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Abstract 
Background 
To improve on existing noncardiac surgery risk scores, we propose a novel approach which 
leverages features of the preoperative 12-lead electrocardiogram (ECG) to predict major adverse 
postoperative outcomes. 
 
Methods 
Data acquired in 37,060 adult patients prior to major noncardiac surgery were used to train a series 
of convolutional neural network models in the task of predicting in-hospital acute myocardial 
infarction (MI), in-hospital mortality (IHM), and a composite of in-hospital MI, in-hospital stroke, 
and 30-day mortality. Preoperative ECG waveform features were first modeled as sole inputs then 
integrated with clinical variables in fusion models. Model discrimination was evaluated using area 
under the receiver operating characteristic (AUROC) analysis, and performances were compared 
with the Revised Cardiac Risk Index (RCRI), a benchmark preoperative risk score To gain 
interpretable insight, a generative approach using counterfactual ECGs was implemented. 
 
Results 
The ECG fusion model had an AUROC of 0.858 (95% CI [0.845, 0.872]), 0.899 (95% CI 
[0.889, 0.908]), and 0.835 (95% CI [0.827, 0.843]) in predicting MI, IHM, and the composite 
endpoint, respectively; these AUROC values were significantly higher than in models based on 
ECG waveforms alone (MI: 𝑝	 = 	0.001, IHM: 𝑝 < 10!", composite: 𝑝 < 10!"). All ECG based 
models had significantly higher discrimination than the RCRI. Counterfactual ECG analysis 
revealed morphological features relevant to outcome classification. 
 
Conclusion 
A deep learning approach integrating preoperative ECG waveform features significantly enhances 
the ability to predict major outcomes after noncardiac surgery. The use of counterfactual ECGs 
provides plausible explanations for classifier decisions, increasing the interpretability of the 
models. 
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Clinical perspective 

What is new? 

• A deep learning approach applied to preoperative 12-lead ECG waveforms accurately 
predicts major outcomes after noncardiac surgery. 

• This model outperforms the benchmark Revised Cardiac Risk Index (RCRI). 
• The highest predictive performance was obtained with a fusion model that combines 

preoperative ECG waveforms with routinely collected clinical variables. 
• An exploratory approach in which counterfactual ECGs are generated provides 

explainability for classifier decisions. 
 

What are the clinical implications? 

• In adults undergoing non-cardiac surgery, ECG waveform features are predictive of 
postoperative cardiovascular risk 

• Risk models integrating ECG waveforms with clinical variables can serve as the basis for 
outcome modifying interventions across the surgical continuum. 

• Achieving explainability through counterfactual ECGs represents an important step 
towards real-world implementation. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 20, 2024. ; https://doi.org/10.1101/2024.11.19.24317577doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.19.24317577
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

Introduction 
Despite advances in perioperative safety, adult patients undergoing surgery continue to incur Major 
Adverse Cardiovascular and Cerebrovascular Events (MACCE) such as myocardial infarction 
(MI) and ischemic stroke, with an incidence of MACCE after noncardiac surgery reported between 
1 and 7 percent depending on the population studied1-3. These complications prolong 
hospitalization4, increase medical costs5, and may burden surviving patients with disabilities that 
reduce their quality of life in the long term6.  Accurate preoperative risk stratification7 may have 
actionable contingencies8. Medical conditions such as coronary artery disease, dysrhythmias, 
hypertension, or diabetes mellitus can be optimized prior to surgery9, while the invasiveness of 
surgery, type of anesthesia10 and the intensity and duration of perioperative monitoring can be 
customized 11; moreover, appropriately risk stratified patients can make informed decisions prior 
to agreeing to an operation12. However, existing preoperative risk stratification tools have only 
modest discrimination. The Revised Cardiac Risk Index (RCRI), a score regarded as a benchmark 
in predicting cardiac events after noncardiac surgery, has a median area under the receiver-
operating curve (AUROC) of 0.75, sensitivity of 0.65, and specificity of 0.76 according to a meta-
analysis of 18 studies13. There is consequently an unmet need for more accurate tools for risk 
stratification. 

The 12-lead ECG is widely used to diagnose a range of cardiac conditions such as dysrhythmias, 
conduction abnormalities, or evidence of ischemic heart disease14,15. Recent studies indicate that 
the ECG may also be valuable in predicting future events such as paroxysmal atrial fibrillation16-

18 or sudden cardiac death19,20. This research leverages very large datasets of 12-lead ECGs to train 
supervised machine learning algorithms. The central conjecture in these studies is that ECG 
waveforms contain previously unidentified predictive features which might be characterized as 
latent because not recognizable even by trained clinical practitioners. In this work, we reasoned 
that a similar paradigm might be relevant in the prediction of postoperative outcomes. Using 
preoperative 12-lead ECGs, we trained a deep learning model to predict the risk of in-hospital MI, 
in-hospital mortality, and a composite endpoint of in-hospital MI, in-hospital stroke, and 30-day 
mortality among patients undergoing major noncardiac surgery. 

Methods 
Objectives 

The primary objective is to predict major adverse postoperative events using preoperative 10-
second, 12-lead ECG (Figure 1A). We identified three postoperative endpoints of interest: 
myocardial infarction (MI), in-hospital mortality (IHM), and a composite of stroke, MI, and 
mortality (composite). MI and stroke were identified using International Classification of Diseases 
(ICD) 9 and 10 codes (see Table S1). IHM was derived from a reference flag for whether the 
patient died in the hospital, and 30-day mortality was extrapolated from a combination of in-
hospital records and state death records. We investigated our task through two modeling 
approaches. First, we developed a deep learning model to predict adverse postoperative outcomes 
in noncardiac surgical patients using ECG waveforms alone (WF model). And second, we devised 
a fusion model that combines ECG waveform data with routinely collected clinical variables to 
predict these outcomes (Fusion model). Our first analysis examines whether there are latent factors 
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within the ECG that are predictive of the outcomes of interest; the second allows us to determine 
if the ECG contains information complementary to structured electronic healthcare record (EHR) 
data that increases accuracy of prediction of postoperative outcomes as compared to structured 
data alone. 

 

Figure 1. Task of interest, selection criteria, and model architecture. (A) Schematic of our task 
of interest, which is to predict adverse postoperative outcomes using preoperative ECGs. (B) 
Flowchart used for patient selection. (C) Model architecture. We leveraged a CNN backbone to 
make predictions based on preoperative ECGs alone (WF model) or in combination with routinely 
collected clinical and demographic variables available preoperatively (fusion model). 

Dataset 

Data were extracted from MIMIC-IV (v2.2)21,22, which includes 299,712 patients across 431,231 
admissions to Beth Israel Deaconess Medical Center between 2008 and 2019. We included adult 
patients undergoing major noncardiac surgery identified via procedure ICD codes recorded during 
their stay, using Procedure Classes groupings provided by the Healthcare Cost and Utilization 
Project23. This designates all ICD-9 and ICD-10 procedure codes into four categories, based on 
whether the procedure is minor (non-operating room) or major (operating room) and whether it is 
diagnostic or therapeutic. Surgical patients were identified by those who underwent any major 
procedure according to the ICD codes provided. Next, we differentiated between major cardiac 
and noncardiac surgeries. Again, we used the Clinical Classification Software (CCS) – patients 
who first underwent a major cardiac surgery were considered cardiac patients; patients whose first 
procedures were noncardiac were classified as noncardiac surgical patients (Figure 1B). A 
summary of patient characteristics can be found in Table 1. 
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 Total Dev. cohort (pre-2017) Test cohort (2017-2019) 
Patients (n) 37,060 33,837 3,223 
Age (mean) 64.4 64.5 62.9 
Male gender (%) 49.4 49.4 48.7 
Race and ethnicity    
    White 72.6 72.7 71.2 
    Black 12.2 12.5 8.5 
    Hispanic/Latino 4.5 4.6 4.0 
    Asian 3.0 2.9 3.8 
    Am. Ind./Al. Nat. 0.2 0.2 0.1 
    NHPI 0.1 0.1 0.1 
    Unknown 7.5 7.1 12.2 
Outcomes (%)    
    MI 1.6 1.5 2.6† 
    IHM 2.2 2.1 3.1† 
    Composite 6.6 6.4 8.7† 
RCRI (%)    
    Prior IHD 16.0 16.9 6.7† 
    Prior CHF 10.8 11.4 4.3† 
    Prior CVD 6.6 6.9 3.5† 
    High risk procedure 36.7 35.3 52.2† 
    Diabetes req. insulin 26.0 26.6 19.9† 
    Creatinine > 2 13.3 13.0 9.3† 

Table 1. Population sample characteristics. Shown are demographic, outcome, and RCRI 
components for the overall sample, and our temporally stratified one (see Methods). The † symbol 
denotes significant differences (𝑝 < 10!#) between the development cohort and test cohort, based 
on a normal test for proportion differences in unpaired samples24. 

