level of that gene across all cell types shown. Cardiac fibroblast progenitors 
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were identified by elevated expression of WT1, TBX18, and TCF21. DCN and LUM marked mature 
fibroblast4. To identify chamber-specific fibroblasts, HHIP was used for ventricular fibroblast, and MSC 
and TNC were used to identify atrial fibroblasts47 . The cells located to dorsal mesenchymal protrusion 
(DMP; a second heart field derived mesenchyme at the venous pole of the developing heart), were 
identified using OSR1 and TECRL 47. Outflow tract (OFT) cells were labeled with PRDM6 and HOXA34. 
Both DMP and OFT cells have lower expression of TBX18 and TCF21, consistent with second heart field 
origin. HAPLN1, VIM, and ACTA251,191  were used to distinguish valvular interstitial cells (VICs) from other 
fibroblast and fibroblast-like cells. VIC_1-3, particularly VIC_1, highly expressed APCDD1, LEF1, 
TMEM132C, and ADAMTS19, recently identified markers for VICs localized to the free segments of the 
valves48.  Both VIC_4 are VIC_5 express recently observed markers of valve-related mesenchymal cells 
located in intervalvular fibrous tissue towards the valve roots. PENK, a marker for mesenchymal neural 
crest derivatives, was used to label VICs derived from neural crest (VIC_4), which were found to be located 
in and around the developing semilunar and atrioventricular valves. FGF14, HDAC9, PLCXD3 are 
expressed in VIC_5, primarily observed around the semilunar valves. MKI67 was used to identify cells 
undergoing active cell cycling.  

D. UMAP of epicardial cells. 
E. Dot plot of the marker genes for epicardial cells.  The size of the circle represents the percentage of cells 

within a given cell type that express the gene of interest, and the color represents the normalized 
expression level of that gene across all cell types shown. Established epicardial markers such as BNC1, 
TBX18, WT1, TCF21, and KRT19 were used to label epicardial cells4,192. We identified two distinct 
mesothelial epicardial populations: Epicardial_mesothelial_ITLN1 and Epicardial_mesothelial_PRG4. 
Epicardial_mesothelial_ITLN1 expresses ITLN1, a marker associated with epicardial adipose tissue; 
Epicardial_mesothelial_PRG4, a gene encoding lubricin secreted into pericardial fluid. Two migratory 
epicardial cell populations were identified: Epicardial_migratory and Epicardial_migratory_TWIST1, with 
the latter exhibiting higher TWIST1 expression 192. Both migratory epicardial cells express mesenchymal 
cell markers DCN and POSTN, suggesting these cells are in the process of transitioning to mesenchymal 
cells. Epicardial_derived_mesenchymal cells, identified by markers of epithelial-to-mesenchymal 
transition (SNAI2 and ZEB2) and cardiac mesenchymal cell differentiation (SOX9 and TNC)193, likely 
represent epicardium-derived mesenchymal cells. The expression patterns of TCF21 and TBX18 also 
align with the previous observation194 showing sequential reduction of TCF21 and TBX18 expression in 
maturing epicardium, and upregulation of TCF21 in epicardium-derived mesenchymal cells. MKI67 was 
used to identify cells undergoing active cell cycling. 

F. UMAP of mural cells, including smooth muscle cells (SMCs) and pericytes. 
G. Dot plot of the marker genes for mural cells. The size of the circle represents the percentage of cells within 

a given cell type that express the gene of interest, and the color represents the normalized expression 
level of that gene across all cell types shown. Expression of PDGFRB and ABCC9 were used to identify 
pericytes4. Pericytes 1 exhibited elevated levels of TCF21, suggesting it might represent early pericytes. 
Pericytes 3 has the highest expression of NOTCH3, a gene known to be expressed at the site of 
arterialization195 , and higher expression of SMC markers ACTA2 and MYH11, as well as early smooth 
muscle marker TAGLN, suggesting the cells may represent the transition from pericytes to smooth muscle 
cells. SMC1-2 express SMC markers ACTA2, MYH11, and TAGLN, suggesting they are smooth muscle 
cells. MKI67 was used to identify cells undergoing active cell cycling.  
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Fig. S6: Annotation of immune cells 
A. UMAP of lymphoid and myeloid cells. 
B. Dot plot of the marker genes for lymphoid and myeloid cells. The size of the circle represents the 

