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Abstract

As the COVID-19 pandemic continues with ongoing variant waves and vaccination efforts, population-5

level immunity and public risk perceptions have shifted. This study presents a behavioral transmission6

model to assess how virus spread and care-seeking behavior differ based on individuals’ immunity sta-7

tus. We categorized the population into two groups: "partially immune" and "susceptible," which8

influenced their response to vaccination and testing, as well as their prioritization of information re-9

lated to disease prevalence and severity. Using COVID-19 data from South Korea (February 1, 202210

- May 31, 2022), we calibrated our model to explore these dynamics. Simulation results suggest that11

increasing reactivity to information among partially immune individuals to the same level as suscep-12

tible individuals could reduce peak active cases by 16%. Conversely, if partially immune individuals13

shift their risk perception focus from prevalence (90% prevalence vs. 10% severity) to severity (90%14

severity vs. 10% prevalence), the peak in active cases could increase by 50%. These findings highlight15

the need for adaptive vaccination and testing strategies as public risk perceptions evolve due to prior16

exposures and vaccinations. As new variant waves emerge in the post-pandemic endemic era, our17

study offers insights into how immunity-based behavioral differences can shape future infection peaks.18

Subject class: 92D30, 92-10, 37N25, 34A3419
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1 Introduction22

COVID-19 increasingly appears likely to enter long-term circulation and become endemic, necessitating23

regular vaccinations with updated vaccines, similar to seasonal influenza[1, 2]. Changes in risk percep-24

tions during the pandemic affect behaviors, including testing and willingness to vaccinate [3]. Patterns of25

COVID-19 transmission shape the subsequent patterns of behavioral responses to the disease and, in turn,26

are shaped by such responses. Some models have been developed to help policymakers compare interven-27

tions such as testing and vaccination [4, 5]. Such models, dependent on various uncertain assumptions,28

attempt to forecast cases, deaths, and medical supply needs; predict the timing of peaks in cases; and29

estimate if and when to expect additional waves or surges. Despite the rapid advancements in COVID-1930

models and forecast tools, very few models [6, 7, 8] directly incorporate adaptive behavioral components31

to account for changes in risk perceptions, protective behaviors, and compliance with interventions over32

time, which ultimately influence transmission.33

34

Compliance with testing and willingness to vaccinate significantly affect disease transmission dynamics35

and can influence policy recommendations. Hence, modeling how voluntary testing compliance and vac-36

cination willingness are influenced by individual immune status/history and available public information37

(e.g., rumors on vaccine efficacy or level of prevalence/severity) is crucial. Coupling transmission models38

of infectious diseases with models of behavior adaptation has been a growing field of research [9, 10, 11].39

More specifically, an information index approach was recently employed in epidemic models to account40

for the social behavior change due to available information related to the disease status in the population41

[6, 8, 12, 13, 14]. This strategy takes into consideration how the information is distributed; the depen-42

dence of human behavior not only on the current knowledge but also on the past state of the disease43

in the population; and how long it takes for the information to reach the general public (information44

delay). For example, vaccination behavior change due to available information about the prevalence has45

been considered in a meningitis model[13]. In [14], the authors considered a general SISV (Susceptible-46

Infectious-Susceptible-Vaccinated) model where transmission (social distancing compliance behavior) and47

vaccination rate (vaccination decision) depend on prevalence and vaccination roll-out, respectively. Most48

of these studies, however, often assume a homogeneous population where all individuals react similarly49
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to a single type of information, such as disease prevalence, without considering other critical factors like50

immune status, severity, mortality rates, or healthcare system strain.51

52

In this study, we develop a compartmental model to represent the transmission dynamics of COVID-1953

structured by two different susceptible populations (naive vs. partially immune due to previous infection54

or vaccination). We then incorporate the information index approach, where the individuals’ compliance55

of vaccination and testing is based on two different kinds of information, namely information about the56

level of prevalence and severity of the disease. We also take into account the change of risk perception by57

differing the weighting on information between prevalence and severity among people who are partially58

immune and not immune (i.e., susceptible) [15, 16, 17].59

60

The paper is organized as follows: we present the model formulation (Section 2), basic properties of61

the model (Section 3), and model fitting and parameter estimation (Section 4). We then conduct various62

numerical simulations (Section 5), which show the role of information-related parameters on the dynamics63

of the disease. Finally, we discuss the model findings and implications (Section 6).64

2 Model formulation65

The entire population (N) is divided into fifteen distinct compartments according to individuals’ infection66

and vaccination status. We divide the transmission dynamics into two categories: primary dynamics,67

which describes disease transmission for susceptible individuals, and secondary dynamics, which describes68

transmission among partially immune individuals due to vaccination or previous infection. Each dynamic’s69

transmission is discussed below.70

71

(i) Primary and secondary dynamics72

73

In primary dynamics there are six compartments: susceptible (i.e., non-immune) individuals (S1), those74

who are not yet infected and are susceptible to infection; Vaccinated (V1), individuals who got vacci-75

nated with primary series vaccination; Exposed (E1), individuals who are infected but not yet infectious;76

Asymptomatic (A1), people who are infected but do not show symptoms of the disease; Symptomatic77

people (I1), those who are infected and show symptoms of the disease; Tested (IT1), individuals who get78

3
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tested to COVID-19 and their result is positive. Individuals in S1 class get infected at a rate of λ1 (the79

force of infection) and join the exposed class. People in the E1 class either join the A1 class at the rate of80

(1−τ)ϵ or I1 class at the rate of τϵ, where τ represents the proportion of exposed individuals who become81

symptomatic and ϵ−1 is the latency period. Individuals in the A1 and I1 classes get tested for COVID-1982

at the rate of ξT1 and T1 respectively and join the IT1 class, where T1 is the testing rate. Due to the illness83

differences among individuals in A1 and I1 classes, we assumed their test seeking rates will be different.84

Therefore, ξ measures the propensity for testing of individuals in the asymptomatic class relative to the85

symptomatic class. In secondary dynamics, there are seven compartments. These are: susceptible (par-86

tially immune) compartments, S2 and S3, that contain people who have vaccination history and who have87

vaccination or infection history respectively, Booster-vaccinated, (V2); Exposed (E2), these are individuals88

infected but not infectious; Asymptomatic (A2), individuals who are infectious but have no symptoms;89

Symptomatic (I2), infectious with symptoms; Tested (IT2), who are tested for COVID-19 and their result90

is positive. It has been demonstrated that the immunity level acquired from prior infection, primary series91

vaccination, and a combination of both (hybrid immunity) vary in their effectiveness against secondary92

infection or hospitalization [18, 19]. Our study considers the immunity effectiveness remaining until six93

months after the infection/vaccination based on the study [18], which we utilize to determine protection94

levels against infection for immune people. Consequently, individuals in the S2, S3, and V2 classes get95

infected at the reduced rates of (1− η2)λ2, (1− η3)λ2 and (1− η4)λ2, respectively, due to these differing96

immunity levels. The parameters η2 and η3 measure the effectiveness of the immunity gained due to vacci-97

nation and prior infection, respectively, after 6 months, whereas η4 represents the effectiveness of booster98

vaccination. However, people who get the primary series vaccination, V1, can get infected at the rate of99