Within MIMIC-IV, the timing of procedures was identified at the granularity of a day – this means 
that for ECGs recorded on the same day as a procedure, we could not conclusively determine if 
the ECG was administered before the procedure or after it. Because our task of interest involves 
predicting outcomes using preoperative ECGs, we only included ECGs obtained at least one day 
before surgery. 

Evaluation 

We adopted two evaluation approaches. In the first, we used a standard k-fold validation with 10 
folds. We randomly divided the dataset into 10 partitions, split by subject (so that no subject could 
be in both the train and test partitions). Then, for each partition, we trained on the nine other 
partitions and evaluated on the held-out test partition. Statistical analysis was then calculated 
across the 10 test folds. In the second evaluation method, we trained and tested our method on 
chronologically distinct cohorts. Specifically, we trained our model on patients admitted between 
2008 and 2016 and tested our model on a cohort admitted between 2017 and 2019. The goal of the 
second evaluation strategy was to simulate a single-site sequential validation, as motivated by 
Sundrani et al.25. 
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Models 

We developed two models to predict outcomes (Figure 1C). The WF model used only preoperative 
ECGs to predict postoperative outcomes. We selected a 1D convolutional neural network (CNN) 
as our model backbone, based in part on the architecture proposed by Attia et al.26. This architecture 
takes in a raw 12-lead, 10-second ECG sampled at 500 Hz (i.e., a [5000, 12]-dimensional array of 
voltages) and is trained to output an estimated probability of a given condition 𝑦3 ∈ [0,1]. The core 
of the network is six blocks of convolutional layers. Each block consists of a 1D convolutional 
layer, followed by a batch normalization layer and an activation layer with rectified linear unit 
(ReLU) activation. We also employed residual connections in each convolutional block, which 
allows for gradients to better pass through to earlier layers of the network27. The residual layer uses 
a 1 × 1 convolution to match the dimensionality of the output of the main convolutional layer. We 
used filter numbers [16, 16, 32, 32, 64, 64] and corresponding kernel widths [7, 7, 5, 5, 3, 3] in the 
convolutional layers across the six convolutional blocks. Following the convolutional blocks are 
two dense layers (hidden sizes of 64 and 32, respectively), and then a dropout layer. After the 
second dense layer we used an output layer with sigmoid activation, which predicts a risk of the 
outcome (e.g., MI), 𝑦3, where 𝑦3 ∈ [0,1]. An explanation of our hyperparameter optimization 
process can be found in the Supplementary Methods and Table S2. 

The second model we introduced is a fusion model, which integrates ECG waveform information 
with clinical risk factors. Specifically, we combined the CNN backbone with basic demographic 
information (age and sex), admission type (e.g., transfer, emergency, elective, etc.), binary 
indicators for each of the six components of the RCRI, and 26 binary indicators from the 
Elixhauser Comorbidity Score (ECS). ECS components were identified via ICD-9 and ICD-10 
codes28. Because ICD codes are only tabulated at the end of patients’ stays, it was imperative we 
did not include as input features conditions that could reasonably have resulted from the surgery. 
For this reason, we excluded congestive heart failure, cardiac arrythmias, coagulopathy, and blood 
loss anemia from the set of components we include in our fusion model. We also excluded HIV 
status as these data are not available in MIMIC-IV. A full list of included variables is described in 
the Supplementary Methods. 

Model training 

We implemented the waveform and fusion models in TensorFlow (version 2.15.0) and the 
counterfactual model in PyTorch (version 2.1.1). We trained models for up to 100 epochs using an 
Adam optimizer with an initial learning rate of 1 × 10!#. We randomly selected 10% of patients 
(and their corresponding ECGs) for validation and calculated the validation loss at each epoch. If 
the validation loss did not decrease for three consecutive epochs, we reduced the learning rate by 
a factor of 0.5. If the validation loss did not decrease for six epochs, training terminated, and the 
weights corresponding to the minimum validation loss were restored. We applied minimal 
preprocessing to our data. ECGs were dropped if any entries within the ECG waveform were 
invalid (< 2% of all ECGs). In the fusion model, we applied standard scaling to age but left the 
rest of the binary variables unscaled. 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 20, 2024. ; https://doi.org/10.1101/2024.11.19.24317577doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.19.24317577
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

Model performance 

Our primary metric of interest was area under the receiver-operating curve (AUROC). In addition, 
we also calculated the threshold-independent area under the precision-recall curve (AUPRC). For 
threshold-dependent measures (sensitivity, specificity, PPV, NPV, OR) we set a risk score cutoff 
for high and low risk as 𝑦3 = 0.05; for RCRI, we followed previous literature29,30 and denoted high 
risk patients as those with a composite RCRI score ≥ 2. For each model, we calculated the risk 
score for all preoperative ECGs (e.g., if a patient had five preoperative ECGs, each was fed into 
the model at inference time to produce a risk score 𝑦3). We then selected the maximum risk score 
across all preoperative ECGs for a given patient as that patient’s risk of an adverse postoperative 
event. 

In comparing our approach to the RCRI, we also computed the Net Reclassification Index31 (NRI) 
between our models and RCRI. Briefly, the NRI measures how well a new model (e.g., WF and 
fusion models) reclassifies subjects relative to a baseline (RCRI). The NRI quantifies the correct 
upward or downward movement in risk categories for individuals, and its value can range from -2 
to 2. Positive values indicate an improvement in classification with the new model, while negative 
values suggest a deterioration (see the Supplementary Methods). 

Statistical analysis 

To generate confidence intervals, we relied on a bootstrapping approach with 10,000 iterations. 
For statistical tests, we applied a permutation test with 10,000 iterations,  followed by a Bonferroni 
correction32 to establish statistical significance given multiple comparisons. 

Model comparisons 

Our primary comparison benchmark was the RCRI, which consists of six components: 
preoperative creatinine > 2 mg/dL, a diagnosis of diabetes mellitus requiring insulin, whether the 
surgery was high risk (intraperitoneal, intrathoracic, suprainguinal vascular), and whether the 
patient had a history of ischemic heart disease, congestive heart failure, or cerebrovascular disease 
(see Supplementary Methods). Each of these conditions was coded as a binary variable, and their 
sum was the patient’s RCRI score (in the range from 0 to 6).  

In addition, we compared our WF and fusion models to one trained using ECI variables, as well 
as three CNN-based models from Hannun et al.33, Ribiero et al.34, and Ouyang et al.35, trained using 
the same training and evaluation schemes and data as our model. In addition, we implemented a 
non-DL based ECG classifier based on the machine-generated features from the ECG hardware 
(see Supplementary Methods). 

Explainability 

To identify the characteristics relevant to classification decisions, we proposed a generative 
approach which creates counterfactual ECGs. Briefly, following the training paradigm previous 
described, we have a classifier that, given an input ECG, produces a risk score (e.g., the probability 
of postoperative MI). Our counterfactual model seeks to intervene on this input waveform by 
introducing some minimal, physiologically plausible modifications to the underlying morphology 
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such that it elicits a different, user-defined risk score 𝛿 ∈ [0, 1] (see Supplementary Methods). 
For example, given an ECG with a low classifier-assigned risk score (e.g., a 0.1% risk of MI), we 
could generate counterfactual versions of this ECG such that it is classified at medium (e.g., 𝛿 =
0.03, 3% risk of MI) or high (e.g., 𝛿 = 0.15, 15% risk of MI) risk by modifying the classification-
decision relevant areas of the ECG waveform such that the classifier judges the counterfactual to 
be at the prescribed risk level. A successful counterfactual ECG demonstrates three 
characteristics36,37: (1) it will appear similar to the input (i.e., be minimally modified relative to the 
original ECG); (2) it will elicit the desired risk score 𝛿 from the classifier; and (3) it will remain 
in-distribution (i.e., "look like" a real ECG). To enforce these criteria, we used reconstruction 
losses (i.e., ℓ$) to ensure the simulated ECG was similar to the input (satisfying 1), a KL-
divergence based loss to encourage the generator to create ECGs that elicit the desired risk score 
𝛿 from the classifier (satisfying 2), and a generative adversarial network (GAN) to ensure the 
synthetic ECGs remain in-distribution (satisfying 3). Given these criteria, the counterfactual model 
could then be leveraged for explainability – we could create counterfactual ECGs at varying risk 
levels, allowing for the identification of features driving classifier decisions. By comparing high- 
and low-risk counterfactuals, we would be able to capture, visually and empirically, morphological 
characteristics which the algorithm considers in accomplishing the classification task.  

To substantiate our claim that the counterfactual approach identified relevant predictive 
characteristics, we used a separate diagnostic dataset. This dataset consists of 12-lead ECGs from 
45,152 patients derived from Chapman University, Shaoxing People’s Hospital, and Ningbo First 
Hospital and was labeled by medical experts38,39. The goal of this analysis was to train 
counterfactual models to predict obvious and well-defined conditions (e.g., atrial flutter), and 
demonstrate that our model replicates these conditions through visual inspection and empirical 
investigation. We did this first in a diagnostic dataset, where morphological characteristics are 
well-established, and then applied it to the prognostic dataset as a feature exploration exercise 
(where ground-truth characteristics for “high risk of future MI,” for example, are unknown or 
poorly defined). 