percentage of cells within a given cell type that express the gene of interest, and the color represents the 
normalized expression level of that gene across all cell types shown. Macrophages were identified using 
LYVE1 and F13A1. Cells in “Macrophages_3” cluster are likely to be cardiac resident macrophages due 
to their expression of TIMD4196,197. T cells were identified using LEF1, TCF7, and IL7R198. KLRD1, NKG7, 
and GNLY were used to identify natural killer cells199. EBF1, BANK1, IGHM, and PAX5 were used to 
identify B cells 200,201. Finally, KIT, TPSAB1, HDC, TPSB2, GATA2, and CPA3 were used as markers of 
mast cells 202–204. MKI67 was used to identify cells undergoing active cell cycling.  
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Fig. S7: Annotation of neural crest cells and autonomic neurons. 
A. UMAP of neural crest cells and autonomic neurons. 
B. Dot plot of the marker genes for neural crest cells and autonomic neurons. The size of the circle represents 

the percentage of cells within a given cell type that express the gene of interest, and the color represents 
the normalized expression level of that gene across all cell types shown. Neural crest cells were identified 
using markers SOX10 and TFAP2A205. TH, DDC, DHB, and PHOX2B were used to label sympathetic 
neurons206,207. ASCL1208 and SLC5A7206 were used to label parasympathetic neurons.  
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Fig. S8:  Cell type frequencies.  
Barplot showing the frequency of each cell type in the heart atlas. Highlighted in blue are cell types with 
sufficient ATAC fragment counts for scE2G and chromBPNet predictions. Due to varying sequencing depth, 
some less frequent cell types with deeper sequencing were included in these analyses. PF: Purkinje fibers. 
SAN: Sinoatrial node. SMC: Smooth muscle cells. NK: Natural killer cells. OFT: outflow tract. AV: 
Atrioventricular. ACM: Atrial cardiomyocytes. DMP: Dorsal mesenchymal protrusion. VIC: Valvular interstitial. 
AVN: Atrioventricular node. VCM: ventricular cardiomyocytes. 
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Fig. S9: Transitional conduction cells in the heart atlas.  
A. UMAP of the conduction cells, transitional conduction cells, and the surrounding working myocardium. 

ACM: Atrial cardiomyocyte. AVN: Atrioventricular node. PF: Purkinje fiber. SAN: Sinoatrial node. VCM: 
Ventricular cardiomyocyte.  

B. Cell count, average number of genes per cell, and average number of ATAC fragments per cell for each 
conduction type and transitional conduction cell type.  

C,F,I,L. Each UMAP represents a conduction system cell type, its corresponding transitional cell types, and 
the surrounding working myocardium.  

D,G,J,M. Dot plots of known marker genes for conduction cells, corresponding transitional cell types, and 
surrounding working myocardium. CCS: Cardiac conduction system. VCS: Ventricular conduction system. 

E,H,K,N. Comparison of number of UMI/cell among conduction cells, corresponding transitional cells and 
surrounding working myocardium. The UMI/cell of transitional cells was not the sum of the average 
UMI/cell of conduction cells and the average UMI/cell of surrounding working myocardium. Given this 
finding and that doublets were pre-emptively removed during quality control, it is unlikely that these 
transitional cells reflect multiplets.  
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Fig. S10: Cardiac conduction cells: TF regulators of gene programs and expression of neural 
adhesion and axon development genes.  
A. Importance scores of TFs predicted to regulate gene programs associated with the identity of each 

conduction system cell type. Bold TFs are discussed in the text. *: the TF is a regulator of the 
corresponding gene program. SAN: Sinoatrial node. AVN: Atrioventricular node. PF: Purkinje fibers. 