(1−η1)λ2, where η1 measures the effectiveness of the first series vaccination. The transition from primary100

dynamics to secondary dynamics is either from V1 or recovery, R at the rate of ϕ. People in the S2 and101

S3 classes get vaccinated at a rate of F2, this represents the booster vaccination. People in the E2 class102

either join the A2 class at the rate of (1− τ)ϵ or the I2 class at the rate of τϵ, where τ, ϵ are as explained103

in primary dynamics. Individuals in A2 and I2 classes get tested for COVID-19 at the rate of ξT2 and104

T2, respectively, and join the IT2 class, where T2 is the testing rate and ξ measures the lower propensity105

for testing of individuals in the A2 compared to the I2 class. People in A1, A2, I1, and I2 classes recover106

from the disease at the rate of ρ (assumed to be equal), and people in IT1, IT2 recover at the rate of ρt107

and join R, class. Individuals in IT1 and IT2 classes may progress and be hospitalized, joining the H108

compartment at the rate of h1 and h2 respectively. Vaccination against COVID-19 helps prevent severe109
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illness, resulting in a lower hospitalization rate among individuals in the secondary dynamics (h2 < h1).110

Hospitalized individuals recover from the disease at the rate of ρh. Individuals in I1, I2, and H classes die111

due to COVID-19 at rates d1 and d2 respectively. People are recruited into the Susceptible, S1, class by112

birth at a rate of π, and individuals in all compartments die naturally at rate µ. The schematic diagram113

of the model is shown in Figure 1. The infection, vaccination and testing rate formulations are explained114

in depth in the following sub-sections:115
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Figure 1: Transmission dynamics of COVID-19. The blue-colored parameters are information dependent

parameters. F1 is a primary series vaccination rate and F2 is a booster vaccination rate. T1 and T2 are

testing rates in primary and secondary dynamics respectively.

(ii) Force of infection116

117
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Due to immune differences, the transmission rate in primary and secondary dynamics is different [20, 21].118

Given that mandatory quarantine measures are not commonly enforced nowadays, we assume that a119

certain proportion of individuals who test positive and all hospital admissions will opt to self-quarantine120

or isolate themselves, thus they don’t contribute to the transmission [22]. With these assumptions, the121

forces of infection are given by:122

λ1 = β1
I1 + I2 + ψ(A1 +A2) + (1− δ)(IT1 + IT2)

N − (H + δ(IT1 + IT2))
, λ2 = β2

I1 + I2 + ψ(A1 +A2) + (1− δ)(IT1 + IT2)

N − (H + δ(IT1 + IT2))
,

(1)

where N is the total population and is given by :

N = S1 + S2 + S3 + V1 + V2 + E1 + E2 +A1 +A2 + I1 + I2 +H + IT1 + IT2 +R,

and β1 and β2 are the transmission rates in primary and secondary dynamics respectively, δ is percentage123

of tested individuals who quarantine and ψ represents infectiousness modification of asymptomatic indi-124

viduals.125

126

(iii) Vaccination and testing rates127

128

The vaccination and testing rates are both described by the sum of two rates: mandatory and voluntary129

rates. First, the mandatory vaccination and testing rates represent the rates for the portion of the130

population that will be vaccinated or tested regardless of the information. This term summarizes some131

aspects of vaccine acceptance or test seeking of individuals that are strongly in favor of vaccines or advised132

to get tested, or specific population groups (e.g., older age groups, teachers or health workers) for which133

the vaccination or testing is mandatory or strongly recommended by the authorities. These rates are134

represented by a constant rate. These constant rates are represented by F10 (mandatory primary series135

vaccination rate ), F20 (mandatory booster vaccination rate) and T10 (mandatory testing rate in primary136

dynamics), T20 (mandatory testing rate in secondary dynamics), respectively. Second, the voluntary rate137

is a rate for a portion of the population voluntarily choosing to be vaccinated or tested depending on138

the level of disease prevalence and severity in the society. We use the information index to represent139

the publicly available information or rumors about the prevalence and severity of the disease. We use140

the reported number of people dead and hospitalized to represent the level of severity of the disease. In141
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these formulations, we made two assumptions: first, partially immune people have a lower perception142

of the risk of infection, and second, partially immune and susceptible people prioritize prevalence and143

severity information differently. The Holling type II function, (characterized by saturating, continuous,144

differentiable, and increasing function), is commonly used to represent the voluntary rate [8, 13]. Based145

on the above discussion, the vaccination and testing rates are given by:146

F1(V,N ) = F10 + (Fmax − F10)

(
α1

D̃V
1 + D̃V

+ (1− α1)
B̃N

1 + B̃N

)
, (2)

147

T1(V,N ) = T10 + (Tmax − T10)

(
α1

DV
1 +DV + (1− α1)

BN
1 +BN

)
, (3)

and148

F2(V,N ) = F20 + (Fmax − F20)

(
α2

θD̃V
1 + θD̃V

+ (1− α2)
θB̃N

1 + θB̃N

)
, (4)

149

T2(V,N ) = T20 + (Tmax − T20)

(
α2

θDV
1 + θDV + (1− α2)

θBN
1 + θBN

)
, (5)

where D̃, B̃, D, and B are positive factors that adjust the reactivity of individuals to the information in150

vaccination (D̃, and B̃) and testing (D and B ) rates, Fmax and Tmax represent the maximum vaccination151

and testing rates, respectively, that can be achieved in the case of a high level of information coverage152

about the disease status (or high level of risk perception), θ represents the reduced reactivity to risk153

perception by individuals in the second dynamics relative to individuals in primary dynamics. The weight154

given by individuals to the prevalence information in primary and secondary dynamics is measured by α1155

and α2, respectively. The corresponding complementary weights, 1 − α1 and 1 − α2, are assigned to the156

severity information. The variables V and N are the information indices that represents the information157

available to the public or rumors about the level of prevalence and severity, respectively and are given by158

the following delayed distributions:159

V(t) =
∫ ∞

0

g1(t− x)ae−axdx, (6)

and160

N (t) =

∫ ∞

0

g2(t− x)ae−axdx, (7)

7
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where a represents the inverse of the average time delay for the information to reach the general public, and161

the functions g1(t) and g2(t) represent people’s perception of the risk of infection and the level of severity162

of the disease, respectively (often called message functions). Perceived risk of infection and severity are163

assumed to depend on the number of symptomatic individuals (I1 + I2 + IT1 + IT2 +H) and number of164

hospitalized and dead people (H+d1(I1+ I2)+d2H ) respectively. Thus, the message functions are given165

by166

g1(t) =
k(I1(t) + I2(t) + IT1(t) + IT2(t) +H(t))

N0
,

g2(t) =
k(H(t) + d1(I1(t) + I2(t)) + d2H(t))