Results 
The analysis was conducted on 37,060 adult patients undergoing noncardiac surgery, with a mean 
age of 64.4 years, of whom 49.4% were male. Comorbid conditions were common, with notable 
prevalences of prior ischemic heart disease (16.0%), diabetes requiring insulin (26.0%), and 
elevated creatinine (13.3%). Approximately 36.7% of procedures were high-risk (intraperitoneal, 
intrathoracic, and suprainguinal vascular surgery29). Racial and ethnic demographics show the 
majority of patients are White (72.6%), with representation from Black (12.2%) and 
Hispanic/Latino (4.5%) groups. 

Model performance  

Model performance for the cross validation and temporal stratification is shown in Tables 2 and 
3, respectively. We compare our WF and fusion models to six baselines – RCRI, a model trained 
solely on the Elixhauser components, three other CNN architectures (PreOpNet, Hannun et al., 
and Ribeiro et al.), as well as a non-deep learning approach based on simple, machine-extracted 
ECG features (e.g., RR-interval, QRS axis, etc.). Our primary performance metric of interest is 
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AUROC; unless otherwise noted, we follow the format: AUROC (95% CI [lower, upper]), where 
confidence intervals are determined via our bootstrapping approach. Performance from cross-
validation and temporal stratification is shown in Figure 2. 

 

Figure 2. Model performance. (A) Schematic of the k-fold validation scheme for the main results, 
where data are split into 10 folds (by patient ID). Train folds are indicated in blue, and test folds 
in orange. Test folds are combined to evaluate the final performance of the model, as shown by the 
ROC curves (with AU-ROC values inset) in predicting postoperative (B) MI, (C) IHM, and (D) 
composite outcome. Shaded areas denote 95% confidence intervals from 10,000 bootstrapped 
samples. (E) Number of samples in the temporal stratification analysis. Blue bars are used to train 
the model (corresponding to patients admitted between 2008 and 2016), and samples 
corresponding to the orange bar (2017-19) are used to evaluate it. The corresponding performance 
is shown in panels (F), (G), and (H). Corresponding AUPRC plots are shown in Figure S1. 

Cross-validation 

Results from 10-fold cross validation are shown in Table 2 and Figure 2A-D. The fusion model 
demonstrates superior performance across all three outcomes, achieving an AUROC of 
0.858	[0.845, 0.872], 0.899	[0.889, 0.908], and 0.835	[0.827, 0.843] for MI, IHM, and the 
composite outcome, respectively. This performance is significantly better than the WF model (MI: 
𝑝 = 1 × 10!"; IHM: 𝑝 < 10!"; composite: 𝑝 < 10!") and RCRI (MI: 𝑝 < 10!") across all three 
outcomes. We find the WF model performs well for predicting MI and IHM (MI: 
0.791	[0.771, 0.809];	IHM: 0.761	[0.744, 0.777]) and moderately for the composite outcome 
(0.717	[0.707, 0.728]). While the WF model has a higher absolute performance than RCRI across 
all three outcomes, this difference is only significant for the composite outcome (MI: 𝑝 = 0.150; 
IHM: 𝑝 = 0.807; composite: 𝑝 = 1 × 10!"). 
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Model comparisons 

We compare our WF model to three other CNN-based models, from Ribeiro et al.34, Hannun et 
al.33, and PreOpNet35, trained using our paradigm and data (Table 2). We find that our model 
performs similarly to Hannun et al.33, outperforming slightly over all outcomes, but not 
significantly (MI: 𝑝 = 0.076; IHM: 𝑝	 = 	0.891; composite: 𝑝 = 0.897). Our model significantly 
outperforms Ribeiro et al.34 on MI (𝑝 = 0.013) and composite (𝑝 = 0.006), but not IHM (𝑝 =
0.409). It also significantly outperforms PreOpNet35 across all outcomes (𝑝 < 10!"). In addition, 
we compare our model to a non-CNN based model, using 9 ECG features extracted via the 
Marquette 12SL algorithm40 and input into an XGBoost41 classifier. We find the WF model 
outperforms hand-crafted features across all outcomes (𝑝 < 10!"). 

MI 
Model AUROC AUPRC Sensitivity Specificity PPV NPV OR 
WF Model 0.791 

[0.771, 0.809] 
0.067 

[0.056, 0.082] 
0.558 

[0.518, 0.599] 
0.857 

[0.854, 0.861] 
0.059 

[0.053, 0.065] 
0.992 

[0.991, 0.993] 
7.21 

[6.14, 8.51] 
Fusion model 0.858 

[0.845, 0.872] 
0.122 

[0.103, 0.146] 
0.580 

[0.540, 0.620] 
0.900 

[0.897,0.903] 
0.085 

[0.076, 0.093] 
0.993 

[0.992, 0.993] 
11.45 

[9.78, 13.44] 
RCRI 0.766 

[0.747, 0.784] 
0.051 

[0.044, 0.060] 
0.705 

[0.668, 0.742] 
0.726 

[0.722, 0.731] 
0.040 

[0.036, 0.043] 
0.994 

[0.993, 0.994] 
6.14 

[5.15, 7.37] 
Elixhauser 
comp. 

0.790 
[0.771, 0.808] 

0.072 
[0.061, 0.087] 

0.481 
[0.440, 0.522] 

0.891 
[0.888, 0.894] 

0.066 
[0.059, 0.074] 

0.991 
[0.990, 0.992] 

7.15 
[6.08, 8.38] 

Hannun et al.33 0.771 
[0.751, 0.791] 

0.060 
[0.051, 0.073] 

0.502 
[0.461, 0.542] 

0.869 
[0.866, 0.873] 

0.058 
[0.051, 0.064] 

0.991 
[0.990, 0.992] 

6.36 
[5.41, 7.46] 

Ribiero et al.34 0.750 
[0.730, 0.770] 

0.062 
[0.052, 0.078] 

0.420 
[0.380, 0.459] 

0.880 
[0.876, 0.883] 

0.053 
[0.047, 0.059] 

0.990 
[0.988, 0.991] 

5.06 
[4.31, 5.93] 

PreOpNet35 0.715 
[0.694, 0.736] 

0.037 
[0.033, 0.044] 

0.913 
[0.889, 0.935] 

0.264 
[0.260, 0.269] 

0.019 
[0.018, 0.021] 

0.995 
[0.993, 0.996] 

3.70 
[2.86, 5.08] 

Machine 
features 

0.687 
[0.665, 0.710] 

0.038 
[0.033, 0.046] 

0.327 
[0.289, 0.366] 

0.887 
[0.884, 0.890] 

0.044 
[0.038, 0.050] 

0.988 
[0.987, 0.989] 

3.69 
[3.09, 4.36] 

IHM 
WF Model 0.761 

[0.744, 0.777] 
0.071 

[0.063, 0.082] 
0.582 

[0.549, 0.615] 
0.788 

[0.784, 0.792] 
0.059 

[0.054, 0.064] 
0.988 

[0.987, 0.989] 
4.92 

[4.31, 5.64] 
Fusion model 0.899 

[0.889, 0.908] 
0.192 

[0.171, 0.218] 
0.727 

[0.695, 0.756] 
0.884 

[0.881, 0.888] 
0.125 

[0.116, 0.134] 
0.993 

[0.992, 0.994] 
17.92 

[15.46, 20.91] 
RCRI 0.736 

[0.721, 0.752] 
0.050 

[0.045, 0.057] 
0.657 

[0.625, 0.689] 
0.728 

[0.723, 0.733] 
0.052 

[0.048, 0.056] 
0.989 

[0.988, 0.991] 
4.91 

[4.28, 5.68] 
Elixhauser 
comp. 