B. Dot plot showing the expression pattern of genes involved in neural adhesion and axon development (see 
also Figs. 2K-M). The size of the circle represents the percentage of cells within a given cell type that 
express the gene of interest, and the color represents the normalized expression level of that gene across 
all cell types shown. 
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Fig. S11: Gene programs of conduction system cell types. 
Annotated gene programs associated with the identity of each conduction system cell type: SAN head program 
(A); SAN tail program (B); AVN program (C); His bundle program (D); PF 1 program (E); PF 2 program (F). 
Waterfall plot shows importance scores for all considered genes, and selected genes from the 300 top program 
genes are colored. Black: 5 genes with the highest importance scores. Blue: Known marker genes for the 
corresponding cell type. Purple: Genes involved in important cell-cell interaction (CCI) pathways (from Fig. 2) 
are highlighted. Red: TFs predicted to regulate the program. Inset UMAPs: Projection of gene program 
expression on the cardiac conduction cell UMAP (see also Fig. 2A). Color scale: gene program usage per 
cell. SAN: Sinoatrial node. AVN: Atrioventricular node. PF: Purkinje fibers. 
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Fig. S12: Expression of high-confidence CHD genes across cardiac cell types.  
Absolute expression of high-confidence CHD genes across cardiac cell types. Overall, many CHD genes are 
expressed in multiple cell types. However, certain cell types are enriched for having many CHD genes with 
particularly high expression. Main heatmap color scale: log10 TPM. Top annotation: red indicates that the cell 
type (column) is significantly enriched for high expression of the high-confidence genes associated with the 
corresponding CHD subtype (row) (see Fig. 3A). Side annotation: red indicates that the corresponding gene 
(row) is a high-confidence causal gene for a CHD subtype (columns). *: The gene is considered highly 
expressed in the corresponding cell type (see Methods). PF: Purkinje fibers. SAN: Sinoatrial node. SMC: 
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Smooth muscle cells. NK: Natural killer cells. OFT: outflow tract. AV: Atrioventricular. ACM: Atrial 
cardiomyocytes. DMP: Dorsal mesenchymal protrusion. VIC: Valvular interstitial. AVN: Atrioventricular node. 
VCM: ventricular cardiomyocytes.
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Fig. S13: Enrichment of heritability for 6 valve and aorta-related traits in VIC enhancers. 
Y-axis: Genome-wide heritability enrichment of each trait in scE2G-predicted enhancers in each of the 5 
subpopulations of VICs, as calculated by S-LDSC. Error bars represent 95% confidence intervals.  
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Fig. S14: Examples of common variants overlapping enhancers regulating gene expression in 
valvular interstitial cells.  
A,B. scE2G predictions and normalized ATAC-seq signals are shown for ELN (A) and NPR3 (B), showing 
that GWAS variants associated with valve diseases or traits (red downward arrows) overlap enhancers linked 
to these genes in VICs. ELN is also a high-confidence CHD gene, known to be associated with supravalvular 
aortic stenosis and aortic valve defects. Enhancer predictions overlapping variants are highlighted in red. Arcs 
represent the predicted enhancer-gene regulatory interactions. Side color bars show the TPM expression of 
the target genes in each cell type (blue) and the corresponding scE2G scores (red; white for scores below the 
threshold). CFB: cardiac fibroblasts. The hg38 coordinates of the highlighted enhancer regions are as follows: 
ELN chr7: 74012728-74014407; NPR3 chr5: 32627864-32630185  (see also Fig. 5A,B).  
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Fig. S15: Annotation of Endocardial Program 29. 
A. The top genes associated with Endocardial Program 29 are involved in heart valve development, including 

markers for endocardial cushions, which contribute to valve formation, as well as genes activated in 
response to hemodynamic forces.  