N0
,

(8)

where the quantity k represents information coverage. We define information coverage as the publicly167

available information or rumors about the disease status [13, 14] and N0 is the steady state population168

when there is no disease and no disease-induced death (i.e., N0 = π
µ ). Asymptomatic people are often169

unreported and hidden from the public, therefore they are not included in information indices. The170

formulation in equations (6) and (7) represents that the population’s memory about the perceived risk is171

fading exponentially. The term ae−at is often known as the exponential fading kernel [23]. It represents172

the weight given to the current and past values of the disease. Utilizing the linear chain trick method173

[24], the integral equations (6) and (7) can be reduced into ordinary differential equations (ODEs), given174

by175

V̇ = a

(
k
(I1 + I2 + IT1 + IT2 +H)

N0
− V

)
,

Ṅ = a

(
k
(H + d1(I1 + I2) + d2H)

N0
−N

)
,

(9)

where the upper dot denotes the time derivative.176
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Based on the above discussions, the system under study is governed by the following non-linear ODEs.177

Ṡ1 = π − (λ1 + F1 + µ)S1,

Ṡ2 = ϕV1 − ((1− η2)λ2 + F2 + µ)S2,

Ṡ3 = ϕR− ((1− η3)λ2 + F2 + µ)S3,

V̇1 = F1S1 − ϕV1 − (1− η1)λ2V1 − µV1,

V̇2 = F2S2 + F2S3 − (1− η4)λ2V2 − µV2,

Ė1 = λ1S1 − (ϵ+ µ)E1,

Ė2 = λ2((1− η1)V1 + (1− η4)V2 + (1− η2)S2 + (1− η3)S3)− (ϵ+ µ)E2,

Ȧj = (1− τ)ϵEj − ξTjAj − (ρ+ µ)Aj ,

İj = τϵEj − TjIj − (ρ+ µ+ d1)Ij ,

İTj = Tj(Ij + ξAj)− (ρt + µ+ h1)ITj ,

Ḣ = h1IT1 + h2IT2 − ρhH − (d2 + µ)H

Ṙ = ρ(A1 +A2 + I1 + I2) + ρt(IT1 + IT2) + ρhH − (ϕ+ µ)R,

V̇ = a

(
k(I1 + I2 + IT1 + IT2 +H)

N0
− V

)
Ṅ = a

(
k(H + d1(I1 + I2) + d2H)

N0
−N

)
,

(10)

with initial conditions:178

S1(0) > 0, S2(0) ≥ 0, S3(0) ≥ 0, Vj(0) ≥ 0, Ej(0) ≥ 0, Aj(0) ≥ 0, Ij(0) ≥ 0, ITj ≥ 0,

H(0) ≥ 0, R(0) ≥ 0,V(0) ≥ 0,N (0) ≥ 0,
(11)

where j ∈ {1, 2}.179

3 Basic properties180

In this section, we investigate the basic characteristics of the model (10), which include ensuring the181

positivity and boundedness of solutions, computing the disease-free equilibrium, and determining the re-182

production number.183
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184

(i) Positivity and boundedness of solutions185

186

Positivity and boundedness of the solutions can be established in standard ways (see e.g., [25, 26]).187

188

(ii) Disease-free equilibrium and the reproduction number189

190

A disease-free equilibrium point is an equilibrium point at which there are no infected individuals in191

the population (no disease). Setting all infected compartments of the system (10) to zero and solving the192

reduced system of equations by equating to zero, we get the disease-free equilibrium point, denoted by193

E0, and given by194

E0 = (S0
1 , S

0
2 , S

0
3 , V

0
1 , V

0
2 , I

0), (12)

where195

S0
1 =

π

F10 + µ
,

S0
2 =

πϕF10

(F10 + µ)(F20 + µ)(ϕ+ µ)
,

S0
3 = 0,

V 0
1 =

πF10

(F10 + µ)(ϕ+ µ)
,

V 0
2 =

πϕF10F20

µ(F10 + µ)(F20 + µ)(ϕ+ µ)
,

I0 = (E0
1 , E

0
2 , A

0
1, A

0
2, I

0
1 , I

0
2 , I

0
T1, I

0
T2, H

0, R0, D0,V0,N 0) = 0,

where 0 represents a zero vector of dimension 1× 13.196

197

The effective reproduction number is the expected number of new infections caused by an infectious198

individual in a population where some individuals may no longer be susceptible ( due to obtained immu-199

nity from prior infection or vaccination) [27].200

We used the next-generation matrix method to calculate the effective reproduction number for the model201

(10). This method follows the following three steps (for detailed explanations, one can refer to [28, 29]):202

203

Step I: We sort out the equations for infected compartments (E1, E2, A1, A2, I1, I2, IT1, IT2, H) and split

10
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the right-hand side of the equations as

Fi − Gi,

where Fi represents the rate of appearance of new infections in compartment i and Gi incorporates the204

remaining terms representing the transition of people into and out of the compartments.205

206

Step II: Determine the following matrices that are obtained by linearizing the equations in Step I and207

evaluating at the disease-free equilibrium.208

F =

[
∂Fi(E

0)

∂xj

]
and G =

[
∂Gi(E

0)

∂xj

]
,

where x represents the infected compartments.

The next-generation matrix is defined as

FG−1.

Step III: Find the reproduction number using

Re = ρ(FG−1),

where ρ is the spectral radius of the matrix and is defined as the maximum of the absolute values of the209

eigenvalues of the matrix FG−1.210

Following the above steps, the effective reproduction number, Re, is given by211

Re = [FIp + FIs] , (13)

where212

FIp and FIs represents the effective reproduction number for primary dynamics and secondary dynamics,213

11
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respectively, and are given by214

FIp =
C1ϵ

ϵ+ µ

M1(1− δ)τT10 +M2(1− δ)(1− τ)ξT10
M1M2M3︸ ︷︷ ︸

infection from tested but non-isolated(IT1)

+
τ

M2︸︷︷︸
infection from symptomatic(I1)

+
(1− τ)ψ

M1︸ ︷︷ ︸
infection from asymptomatic(A1)

 ,

FIs =
C2ϵ

ϵ+ µ

M5(1− δ)τT20 +M4(1− δ)(1− τ)ξT20
M4M5M6︸ ︷︷ ︸

infection from tested but non-isolated(IT2)

+
τ

M4︸︷︷︸
infection from symptomatic(I2)

+
(1− τ)ψ

M5︸ ︷︷ ︸
infection from asymptomatic(A2)

 ,

and,215

C1 =
β1S

0
1

S0
1 + S0

2 + V 0
1 + V 0

2

,

C2 =
β2

S0
1 + S0

2 + V 0
1 + V 0

2

(
(1− η2)S

0
2 + (1− η1)V

0
1 + (1− η4)V

0
2

)
,

M1 = ρ+ µ+ ξT10,

M2 = ρ+ d1 + µ+ T10,

M3 = ρt + h1 + µ,

M4 = ρ+ d1 + µ+ T20,

M5 = ρ+ µ+ ξT20,

M6 = ρt + h2 + µ.