0.834 
[0.819, 0.850] 

0.136 
[0.120, 0.156] 

0.611 
[0.577, 0.644] 

0.885 
[0.881, 0.888] 

0.107 
[0.099, 0.116] 

0.990 
[0.989, 0.991] 

10.87 
[9.49, 12.46] 

Hannun et al.33 0.746 
[0.729, 0.762] 

0.063 
[0.056, 0.072] 

0.464 
[0.430, 0.499] 

0.855 
[0.851, 0.858] 

0.068 
[0.061, 0.074] 

0.986 
[0.985, 0.987] 

4.81 
[4.21, 5.51] 

Ribiero et al.34 0.723 
[0.706, 0.740] 

0.058 
[0.051, 0.067] 

0.428 
[0.394, 0.462] 

0.839 
[0.836, 0.843] 

0.057 
[0.051, 0.063] 

0.985 
[0.983, 0.986] 

3.73 
[3.25, 4.27] 

PreOpNet35 0.659 
[0.640, 0.678] 

0.045 
[0.039, 0.052] 

0.974 
[0.963, 0.984] 

0.080 
[0.077, 0.082] 

0.023 
[0.022, 0.025] 

0.993 
[0.990, 0.996] 

3.24 
[2.22, 5.36] 

Machine 
features 

0.682 
[0.664, 0.700] 

0.046 
[0.041, 0.052] 

0.340 
[0.309, 0.373] 

0.859 
[0.856, 0.863] 

0.052 
[0.046, 0.058] 

0.983 
[0.981, 0.984] 

3.04 
[2.64, 3.50] 

Composite 
WF Model 0.717 

[0.707, 0.728] 
0.162 

[0.152, 0.175] 
0.845 

[0.830, 0.859] 
0.420 

[0.415, 0.426] 
0.093 

[0.089, 0.097] 
0.975 

[0.972, 0.977] 
3.68 

[3.317, 4.11] 
Fusion model 0.835 

[0.827, 0.843] 
0.304 

[0.286, 0.323] 
0.855 

[0.841, 0.868] 
0.645 

[0.640, 0.650] 
0.145 

[0.140, 0.151] 
0.984 

[0.983, 0.986] 
9.28 

[8.32, 10.40] 
RCRI 0.668 

[0.657, 0.678] 
0.114 

[0.107, 0.121] 
0.516 

[0.496, 0.536] 
0.736 

[0.731, 0.741] 
0.121 

[0.115, 0.127] 
0.956 

[0.953, 0.958] 
2.73 

[2.52, 2.94] 
Elixhauser 
comp. 

0.773 
[0.763, 0.783] 

0.256 
[0.239, 0.274] 

0.831 
[0.816, 0.845] 

0.520 
[0.515, 0.526] 

0.109 
[0.105, 0.113] 

0.978 
[0.975, 0.980] 

4.85 
[4.38, 5.37] 

Hannun et al.33 0.712 
[0.702, 0.723] 

0.150 
[0.140, 0.161] 

0.809 
[0.793, 0.825] 

0.474 
[0.469, 0.479] 

0.098 
[0.094, 0.102] 

0.972 
[0.970, 0.975] 

3.54 
[3.21, 3.92] 

Ribiero et al.34 0.685 
[0.674, 0.696] 

0.145 
[0.135, 0.156] 

0.752 
[0.735, 0.769] 

0.499 
[0.493, 0.504] 

0.096 
[0.092, 0.100] 

0.966 
[0.963, 0.969] 

2.82 
[2.59, 3.09] 
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PreOpNet35 0.674 
[0.663, 0.684] 

0.121 
[0.114, 0.129] 

0.999 
[0.998, 1.000] 

0.003 
[0.002, 0.003] 

0.066 
[0.064, 0.069] 

0.979 
[0.948, 1.000] 

3.204 
[1.25, 5.16] 

Machine 
features 

0.651 
[0.640, 0.663] 

0.116 
[0.109, 0.125] 

0.744 
[0.726, 0.761] 

0.461 
[0.455, 0.466] 

0.089 
[0.085, 0.093] 

0.962 
[0.959, 0.965] 

2.34 
[2.15, 2.56] 

Table 2. Cross-validation model comparison. Table shows the performance of different models 
across the three outcomes of interest. We compare the performance of our model (both waveform 
only and fusion) with our SOC baseline (RCRI), a model trained using only Elixhauser 
components, three other CNN architectures (PreOpNet35, Hannun et al.33, and Ribeiro et al.34) as 
well as a traditional ML model based on ECG features and an XGBoost classifier41."AUROC" and 
"AUPRC" denote the area under the receiver operator and precision recall curves, respectively. 
"PPV" and "NPV" denote the positive and negative predictive value; "OR" denotes the odds-ratio. 
Threshold-dependent measures ("sensitivity"... "OR") are calculated using a threshold of 0.05 for 
the ML algorithms, and a threshold of 2 for RCRI. 

Subgroup analysis 

We then take a more granular examination of our model’s performance. Specifically, we begin 
with a comparison of our models with the current SOC benchmark, the RCRI, in terms of its ability 
to better differentiate between high- and low-risk patients. We then conduct a subgroups analysis 
where we stratify patients based on demographics (sex, race, age), admission type (emergent vs. 
non-emergent), and automated ECG classification based on a commercial software. 

RCRI  

We compute the NRI between our models and the RCRI. For MI, we find an NRI of 
0.412	[0.234, 0.587] and 0.706	[0.537, 0.867] for the WF and fusion models, respectively. For 
IHM, we find a lower NRI for both the WF model (0.174	[0.033, 0.316]) and the fusion model 
(0.614	[0.481, 0.746]). The NRI for the composite model is similar between the WF and fusion 
models, with values of 0.267	[0.210, 0.324] and 0.292	[0.237, 0.347], respectively. These results 
indicate that our models outperform the RCRI benchmark in reclassifying patients into appropriate 
risk categories. A cross-comparison table can be found in Table S3. 

Demographics  

We compare model performance based on sex, race (White vs. non-White), and age (above or 
below age 60). We find no significant differences in performance on the basis of sex for the WF 
(MI: 𝑝 = 0.114; IHM: 𝑝 = 0.080; composite: 𝑝 = 0.053) or fusion (MI: 𝑝 = 0.316; IHM: 𝑝 =
0.461; composite: 𝑝 = 0.058) models. The same is true for race, where we find no significant 
differences in the WF (MI: 𝑝 = 0.557; IHM: 𝑝 = 0.801; composite: 𝑝 = 0.221) or fusion (MI: 
𝑝 = 0.814; IHM: 𝑝 = 0.544; composite: 𝑝 = 0.394) performance between White and non-White 
subjects. For age, however, we find that the WF model demonstrates significantly higher 
performance for patients under the age of 60 (MI: 0.831	[0.779, 0.879]; IHM: 
0.823	[0.792, 0.853]; composite: 0.718	[0.693, 0.743]) for MI (𝑝 = 0.005) and IHM (𝑝 <
10!"), but not the composite (𝑝 = 0.802), as compared to patients over 60 (MI: 
0.760	[0.739, 0.781]; IHM: 0.732	[0.713, 0.752]; composite: 0.714	[0.702, 0.727]). The fusion 
model shows significantly better performance for younger subjects as well (MI: 
0.897	[0.864, 0.927]; IHM: 0.920	[0.900, 0.938]; composite: 0.851	[0.834, 0.866]) across all 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 20, 2024. ; https://doi.org/10.1101/2024.11.19.24317577doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.19.24317577
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

three outcomes (MI: 𝑝 = 0.009; IHM: 𝑝 = 0.047; composite: 𝑝 = 0.007), as compared to older 
ones (MI: 0.808	[0.789, 0.826], IHM: 0.882	[0.870, 0.893]; composite: 0.817	[0.807, 0.826]). 
While sex and race do not significantly impact model performance, age appears to be a critical 
factor, with models performing better for younger patients. 

Admission type 

While risk stratification is important regardless of surgery urgency, for non-emergent surgeries, 
there is significant potential for additional preoperative workup and optimization. For this reason, 
we divide admission types into two categories: emergency (𝑛 = 15,578) and non-emergency (𝑛 =
21,503) and compare our model’s performance. Using the WF model, while we do not find a 
significant difference in AUROC between emergency and non-emergency surgeries for MI 
prediction (𝑝 = 0.963), we do find significantly higher performance for predicting IHM (𝑝 =
0.010) and composite (𝑝 = 0.0001) for non-emergent patients. For the fusion model, we achieve 
significantly higher performance (𝑝 < 10!") in predicting outcomes for non-emergency surgeries 
(MI: 0.875	[0.852, 0.896]; IHM: 0.929	[0.912, 0.945]; composite: 0.841	[0.825, 0.857]) as 
compared to emergency ones (MI: 0.786	[0.763, 0.808]; IHM: 0.835	[0.819, 0.850]; composite: 
0.761	[0.750, 0.773]) across all three outcomes. This may indicate the model is particularly 
valuable in non-emergency or elective surgeries, when risk stratification is most impactful because 
of the greater latitude for preoperative interventions to reduce complication risk. 

Automated ECG reports 

The 12-lead ECG recording devices in this study have an embedded algorithm (Marquette 12SL) 
which generates automated reports of abnormal findings. We speculated that a computational WF 
model could extract more specific information than that on commercially available products. To 
establish this, we examine the odds ratio of our model on ECGs coded as "normal" by the 
commercial software. In other words, we evaluate the odds of an adverse postoperative event in 
patients with ECGs coded as normal by the commercial software, but high risk by our WF model. 
We find a significantly higher odds ratio across all three outcomes (MI: 9.420	[2.016, 19.311]; 
IHM: 6.977	[5.275, 8.793]; composite: 1.702	[1.500, 1.907]). This suggests that even in 
ostensibly “normal” ECGs, our model can identify non-obvious abnormalities predictive of future 
adverse events. 