B. UMAP of endocardial cells and the projection of Endocardial Program 29 expression onto the endocardial 
cell UMAP. This program is expressed in subpopulations of multiple endocardial cell types. Color scale: 
gene program usage per cell. 
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Fig. S16: Human enhancer sequences containing risk variants have location-specific activities in 
transgenic enhancer reporter assay in mouse embryos.   
A. Mouse embryos injected with reporter constructs are genotyped using PCR to confirm successful 

integration at H11 safe harbor locus and establish approximate copy number of integration (single or 
tandem). Tandem embryos typically exhibit stronger staining patterns. See Methods for more details.  

B. PALMD enhancer: Introduction of the risk alleles for two linked variants (rs11166276 and rs6702619) into 
the human enhancer sequence leads to a reduction in enhancer activity. Two representative embryos are 
shown. See also Fig. 5. 

C. PALMD enhancer: Whole-embryo side images and frontal heart close-ups of all collected embryos with 
integration at H11 safe harbor locus. Variant embryos represent those with introduction of two linked 
alleles, as in B. *: This embryo exhibits unusual ectopic staining pattern likely due to a random genomic 
integration in addition to H11 integration. See also Fig. 5. 

D. Similar to C, for MTSS1 enhancer.  See also Fig. 5. 
 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 22, 2024. ; https://doi.org/10.1101/2024.11.20.24317557doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.20.24317557
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

61 

Supplementary Tables 
 
Table S1. List of human fetal heart tissue samples  
This table contains information related to the sample attributes for a collection of heart tissues. Each row 
corresponds to a unique tissue sample, with details about the subject, sex, and age. Columns: 

● Subject ID (dbGaP): This column contains a unique identifier for each fetal tissue sample, cross-
referencing both the dbGaP dataset and the Sample Experiment Information table. 

● Sex: Biological sex, as inferred from expression of genes on sex chromosomes (see Methods). 
● Age in Days: Age of fetal sample in post-conception days. 
● Age in Post Conception Weeks: Age of the heart tissue in post-conception weeks (rounded). 

 
Table S2. 10x Multiome sample metadata 
Each row corresponds to one 10x Multiome lane. Columns: 

● Subject ID (dbGaP): Unique Subject IDs from dbGaP that can be used to cross reference information 
in this table. 

● Sample ID (dbGaP) / Lane ID: Represents a unique identifier for each 10X lane, including information 
about which heart samples were used to make each library. This unique identifier is the Sample ID 
from our dbGaP metadata.  

● Experiment Number: Represents the unique identifier for each experiment conducted on a specific 
day. Each number corresponds to a distinct experimental setup. 

● 10x Lane number: Refers to the specific lane on the loading chip used during the GEM (Gel Bead-in-
Emulsion) creation process in the Chromium Controller by 10X Genomics.  

● Tissue State Input: “Flash Frozen” or “Fresh”, according to whether or not the sample was frozen 
between tissue collection and nuclei isolation.  

● Were samples mixed?: This column specifies whether the samples were mixed in the 10X lane (Yes 
or No).  

● Mixing Ratio: This column indicates the ratio in which samples were combined in a 10X lane. For 
experiments with a single sample, the ratio is represented as ‘1’. When combining two, three, or four 
samples, the ratios are ‘1:1’, ‘1:1:1’, and ‘1:1:1:1’ respectively, reflecting equal ratio pooling. 

● Physical Sample: Denotes individual human fetal heart samples. 
● Physical Sample ID: Represents the specific tissue piece used in each experiment. The format 

"PhysicalSample_FT###_X" is used, where "FT###" refers to the Sample ID, and "_X" denotes the 
unique tissue piece from that subject. In some cases, the same heart sample was profiled in multiple 
experiments, and, in these cases, different physical samples of tissue from the same heart were used 
in each experiment.  

● Region Where Tissue Was Taken: This column specifies whether the entire heart was used or the 
specific location from which tissue samples were collected from human fetal hearts. 

● Protocol Version Used: Experimental protocol version (versions 1-3) applied to each sample during 
the experimental portion (see Methods). The majority of our dataset was processed with version 3.  

● GEX index columns: Barcode information for the gene expression libraries (GEX), derived from 10x 
Multiome Dual Index Plate TT Set A (PN 3000431). 