Remark 1. Note that:216

• The basic reproduction number, i.e., the mean number of secondary cases a typical single infected217

case will cause in a fully susceptible population in the absence of interventions, for the model (10)218

can be found by setting the mandatory vaccination rates (F10 and F20) and mandatory testing rates219

(T10 and T10) to zero.220

• The parameters related to voluntary vaccination and testing (like, information coverage, information221

delay time, reactivity to information, information prioritization and reduced level of reactivity by222

immune individuals) don’t appear in the effective reproduction formula. Hence, they will not affect223

the threshold value (Re = 1) in Theorem 1.224

Theorem 1. The disease-free equilibrium, E0, of the model (10) is locally asymptotically stable if Re < 1225
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and unstable if Re > 1.226

Proof. The proof follows from Theorem 2 in [29].227

4 Model fitting and parameter estimation228

In this section, we will discuss how we set the model’s baseline parameter values. The parameter values in229

the model are determined in two ways: first, using demographic and epidemiological data obtained from230

Our World in Data [30] and previous research, which is mentioned as a reference in Table 1, and second,231

by fitting the model to the Korean COVID-19 vaccination, incidence and mortality data collected during232

the omicron variant wave with time period from February 01, 2022, to May 31, 2022. We will discuss the233

details of each method in the following sections.234

235

(i) Values of known parameters and initial conditions for the model236

237

According to the data from Our World in Data, the estimated population of South Korea in 2022 is238

N(0) = 51815808 (the initial population used in the simulation) and the life expectancy is 83 years [30].239

Therefore, the daily natural death rate can be calculated as µ = 1
83×365 and the daily birth rate is obtained240

by π = µ×N(0) = 1710 [31]. The mandatory primary series vaccination rates and the maximum vacci-241

nation rate are estimated from the data [30]. We estimated the maximum vaccination rate, Fmax, to be242

the maximum proportion of daily vaccinated people given by: Fmax = 1382042
51815808 = 0.027. The mandatory243

vaccination rate, F10, is obtained by calculating the average of the daily proportion of vaccinated people244

prior to the initial time for our simulation (February 01, 2022), under the assumption that this value245

can represent the baseline vaccination rate (not influenced by the current level of omicron prevalence or246

severity ) before the omicron wave. Thus, we found F10 = 0.0029. We assumed a lower (10%) rate for247

mandatory booster vaccination rate, F20 = 0.9 ∗ 0.0029 = 0.00261, compared to the mandatory primary248

series vaccination rate. We iteratively increased the mandatory testing rates, T10 and T20 starting from249

0.0025 (average proportion of reported daily tested people prior to February 01, 2022), with the intention250

of including the rate for people who can undergo testing at home, to achieve a best fit to the data.The251

process resulted in T10 = T20 = 0.03. Assuming substantial number of people can get tested (both at home252

and health centers) we fixed the value of Tmax to be 0.5. At the beginning of a vaccination campaign, the253

cumulative number of vaccinated individuals is assumed to grow linearly. The values for reactivity factors254

13
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in vaccination, D̃, B̃ (in primary dynamics, in secondary dynamics) are chosen so that the vaccination255

rate can represent an initial linear growth. We accomplished such a choice by iteratively plotting the256

vaccination rate for different randomly chosen values of D̃ and B̃ in the interval [1, 20]. The bounds of257

the interval are arbitrarily set to include a reactivity value (2.5) used in the study [14]. Thus, we found258

D̃ = B̃ = 5. We assumed a similar pattern for reactivity parameters in testing rates, so that D = B = 5.259

The initial conditions are fixed by the data as follows: as of Feb 01, 2022, we assumed 85% of the total260

population (44, 365, 186 out of 51, 815, 808) gained immunity from prior infection/vaccination and were261

partially susceptible with waning immunity over time. Therefore, they were initially assigned to S2 or262

S3 classes. Assuming a few of them get immunity through infection only [32], we distributed them as263

about 90% are in S2 and 10% in S3. Therefore, S2(0) = 40, 000, 000, S3(0) = 4, 365, 186. Based on the264

initial population distribution (85% in secondary dynamics and 15% primary dynamics), we used the same265

distribution for the initial conditions for infected and vaccinated compartments in both dynamics. For266

example, from the data, the number of new vaccinated people on February 01, 2022 was 3, 323. Therefore,267

85% of these people are in V2 (most of this is booster vaccination), and the remaining are in V1. That is,268

V1(0) = 431 and V2(0) = 2891. Similarly, the initial conditions for tested compartments, which are daily269

new cases, became IT1(0) = 2634 and IT2(0) = 17632. According to the study [33] it was assumed that270

the number of exposed cases is 20 times the number of symptomatic cases. Therefore, the total number of271

exposed people is assumed to be 405, 339, which is distributed as E1(0) = 52, 694 and E2(0) = 352, 645.272

According to the surveillance data of South Korea [32] 80% of exposed people become symptomatic and273

20% become asymptomatic. Therefore, we set A1(0) = 0.2 ∗E1(0) = 10, 538, I1(0) = 0.8 ∗E1(0) = 42, 155274

and A2(0) = 0.2 ∗ E2(0) = 70529, I2(0) = 0.8 ∗ E2(0) = 282, 116. From Our World in Data, we used275

the number people in the ICU on February 01, 2022 as an estimate for the initial population in the276

hospital; therefore, H(0) = 203. The initial condition for the death compartment is, D(0) = 15, that is,277

the number of death on February 01, 2022. We assumed recovered individuals to be R(0) = 200, more278

than 10 times the number of deaths. This reflects that many more people recover from the disease after279

experiencing mild illness due to their immunity. Finally, the rest of the population is placed in the S1 com-280

partment. i.e. S1(0) = N(0)−∑i Zi(0), where Zi represents all compartments in the model except S1281

and D. As for the information indices, we set their initial conditions at the equilibrium [14]: i.e., V(0) =282

k(I1(0) + I2(0) + IT1(0) + IT2(0) +H(0))/N0, N (0) = k(d1(I1(0) + I2(0)) + d2H(0) +H(0))/N0.283

284

(ii) Model fitting with South Korea COVID-19 data285

14
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286

We fitted the model (10) to the cumulative daily cases, daily vaccination, and daily death data for the time287

period from February 01, 2022 to May 31, 2022. We fit our model and conducted numerical simulations288

to the highest peak of the omicron wave to evaluate how intervention scenarios and information param-289

eters can influence the peak of the epidemic. The fitting process is accomplished by a Python built-in290

curve fitting function called curve_fit (Nonlinear least squares optimization method) [34]. In general, this291

method identifies the best parameter values by minimizing the sum of squared errors between the model292

output and the data sets. For our model, there are four parameters to be estimated: transmission rates293

in primary and secondary dynamics (β1 and β2), information coverage (k), and testing modification of294

asymptomatic individuals (ξ).295

296

The result of the fitting is displayed in Figure 2. The model best approximates the cumulative daily297

cases (panel a) and slightly overestimates the death data (panel c). Although, the final cumulative death298

data approximation is close to the observed data. The cumulative vaccination data follows some irregular299

patterns as compared to the daily cases and death data. The model approximation to the cumulative300

vaccination data changes over time (it slightly underestimates,or overestimates, panel b). The parameter301

descriptions and their baseline values are displayed in Table 1.302
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Figure 2: Result of the model fitting to South Korea’s COVID-19 epidemic data. The data represents

the cumulative observed daily cases (in panel a), vaccination (in panel b) and death (in panel c). The

time frame is from February 01, 2022 to May 31, 2022. The blue curve shows the approximation by the

model (10). The approximation for a number of cases is obtained by adding a number of individuals in

IT1 and IT2 classes (who are tested positive). Similarly, the estimated number of vaccinations is obtained

by summing the number of individuals in V1 and V2 classes. The initial conditions used for daily cases,

daily vaccination and daily death are V1(0) + V2(0) = 3322, IT1(0) + IT1(0) = 20266 and D(0) = 15,

respectively.

