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Abstract 

The COVID-19 pandemic and increased demands for neurologists have inspired the 

creation of remote, digitalized tests of neurological functions. This study investigates two tests 

from the Neurological Functional Tests Suite (NeuFun-TS) smartphone application, the 

“Postural Sway” and “Pronator Drift” tests. These tests capture different domains of postural 

control and motoric dysfunction in healthy volunteers (n=13) and people with neurological 

disorders (n=68 relapsing-remitting multiple sclerosis [MS]; n=21 secondary progressive MS; 

n=23 primary progressive MS; n=13 other inflammatory neurological diseases; n=21 non-

inflammatory neurological diseases; n=4 clinically isolated syndrome; n=1 radiologically 

isolated syndrome). Smartphone accelerometer data was transformed into digital biomarkers, 

which were filtered in the training cohort (~80% of subjects) for test-retest reproducibility and 

correlations with subdomains of neurological examinations and validated imaging biomarkers. 

The independent validation cohort (~20%) determined whether biomarker models outperformed 

the best single digital biomarkers. Postural sway acceleration magnitude in the eyes closed and 

feet together stance demonstrated the highest reliability (ICC=.706), strongest correlations with 

age (Pearson r<=.82) and clinical and imaging outcomes (r<=.65, p<0.001) and stronger 

predictive value for sway-relevant neurological disability outcomes than models that aggregated 

multiple biomarkers (coefficient of determination R2=.46 vs .38). The pronator drift test only 

captured cerebellar dysfunction, had less reproducible biomarkers, but provided additive value 

when combined with postural sway biomarkers into models predicting global scales of 

neurological disability. In conclusion, a simple 1-minute postural sway test accurately measures 

body oscillations that increase with natural aging and differentiates them from abnormally 

increased body oscillations in people with neurological disabilities. 
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Introduction  

In the wake of the Coronavirus pandemic, the need for remote patient care is clear. 

Communication technologies have opened the doors to telemedicine, but hands-on aspects of 

clinical evaluation remain to be replicated. In particular, neurological examinations could benefit 

from a remote alternative. Full neurological exams are difficult to complete in busy clinical 

settings and can be subjective in nature. Consequently, functional tests such as timed-walk tests 

or the 9-hole peg test have been performed in clinical research to bolster clinician-driven 

disability scales. Digitalization of these tests offers advantages and some tests have been 

aggregated into suites adapted for smartphones and tablets [1-5]. To our knowledge, the 

Neurological Function Tests Suite (NeuFun-TS), which is comprised of sixteen smartphone tests 

measuring various neurological domains, provides the most comprehensive assessment of 

nervous system functionality. NeuFun-TS outcomes correlate with Multiple Sclerosis (MS) 

disability scales, brain MRI data, and targeted subdomains of gold-standard neurological 

examinations [6, 7]. This study examines the NeuFun-TS Postural Sway and Pronator Drift tests. 

The Postural Sway test evaluates human upright stance, which is fundamentally unstable. 

The brain must continuously integrate multisensory input from visual, vestibular, and 

proprioceptive systems to maintain balance. Since the mid-20th century, postural sway tests have 

been performed to gain insight into these subsystems. In a typical test, a subject stands in 

different positions for a short time (e.g., 30 seconds); positions increase in difficulty by 

inhibiting sensory input and/or increasing stance instability (i.e., standing on foam, closing eyes) 

while a force plate or body-worn accelerometer records sway data. 

The Pronator Drift test examines sustained supination of outstretched arms (i.e., palms 

facing upwards) in the absence of visual stimulus. This test records involuntary movements, such 
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as tremors, and stereotypical pronation, elbow flexion and downward drift, which may reveal 

subclinical motoric dysfunction.  

Both tests use a smartphone-embedded accelerometer. While force plates were the gold-

standard for measuring postural sway, accelerometers mimic force plate measurements with 

comparable reliability [8]. Furthermore, accelerometry-derived measurements can differentiate 

between control groups and people with Parkinson’s Disease, Huntingdon’s Disease, MS, and 

other neurological diseases [9-11]. Similarly, accelerometry quantifies hand tremor and sway to 

distinguish healthy subjects from people with Parkinson’s Disease, acute ischemic stroke, and 

Essential Tremor [12, 13].  