● ATAC i7_Index columns: Barcode information for the ATAC-seq libraries, derived from 10x Multiome 
Sample Index Plate N, Set A (PN 3000427). 

 
Table S3: Enhancer-gene regulatory interactions identified for each cell type in the heart map  
In this table, each row represents the effect of one element on one nearby gene in one cell type, as predicted 
by scE2G. This table is available at https://www.synapse.org/Synapse:syn64012884.  

● chr: chromosome for element-gene pair 
● start: start coordinate for element (hg38) 
● end: end coordinate for element (hg38) 
● name: unique identifier for element, in the form of "class|chrN:start-end" 
● class: category describing element location, one of: "promoter," "intergenic," "genic" 
● TargetGene: HGNC symbol for target gene of element-gene pair 
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● TargetGeneTSS: transcription start site of target gene 
● TargetGeneIsExpressed: boolean indicating whether the target gene is expressed based on promoter 

accessibility, should be "True" for all predictions  
● TargetGeneEnsembl_ID: Ensembl ID corresponding to target gene 
● isSelfPromoter: boolean indicating whether this element-gene pair is a promoter linked to it's own gene 
● CellType: description of cell cluster for these predictions 
● distance: distance between the midpoint of element and transcription start site of target gene 
● normalizedATAC_prom: (model feature) normalized pseudobulk scATAC-seq signal at the promoter 

of the target gene 
● ABC.Score: Activity-by-Contact (ABC) score corresponding to this element-gene pair, calculated using 

pseudobulk scATAC-seq  for activity and a distance-based power law estimation for contact 
● numCandidateEnhGene: (model feature) number of elements between this element and target gene 

transcription start site 
● numTSSEnhGene: (model feature) number of other transcription start sites between this element and 

the target gene transcription start site 
● numNearbyEnhancers: (model feature) number of elements within 5 kb of this element 
● ubiqExpressed: (model feature) boolean indicating whether this gene is classified as ubiquitously 

expressed across cell types 
● RNA_meanLogNorm: mean log-normalized read count for this gene in this cell cluster  
● RNA_pseudobulkTPM: pseudobulk transcripts per million for this target gene for this cell cluster  
● RNA_percentCellsDetected: percent of cells in this cell cluster in which this gene was detected  
● Kendall: Kendall correlation between accessibility at this element and expression of this gene across 

cells in this cluster 
● ARC.E2G.Score: (model feature) Activity, Responsiveness and Contact (ARC)-E2G score that 

integrates ABC score and Kendall correlation 
● E2G.Score: raw scE2G score directly output from logistic regression model 
● E2G.Score.qnorm: Final score column used for thresholding, after quantile normalization to full-depth 

reference scores and setting scores for genes below TPM threshold to 0 
● E2G.Score.qnorm.ignoreTPM: same as E2G.Score.qnorm, but without scores for genes with TPM 

below threshold set to 0 
 
Table S4: Gene programs: cell type grouping for cNMF 

● CellType: cell type name.  
● NMFGroup: Cell type group that the cell type was assigned to for cNMF analysis. The cell types 

grouped together are phenotypically similar.  
 
Table S5: Gene programs: 300 top genes expressed in each program.  
Each column corresponds to one gene program. Rows correspond to the 300 top genes ranked by importance 
scores in the program. 
 
Table S6: Gene programs: TFs predicted to regulate each program by ChromVAR.   

● Program: Name of the gene program 
● TF: Name of the transcription factor (TF) 
● CellNumber: Number of cells expressing the gene program 
● P: P-value of the Spearman correlation between per-cell motif accessibility of the TF and the 

expression level of the gene program 
● Estimate: Spearman's rank correlation coefficient 
● P.adjust_bonferroni: Adjusted p-value after Bonferroni correction for multiple comparisons. 
● TF_rank_in_Program: Rank of the TF in the gene program, with lower ranks indicating the expression 

of the TF is more highly associated with the expression of the gene program.  
 