In Figure 3, we displayed the time series of daily cases of observed data (green scattered points), the303

approximation by the model when voluntary vaccination and testing is considered (purple curve) and304

not considered (blue curve). The latter case is obtained by setting the reactivity parameter values to305

zero (D = B = D̃ = B̃ = 0). We call a result of the model a responsive case (base case), when the306

vaccination and testing rates are ruled by both mandatory and voluntary rates (people’s vaccination307

choice is affected by the level of the disease status) and unresponsive cases when these rates are ruled308

only by the mandatory rates (level of prevalence or severity does not affect the individual’s vaccination309

and testing decision). The result in Figure 3 shows that the model best estimates the observed daily cases310

when voluntary vaccination and testing are considered. When the voluntary part is not considered, the311

model underestimates the number of daily cases. For instance, the peak of active is lower (by 33%) in312

the unresponsive case compared to the base case (responsive case) (i.e., a peak decrease from 366280 to313
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Figure 3: A comparison of observed daily cases (green scattered plot) with model approximation of daily

cases when the vaccination and testing rates are ruled by both mandatory and voluntary rates (purple

curve) and when these rates are ruled by only mandatory rate (blue curve).
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Param. Description Baseline value Reference

π Recruitment rate to susceptible class 1710 indivi./day See Sec. 4(i)

µ Natural death rate 3.301× 10−5 See Sec. 4(i)

ϵ Reciprocal of latency period 0.33 [35]

ψ Reduced infection rate for asymptomatic class 0.5 [36, 31]

τ Proportion of individual that become symptomatic 0.8 [32]

ρ Recovery rate for symptomatic & asymptomatic class 1/14 [35]

ρt Recovery rate for tested class 1/10 Assumed

(ρt > ρ)

ρh Recovery rate for hospitalized class 1/10 Assumed

(ρt = ρh)

η1 Primary series vaccine effectiveness 0.71 [19]

η2 Primary series vaccine effectiveness after 6 months 0.41 [18]

η3 Booster Vaccine effectiveness 0.85 [37]

η4 Effectiveness of immunity due to prior infection after 6 months 0.46 [18]

ϕ Transition from Recovery and primary vaccination classes to

secondary dynamics

1/180 [18]

h1 Hospitalization for tested class (primary dynamics) 0.0012 [38]

h2 Hospitalization for tested class (secondary dynamics) 0.000312 [18]

Fmax Maximum vaccination rate 0.027 See Sec. 4(i)

18
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F10 Mandatory vaccination in primary dynamics 0.0029 See Sec. 4(i)

F20 Mandatory vaccination in secondary dynamics 0.00261 See Sec. 4(i)

Tmax Maximum testing rate 0.5 See Sec. 4(i)

T10 Mandatory testing in primary dynamics 0.03 See Sec. 4(i)

T20 Mandatory testing in secondary dynamics 0.03 See Sec. 4(i)

a Inverse of the average information delay time 0.33 Assumed

D̃ Reactivity factor to voluntary testing (primary dynamics) 5 See Sec. 4(i)

B̃ Reactivity factor to voluntary vaccination (primary dynamics) 5 See Sec. 4(i)

B Reactivity factor to voluntary testing (secondary dynamics) 5 Assumed B = B̃

D Reactivity factor to voluntary vaccination (secondary dynamics) 5 Assumed D = D̃

θ Reduced reactivity to the information in secondary dynamics 0.5 Assumed

δ Percentage of positively tested people who quarantine 80% Assumed

αi, i =

1, 2

Weight given to the information 0.5 Assumed

d1 Disease-induced death rate for symptomatic class 0.000071 Iteratively chosen

d2 Disease-induced death rate for hospitalized class 0.000073 Iteratively chosen

β1 Transmission rate (primary dynamics) 0.67 Fitted

k Information coverage 0.5046 Fitted

β2 Transmission rate (secondary dynamics) 0.39 Fitted

ξ Testing modification for asymptomatic class 0.99 Fitted

Table 1: Parameters with their description and baseline values.

With the parameter values in Table 1, the estimated value of the effective reproduction number is315

Re = 0.64. This value is the sum of the effective reproduction number in primary dynamics and sec-316

ondary dynamics, being 0.07 and 0.57, respectively. The basic reproduction number is estimated to be317

8.43. This value falls in the interval [5.5, 24], which contains the basic reproduction values for omicron318

virus that are reported in different studies [39]. The effective reproduction number we found is smaller319

than the values reported in some other studies [40, 41]. In [40], the mean reproduction number for the320

omicron variant during the first local outbreak in South Korea was estimated to be 1.72. Another study321

[41] estimated the effective reproduction number for the omicron variant as 1.3 during the time period322

November 25, 2021 – January 08, 2022. A review paper [39] showed that the effective reproduction num-323

ber for omicron reported in different studies fall between 0.88 and 9.4. The variation in the reproduction324
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number across different studies can be attributed to several factors, such as the time and locations of325

the studies, exposure patterns, vaccine coverage, and the levels of immunity in the affected populations326

. In our model, a key reason for the low effective reproduction number is the initial population distri-327

bution, where 85% of the population is initially immune, with vaccine efficacy ranging from 41% for the328

primary series vaccination to 85% for booster vaccination. For instance, if the booster vaccination efficacy329

decreases to 75% (10% lower than the base case, 85%), the effective reproduction number increases to330

0.9989.331

332

(iii) Stability region for the disease-free equilibrium in (F10, F20) plane333

334

From a vaccination and testing perspective, the parameters that drive the effective reproduction number335

are those related to the mandatory vaccination and testing rates (F10, F20, T10, T20). Thus, by varying336

these rates, one can achieve the condition Re < 1 (stability of the disease-free equilibrium). Since varying337

the mandatory testing rates, T10 and T20, does not modify Re beyond one, we vary the mandatory338

vaccination rates in primary dynamics (F10) and secondary dynamics (F20) here to depict their impact339

on the stability region. The result is shown in Figure 4 where the shaded region is the region in which340

Re > 1 (showing instability of the disease-free equilibrium) and the non-shaded region is where Re < 1341

(showing stability of the disease-free equilibrium). One can set threshold values for these parameters, given342

that the other parameter values in the model are kept constant. For example, when the first mandatory343

vaccination rate - F10 in the primary dynamics is less than 0.0005 or the mandatory booster vaccination344

rate - F20 is less than 0.00016, then Re > 1 regardless of the wide variation of the primary series or345

boosting vaccination rate, respectively. However, if F10 > 0.00075 and F20 > 0.0002, then the disease346

spread can be controlled over time (Re < 1). The boundary of the regions (Re = 1) in the figure is where347

the stability of the disease-free equilibrium changes.348
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Figure 4: Value of the effective reproduction number Re by varying the mandatory primary series vac-

cination rate, F10 and mandatory boosting vaccination rate, F20. The shaded region is a region where

Re > 1 and the white region is where Re < 1. Other parameter values are fixed to their baseline values,

as in Table 1.

