It is made available under a CC-BY 4.0 International license .

1 Unveiling the Hidden Syndrome: The Enigma of Anti-Transcobalamin Receptor

2 Autoantibodies

- 3
- 4 Kazuki M. Matsuda, MD, PhD,¹ Hirohito Kotani, MD, PhD,¹ Shinichi Sato, MD, PhD,¹
- 5 Ayumi Yoshizaki, MD, PhD^{1*}
- 6
- 7 1. Department of Dermatology, The University of Tokyo Graduate School of
- 8 Medicine, Tokyo, Japan
- 9

10 * Corresponding author

- 11 Ayumi Yoshizaki, MD, PhD
- 12 Department of Dermatology, The University of Tokyo Graduate School of Medicine, 7-
- 13 3-1, Hongo, Bunkyo-ku, Tokyo, Japan, 1138655
- 14 Phone: +81-3-3815-5411
- 15 E-mail: <u>ayuyoshi@me.com</u>

16

It is made available under a CC-BY 4.0 International license .

17 Abstract

18	The transcobalamin receptor (CD320) functions as a critical mediator for
19	vitamin B12 uptake in cells, with emerging evidence linking autoantibodies against
20	CD320 to various autoimmune conditions. Pluvinage et al.'s recent study identified
21	anti-CD320 autoantibodies as a cause of autoimmune vitamin B12 central deficiency,
22	specifically affecting the central nervous system while sparing peripheral nerves. Their
23	findings align with our previous work showing anti-CD320's role in cutaneous arteritis.
24	Both studies identified overlapping CD320 epitopes targeted by autoantibodies and
25	demonstrated the therapeutic efficacy of high-dose vitamin B12 supplementation in
26	mitigating symptoms by reducing CD320 expression on the surface of vascular
27	endothelial cells. Expanding on these findings, we observed anti-CD320 autoantibodies
28	in systemic sclerosis, systemic lupus erythematosus, and other inflammatory disorders,
29	suggesting a broader clinical relevance. The work by Pluvinage et al. and our group
30	supports the concept of an "anti-CD320-associated syndrome," with high-dose B12
31	supplementation as a promising treatment strategy. Further research is needed to fully
32	elucidate the tissue-specific mechanisms and pathophysiology underlying these
33	autoimmune conditions.

It is made available under a CC-BY 4.0 International license .

34 Introduction

35	Cutaneous arteritis (CA), or cutaneous polyarteritis nodosa (PN), is a
36	single-organ vasculitis marked by necrotizing inflammation in small to medium-sized
37	arteries, similar to PN.(1) While PN impacts multiple organs, CA is confined to the skin
38	and nearby joints, muscles, and peripheral nerves.(2) Diagnosis typically relies on skin
39	biopsy, a procedure that can be burdensome for both patients and clinicians. Treatment
40	often involves systemic corticosteroids and immunosuppressants,(3) though responses
41	vary among patients.(4) There is a need for easily measurable biomarkers to aid in
42	diagnosis and prognosis, along with a deeper understanding of the disease's
43	pathophysiology to develop targeted therapies.
44	In our previous work, we reported the presence of autoantibodies targeting the
45	extracellular domain of CD320 in 24% of patients with cutaneous arteritis (CA).(5)
46	Transcobalamin receptor (CD320), a single-pass transmembrane protein, functions as
47	the cell uptake receptor for vitamin B12 (VB12).(6) Patients with positive anti-CD320
48	antibodies (Abs) were spared from peripheral neuropathy compared to those with
49	negative anti-CD320 Abs. Immunohistochemical analysis revealed CD320 expression in
50	the endothelium of arterioles in CA-affected skin, suggesting a direct role for
51	anti-CD320 in CA pathogenesis. Notably, we demonstrated that anti-CD320 can induce