However, while qualitatively distinguishing “healthy volunteers” (HV) from people with 

identified neurological disease is important, disability exists on a spectrum; more useful digital 

outcomes quantify neurological disability in a subject with longitudinal accuracy to measure 

neurological functions agnostically and longitudinally, capable of measuring both disability 

progression and therapeutic effect. Towards this purpose, some studies correlated postural sway 

measurements with neurological-disability scales, such as the Expanded Disability Status Scale 

(EDSS) [14]. While EDSS serves as a progression outcome in MS clinical trials, this ordinal 

scale (ranging from 0-10) is insensitive for most research applications that use smaller patient 

cohorts because a minority actually progress on EDSS yearly; e.g., in the ORATORIO clinical 

trial only 39.3% of primary-progressive MS (PPMS) patients randomized to placebo progressed 

over 4.2 years of trial duration [15], achieving annual progression rates under 10%. Thus, 

granular scales like CombiWISE (continuous scale from 0-100) and NeurExTM (continuous scale 

from 0 to theoretical maximum of 1349) that strongly correlate with EDSS but measure disability 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for thisthis version posted November 21, 2024. ; https://doi.org/10.1101/2024.11.20.24317196doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.20.24317196


5 

 

progression in 6-12 months are better suited for research applications, including differentiating 

disability in specific subdomains of the neurological examination [16, 17]. 

This study analyzes accelerometry data from the NeuFun-TS Postural Sway and Pronator 

Drift tests to generate digital biomarkers, assess their test-retest reliability and their correlation 

with gold-standard clinical outcomes and validated semiquantitative imaging biomarkers. We 

also explored whether aggregating reliable digital biomarkers into machine-learning (ML) 

optimized models provide greater clinical value than the best single biomarkers from each test.  

 

Materials and Methods 

Participants 

This study was approved by the Institutional Review Board of the National Institutes of 

Health (NIH). All data were collected under protocols: Targeting Residual Activity by Precision, 

Biomarker-Guided Combination Therapies of Multiple Sclerosis (clinicaltrials.gov identifier 

NCT03109288) and Comprehensive Multimodal Analysis of Neuroimmunological Diseases of 

the Central Nervous System (NCT00794352). All participants signed paper or digital informed 

consent and provided their sex, age, height, and weight.  After unblinding diagnostic categories, 

the cohort consisted of people with MS (n=112), Other Inflammatory Neurological Diseases 

(OIND, n=13), Non-Inflammatory Neurological Diseases (NIND, n=21), Clinically Isolated 

Syndrome (CIS, n=4), Radiologically Isolated Syndrome (RIS, n=1) and 13 healthy volunteers 

(HV). Apart from 7 self-declared HV that participated in the “smartphone only substudy cohort”, 

the remaining 157 study subjects received full neurological and physical examinations, 

laboratory testing (blood and cerebrospinal fluid to make/confirm diagnosis) and brain MRI 

within 1–48�h of NeuFun-TS testing (Supplementary Tables 1-2).  
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Clinical and imaging measurements related to postural sway and pronator 

drift 

Each neurological examination performed by an MS-trained clinician lasted 

approximately 30-60 minutes and was documented in the NeurEx™ app [16], which 

automatically computes neurological disability scales and functional subdomains. Based on 

domain expertise, we selected NeurExTM panel scores of neurological functions that contribute to 

postural sway, including “Stance & Gait” (panel 16), “Cerebellar Dysfunction” (Lower 

extremities subdomain of panel 12), and “Proprioceptive Dysfunction” (Lower extremities 

subdomain of panel 14).  The square root of the sum of these scores computed the “NeurExTM 

Postural Sway” subpanel. Similarly, for the Pronator Drift analysis we selected the pertinent 

subsystem scores separately for each hand; we derived upper extremity “Motoric Dysfunction” 

(sums panel 8: muscle strength, panel 10: reflexes and panel 7: spasticity), “Cerebellar 

Dysfunction” (panel 12 for a specific hand), and “Proprioceptive Dysfunction (panel 14 for a 

specific hand). We summed these subsystem scores for both hands to compute “NeurExTM 

Pronator Drift”. 

Clinical grade magnetic resonance imaging (MRI) of the brain and upper cervical spinal 

cord (i.e., axial and sagittal cuts extended to C5 level) was performed following procedures 

detailed in previous papers [18, 19]. We semi-quantitatively graded the extent of atrophy and 

number of focal lesions (“lesion load”) separately in the brainstem, cerebellum, and 

medulla/upper cervical spinal cord using a previously published grading protocol; these 

measurements have proven to be important in determining physical disability [18, 19]. 
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Data were collected by investigators blinded to other measurements, uploaded to the 

research database each week following patient visits, quality controlled during weekly meetings, 

and locked from subsequent data modifications. 