5 The role of behavior-related parameters349

In this section, we perform numerical simulations to investigate the effect of parameters related to vol-350

untary vaccination and testing on the disease dynamics. Except the varying parameters in the plots, all351

other parameter values are fixed as in the Table 1.352

353

(i) Impact of changes of information parameters on active cases peak354

355

Here, we address the effect of changes in information coverage, information delay and reactivity factors356

on active cases peak. Active cases indicate the number of infectious individuals who are not detected357

(tested), those are in A1, A2, I1 and I2. Figure 5 illustrates that information coverage is the key driver358

among other parameters. The maximum active cases is more sensitive to the information delay when the359

information coverage is larger than the base line value ( > 51%). The minimum peak of active cases is360

attained when there is a higher information coverage (k > 80%) and shorter time delay (T ≤ 3 days), see361

Figure 5 panel (a). For example, when k = 0.9 and T = 3 days the peak of active cases is around 4.3362

million, where as when k = 0.1 and T = 30 days the peak is almost double as 8.2 million. In Figure 5363

21

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 20, 2024. ; https://doi.org/10.1101/2024.11.19.24317549doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.19.24317549
http://creativecommons.org/licenses/by-nd/4.0/


panels (b) and (c) we assumed reactivity to prevalence in vaccination, D̃, and testing, D to vary equally.364

A similar assumption is made for reactivity to severity parameters: in vaccination (B̃) and testing (B).365

The results in Figure 5 panels (b) and (c), show that the peak of active cases is more sensitive to an366

individual’s reactivity to information about prevalence than to information about severity. When people367

react to the prevalence, D/D̃ is less than 5 ( base value); increasing information coverage does not affect368

the active cases peak, Figure 5 panel (b). This demonstrates that prompt public response is an essential369

factor in addition to the government’s efforts to achieve high information coverage in a timely way to370

reduce the epidemic peak.371
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Figure 5: Contour plot for maximum (peak) of active cases by varying information coverage (k) with:

information delay time ( 1
a days), panel (a) , people’s reactivity to prevalence information (assumed to vary

equally, D = D̃, in vaccination and testing rates), panel (b), reactivity to severity information (assumed

to vary equally, B = B̃, in vaccination and testing rates), panel (c). Active cases represent a number of

infectious individuals who are undetected (not tested) (A1 +A2 + I1 + I2).

(ii) Impact of change in level of reactivity to the information by partially immune population on the dy-372

namics of active cases373

374

Here, we will explore how the reduction in reactivity to information among partially immune individuals,375

θ, compared to susceptible ones, impacts the dynamics of the disease, particularly the number of active376

cases. At its base line value, θ = 0.5 (50% reduction), the active cases peak becomes 5.5 million, we call377

this as the base active case peak. The lowest active cases peak is achieved when partially immune people378
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react to information the same level as the susceptible ones (θ = 1), which is 16% less than the base active379

cases peak and 40% less than the active cases peak when partially immune people not reacting to the380

information (θ = 0), see Figure 6. When θ = 0.75 (25% reactivity reduction by immune people compared381

to the susceptible individuals), the peak decreases by 9% compared to the base case. In general, the382

active cases peak lowers as partially immune people behave more similarly to non-immune persons (i.e., θ383

changes from 0 to 1).384
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Figure 6: Time series of active cases, with varying levels of reactivity to the information by partially

immune people(people in secondary dynamics) relative to susceptible (people in primary dynamics). The

baseline value for the level of reactivity to information by susceptible individuals is 5.

(iii) Impact of behavior adaptation between immune and susceptible populations on dynamics of vaccina-385

tion and testing rates, and active cases.386

387

The compliance of individuals with protective measures may vary over the course of a pandemic [16, 17],388

especially in scenarios where the disease persists despite widespread vaccination, as seen in the case389

of COVID-19. In such circumstances, it becomes essential to analyze the dynamics by accounting for390

behavioral disparities among sub-populations and their different risk perceptions. We accounted for the391

disease status information (prevalence and severity) that can influence the sub-populations’ (susceptible392

and partially immune) risk perception and compliance with vaccination and testing (i.e., susceptible393
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people may prioritize prevalence while partially immune people may prioritize the severity (representing394

a change in risk perception [17]), and this phenomenon will impact their compliance to vaccination and395

testing differently). We assessed the consequence of vaccination and testing rates and the epidemic burden396

(number of active cases) by applying different weights (using α1 and α2 for prevalence and 1 − α1 and397

1−α2 for severity, respectively) between two information (prevalence and severity) among the susceptible398

and partially immune populations. We examine the following three scenarios to demonstrate the impact399

of the weight individuals place on the information about prevalence or severity in the two dynamics, i.e.,400

which information people care about when making a decision to be tested or vaccinated:401

1. Scenario 1 (base case): Susceptible (in primary dynamics) and partially immune (in secondary402

dynamics) people equally care about both severity and prevalence, given by α1 = 0.5, α2 = 0.5 (the403

base case) for taking a decision to vaccinate or test regardless of their immune status.404

2. Scenario 2: Both susceptible and partially immune people prioritize prevalence information, given405

by α1 = 0.9, α2 = 0.9.406

3. Scenario 3: Susceptible people prioritize prevalence information and partially immune people407

prioritize severity, given by α1 = 0.9, α2 = 0.1.408

The results of scenario 3 (Figure 7 panel c) show that vaccination and testing rates are the greatest,409

while the vaccination and testing rates of the partially immune population are the lowest. As susceptible410

populations rapidly become partially immune populations with the model simulations over time, the lower411

vaccination and testing rates of partially immune populations (second dynamics) resulted in a higher (17%)412

peak of active cases compared to the base case (scenario 1, Figure 7 panel a). On the other hand, the413

results of scenario 2 (Figure 7 panel b) show that the vaccination and testing rates of both susceptible and414

partially immune populations are slightly higher than the base case, as they react more from the preva-415

lence signal to vaccination and testing than base case (90% vs 50%), resulting in a lower (22%) peak of416

the active case than the base case. A shift in prioritization from prevalence to severity information among417

partially immune individuals ( from 90% prevalence and 10% severity to 90% severity and 10% prevalence)418

while susceptible individuals remain at the same risk perception (90% prevalence and 10% severity) can419

result in an increase of active cases peak by 50% (from 36 million to 44 million) compared to the case420

where both (partially immune and susceptible individuals) have higher weight of prevalence than severity421