52	an autocrine loop of interleukin-6 via internalization into human dermal vascular
53	endothelial cells through endocytosis in vitro, leading to periarterial inflammation in
54	murine skin in vivo. Furthermore, we demonstrated that methylcobalamin (MetCbl), one
55	of active form of vitamin B12 (VB12) which has been widely used in clinics for the
56	treatment of peripheral neuropathy and megaloblastic anemia, ameliorates anti-CD320
57	Ab-induced inflammation through internalization of CD320 on the cell surface of
58	endothelial cells.
59	We were profoundly intrigued by the recent publication by Pluvinage et al.
60	detailing the role of autoantibodies against CD320 in the etiology of autoimmune
61	vitamin B12 central deficiency (ABCD).(7) Using programmable phage display,
62	Pluvinage et al. identified anti-CD320 antibodies in some patients with central nervous
63	system (CNS) deficits and neuropsychiatric lupus. These antibodies impaired the
64	cellular uptake of VB12 in vitro by depleting CD320 from the cell surface.
65	Immunosuppressive therapy and high-dose systemic VB12 supplementation were linked
66	to increased VB12 levels in the cerebrospinal fluid and clinical improvement.
67	Interestingly, ABCD cases with anti-CD320 Abs showed no hematologic signs of VB12
68	deficiency. A genome wide CRISPR screen revealed that the low-density lipoprotein
69	receptor (LDLR) provides an alternative VB12 uptake pathway in hematopoietic cells.

70	In addition, recent case reports have demonstrated anti-CD320 Ab positivity not only in
71	CA but also in other conditions, such as systemic sclerosis (SSc).(8,9) This works have
72	collectively expanded the potential scope of anti-CD320 Ab-associated pathology in
73	humans.

74	In this study, we present our work on epitope mapping of anti-CD320 Abs and
75	the hematological features in CA, discussing the alignment between findings in CA and
76	ABCD. We also utilized publicly available single-cell RNA sequencing data to examine
77	CD320 expression in human endothelial cells across various tissues, exploring the
78	tissue-specific nature of anti-CD320 Ab-associated pathology. Additionally, we
79	highlight our latest research on proteome-wide autoantibody screening (PWAbS) across
80	multiple human disorders, mapping the landscape of autoimmunity targeting CD320.
81	Our aim is to compare the findings of Pluvinage et al. with our own, providing a
82	comprehensive overview of the "anti-CD320-associated syndrome" in humans. We seek
83	to highlight critical areas for future research and deepen the understanding of this
84	condition.
85	

It is made available under a CC-BY 4.0 International license .

86 Materials and Methods

87 Human subjects

88	We enrolled CA patients visited our clinic from April 2020 to November 2022,
89	whose sera were available from our sample stock. All the patients fulfilled the
90	diagnostic criteria suggested by Nakamura T et al. in 2009.(2) We also recruited patients
91	with systemic sclerosis (SSc) from autoantigenome database named "autoantibody
92	comprehensive database (UT-ABCD)".(10) Clinical data were collected by retrospective
93	review of electric medical records. The demographics of the participants have been
94	described previously.(5) We gathered laboratory findings from the closest time point
95	from the date of serum collection. This study has been approved by The University of
96	Tokyo Ethical Committee (Approval number 2023051G). Written informed consent has
97	been obtained from all the participants.

98

99 *Epitope mapping*

We conducted epitope mapping for anti-CD320 Abs in CA cases utilizing wet protein arrays (WPAs) as previously described.(5,11,12) In brief, we synthesized truncated forms of CD320 protein from our entry clone (NCBI Reference Sequence: NM_016579.2) with GST and FLAG tags and linkers added on their N-terminus,

104	utilizing a wheat germ cell-free system.(13) The synthesized proteins were attached to
105	96-well plates coated with glutathione by its affinity with GST tags. The antigen-coated
106	plates were reacted with Alexa Fluor 647-conjugated anti-FLAG Ab (MBL, Tokyo,
107	Japan) diluted by 1:3000 for 1 hour at room temperature. After washing the plate,
108	fluorescence was measured by a fluorescence imager (Typhoon FLA 9500). Next, the
109	plates were washed again and treated with human serum diluted by 1:150 for 1 hour at
110	room temperature, and subsequently with Alexa Fluor 647-conjugated goat anti-human
111	IgG (H+L) Ab (Thermo Fisher Scientific). After washing the plates, fluorescence was
112	measured by a fluorescence imager (Typhoon FLA 9500). Fluorescence measurements
113	obtained from each well were corrected by the following formula.
	$Autoantibody \ level \ [AU] = \frac{F_{construct} - F_{negative \ control}}{(F_{positive \ control} - F_{negative \ control}) \ \times \ F_{Flag}} \times 10^5$
114	AU: arbitrary unit
115	$F_{construct}$: fluorescent intensity of a spot coated by each construct
116	$F_{negative control}$: fluorescent intensity of a null spot as a negative control
117	$F_{positive control}$: fluorescent intensity of a spot coated by IgG as a positive control
118	
119	Database search