 

NeuFun-TS tests description 

NeuFun-TS tests were developed using Kotlin and Java within Android Studio. NeuFun-

TS is distributed as an Android package and test results are uploaded to a private database hosted 

on Google Firebase. Results are linked to an alphanumeric code to maintain privacy. The test 

operates on Android (Versions 11, 12) and displays graphics optimized for Google Pixel 

XL/2XL.  

NeuFun-TS test subjects are provided with a Google Pixel smartphone that has an 

attached hand strap; they also receive an Auro Lounger Universal Adjustable Neck Mount 

(phone harness) to be used for the Postural Sway test. For each test in the app suite, when the 

user selects the test’s icon (i.e. “Postural Sway” icon), the app guides the user through trial 

completion via automated instructions.  

A Postural Sway (Figure 1A) “trial” is three 10-second upright balance tests, in which the 

user will stand as still as they can with their hands relaxed at their sides: first, standing with the 

eyes open and feet apart (EO-FA); second, standing with the eyes open and feet together (EO-

FT); finally, standing with eyes closed and feet together (EC-FT). 

A Pronator Drift (Figure 1B) “trial” is two 10-second pronator drift tests (one per hand). 

The user will stand/sit as still as they can with their arms extended forward, palms facing 

upward, eyes closed, and one hand gripping the phone (strap optional).  
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A supervising lab member was present during NeuFun-TS testing to answer any 

questions regarding testing procedure and to ensure subject safety. Each test collects 

approximately 9.5 seconds of data using the Google Pixel built-in tri-axial accelerometer at a 

sampling frequency of 50 Hz. Time-series were trimmed to 9-seconds for consistency among 

comparisons.  

 

Computing digital biomarkers  

Smartphone data was calibrated using an established protocol for accelerometer-based 

sway analyses in which each test’s 3-Dimensional time series were transformed into one Medio-

Lateral (M-L) and one Antero-Posterior (A-P) time series [20]. Additionally, M-L and A-P time 

series were combined into a single radial acceleration time series, referred to as “Net” 

acceleration in downstream analyses. 

Two time-related and two frequency-related measurements of postural sway and pronator 

drift were computed based upon review of previous analyses [9-11, 21] (Figure 2).  

Time-related measurements include the following:  

1) Root Mean Square of acceleration (RMS), which measures acceleration magnitude. RMS 

was calculated from the M-L, A-P, and Net acceleration time series as 

RMS �  �1� Σ
� � �

� 

�

� 

where ai is instantaneous acceleration and N is the number of timepoints.  

 

2) Sway jerkiness (Jerk) measures the rate of change in acceleration with respect to time. 

Jerk was calculated from the M-L and A-P acceleration time series as  
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Jerk � � ������� ���

�

�� 

 where t is time and Acc is the M-L or A-P acceleration time series. Net Jerk was  

calculated using both M-L and A-P acceleration time series (AccML and AccAP, 

respectively) as  

Net Jerk � 12 � ���������� �� � ��������� ����

�

�� 

Next, acceleration data were discrete Fourier transformed 21 to frequency power spectrums, 

which captures frequency (Hz) against Power Spectral Density (PSD). From the power 

spectrums we computed the first two spectral moments μ1 and μ2, respectively, as our frequency-

related measurements: 

1. Spectral centroid (SC), which measures the “center of gravity” of the sway frequency 

(the central PSD-weighted frequency) [21]. SC was calculated from each transformed M-

L, A-P, and Net time series as 

� �  !�  �  Σ
	 � 
�


� "	#	 Σ
	 � 
�


� #	   

where $� and $� are the band edges of the frequency samples,  "	 is the kth sample 

frequency, and #	  is the kth spectral density. 

 

2. Spectral spread (SS), which measures the variability and dispersion of sway frequency. 

Following the same notation, SS was calculated from each transformed M-L, A-P, and 

Net time series as 
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�� �  !�  �  %Σ
	 � 
�


� &"	 ' !�(�#	  Σ
	 � 
�


� #	  

 

For Postural Sway, each measurement was computed for each stance (EO-FA, EO-FT, EC-

FT); differences between testing conditions were evaluated by computing each measurement’s 

ratio for EC-FT:EO-FT (the Romberg Ratio; measures how removing visual stimulus affects 

sway) and EO-FT:EO-FA (measures how increasing stance difficulty affects sway).  