(90% prevalence and 10% severity), comparing Figure 7 panel b and c (shift from scenario 2 to scenario 3).422

423
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We examined the above scenarios based on theoretical assumptions because there is a lack of data regarding424

how people prioritize information for decisions. The numerical simulation results suggest that differences425

in risk perceptions among sub-populations may result in different voluntary decisions to vaccination and426

testing and levels of prevalence may peak consequently. Therefore, the overall epidemic burden is the result427

of the relative size and distribution of sub-populations and their different risk perceptions and associated428

care-seeking behaviors. A rise in epidemic can lead to increased voluntary care-seeking behaviors, which429

can reduce the prevalence. This reduced prevalence can decrease voluntary care-seeking behavior, which430

in turn can increase the prevalence. Such feedback loop in the model (10) can help us understand a431

dynamic interplay between disease status and population behaviors. Future work should explore fitting432

the proposed model to the course of epidemic waves with the seroprevalence and care seeking data from433

survey, where participants are queried in different time periods of the pandemic about their immune434

status, risk perception, and contact patterns or care seeking (vaccination and testing) behaviors. Such435

data can be used to improve the estimates of some of the parameters in the behavior adaptation metrics436

introduced in this paper.437
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Figure 7: The dynamics of vaccination rate (in primary dynamics F1, in secondary dynamics F2), first

row, Testing rate (in primary dynamics T1, in secondary dynamics T2), second row, and Active cases

(A1 +A2 + I1 + I2), (third row) under three scenarios: first, people in both dynamics equally care about

information regarding prevalence and severity, panel (a), second, people in both dynamics care about

prevalence than severity information, panel (b), third, people in primary dynamics care about prevalence

than severity whereas people in secondary dynamics care about severity than prevalence , panel (c). The

parameters α1 and α2 indicates the weight given to the prevalence information in primary and secondary

dynamics respectively. The remaining (complementary) weights 1−α1 and 1−α2 are assigned to severity

information in the respective dynamics.
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(v) Sensitivity of cumulative incidence to parameters.438

439

In this subsection we conducted a comprehensive sensitivity analysis using a tornado plot, shown in Figure440

8, to show the effect of some selected parameters on the cumulative incidence for a time period of four441

months (February 01, 2022 – May 31, 2022). The selected parameters are classified as:- classical param-442

eters: transmission rate, infectiousness of asymptomatic individuals, proportion of isolated individuals,443

mandatory vaccination and testing rates, and the behavior related parameters: such as information cov-444

erage, information delay, information prioritization, level of reduction in reactivity. For the sensitivity445

analysis purpose, we set a low and high value for each of these parameters based on the baseline values.446

The low and high values are fixed to be 50% less than the base values (0.5× base value) and 50% higher447

than the base value (1.5× base value), respectively. In Figure 8 the vertical line at the center of the448

tornado plot represents the cumulative incidence corresponding to the case where all parameter values449

are fixed at their baseline value, as in Table 1. The effect of the parameters on the cumulative incidence450

is represented by the length of the bars extending from the base case (center), depending on their low451

and high values. The findings indicate that, out of all the parameters considered in this analysis, the452

transmission rate in secondary dynamics, proportion of isolated individuals, and the testing rates are the453

top drivers of cumulative incidence change, whereas behavioral parameters (such as reactivity to preva-454

lence information, information coverage, reduced reactivity by partially immune people, and prevalence455

information prioritization by immune people) also have a significant impact. Comparing the sensitivity456

of parameters in the primary and secondary dynamics, the parameters in the secondary dynamics (e.g.,457

Transmission rate secondary dynamics β2, prevalence prioritization by partially immune people, α2 ) are458

more sensitive to cumulative incidence than parameters in primary dynamics. This increased sensitivity459

to parameters in secondary dynamics is due to the large proportion of the initial population in secondary460

dynamics and the rapid progression from primary to secondary dynamics due to the model formulation.461
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Figure 8: Tornado plot showing the sensitivity of parameters to cumulative incidence over four months

(February 01, 2022 - May 31, 2022). The red and blue bars show the cumulative incidence corresponding

to a low (0.5× base value ) and high (1.5× base value ) values of the parameters, respectively. The center

vertical line represents the cumulative incidence when all parameters are fixed at their baseline values.

The numbers in the closed bracket for each parameters show the low and high values used for sensitivity

analysis: [low, high]. The baseline values for the parameters are as in the Table 1.

6 Discussion462

In this study, we developed a novel behavior-epidemiology model representing the transmission of COVID-463

19 that takes into account the behavioral differences among people who are partially immune and those464

who are not-immune (susceptible) in seeking vaccination and testing [15, 16, 17]. The model outputs were465

fitted to observed cumulative COVID-19 cases, vaccination and mortality data during the Omicron wave466

(February 01, 2022 – May 31, 2022) in South Korea. Unlike other behavioral models that employ the467

information index approach with a single type of information such as disease prevalence [6, 8, 12, 13, 14],468

our model takes into account that people may have different risk perception (prevalence and severity) and469

behavior responses (vaccination and testing) across different subgroups by immune status. The overall470

impact on the prevalence peak in our behavioral model is the result from the non-linear relationship471

between the number of detected cases that can be information signals to promote voluntary vaccination472

and testing (decreasing prevalence) and the number of undetected cases that can keep contributing to the473
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transmission (increasing prevalence).474

475

Our stability analysis shows that even the majority (85%) of the population is partially immune, if manda-476

tory vaccination rates decrease below the threshold values (as shown in the yellow frontier line in Figure477

4) Re can be greater than one, and the impact of voluntary behavior parameters become more important.478

For example, if Re = 3.17 (obtained by setting F10 = 10−4, F20 = 10−6, reflecting almost no mandatory479

booster vaccination (equivalent to 44 people getting mandatory booster vaccination per day, out of the480

initial population in S2 and S3) and 600 daily mandatory primary series vaccination, out of the initial481

number of people in S1), the cumulative incidence becomes 43.7 million. This cumulative incidence can482

be reduced by 20% to 53% by enhancing the voluntary vaccination and testing, which can be achieved483

by increasing the behavior parameters related to the voluntary vaccination and testing rates from their484

baseline value– For example, by increasing the level of reactivity of partially immune individuals from the485

baseline value of 50% to 95% (showing an almost equal level of reactivity as the susceptible individuals),486

the cumulative incidence can be reduced by 20% (35 million). In addition to this increment, if we increase487

all other behavioral parameters related to voluntary vaccination and testing rates to some possible maxi-488

mum value (information coverage (baseline 0.51), prevalence prioritization by susceptible people (baseline489

0.5) to 0.95, reactivity to information (baseline 5) to 10) the cumulative incidence can be reduced by 53%490

(20 million).491

492

Our simulation results indicate that the peak number of active cases can be reduced by up to 16% when493

partially immune individuals react to information at the same level as susceptible individuals. This is494

in comparison to a scenario where partially immune individuals have a reduced reactivity to information495