Temporal stratification 

In addition to our cross-validation paradigm, we also evaluate our models on a temporally separate 
cohort. We divide the patients into a temporally separate development cohort (2008-16; 25,717 
patients, 33,854 admissions), which is used to train the model, and test cohort (2017-19; 2,944, 
3,227 admissions), which is used to evaluate the generalizability of our method in a 
chronologically different population (Figure 2E). The development and test cohorts have 
significantly different outcomes likelihoods and comorbidity rates (see Table 1). The results of 
this analysis are summarized in Table 3. 

When evaluating on the test cohort, our fusion model performs quite well in terms of AUROC 
(MI: 0.856	[0.826, 0.900]; IHM: 0.887	[0.851, 0.920]; composite: 0.871	[0.851, 0.890]), 
significantly outperforming the WF model (MI: 𝑝 = 0.049; IHM: 𝑝 = 0.007; composite: 𝑝 <
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10!") and RCRI (MI: 𝑝 = 0.002; IHM: 𝑝 = 0.002; composite: 𝑝 < 10!") across all three 
outcomes. Similar to the cross-validation method, we find that the WF model outperforms RCRI 
across all outcomes, but this difference is only significant for the composite outcome (MI: 𝑝 =
0.190; IHM: 𝑝 = 0.628; composite: 𝑝 = 0.0002). 

MI 
Model AUROC AUPRC Sensitivity Specificity PPV NPV OR 
WF Model 0.775 

[0.718, 0.828] 
0.148 

[0.093, 0.238] 
0.578 

[0.467, 0.684] 
0.847 

[0.834, 0.859] 
0.091 

[0.067, 0.116] 
0.987 

[0.983, 0.991] 
6.98 

[4.53, 10.91] 
Fusion 
model 

0.865 
[0.826, 0.900] 

0.215 
[0.143, 0.311] 

0.578 
[0.469, 0.683] 

0.918 
[0.908, 0.927] 

0.156 
[0.117, 0.199] 

0.988 
[0.984, 0.992] 

13.02 
[8.60, 20.22] 

RCRI 0.827 
[0.779, 0.870] 

0.144 
[0.097, 0.223] 

0.482 
[0.375, 0.591] 

0.907 
[0.897, 0.917] 

0.120 
[0.087, 0.15] 

0.985 
[0.981, 0.989] 

8.10 
[5.30, 12.39] 

IHM 
WF Model 0.775 

[0.726, 0.823] 
0.126 

[0.087, 0.193] 
0.707 

[0.617, 0.796] 
0.719 

[0.703, 0.735] 
0.074 

[0.058, 0.091] 
0.987 

[0.982, 0.992] 
5.80 

[3.89, 9.34] 
Fusion 
model 

0.887 
[0.851, 0.920] 

0.283 
[0.207, 0.377] 

0.778 
[0.695, 0.857] 

0.848 
[0.836, 0.860] 

0.139 
[0.111, 0.169] 

0.992 
[0.988, 0.995] 

16.93 
[11.09, 28.97] 

RCRI 0.756 
[0.708, 0.803] 

0.084 
[0.062, 0.113] 

0.636 
[0.541, 0.730] 

0.797 
[0.783, 0.811] 

0.090 
[0.070, 0.112] 

0.986 
[0.981, 0.990] 

6.33 
[4.31, 9.68] 

Composite 
WF Model 0.761 

[0.732, 0.790] 
0.251 

[0.211, 0.304] 
0.947 

[0.919, 0.971] 
0.284 

[0.268, 0.300] 
0.112 

[0.100, 0.124] 
0.982 

[0.973, 0.991] 
6.35 

[4.09, 11.99] 
Fusion 
model 

0.871 
[0.851, 0.890] 

0.454 
[0.395, 0.519] 

0.907 
[0.873, 0.940] 

0.592 
[0.574, 0.610] 

0.175 
[0.155, 0.194] 

0.985 
[0.980, 0.991] 

11.90 
[8.37, 18.98] 

RCRI 0.671 
[0.639, 0.703] 

0.152 
[0.129, 0.181] 

0.463 
[0.404, 0.522] 

0.807 
[0.792, 0.821] 

0.186 
[0.158, 0.216] 

0.940 
[0.931, 0.949] 

3.11 
[2.49, 3.89] 

Table 3. Prospective model comparison. Abbreviated version of the temporal evaluation 
approach, as in Table 2. Full results can be found in Table S4. 

Explainability 

One of the challenges in our counterfactual approach to the prediction task is that there is no well-
established ground truth for the variations in waveform morphology predictive of adverse 
postoperative events in noncardiac surgery, as these patients are not actively experiencing severe 
cardiac complications at the time of prediction (Figure 3B). We selected six easily identifiable 
conditions and provide examples that demonstrate our counterfactual model can learn to reproduce 
morphological characteristics of each condition (Figure 3C). 

In addition to visual examples from single patients, we also conduct a more extensive empirical 
analysis to validate that our models reproduce the characteristics we expect them to in the 
diagnostic dataset. To do this, we select four ECG abnormalities (atrial fibrillation, low voltage 
QRS complex, T-wave inversion, and ST-segment depression) with obvious criteria associated 
with a single feature that can be automatically extracted, and validate that the presentation is 
replicated by our counterfactual model. We then delineate each waveform (see Supplementary 
Methods) and extract the average voltage of the T-wave, ST-segment, QRS amplitude, and ST-
segment amplitude for each respective condition, as changes in these features are hallmarks of the 
corresponding conditions. We then compare the values for true positives (e.g., patients with a true 
diagnosis of T-wave inversion) and true negatives (e.g., patients with no diagnosis of T-wave 
inversion) and compare these results with our low- and high-risk counterfactuals. We find that our 
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method replicates known changes representative of each of the four common conditions (see 
Figure 3D). 

 

Figure 3. Diagnostic explainability, (A) Schematic for the counterfactual generation model. (B) 
Schematic of our counterfactual validation approach. (C) Plotted are example ECG strips from the 
first 2.5 seconds of the waveform from lead II for the conditions labeled above each column of 
strips. Red arrows indicate morphological changes in the high-risk counterfactuals that are 
representative of the condition of interest. (D) We examine morphological differences relevant to 
four of the seven conditions of interest (with well-defined and easily extracted morphological 
features) across the entire diagnostic test set to verify our model reproduces morphological changes 
characteristic of conditions. "True -" indicates the distribution for patients without the condition, 
and "True +" indicates the distribution of patients with the condition. Then, for all patients (both 
true positives and true negatives), we simulate low- and high-risk counterfactuals and extract the 
corresponding measurements. Significance stars are as follows ∗: 𝑝 < 0.05, ∗∗: 𝑝 < 0.01, ∗∗∗: 
𝑝 < 0.001. 
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In our exploratory analysis using the prediction task of interest, we generate visual examples and 
conduct a feature correlation analysis. We show how counterfactual ECGs can visually illustrate 
the morphological differences associated with varying levels of risk for postoperative myocardial 
infarction. In Figure 4A, the low-risk ECG example shows normal QRS duration and standard 
timing intervals, while the high-risk ECG example exhibits a slightly prolonged QRS duration 
along with alterations in other morphological features, such as an absence of P waves and moderate 
depression of the ST-complex. These visual differences highlight the specific ECG changes that 
our model associates with higher risk, providing interpretable and plausible evidence of the 
physiological factors contributing to adverse surgical outcomes for a given patient. 

In our feature analysis, we evaluate the correlation between the counterfactual risk score (i.e., 𝛿) 
and a set of seven ECG timing features (Figure 4B). We find a positive correlation between risk 
score and QRS duration, and a negative correlation between risk score and the other six timing 
features. This positive correlation between risk score and QRS duration suggests that patients with 
prolonged QRS complexes are at a higher risk of adverse postoperative outcomes. The QRS 
duration reflects the time it takes for the ventricles to depolarize and is often prolonged in 
conditions that indicate cardiac pathology, such as bundle branch blocks or ventricular 
hypertrophy43,44. These conditions can lead to increased myocardial stress or structural 
abnormalities that predispose patients to adverse events. The negative correlations with the other 
six timing features may reflect a range of underlying cardiac conditions that accelerate the heart’s 
electrical activity or alter its recovery phases, potentially increasing the likelihood of 
complications45-47. 
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Figure 4. Prognostic explainability. (A) Shows low (top) and high (bottom) counterfactual ECG 
strips for a single patient. Within each strip, the first three subplots show the first 2.5 seconds of 
electrical activity (with lead numbers inset), and the bottom row shows the full 10-second ECG 
for lead II. (B) Contains a heatmap of the correlation between counterfactual risk score (δ) and 
each of 7 standard ECG features. See the Supplementary Information for a description of each 
feature. 