For Pronator Drift, Net measurements were computed for each hand, which were later 

relabeled as dominant (“Dom.”) or non-dominant (“Ndom.") based on subject-identified hand-

dominance. Because people with severe disability were holding the phone in the most 

comfortable manner (strapped sideways or held vertically), we were unable to identify 

directional movements. We also computed the sums and differences for measurements across 

dominant and non-dominant hands (“Sum” and “Diff.”), respectively.  

Altogether, the different permutations of the four measurements yield 60 Postural Sway 

digital biomarkers and 16 Pronator Drift digital biomarkers. All biomarkers were log10 

transformed to improve their distribution normality. Subjects with neurological exam data were 

randomly split into a training set (80% of subjects) and an independent validation set (20%) 

before all data analyses (Supplementary Tables 3-6). 

 

Test-retest reliability and outlier removal 

We evaluated inter-day test-retest reliability of derived digital biomarkers by computing 

the Intraclass Correlation Coefficient (ICC). The ICC compares test-retest variance within 

subjects with the variance between subjects; high ICC indicates that a biomarker is stable over 
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repeated measures. We computed the ICC (2,1) [22, 23], or the 2-way mixed-effects model, 

which measures reliability of the first 2 trials of each subject and treats trial number as a rater. 

Following published guidelines, we used an ICC of 0.5 as a cutoff to remove features with poor 

test-retest reliability [24].  

To assure that downstream analyses are not affected by outliers, we identified outlier 

biomarker values as those above or below 1.5 times the interquartile range of reliable features. 

 

Predictive model training and validation 

Digitalized tests enable computation of large numbers of digital biomarkers, which can 

be aggregated into ML models that may outperform individual biomarkers in predicting 

outcomes. However, ML models can overfit, leading to unrealistically optimistic results. We 

performed the following steps to mitigate model overfitting:  

1) To limit the number of model features, we only included digital biomarkers with 

ICC>0.5 and correlations with at least one relevant clinical/imaging outcome. 

2) To improve model interpretability, we used linear regression models. We selected 3 

modeling strategies that differ in level of collinearity stringency to account for 

redundancy among biomarkers: Ridge regression broadly applies moderate shrinkage 

to all colinear features (least aggressive); Lasso regression aggressively shrinks 

redundant features’ coefficients to zero (most aggressive); Elastic Net regression 

roughly mediates Ridge and Lasso in coefficient optimization.  

3) We optimized each model strategy’s parameters through 5-fold cross-validation of the 

training cohort. 
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4) For each model strategy, we computed a corresponding component-based model 

through Principal Component Analysis (PCA).  

5) We selected the best model strategy for each outcome by using the coefficient of 

determination (R2).  

6) We trained winning models on the complete training cohort and evaluated model 

performance on the independent validation cohort. 

7) We compared model performance in the independent validation cohort with the best 

single predictor to validate that aggregating biomarkers provides added value over the 

best single digital biomarker. 

We also combined digital biomarkers from both tests and performed steps 1-6 to evaluate 

how multiple tests model the global disability scales. 

 

Results 

Digital biomarkers demonstrate moderate inter-day test reproducibility 

As detailed in Materials and Methods, we removed biomarkers with ICC below 0.5 as 

unreliable. From the Postural Sway test, 9 of 60 biomarkers presented moderate reliability 

(Supplementary Figure 1A). Only two biomarkers, both measuring sway acceleration magnitude, 

achieved ICC>0.5 for the two open eyes postural sway tests: A-P RMS, which captures 

acceleration magnitude in antero-posterior directions, and “Net RMS”, which integrates 

acceleration magnitude from A-P and medio-lateral (M-L) directions. Surprisingly, for the most 

difficult test (eyes closed, feet together; EC-FT), in addition to RMS biomarkers, M-L Jerk and 

Net Jerk achieved ICC>0.5. In fact, ICC for M-L RMS EC-FT was much higher (i.e., 0.695) than 

that of A-P RMS (i.e., 0.535-0.566 for all 3 stances). This suggests that vision controls postural 
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sway in M-L directions much more effectively than in A-P directions and eliminating this visual 

correction increases test sensitivity. 

For Pronator Drift (Supplementary Figure 1B), 5 digital biomarkers achieved ICC>0.5. 

Again, RMS exhibited stronger reproducibility than acceleration jerk, but only for the dominant 

hand.  