(50% of the reactivity level of susceptible individuals). This suggests that responsiveness to protective496

measures by individual immune status can substantially influence the level of future incidence. The result497

related to information prioritization by susceptible and partially immune individuals showed that over498

time, if partially immune individuals prioritize severity over prevalence (altering their risk perception),499

the peak of active cases can increase by up to 17% and 50% compared to when they equally (50% to preva-500

lence and 50% to severity) prioritize both information (base case) and when they prioritize prevalence501

over severity (90% to prevalence, 10% to severity), respectively. This result shows that when public risk502

perception changes (e.g., toward severity over prevalence) over the course of the pandemic with multiple503

variants of epidemic waves, the required target of mandatory vaccination or testing may change, and the504
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public health efforts to control disease may require additional endeavors to reduce the prevalence peak.505

Furthermore, the variation in prevalence peak based on the risk perception by susceptible and partially506

immune people underscores the need for further research into how these groups of people perceive disease-507

related information.508

509

The sensitivity analysis result show that the key drivers influencing cumulative incidence are the trans-510

mission rate in secondary dynamics and the proportion of isolated (quarantined) individuals among those511

tested. This demonstrates that non-pharmaceutical interventions such as social distancing and mask-512

wearing remain important to control the spread of the virus besides ongoing testing and vaccination.513

Moreover, the behavior-related parameters (i.e., reactivity to prevalence information, information cover-514

age, and prevalence information prioritization) substantially contribute to cumulative incidence change,515

even greater than the mandatory booster vaccination. These results suggest potential disease control516

mechanisms in two aspects: one is from the government side by increasing information coverage (e.g., by517

avoiding under reporting, which can be achieved by increasing case detection), and the other is from the518

population side by an increased level of reactivity and risk perception among partially immune individ-519

uals, comparable to that of susceptible people (which enhances the vaccination and testing rates among520

immune people). In general, the sensitivity results suggest that, when the majority people are initially521

immune, it is important to consider behavior-related parameters as they can influence total disease burden522

more significantly than those other standard measures, for example, mandatory vaccination.523

524

There may be various other metrics that could induce behavior changes during a pandemic like COVID-19.525

For example, authors in a recent study [7] developed a behavioral epidemiology model aiming at assessing526

the impact of human behavior changes due to factors such as disease-related information received from527

members of the other group, the level of symptomatic transmission in the community, the proportion of528

non-symptomatic individuals in the community, the level of publicly available disease-induced mortality529

information, and fatigue with adherence to control and mitigation interventions in the community, on530

compliance behavior. One of their results shows that disease-induced mortality has a more significant531

impact on behavior change compared to the level of symptomatic transmission. This finding somewhat532

contradicts the results from our model, where the influence of symptomatic infection (disease prevalence)533

levels is a key driver to the peak of the active cases, rather than the influence of disease severity (measured534

by the level of deaths and hospitalizations). This discrepancy might be attributed to, for example, the535
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fact that their study examined the impact of each different model output as described above as a signal536

to change adherence behaviors among the susceptible population in the early stage of the pandemic (thus,537

most people are susceptible yet) and fit the model to the relatively high mortality rate under the original538

SARS-CoV-2 virus variant compared to the case during Omicron variants, which resulted in mortality539

being a driving factor of adherence behavior. In our study, we accounted for behavior adaptation by the in-540

dividual history of previous exposure and vaccination and explored differing individual reactivity and risk541

perception/weight by the type of information (between prevalence and severity) and immune status and542

fitted the model to data during the Omicron epidemic peak (of which the virus variants are characterized543

by high transmission but low severity [42]). Overall, these findings can be complementary to understand544

a population behavior dynamics in the early stage of the pandemic, where the adherence behavior of545

susceptible populations can be a function of various aspects of model outputs, and in the later stage of a546

pandemic, where care seeking behavior can differ by population immunity status and their risk perception.547

548

Our study has some limitations. First, in the information index approach, there is a lack of enough empiric549

data to validate the functional forms (in equations (2), (3), (4) and (5)) used for modeling information-550

dependent vaccination and testing rates. Thus, we took several steps to address this issue: (i)- We551

iteratively calibrated certain parameters, such as individuals’ reactivity to prevalence or severity infor-552

mation, to ensure that the voluntary vaccination or testing rates reflected the observed data with slower553

initial growth for the cumulative number of vaccinated and tested individuals, which is typical at the start554

of a vaccination or testing campaign [30]. (ii)- We also conducted various sensitivity analyses to examine555

whether the results were robust by changing the input parameter values. Second, our model accounts for556

the driving forces for vaccination and testing decisions driven by individuals’ risk perceptions about the557

disease status in the population. However, other factors can influence testing and vaccination decisions,558

such as access to health care systems, testing procedures, perceptions or beliefs related to vaccine side559

effects, knowledge of COVID-19 symptoms, etc. [43, 44, 45]. Further more, it is also possible that the560

individual reactivity to prevalence and severity may differ by other individual characteristics such as age561

group as well (besides the immune status); in other words, in communities where the majority of people562

are young, severity information may not be as concerning since COVID-19 deaths predominantly affect563

older individuals [46]. Conversely, if the majority of the population is old, the average weight of risk per-564

ception in the population toward death may be greater than the infection. Indeed, it may not be possible565

to parameterize all the possible factors and individual heterogeneity that influence willingness to test-566
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ing/vaccination and behaviors in a single model. Moreover, decision-makers are faced with the daunting567

task of interpreting model predictions while simultaneously estimating how behavioral responses should568

alter predictions. Despite the given complexities and uncertainties, these estimates might be enhanced by569

explicitly modeling behavioral responses (i.e., willingness to vaccination as a function of risk and benefit570

of vaccination) to interventions rather than simply adjusting any assumed constant parameters. Accord-571

ingly, our study findings demonstrate the relatively significant impact of behavioral factors on the overall572

cumulative incidences and thus emphasize the importance of future efforts to collect empiric data and573

identify driving factors on risk perception and information prioritization among immune and susceptible574

individuals. Incorporating these behavioral aspects into transmission models may become increasingly575

useful and important as the epidemic continues and people’s behaviors change.576

577

In summary, this study contributes to the field of epidemiological modeling by illustrating the complex578

interplay between information, human behavior, and immune status and their impact on disease trans-579

mission. To our knowledge, our study is the first attempt to apply an information index with different580

disease-relevant information (prevalence and severity) among people with different immune statuses and581

to fit such a model to real-world data. Future studies may further evaluate interplay between various indi-582

vidual status (immunity/age/care seeking history), vaccination, testing and disease transmission, aiming583

at providing optimal intervention strategies under evolving circumstances.584
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Data Accessibility: Numerical simulations were carried out in Python using standard algorithms. We586

utilized the ‘odeint’ solver from ‘scipy.integrate’ for integrating the model system and employed ‘pyplot’587
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study relies on official COVID-19 data from South Korea, sourced from Our World in Data [30]. The589
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