Table S7: Significant ligand-receptor pairs between sender and receiver cell types in cell-cell 
interaction analysis  
This data file is available at https://www.synapse.org/Synapse:syn64108840  

● source: Source cell type, where molecular signals are sent from. 
● target: Target cell type, where molecular signals are sent to. 
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● ligand: Ligand gene name, note that multiple subunits of the protein are separated with an underscore. 
The ligand list comes from CellChat v2.1.2 database. 

● receptor: Receptor gene name, note that multiple subunits of the protein are separated with an 
underscore. The receptor list comes from CellChat v2.1.2 database. 

● prob: Cell-cell interaction strength. Calculated with R package CellChat v2.1.2. 
● pval: Permutation-based p-value for the interaction strength. Calculated with R package CellChat 

v2.1.2. 
● interaction_name: Cell-cell interaction name. 
● interaction_name_2: Cell-cell interaction name, format 2. 
● pathway_name: Name of the pathway that the ligand-receptor pairs belong to. The membership 

comes from the CellChat v2.1.2 database. 
● annotation: Type of the ligand-receptor pair, e.g. secreted signaling, Cell-Cell Contact, etc. 
● evidence: Supporting information for the ligand-receptor pair, e.g. PubMed ID, KEGG ID, etc. The 

information comes from the CellChat v2.1.2 database.  
● PCW: Post-conception weeks. The cell-cell interaction analysis was performed one week at a time.  

  
Table S8: Curated list of CHD genes, PCGC genes with de novo variants, and other cardiovascular 
disease genes. 

● Gene: Gene name.  
● Trait: Name of the disease. 
● Category: The broad category of the disease genes. CHD: high-confidence genes from CHDGene; 

PCGC_DeNovoVariants: genes with de novo variants from PCGC; CD: other cardiovascular disease 
genes (see Methods).  
 

Table S9: Enrichment of high-confidence CHD genes and other cardiovascular disease genes in 
cardiac cell types 

● Category: The broad category of the disease genes. CHD: High-confidence CHD genes from 
CHDgene. PCGC_DeNovoVariants: genes with 2 or more de novo variants from PCGC. CD: other 
cardiovascular disease genes.  

● Disease: Name of the disease.  
● n_genes_highly_expressed_in_Celltype_and_are_Disease_genes: Number of disease genes that are 

highly expressed in the cell type (see Methods) 
● n_genes_highly_expressed_in_Celltype_and_are_NOT_Disease_genes: Number of non-disease 

genes that are highly expressed in the cell type 
● n_genes_NOT_highly_expressed_in_Celltype_and_are_Disease_genes: Number of disease genes 

that are not highly expressed in the cell type. 
● n_genes_NOT_highly_expressed_in_Celltype_and_are_NOT_Disease_genes: Number of non-

disease genes that are not highly expressed in the cell type. 
● odds_ratio: the enrichment of disease genes in the highly expressed genes of the cell type.  
● CI_lower: The low bound of the 95% confidence interval of the odds ratio. 
● CI_upper: The higher bound of the 95% confidence interval of the odds ratio.  
● P_value: The p-value of the odds ratio.  
● NumberOfTrueDiseaseGenes: Total number of known causal genes for the disease. 
● recall: Percentage of disease genes that are highly expressed in the cell type. 
● disease_genes_in_Celltype: List of disease genes highly expressed in the cell type. 
● P_fdr: Adjusted p-value after correcting for multiple testing with Benjamini–Hochberg procedure 
● Celltype: Name of the cell type. 

 
 
Table S10. Evidence for 27 high-confidence CHD genes that are highly expressed in VICs and/or 
cardiac fibroblasts  
Summary of evidence presented in Note S1 regarding 27 high-confidence CHD genes that are highly 
expressed in VICs and/or cardiac fibroblasts. Each row represents a unique gene. 