 

Postural sway digital biomarkers correlate with age  

Previous postural sway research has identified in healthy subjects a positive correlation 

between accelerometry-derived measurements and age [25]. Some research has also indicated 

correlations are present between height, weight, and sex [26, 27]. For each diagnosis type with at 

least 10 subjects, we computed correlations between the reliable features and age, sex, height, 

and weight. Net RMS EC-FT demonstrated the strongest correlation in HV, and was the only 

biomarker to correlate with age in all cohorts with 10 or more subjects (Figure 3A; 

Supplementary Tables 11-14). Net RMS EC-FT explained 67% and 57% of variance in HV and 

NIND cohorts, respectively (p<0.001), with almost identical slopes and intercepts. This indicates 

that Net RMS EC-FT measures age-related increase in postural sway. Other postural sway 

biomarkers correlated with age and one pronator drift biomarker correlated with sex, although 

sex distribution was limited (Supplementary Figure 2).  

After subtracting the effect of natural aging (i.e., using Net RMS EC-FT HV age 

residuals), we observed that Net RMS EC-FT differentiates MS patients from HV and NIND 

controls (Figure 3B). 17% of NIND subjects, 40% of RRMS, 54% of SPMS and 71% of PPMS 

patients measured Net RMS EC-FT beyond the effect of natural aging. Thus, Net RMS EC-FT 

also differentiates MS-related increase in postural sway from natural aging. 
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Postural sway digital biomarkers correlate more strongly with relevant 

clinical and imaging outcomes than pronator drift biomarkers 

Next, we aimed to select the most clinically relevant digital biomarkers for modeling. 

Because biomarker-derived models must be blindly tested in the independent validation cohort, 

we only used training cohort data for biomarker selection (Supplementary Tables 15-18).  

We computed Pearson correlations between reliable Postural Sway and Pronator Drift 

features and 3 global neurological disability scales (EDSS: ordinal, from 0-10; CombiWISE: 

ML-learning derived, continuous, from 0-100; NeurExTM: derived from NeurExTM App, 

continuous linear scale, theoretical maximum of 1347). Because postural sway and pronator drift 

tests measure subdomains of neurological examination, we also evaluated biomarker correlations 

with relevant subpanels, detailed in Materials in Methods, of the aforementioned global scales 

(Figure 4).  

All postural sway digital biomarkers correlated moderately strongly (r>0.5, p<0.001) 

with at least one clinical outcome. We observed a hierarchy in Pearson’s correlations with global 

disability scales: correlations were weakest with EDSS (r=0.39-0.57, p<0.001), stronger with 

NeurEx (r=0.42-0.63, p<0.001) and strongest with CombiWISE (r=0.46-0.65, p<0.001). As 

expected, most digital biomarkers correlated comparatively stronger with subpanels of global 

disability scales, such as the stance and gait subpanel (r=0.52-0.61, p<0.001) or NeurExTM 

Postural Sway (r=0.48-0.64, p<0.001). EC-FT biomarkers correlated stronger with the 

proprioception subpanel (r=0.41-0.47, p<0.001) than eyes open (EO-FA, EO-FT) biomarkers 

(r=0.24-0.27, p<0.05). This indicates that vision can largely compensate for the effect of 

decreased proprioception. 
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Additionally, all postural sway digital biomarkers correlated moderately with semi-

quantitative imaging outcomes in the infratentorial compartment (Figure 4A), although these 

correlations were slightly weaker (r=0.34-0.58) compared to correlations with clinical outcomes 

(r=0.35-0.65). Generally, all 3 infratentorial sites (brainstem, cerebellum and medulla/upper 

cervical spine) contributed to these correlations. The infratentorial scores that integrate atrophy 

of all infratentorial anatomical regions correlated stronger with digital biomarkers than atrophy 

of each individual CNS anatomical site (r=0.34-0.58 vs r=0.14-0.51). Likewise, scores that 

aggregated both lesion load and atrophy correlated stronger (r=0.26-0.58) compared to 

semiquantitative atrophy scores only (r=0.14-0.56). 

Net RMS EC-FT outperformed all digital biomarkers in correlations with clinical and 

imaging outcomes with the exception of correlations with cerebellar subpanels that correlated 

strongest with A-P RMS EO-FT stance, consistent with clinical knowledge that vision does not 

compensate for cerebellar dysfunction in postural sway. 