121	measured by single-cell RNA-sequencing, was referenced from the Tabula Sapiens
122	project.(14) Serum levels of anti-CD320 Abs in various conditions including COVID-19,
123	atopic dermatitis (AD), anti-neutrophil cytoplasmic antibody-associated vasculitis
124	(AAV), systemic lupus erythematosus (SLE), SSc, and healthy controls (HCs) were
125	cited from UT-ABCD.(10)
126	
127	Data visualization
128	The heatmap was visualized using GraphPad Prism. Box plots were made by R
129	as follows: the middle line corresponds to the median; the lower and upper hinges
130	correspond to the first and third quartiles; the upper whisker extends from the hinge to
131	the largest value no further than 1.5 times the interquartile range (IQR) from the hinge;
132	and the lower whisker extends from the hinge to the smallest value at most 1.5 times the
133	IQR of the hinge.
134	
135	Statistical analysis
136	Statistical analyses were performed using R. P values were calculated by Mann
137	Whitney U test.
138	

It is made available under a CC-BY 4.0 International license .

139 **Results**

140 *Epitope mapping*

141	We have previously identified the major epitope of anti-CD320 Abs in CA as
142	Thr ¹⁶⁹ -Tyr ²²⁹ employing WPAs.(5) Herein we conducted further mapping by displaying
143	truncated forms of CD320 (Figure 1A) on the same WPA system, narrowing the epitope
144	into Ser ¹⁸⁹ -Thr ¹⁹⁸ (Figure 1B). We also performed epitope mapping on
145	anti-CD320-positive sera from patients with SSc, revealing identical epitopes to those
146	found in CA. This key epitope closely matched the one identified by Pluvinage et al.,
147	using a combination of phage display, sequential alanine mutagenesis, and
148	immunoprecipitation, spanning Pro ¹⁸³ -Thr ¹⁹⁷ .(7)
149	
150	Hematological features of CA

151 Our clinical data on CA patients showed no association between anti-CD320 152 positivity and hematological abnormalities, excluding lower platelet counts within 153 standard range (31.3 x $10^4 \pm 7.4$ x 10^4 vs 24.2 x $10^4 \pm 3.9$ x 10^4 , P = 0.01; Figure 1C).

154

155 Single cell transcriptome analysis

156 While single-cell RNA sequencing analysis by Pluvinage et al. indicated

It is made available under a CC-BY 4.0 International license .

157	elevated CD320 expression in CNS endothelium, we have confirmed CD320 expression
158	in the endothelium of subcutaneous adipose tissue, the primary locus of CA, utilizing
159	the Tabula Sapiens (Figure 1D).(14) Expression levels of <i>CD320</i> seemed to be similar
160	between arteries and veins, and relatively low in capillaries.
161	
162	Anti-CD320 seropositivity in various conditions
163	We referred to our latest work involving PWAbS targeting a total of 284 human
164	subjects with various inflammatory disorders, which unveiled the presence of
165	anti-CD320 Abs in a wide range of conditions including SLE, SSc, and COVID-19, as
166	well as in HCs (Figure 1E).(10)

167

It is made available under a CC-BY 4.0 International license .