● Gene: Gene symbol.  
● CHD Subtype(s): Subtype(s) of CHD associated with each gene (see Methods). 
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● Highly expressed in VIC (Yes/No): Indicates whether each gene is highly expressed in any of the 5 
populations of VICs 

● Highly expressed in cardiac fibroblasts (Yes/No): Whether the gene is highly expressed in 
Cardiac_fibroblast_progenitors. 

● Knockout evidence in epicardial lineage (Yes/No): “Yes” indicates that gene knockout in the 
epicardial lineage led to developmental changes or defects. “No” indicates either a lack of impact from 
knockout experiments or that no knockout studies were conducted for this lineage to our knowledge. 

● Knockout evidence in endocardial lineage (Yes/No): “Yes” indicates that gene knockout in the 
endocardial lineage led to developmental changes or defects. “No” indicates either a lack of impact 
from knockout experiments or that no knockout studies were conducted for this lineage to our 
knowledge. 

● Knockout evidence in neural crest lineage (Yes/No): “Yes” indicates that gene knockout in the 
neural crest lineage led to developmental changes or defects. “No” indicates either a lack of impact 
from knockout experiments or that no knockout studies were conducted for this lineage to our 
knowledge. 

 
Table S11: List of GWAS traits and data sources 

● Trait: Name of the trait in Table S13. 
● DescriptiveName: Description of the trait. 
● Citation: PMID or zenodo ID of the GWAS.  
● VariantProcessingMethod: methods used for preparing variants for overlapping with scE2G-predicted 

enhancers (see Methods) 
 
Table S12: Heritability enrichment (S-LDSC) for GWAS traits in enhancers in each cell type  

● Celltype: Name of the cell type.  
● major_celltype: Broad category classification of the cell type 
● Enrichment: The enrichment of the heritability of the trait in the enhancers of this cell type. 
● Enrichment_std_error: Standard error of the enrichment estimate 
● Enrichment_p: P-value for the significance of the enrichment 
● Enrichment_p_bonferroni: P-value adjusted for multiple comparisons with Bonferroni correction across 

all annotations, including those in the baseline model. 
● Coefficient_z.score: Z-score of the regression coefficient which measures the additional contribution 

of this cell type's enhancers to the model 
● Trait: Name of the trait.  
● n_LeadSNPs: Number of lead SNPs associated with the trait.  

 
Table S13: Prioritized variants, enhancers, genes, and gene programs for GWAS signals for heart 
diseases and traits.   
Each row provides details about an scE2G predicted cell type-specific enhancer-gene link 
overlapped by a variant (listed in the “rsid” column) associated with a GWAS signal (listed in the 
“LeadVariant” column). Columns: 

● enh_chr: Chromosome ID of the enhancer.  
● enh_start: Start coordinate of the enhancer (hg38)  
● enh_end: End coordinate of the enhancer (hg38) 
● Trait: Name of the trait.  
● DescriptiveName: Description of the trait. 
● nLeadSNPs: Number of lead SNPs (credible sets) for the trait. 
● CredibleSet: ID of the credible set.  
● rsid: ID of the variant.  
● distance: Distance between the enhancer and the promoter of the target gene.  
● E2G.Score.qnorm: Quantile-normalized enhancer-to-gene (E2G) interaction score 
● TargetGene: Target gene regulated by the enhancer. 
● TargetGeneRank: Rank of E2G.Score.qnorm of the target gene among all target genes regulated by 

the same enhancer in this cell type (lower rank indicates higher E2G.Score.qnorm) 
AnyVariantInCSOverlapCoding: Whether any variant in the credible set (CS) overlaps a coding 
region.  
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● AnyVariantInCSOverlapSpliceSite: Whether any variant in the credible set (CS) overlaps a splice 
sites. 