Pronator Drift biomarkers exhibited comparatively weaker correlations overall. Within 

pronator drift biomarkers, Jerk correlated weaker than RMS (r=-0.05 to 0.29, p<0.01 vs r =0.11-

0.43, p<0.001). Surprisingly, biomarkers did not correlate with motoric and proprioceptive 

subpanels but only with cerebellar subpanels (up to r = 0.43, p<0.001). Because NeurExTM 

Pronator Drift integrates motoric, proprioceptive and cerebellar dysfunction, the subpanel also 

did not correlate with any digital biomarker. The best biomarker from Pronator Drift was Net 

RMS Dom., which correlated with all global disability scales and demonstrated the same 

hierarchy we observed for postural sway biomarkers: EDSS<NeurEx<CombiWISE (r=0.40-0.43, 

p<0.001). RMS Dom. also correlated with all imaging outcomes (r=0.32-0.42, p<0.001).  
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Development and validation of digital biomarker models 

We sought to predict 3 global scales of neurological disability (EDSS, CombiWISE, 

NeurExTM) and 2 test-specific scales (NeurExTM Postural Sway, NeurExTM Pronator Drift) using 

model strategies that accounted for multicollinearity among digital biomarkers (Supplementary 

Figure 3). However, because pronator drift digital biomarkers did not correlate with NeurExTM 

Pronator Drift, we instead used them to model NeurExTM Cerebellar Dysfunction Dom., which 

these biomarkers correlated with (Figure 4B), as a sensitivity analysis. 

After optimizing model parameters and ensuring that models performed comparably to 

principal component models (Supplementary Figures 4-6), we selected the best model type 

(Ridge, Lasso, or Elastic Net) using the coefficient of determination (R2). We trained these 

models on the complete training cohort (Supplementary Figures 7-9) and tested them in the 

independent validation cohort (Figure 5; Supplementary Figures 10-11). Pearson’s correlation 

(r), the coefficient of determination, and the concordance correlation coefficient (CCC) were 

used as model performance metrics.  

First, we evaluated the ability of test-specific models (i.e., models derived from Postural 

Sway biomarkers) to predict test-specific outcomes (i.e., NeurExTM Postural Sway); we 

compared these models with the best single predictors for each model outcome.  Surprisingly, for 

predicting NeurExTM Postural Sway, we found that the best single predictor achieved greater 

model performance metrics than the best Postural Sway model (r=.70, R2=.46, CCC=.71 versus 

r=.64, R2=.38, CCC=.68, respectively; Figure 5A). For Pronator Drift modeling we found that 

the best Pronator Drift model outperformed the best single predictor in predicting cerebellar 

dysfunction in the validation cohort (r=.55, R2=.25, CCC=.33 versus r=.50, R2=.21, CCC=.31, 

respectively; Figure 5B). 
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Next, we evaluated whether models that combine Postural Sway and Pronator Drift 

biomarkers outperform the best test-specific models in predicting global disability scales. Indeed, 

combined models achieved the highest performance metrics for EDSS, CombiWISE, and 

NeurExTM (r=.58-65, R2=.31-.36, CCC=.58-.66), indicating that accurately measuring global 

disability requires integrating biomarkers from multiple functional tests (Figure 5C; 

Supplementary Figures 10-11). 

 

Discussion  

Key Findings 

Analysis of the simple, 1-minute NeuFun-TS Postural Sway test yielded a digital 

biomarker (Net RMS EC-FT) with moderately strong test-retest reproducibility, meaningful 

correlations with age (even in HV), and predictive power for disability scores. This biomarker’s 

correlation with age aligns with previous studies that suggest age-related degeneration in 

proprioception and delayed motoric integration contributes to increased postural instability in 

older adults [28, 29]. Our findings further previous research by uncovering how healthy subjects 

and subjects with non-inflammatory neurological diseases exhibit a nearly identical progression 

of disability with age, while subjects with progressive forms of MS (Secondary and Primary 

Progressive) followed steeper slopes. This identified MS-specific contributions to postural sway 

dysfunction. Notably, Net RMS EC-FT, which had the highest test-retest reliability, 

outperformed postural sway models that incorporated some less reliable biomarkers; establishing 

reliability of digital biomarkers is essential to functional test analyses.  

Moreover, while the NeuFun-TS Pronator Drift test also yielded moderately reliable 

digital biomarkers, the biomarkers correlated weaker with clinical outcomes. Nevertheless, these 
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weaker biomarkers provided additional predictive value when we combined them with postural 

sway biomarkers to predict global scales of neurological disability. This highlights the 

importance of having functional tests that cover different (ideally all) neurological subsystems in 

the NeuFun-TS in order to capture development of global neurological disability. 