Discussion 
We report here on a novel algorithm for preoperative risk stratification developed using a large, 
publicly available clinical dataset. Our WF model trained on only preoperative 12-lead ECG 
waveforms outperforms the current benchmark metric (RCRI) across the three outcomes we 
consider: MI, IHM, and a composite endpoint of stroke, MI, and 30-day mortality. Our WF model 
significantly outperforms a previously published CNN-based ECG model35 for preoperative risk 
stratification using our training paradigm and data. Next we integrate our waveform-based model 
with routinely collected clinical variables and demonstrate high performance on our tasks of 
interest.  

The ECG is generally regarded as a diagnostic tool (e.g., for diagnosing pre-existing, or actively 
occurring conditions). Here, we challenge this view by demonstrating the ECG has significant 

B

A
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predictive ability in the perioperative setting. We evaluated our approach on a large cohort of 
37,081 hospitalized patients, and on a temporally stratified cohort of 3,227 patients from a 
chronologically later period. Our model performs well using both paradigms, with our cross-
validation fusion model achieving AUROC values 0.835 (composite) and 0.899 (IHM). The fusion 
model demonstrates similarly high performance in the temporally-stratified group (with AUROCs 
ranging from 0.865 for MI prediction to 0.887 for IHM), even given significant population 
differences between the temporally stratified groups (Table 1).  

We also introduce a novel explanatory approach for waveform prediction models based on the 
generation of counterfactuals. Most deep learning models are effectively "black boxes," with 
complex internal mechanisms that are not readily intelligible. The current standard approach to 
explainability in deep learning ECG models mostly relies on saliency-based methods, such as 
locally interpretable model-agnostic explanations49 or gradient-based approaches50. While these 
techniques show, roughly, "where" the model is looking, they often fall short of explaining "what" 
it is looking at – e.g. the specific morphological features influencing the model’s predictions – 
particularly when these features are subtle or not previously well established. Building on recent 
generative methods for explainability51-53, our research introduces a novel approach using 
counterfactual explanations to enhance the interpretability of ECG classification models. This 
method, inspired by foundational work in counterfactual reasoning36,37, involves generating 
"counterfactual" ECGs—modified versions of the original ECG that are minimally altered to 
change the predicted risk level of an outcome, such as myocardial infarction (MI). By adjusting a 
control parameter, 𝛿, which represents the desired risk level, our model can produce ECGs that not 
only differ in their risk prediction but also highlight the specific changes in waveform morphology 
responsible for the different predictions54. This approach allows a visual and empirical exploration 
of how various morphological features contribute to the model’s decisions, offering a more 
nuanced understanding than what is provided by existing methods. 

Notwithstanding, this work has limitations. The lack of external validation raises questions of 
generalizability across different demographic and clinical settings. However, we note that our 
model continues to perform well in a temporally distinct sample, despite statistically significant 
differences in outcome prevalence and comorbidities between development and test cohorts (Table 
1). The reliance on ICD codes for outcome identification could introduce biases due to inaccuracies 
in coding practices. As highlighted in various studies55,56, the veracity of ICD coding can be 
compromised by multiple factors (e.g., experience of medical record coders, incomplete physician 
documentation, etc.), potentially affecting the fidelity of our training labels. However, we note that 
our model performs similarly for MI and IHM; while the former may be subject to label noise, the 
latter is not, given the unambiguity of mortality and importance of accurate reporting. This 
suggests that our models capture latent features within the ECG waveform that are predictive of 
patient outcomes.  

Taken together, these findings indicate that for patients undergoing noncardiac surgery, the 12-lead 
ECG is a powerfully discriminative prognostic tool. Waveform-based predictive features are not 
immediately recognizable and can be revealed using deep learning algorithms. Future research 
should focus on external validation of this model and prospective implementation in real-world 
clinical settings, which we are currently exploring.  
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Data and code availability 

We will publicly release the code relevant to replicating the core analyses upon acceptance of the 
manuscript. The MIMIC-IV data is publicly available. 
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Supplementary Methods 

Baseline methods 

Elixhauser comorbidity index  

The following conditions are used as Elixhauser components, with ICD codes identified by Quan 
et al.28: valvular disease, pulmonary circulation disorders, peripheral vascular disorders, 
hypertension (with/without complication), paralysis, other neurological disorders, chronic 
pulmonary disease, diabetes (with and without complication), hypothyroidism, renal failure, liver 
disease, peptic ulcer disease excluding bleeding, lymphoma, metastatic cancer, solid tumor without 
metastasis, rheumatoid arthritis/collagen vascular diseases, obesity, weight loss, fluid and 
electrolyte disorders, deficiency anemia, drug abuse, alcohol abuse, psychoses, depression. 

RCRI components 

Three of the RCRI components (preoperative creatinine, preoperative insulin and a diagnosis of 
diabetes, and high-risk surgery) are identified using data from the patient’s current hospital stay 
(i.e., the one for which we are estimating postoperative risk). To identify each of these components, 
we examine whether the patient has an elevated (> 2 mg/dL) creatinine lab value, a diagnosis of 
diabetes and a medication order for insulin, or an ICD-9/10 procedure code for intraperitoneal, 
intrathoracic, suprainguinal vascular surgery, respectively. For the three components based on past 
medical history (ischemic heart disease, congestive heart failure, or cerebrovascular disease), 
patients were positively coded for each of the three components if they had any diagnosis in their 
prior hospital record indicating the presence of the corresponding condition, identified by ICD 
codes57. 

Machine features 

For each ECG in the MIMIC-IV dataset, there is a set of nine real-valued ECG measurements 
output by the recording software: rr_interval, p_onset, p_end, qrs_onset, 
qrs_end, t_end, p_axis, qrs_axis, t_axis. As a comparison point to our models, 
we use these features as input to an XGBoost classifier41, using the same dataset and evaluation 
scheme as our non-deep learning models. 

ECG features 
To derive our hand-crafted features (e.g., QRS duration, R-wave amplitude, etc.) we used the 
neurokit2 package58. We used lead II to segment ECG peaks (the QRS complex, as well as P- and 
T-peaks) and their onsets and offsets. We then used the time stamps from lead II to derive our 
timing variables: RR interval, PR-segment, PR-interval, ST-segment, QT interval, and the 
durations of the QRS complex, T-wave, and P-wave. Each of these quantities was calculated, and 
the average duration was used as the feature for that ECG. A description of each feature is included 
in Table 4. 

Feature Explanation 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 20, 2024. ; https://doi.org/10.1101/2024.11.19.24317577doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.19.24317577
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 
 

RR interval Time elapsed between R peaks 
QTc interval Corrected QT interval. The QT interval is calculated as the time from the start of the Q 

wave to the end of the T wave. It is corrected to adjust for heart rate: 
𝑄𝑇/√𝑅𝑅	𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 

QRS duration Time from the start of the Q wave to the end of the S wave. 
ST interval Time from the J point to the end of the T wave. 
ST segment Duration of the T wave (i.e., start to end). 
T wave Duration of the T wave (i.e., start to end). 
Tpe Interval from the peak to the end of the T wave. 

Table 4. Description of hand-crafted ECG features used in counterfactual analysis. 

Net reclassification index 
We use the net reclassification index59 to compare how well our WF and fusion models reclassify 
subjects, as compared to RCRI. The NRI measures the improvement in risk prediction by assessing 
the correct reclassification of patients into more accurate risk categories by the new model 
compared to the baseline model. Specifically, the NRI is calculated based on the proportion of 
patients with events who are correctly moved to higher risk categories (event NRI) and the 
proportion of patients without events who are correctly moved to lower risk categories (nonevent 
NRI). The total NRI combines these components and is defined as the sum of increases in predicted 
risk among event cases and decreases among nonevent cases. Formally, if we let 𝑢 denote a patient 
who was "up" classified (i.e., placed into a higher risk category, relative to RCRI), 𝑑 a patient who 
was "down" classified (i.e., placed into a lower risk category), and 𝑒 the event of interest (e.g., 
MI), then NRI is calculated as follows31,60: 

𝑁𝑅𝐼 = 𝑝(𝑢|𝑒) − 𝑝(𝑑|𝑒) + 𝑝(𝑑|¬𝑒) − 𝑝(𝑢|¬𝑒). 

Hyperparameter optimization 
We employ a modified nested k-fold validation scheme to select hyperparameters. We first divide 
the data into 10 splits, corresponding to the same splits as our main analysis, shown in Figure 2A. 
Then, for each split number 𝑖 ∈ {1, 2, . . . , 10} , we exclude all the subjects in split i and do not use 
this in any evaluation. Next, we randomly select 20% of the data to evaluate our hyperapameters 
on, and using the remaining 80% to train the model. In this way, we preserve the integrity of our 
k-fold validation approach in the main analysis, by excluding test fold data on each iteration of our 
nested k-fold validation scheme. We conduct a grid search over 7 hyperparameters (pool size, filter 
number, dense units, dropout rate, and use of residual/spatial layer), shown in Table S2. In total, 
there are 1080 combinations in our grid search, and we select the hyperparameters with the highest 
average performance (in terms of AUROC) across all three outcomes. 