● ProgramsContainingTargetGene: Gene programs that the target gene is involved in 
● TargetGeneRankInProgram: Rank of the target gene within the gene program (lower rank indicates 

stronger association) 
● ProportionOfProgramExpressingInCelltype: Proportion of cells expressing the gene program that 

belong to this cell type.  
● TFsOfProgram: Transcription factors (TFs) predicted to regulate the gene program 
● TargetGeneCausesAdultCardiovascularDisease: The adult cardiovascular diseases known to be 

caused by the target gene.   
● TargetGeneCausesCHD_CHDgene: The CHD subtypes known to be caused by the target gene.   
● TargetGeneCausesCHD_PCGC: Indicates whether the target gene is a CHD gene with de novo 

mutations identified by PCGC. 
● LeadVariant: Variant ID of the lead variant of the credible set.  
● LeadVariant_P_value: P-value of the lead variant from the GWAS 
● variant_P_value: P-value of the variant from the GWAS (if available) 
● LeadSNP_PosteriorProb: Posterior probability of the lead SNP (if available) 
● PosteriorProb: Posterior probability of the variant (if available) 
● TPM: Transcripts Per Million (TPM) of the target gene 
● Celltype: Cell type in which the enhancer-gene interaction occurs 

 
 
Table S14: Genomic sequences tested in mouse transgenic enhancer reporter assay  

● VISTA ID: ID of the enhancer in the VISTA database 
● target gene: Target gene predicted to be regulated by the enhancer 
● coordinates (hg38): Genomic coordinates of the human enhancer sequence 
● reference sequence: Reference DNA sequence cloned for testing the activity of the enhancer.  
● variant sequence: DNA sequence with the variant(s) introduced for testing their impacts on the  activity 

of the enhancer.  
● variant rsID: IDs of the variant(s)  

 
 
Table S15: TF-MoDISco motifs 
Each row represents one motif identified in one cell type by ChromBPNet and TF-MoDISco.  

● pattern: Pattern name 
● num_seqlets: Number of seqlets supporting the pattern 
● match0: Best match for the pattern in the reference motif database 
● qva0: q-value of the best match 
● match1: Second best match in the reference motif database 
● qval1: q-value for match1 
● match2: Third best match 
● qval2: q-value for match2 
● celltype: Cell type that the patterns were identified for 

 
 
Table S16: TF-MoDISco motif instances identified with FiNeMo 
Each row represents one motif instance (e.g., candidate TF binding site) in one cell type identified by 
ChromBPNet, TF-MoDISco, and FiNeMo. This data file is available at 
https://www.synapse.org/Synapse:syn64109173 

● chr, start, end: Chromosome, start and end of the match (trimmed). 
● start_untrimmed,end_untrimmed: Untrimmed start and end of the match (30 bp).  
● motif_name: The name of the pattern in the TF-MoDISco table for the corresponding cell type. 
● hit_coefficient: The regression coefficient for the hit, normalized per peak region. 
● hit_coefficient_global: The regression coefficient for the hit, scaled by the overall importance of the 

region.  
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● hit_correlation: The correlation between the untrimmed CWM and the contribution score of the motif 
hit. 

● hit_importance: The total absolute contribution score within the motif hit. 
● strand: The orientation of the hit (+ or -). 
● peak_id: The numerical index of the peak region containing the hit in the input file for the respective 

cell type. 
● celltype: Cell type that the scanning was performed in. 

 
 
Table S17: ChromBPNet performance metrics 
Each row corresponds to one cell type. 

● celltype: Cell type that the models were trained for 
● counts_pearsonr_mean: Pearson correlation coefficient of observed and predicted log(total counts) 

mean across five folds. 
● counts_spearmanr_mean: Spearman correlation coefficient of observed and predicted log(total 

counts), mean across five folds. 
● median_jsd_mean: Median Jensen Shannon Distance (JSD) between the normalized base-

resolution coverage profile and the predicted multinomial profile distribution, mean across five folds. 
● median_norm_jsd_mean: Median of the min-max normalized JSD, mean across five folds. 
● counts_pearsonr_std: Standard deviation across five folds for counts_personr. 
● counts_spearmanr_std: Standard deviation across five folds for counts_spearmanr. 
● median_jsd_std: Standard deviation across five folds for median_jsd. 
● median_norm_jsd_std: Standard deviation across five folds for median_norm_jsd. 
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