 

Future directions 

While the goal of NeuFun-TS is measuring all neurological subsystems, the time required 

to perform all tests determines NeuFun-TS usability and, consequently, testing compliance. 

Therefore, NeuFun-TS must balance test accuracy (may require longer testing times) and 

usability (requires short testing). With this in mind, we will remove Pronator Drift from NeuFun-

TS, because the test is only sensitive for cerebellar dysfunction, which is already measured with 

greater accuracy in other NeuFun-TS test [17]. Likewise, Postural Sway EO-FA position did not 

yield any non-redundant digital biomarkers. Thus, we will explore whether abandoning this 

position and increasing time for EO-FT, which is sensitive to cerebellar dysfunction, and EC-FT, 

which provides the best digital biomarker of Postural Sway, may enhance reliability of these 

clinically meaningful biomarkers. 

 

Potential limitations 

One limitation of the postural sway test, as previously mentioned, was that the distance 

between the feet for the feet apart stance was not controlled between subjects; however, because 

this position did not provide useful biomarkers we will be removing it from the NeuFun-TS. One 

potential limitation of the pronator drift test was that orientation of the smartphone was not 

controlled, which prevented directional movements from being captured. However, signal 
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interference from hand tremors and the inability of the digital biomarkers to discern 

pronation/drift in most subjects means that accelerometers would likely fail to capture directional 

movements regardless. 

 

Conclusion 

The user-friendly, 1-minute NeuFun-TS Postural Sway test exhibits meaningful 

correlations with age and clinician scores reflecting balance. Assembling models from different 

NeuFun-TS tests yields models better able to predict clinical outcomes. 
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Abbreviations 

CCC: Concordance correlation coefficient, which measures absolute agreement between two 

variables 

CIS: Clinically isolated syndrome 

Dom.: dominant-hand results from the pronator drift test 

HV: healthy volunteers 

ICC: Intraclass correlation coefficient, which measures test-retest reproducibility/reliability 

EC-FT: “Eyes closed feet together”; refers to digital biomarkers from the first stance in the 

postural sway test in which the subject stands with eyes closed and feet together 

EO-FA: “Eyes open feet apart”; refers to digital biomarkers from the first stance in the postural 

sway test in which the subject stands with eyes open and feet apart  

EO-FT: “Eyes open feet together”; refers to digital biomarkers from the second stance in the 

postural sway test in which the subject stands with eyes open and feet together 

EN: Elastic net, a regularized regression modeling strategy that combines Lasso and Ridge 

regression penalization effects 

MRI: Magnetic resonance imaging 

MS: Multiple sclerosis 

OIND: Other inflammatory neurological diseases 

NIAID: National Institute of Allergy and Infectious Diseases 

NIH: National Institutes of Health 

NIND: Non-inflammatory neurological diseases 
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NeuFun-TS: Neurological Function Tests Suite, a smartphone application containing sixteen 

different functional tests (including the NeuFun-TS Postural Sway and NeuFun-TS Pronator 

Drift tests) used to evaluate neurological disability in different domains 

PCA: Principle component analysis 

PP-MS: Primary Progressive Multiple Sclerosis 

RIS: Radiologically isolated syndrome 

RMS: Root Mean Squared; refers to the acceleration magnitude, an accelerometry-derived 

measurement, which was computed by squaring, averaging, and square-root transforming 

accelerometer time series data 

RR-MS: Relapsing-remitting multiple sclerosis 

SP-MS: Secondary progressive multiple sclerosis 
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Figure 1 | NeuFun-TS Postural Sway and Pronator Drift user experience walkthrough. A) 
NeuFun-TS Postural Sway app experience. The NeuFun-TS allows users to practice tests, access 
help tutorials, visualize their history, and submit feedback regarding application bugs. The app 
currently contains fifteen different tests, which can be accessed in Practice Mode or Trial Mode 
(shown here). The Postural Sway interface provides both visual and auditory instructions to 
complete a trial. Upon receiving all instructions, the user may start the trial. The first Postural 
Sway test evaluates the user’s balance while standing with their feet comfortably apart and their 
eyes open. After the test is complete, the user’s test movements are plotted to a screen for user 
feedback, and the user will repeat with their feet together and eyes open and with their feet 
together and eyes closed.  B) NeuFun-TS Pronator Drift app overview. The Pronator Drift 
interface similarly provides visual and verbal guidance for trial completion. Upon receiving all 
instructions, the user may begin the test. The first Pronator Drift test evaluates the stability of the 
left hand. After the test is complete, the user’s test movements are plotted to a screen for user 
feedback. The user will repeat with the right hand. 
 