Counterfactual generation 
To generate counterfactual ECGs, we adopt a method inspired by Explanation by Progressive 
Exaggeration36, which leverages generative adversarial networks (GANs) to generate synthetic 
ECGs. Our approach is specifically designed for 1D ECG waveforms, as opposed to the 2D image-
based approach described in related works37. The objective is to produce alternative ECG 
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waveforms that satisfy three primary criteria: (i) realism, meaning the generated ECGs lie on the 
manifold of training ECGs, (ii) target classification, where the counterfactuals achieve a desired 
prediction from the classifier, and (iii) similarity, ensuring the counterfactuals are close to the 
original ECGs. A thorough description of the method and theory is described in DeGrave et al.37 
and Singla et al.36, we provide a brief overview here. 

Let 𝒳 ∈ [5000,12] represent an ECG waveform (5,000 time steps, 12 ECG leads) drawn from the 
data manifold ℳ𝒳 . We define a classifier 𝑓:𝒳 → [0,1] that predicts the likelihood of an adverse 
outcome (i.e., MI, IHM, composite). Our goal is to design a generator 𝐺:𝒳 × 𝒞 → [0,1]& that 
outputs a counterfactual waveform 𝑥U given an input ECG 𝑥 and a condition 𝑐 ∈ 𝒞, indicating the 
desired prediction output by the classifier. The conditions c are discrete values indexing bins in the 
classifier’s output space, defined as 𝐶 = {0,1, … 9} with target outputs corresponding to 10 bins 
equally spaced on the range from 0 (no risk of adverse outcome) to 𝑟'(), where 𝑟'()is the 
maximum risk score to generate (here, 1 for the diagnostic task and 0.2 for the prognostic one; we 
select a relatively low maximum risk for the prognostic task since our prognostic outcomes are 
quite rare). The requirements translate to: (i) the range of the generator, 𝐺(𝒳, 𝒞), must lie within 
the data manifold ℳ𝒳 , (ii) the classifier’s prediction on the generated waveform, 𝑓(𝐺(𝑥, 𝑐)), 
should match the target output (bin center corresponding to index 𝑐), and (iii) if 𝑓(𝑥) is within the 
bin indexed by 𝑐, then 𝐺(𝐺(𝑥, 𝑐′), 𝑐) ≈ 𝑥 for all 𝑐′ ∈ 𝒞.  

To achieve these properties, we optimize the generator 𝐺 alongside a discriminator network 
𝐷:𝒳 → ℝ, distinguishing real from generated ECGs. The loss functions for the discriminator 
𝐿*and the generator 𝐿+are as follows37: 

𝐿*(𝜃*) = −𝜆+,-𝔼.,0 bmin f0, −1 + 𝐷1!(𝑋)h +min i0,−1 + 𝐷1! f𝐺1!(𝑋, 𝐶)hjk 
𝐿+ = 𝜆+,-𝐿+,-(𝜃+; 𝜃*) + 𝜆234𝐿234(𝜃+) + 𝜆5𝐿5(𝜃+), 

where: 
𝐿+,- = −𝔼.,0 b𝐷1! f𝐺1!(𝑋, 𝐶)hk 

𝐿234 = 𝔼.,0[||𝑋 − 𝐺1" f𝑋, 𝑏m𝑓(𝑋)nh ||6 + ||𝑋 − 𝐺1"m𝐺1"(𝑋, 𝐶), 𝑏(𝑓(𝑋))n||6] 

𝐿5 = 𝔼.,0[𝐷78(𝑏(𝐶)||𝑓 f𝐺1"(𝑋, 𝐶)h)] 

In these equations, 𝜃* and 𝜃+  are the parameters of the discriminator and generator, respectively. 
The random variables 𝑋 and 𝐶 are uniformly distributed over 𝒳 and 𝒞. The function 𝑏:	[0, 1] → 𝐶 
returns the bin index of the classifier’s output, and 𝑏(𝐶) ∈ [0, … , 𝑟'()] returns the center of the 
bin at index 𝐶. The Kullback–Leibler divergence is denoted as 𝐷78. Our generator architecture is 
based on a residual network-based autoencoder similar to those used in CycleGANs61, using code 
from DeGrave et al.37 adapted to 1D convolutional layers for ECG data. We trained our models 
using an Adam optimizer with a variable learning rate (initial rate of 1 × 10!", which dropped by 
a factor of 0.1 every 100 epochs) for a total of 400 epochs on a NVIDIA RTX A5500 GPU. We 
applied spectral normalization62 to the discriminator and set 𝜆+,- = 10, 𝜆5 = 1, and 𝜆234 = 10. 
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Supplementary figures 

 

Figure S1. Model PRC. PRC curves for the 10-fold validation scheme for (A) MI, (B) IHM, and 
(C) composite outcome. (D-F) show the corresponding curves for the temporally stratified cohort. 
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Figure 6. Model calibration. Shown are calibration curves from the 10-fold cross validation (A-
C) and temporally stratified (D-F) cohorts. Inset is the Brier calibration score63. 
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Supplementary tables 

Condition Subtype ICD-9 ICD-10 
Acute MI STEMI & NSTEMI 410 I21.0-I21.3, I21.4, I21.9, I21.A, I22 

Stroke AIS 362.30-362.36, 433.x1, 434.x1, 436 H34.1, I63, I64 
 ICH 431 I61 
 SAH 430 I60 
 TIA 435 G450-G453, G458, G459 

Table S1. ICD outcome codes. Shown are the ICD-9/10 codes for our two diagnosis-based 
outcomes (stroke and MI). "Subtype" denotes the subset of the condition the codes in the row 
correspond to (e.g., a patient has a positive diagnosis of "stroke" if they have one or more of AIS, 
ICH, SAH, and TIA). Subtype definitions are as follows: STEMI (ST-segment elevation MI), 
NSTEMI (non ST-segment elevation MI), AIS (arterial ischemic stroke), ICH (intracerebral 
hemorrhage), SAH (subarachnoid hemorrhage), and TIA (transient cerebral ischemia). Codes for 
stroke are provided by Kokotailo and Hill64. Codes for MI via Clinical Classification Software 
released by the Healthcare Cost and Utilization Project (HCUP) from the Agency for Healthcare 
Research and Quality (AHRQ)23. 
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Hyperparameter Values 
Pool size [2, 2, 4, 2, 2, 4] 

[2, 2, 2, 2, 2, 2] 
Filter numbers [8, 8, 16, 16, 32, 32] 

[16, 16, 32, 32, 64, 64] 
[32, 32, 64, 64, 128, 128] 

Kernel widths [3, 3, 3, 3, 3, 3] 
[5, 5, 5, 5, 5, 5] 
[7, 7, 7, 7, 7, 7] 
[5, 5, 5, 3, 3, 3] 
[7, 7, 5, 5, 3, 3] 

Use of residual layer True, False 
Use of spatial layer True, False 

Dropout rate 0.1, 0.2, 0.5 
Dense units [64, 32] 

[128, 64] 
[256, 128] 

Table S2. Grid search parameters. 
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 MI 
  WF Fusion 
  High Low Avg. High Low Avg. 

RCRI 

High 255 / 3167 
(0.081) 

157 / 7238 
(0.022) 

412 / 10405 
(0.040) 

282 / 3037 
(0.093) 

130 / 7368 
(0.018) 

412 / 10405 
(0.040) 

Low 71 / 2366 
(0.030) 

101 / 24310 
(0.004) 

172 / 26676 
(0.006) 

57 / 960 
(0.059) 

115 / 25716 
(0.004) 

172 / 26676 
(0.006) 

Avg. 326 / 5533 
(0.059) 

258 / 31548 
(0.008) 

584 / 37081 
(0.016) 

339 / 3997 
(0.085) 

245 / 33084 
(0.007) 

584 / 37081 
(0.016) 

 IHM 
  High Low Avg. High Low Avg. 

RCRI 

High 331 / 4016 
(0.082) 

210 / 6389 
(0.033) 

541 / 10405 
(0.052) 

450 / 3023 
(0.149) 

91 / 7382 
(0.012) 

541 / 10405 
(0.052) 

Low 148 / 4160 
(0.0356) 

134 / 22516 
(0.006) 

282 / 26676 
(0.011) 

148 / 1766 
(0.0.084) 

134 / 24910 
(0.005) 

282 / 26676 
(0.011) 

Avg. 479 / 8176 
(0.059) 

344 / 28905 
(0.012) 

823 / 37081 
(0.022) 

598 / 4789 
(0.125) 

225 / 32292 
(0.007) 

823 / 37081 
(0.022) 

 Composite 
  High Low Avg. High Low Avg. 