 
Figure 2 | Visualization of measurements used in the Postural Sway and Pronator Drift analysis. 
A) Manually generated example of 2-Dimensional acceleration data plotted over .6 seconds. 
Each test’s accelerometry data was converted to Antero-Posterior (“A-P”, front-to-back) and 
Medio-Lateral (“M-L”, left-to-right) acceleration data. B) Display of the M-L component of the 
2D acceleration data and provides a visualization of Jerk, which captures the rate of change of 
acceleration with respect to time, or “sway jerkiness”. C) Display of the Antero-Posterior (A-P) 
component of the 2D acceleration data and a visualization of Root Mean Squared acceleration 
(RMS), which captures the magnitude of the sway over the course of a test. D) Display of 
frequency-related measurements after transformation of acceleration data. Spectral Centroid 
captures the central Power Spectrum Density (PSD) of the Power Spectrum, while the Spectral 
Spread captures extent of deviation of the PSD’s distribution.  
 
 
Figure 3 | Age exhibits differentiable relationship among cohorts’ sway amplitude 
measurements. A) Net RMS EC-FT (Net sway amplitude for Eyes Closed and Feet Together) 
significantly correlated with age in every diagnosis cohort with at least 10 subjects (HV, NIND, 
and MS). Pearson’s (r) correlations and their p-values (p) were adjusted using the Benjamini-
Hochberg False Discovery Rate adjustment with alpha = .05. B) Age-adjusted Net RMS EC-FT 
prediction interval identifies abnormal digital biomarker results corresponding to MS-related 
disability. The 95% prediction interval was calculated from the Healthy Volunteer (HV) cohort 
and was used to identify abnormal Net RMS EC-FT in subjects with Multiple Sclerosis (MS), 
Non-Inflammatory Neurological Diseases (NIND), Relapsing-Remitting MS (RR-MS), 
Secondary-Progressive MS (SP-MS), and Primary-Progressive MS (PP-MS). The Wilcoxon 
Rank-Sum nonparametric test of difference was performed pairwise among all diagnostic groups 
using Benjamini Hochberg False Discovery Rate corrections (alpha = 0.05) to adjust p-values; * 
corresponds to significant differences with p-value <= 0.05, ** corresponds to p-value <= 0.01.  
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Figure 4 | Digital biomarkers exhibit low to moderately strong Pearson correlations with 
Clinical Scores and MRI Scores. A) Postural Sway features exhibit significant, moderate 
Pearson correlations. B) Pronator Drift features exhibit significant, low Pearson correlations with 
Clinical Scores and MRI Scores. Correlation p-values were adjusted using the Benjamini-
Hochberg False Discovery Rate adjustment with alpha = .05. RMS refers to root mean squared 
acceleration, which captures sway amplitude; Jerk refers to the rate of change of acceleration, 
which captures sway jerkiness. A-P refers to antero-posterior movement, which captures forward 
and backward sway; M-L refers to medio-lateral movement, which captures side-to-sway sway; 
Net combines M-L and A-P acceleration data to capture overall acceleration. “Dys.” is short for 
“Dysfunction”, “Fun.” is short for “Function”. Benjamini Hochberg False Discovery Rate 
corrections (alpha = 0.05) were used to adjust p-values; * corresponds to significant differences 
with p-value <= 0.05, ** corresponds to p-value <= 0.01. 
 
 
Figure 5 | Performance metrics of single best predictors and best models in independent 
validation cohort.  Pearson’s (r) correlation, the coefficient of determination (R2), and the 
concordance correlation coefficient (CCC) were used as metrics of model success. A) The best 
single predictor for the NeurExTM Postural Sway subpanel was Net RMS EC-FT, which achieves 
higher prediction and correlation coefficients than the best model assembled from all postural 
sway biomarkers. B) The best model assembled from all pronator drift biomarkers outperformed 
the best single predictor for pronator drift Net RMS Dom. in predicting the NeurExTM Cerebellar 
Dysfunction subpanel for the dominant hand. C) Combining biomarkers from the postural sway 
and pronator drift tests yields models that predict global scales of disability better than the 
postural sway or pronator drift test alone. RMS refers to root mean squared acceleration, which 
captures sway amplitude. Net combines Medio-Lateral and Antero-Posterior acceleration data to 
capture overall acceleration. “Dom.” is short for “Dominant hand”. 
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