RCRI 

High 1147 / 8242 
(0.139) 

114 / 2163 
(0.053) 

1261 / 10405 
(0.121) 

1167 / 7025 
(0.166) 

94 / 3380 
(0.028) 

1261 / 10405 
(0.121) 

Low 919 / 13896 
(0.066) 

265 / 12780 
(0.021) 

1184 / 26676 
(0.044) 

923 / 7368 
(0.125) 

261 / 19308 
(0.014) 

1184 / 26676 
(0.044) 

Avg. 2066 / 22138 
(0.093) 

379 / 14943 
(0.025) 

2445 / 37081 
(0.066) 

2090 / 14393 
(0.145) 

355 / 22688 
(0.016) 

2445 / 37081 
(0.066) 

Table S3. RCRI comparison. Shown in each cell is the proportion of adverse outcomes and 
number of patients (in parentheses), separated by whether the ML and RCRI scores are high and 
low. The "Avg." columns and rows denote the column and row average outcome and total 
patients. For example, the entry 0.081 (3,167) under WF columns high and RCRI high denotes 
that there were 3,167 patients with an RCRI ≥ 2 and WF risk score ≥ 0.05, of whom 8.1% 
experienced a postoperative MI. 
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MI 

Model AUROC AUPRC Sensitivity Specificity PPV NPV OR 
WF Model 0.775 

[0.718, 0.828] 
0.148 

[0.093, 0.238] 
0.578 

[0.467, 0.684] 
0.847 

[0.834, 0.859] 
0.091 

[0.067, 0.116] 
0.987 

[0.983, 0.991] 
6.98 

[4.53, 10.91] 
Fusion model 0.865 

[0.826, 0.900] 
0.215 

[0.143, 0.311] 
0.578 

[0.469, 0.683] 
0.918 

[0.908, 0.927] 
0.156 

[0.117, 0.199] 
0.988 

[0.984, 0.992] 
13.02 

[8.60, 20.22] 
RCRI 0.827 

[0.779, 0.870] 
0.144 

[0.097, 0.223] 
0.482 

[0.375, 0.591] 
0.907 

[0.897, 0.917] 
0.120 

[0.087, 0.157] 
0.985 

[0.981, 0.989] 
8.10 

[5.30, 12.39] 
Elixhauser 
comp. 

0.827 
[0.779, 0.870] 

0.144 
[0.097, 0.223] 

0.482 
[0.375, 0.591] 

0.907 
[0.897, 0.917] 

0.120 
[0.087, 0.157] 

0.985 
[0.981, 0.989] 

8.10 
[5.30, 12.39] 

Hannun et al.33 0.762 
[0.705, 0.814] 

0.091 
[0.062, 0.143] 

0.470 
[0.362, 0.576] 

0.853 
[0.840, 0.865] 

0.078 
[0.056, 0.102] 

0.984 
[0.979, 0.988] 

4.82 
[3.13, 7.36] 

Ribiero et al.34 0.739 
[0.685, 0.790] 

0.079 
[0.052, 0.132] 

0.494 
[0.386, 0.602] 

0.834 
[0.821, 0.847] 

0.073 
[0.052, 0.095] 

0.984 
[0.979, 0.989] 

4.61 
[3.03, 7.08] 

PreOpNet35 0.658 
[0.597, 0.716] 

0.049 
[0.035, 0.078] 

1.000 
[1.000, 1.000] 

0.002 
[0.001, 0.004] 

0.026 
[0.020, 0.031] 

1.000 
[1.000, 1.000] 

Inf 
[nan, nan] 

Machine 
features 

0.585 
[0.520, 0.651] 

0.047 
[0.030, 0.090] 

0.241 
[0.153, 0.337] 

0.882 
[0.871, 0.893] 

0.051 
[0.031, 0.075] 

0.978 
[0.972, 0.983] 

2.30 
[1.32, 3.67] 

IHM 
WF Model 0.775 

[0.726, 0.823] 
0.126 

[0.087, 0.193] 
0.707 

[0.617, 0.796] 
0.719 

[0.703, 0.735] 
0.074 

[0.058, 0.091] 
0.987 

[0.982, 0.992] 
5.80 

[3.89, 9.34] 
Fusion model 0.887 

[0.851, 0.920] 
0.283 

[0.207, 0.377] 
0.778 

[0.695, 0.857] 
0.848 

[0.836, 0.860] 
0.139 

[0.111, 0.169] 
0.992 

[0.988, 0.995] 
16.93 

[11.09, 28.98] 
RCRI 0.756 

[0.708, 0.803] 
0.084 

[0.062, 0.113] 
0.636 

[0.541, 0.730] 
0.797 

[0.783, 0.811] 
0.090 

[0.070, 0.112] 
0.986 

[0.981, 0.990] 
6.33 

[4.31, 9.68] 
Elixhauser 
comp. 

0.842 
[0.796, 0.883] 

0.179 
[0.128, 0.251] 

0.667 
[0.574, 0.758] 

0.867 
[0.855, 0.879] 

0.137 
[0.107, 0.168] 

0.988 
[0.984, 0.992] 

11.37 
[7.69, 17.55] 

Hannun et al.33 0.767 
[0.714, 0.816] 

0.116 
[0.083, 0.171] 

0.586 
[0.487, 0.682] 

0.797 
[0.783, 0.811] 

0.084 
[0.063, 0.105] 

0.984 
[0.979, 0.989] 

5.18 
[3.51, 7.77] 

Ribiero et al.34 0.724 
[0.668, 0.774] 

0.113 
[0.071, 0.174] 

0.505 
[0.405, 0.602] 

0.759 
[0.744, 0.774] 

0.062 
[0.046, 0.079] 

0.980 
[0.974, 0.985] 

3.07 
[2.06, 4.52] 

PreOpNet35 0.674 
[0.616, 0.730] 

0.071 
[0.048, 0.106] 

0.909 
[0.848, 0.962] 

0.152 
[0.139, 0.164] 

0.033 
[0.026, 0.040] 

0.981 
[0.968, 0.992] 

1.76 
[0.99, 4.38] 

Machine 
features 

0.617 
[0.558, 0.675] 

0.065 
[0.040, 0.105] 

0.263 
[0.178, 0.352] 

0.859 
[0.847, 0.871] 

0.056 
[0.035, 0.077] 

0.974 
[0.967, 0.979] 

2.10 
[1.29, 3.17] 

Composite 
WF Model 0.761 

[0.732, 0.790] 
0.251 

[0.211, 0.304] 
0.947 

[0.919, 0.971] 
0.284 

[0.268, 0.300] 
0.112 

[0.100, 0.124] 
0.982 

[0.973, 0.991] 
6.35 

[4.09, 11.99] 
Fusion model 0.871 

[0.851, 0.890] 
0.454 

[0.395, 0.519] 
0.907 

[0.873, 0.940] 
0.592 

[0.574, 0.610] 
0.175 

[0.155, 0.194] 
0.985 

[0.980, 0.991] 
11.90 

[8.37, 18.98] 
RCRI 0.671 

[0.639, 0.703] 
 

0.152 
[0.129, 0.181] 

0.463 
[0.404, 0.522] 

0.807 
[0.792, 0.821] 

0.186 
[0.158, 0.216] 

0.940 
[0.931, 0.949] 

3.11 
[2.49, 3.89] 

Elixhauser 
comp. 

0.825 
[0.797, 0.852] 

 

0.382 
[0.326, 0.446] 

0.883 
[0.844, 0.919] 

0.536 
[0.519, 0.554] 

0.154 
[0.136, 0.171] 

0.980 
[0.972, 0.986] 

7.50 
[5.44, 11.20] 

Hannun et al.33 0.724 
[0.695, 0.753] 

 

0.199 
[0.167, 0.243] 

0.822 
[0.776, 0.866] 

0.480 
[0.462, 0.499] 

0.131 
[0.116, 0.147] 

0.966 
[0.956, 0.975] 

3.84 
[2.90, 5.31] 

Ribiero et al.34 0.703 
[0.671, 0.734] 

 

0.184 
[0.154, 0.226] 

0.794 
[0.745, 0.840] 

0.466 
[0.448, 0.484] 

0.124 
[0.109, 0.140] 

0.959 
[0.949, 0.969] 

3.06 
[2.34, 4.15] 

PreOpNet35 0.675 
[0.642, 0.708] 

 

0.150 
[0.128, 0.179] 

0.993 
[0.982, 1.000] 

0.024 
[0.019, 0.030] 

0.088 
[0.079, 0.098] 

0.973 
[0.930, 1.000] 

3.22 
[1.23, 5.21] 

Machine 
features 

0.603 
[0.567, 0.638] 

 

0.150 
[0.121, 0.188] 

0.708 
[0.654, 0.760] 

0.419 
[0.401, 0.437] 

0.104 
[0.090, 0.118] 

0.938 
[0.924, 0.951] 

1.67 
[1.31, 2.16] 

Table S4. Full prospective model comparison. 
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