168 **Discussion**

169	In this study, we identified that the major epitope of anti-CD320 Abs in CA and
170	SSc lies within Ser ¹⁸⁹ -Thr ¹⁹⁸ (Figure 1A and 1B). No significant association was found
171	between anti-CD320 seropositivity and hematological abnormalities in CA, except for
172	low platelet counts within standard range (Figure 1C). Single-cell RNA sequencing
173	data revealed that CD320 is expressed in subcutaneous adipose tissue, arteries, and
174	veins (Figure 1D). Additionally, data from UT-ABCD showed that anti-CD320
175	seropositivity is widely observed in various human conditions beyond CA, including
176	COVID-19, SSc, SLE, and even in healthy individuals (Figure 1E).
177	Our findings align with those of Pluvinage et al. in several key aspects. First,
178	the CD320 epitope targeted by autoantibodies in both studies was nearly identical
179	(Figure 1A and 1B). The consistency of these major epitopes across different patient
180	populations and detection methods reinforces the robustness of the identified epitope
181	and its significance in human pathology. Second, in both CA and ABCD, the peripheral
182	nervous system was unaffected in cases positive for anti-CD320 Abs. Pluvinage et al.
183	proposed a model suggesting that anti-CD320 Abs specifically target the CNS because
184	the CNS depends on CD320-mediated VB12 uptake beyond the blood-brain barrier,
185	while peripheral nerves receive VB12 through passive transport.(7) Third, MetCbl

186	showed a protective effect against anti-CD320 antibody-associated pathology in both
187	studies by inducing internalization of CD320, thereby preventing it from being targeted
188	by autoantibodies on the cell surface.(5,7) As a water-soluble vitamin, MetCbl rarely
189	causes hypervitaminosis, and its safety in high doses has been confirmed in clinical
190	trials for amyotrophic lateral sclerosis (ALS).(15) It has recently been approved in
191	Japan as a treatment for early-stage ALS. The effectiveness of VB12 administration in
192	both studies supports the pathogenic role of anti-CD320 Abs by binding to CD320 and
193	suggests that VB12 supplementation could serve as a highly safe, targeted therapeutic
194	strategy. Further validation through clinical interventional studies is needed as
195	previously mentioned.(5)
196	There were also notable differences between the findings of Pluvinage et al.
197	and our own. While Pluvinage et al. reported no hematological abnormalities in ABCD
198	cases, in our CA cohort, anti-CD320 seropositivity was associated with low platelet
199	counts, though still within the standard range (Figure 1C). It is important to note that
200	isolated thrombocytopenia has been recognized as an uncommon clinical presentation of
201	VB12 deficiency.(16) Additionally, Pluvinage et al. focused exclusively on a
201 202	VB12 deficiency.(16) Additionally, Pluvinage <i>et al.</i> focused exclusively on a granulocyte-lineage leukemia cell line in their study,(7) suggesting that further

204	Our analysis of the single-cell RNA sequencing data revealed that CD320
205	expression on endothelial cells is not limited to the CNS but is also found in
206	subcutaneous adipose tissue, arteries, and veins (Figure 1D). This suggests that
207	anti-CD320 Abs could potentially trigger both CA and ABCD even in the same
208	individual. In fact, we recently reported a case with anti-CD320 seropositivity who
209	experienced CA along with cranial nerve impairments of unknown etiology.(9)
210	Moreover, some cases with CNS deficits presented by Pluvinage et al. showed focal
211	neurological symptoms and brain imaging findings,(7) which are uncommon in typical
212	VB12 deficiency but are often seen in CNS vasculitis.(17,18) These findings indicate
213	that the coexistence of B12 deficiency and vasculitis, driven by anti-CD320 Abs, cannot
214	be excluded, even in the cases described by Pluvinage et al.(7)
215	It is also important to highlight that both studies found some healthy
216	individuals to be seropositive for anti-CD320 Abs (Figure 1E). The clinical significance
217	of anti-CD320 Abs in healthy individuals, or in conditions other than CA and ABCD,
218	remains unclear. To determine whether these autoantibodies play a direct role in disease
219	development, exacerbate existing pathology, or are incidental, future studies should
220	focus on prospective recruitment and longitudinal observation of seropositive patients.
221	These findings suggest that the clinical relevance of anti-CD320 Abs may extend to a

It is made available under a CC-BY 4.0 International license .

222 broader spectrum of conditions.

223	The tissue selectivity of CA and ABCD also remains a mystery, as it cannot be
224	fully explained by the expression pattern of CD320 across different tissues. One
225	hypothesis is the "two-hit theory," which posits that both the presence of autoantibodies
226	and antigen exposure are necessary for disease manifestation. The major CD320 epitope
227	we identified is rich in serine, threonine, and asparagine residues (Figure 1A), which
228	are highly glycosylated in the human body.(19) Notably, the antigen expression systems
229	used by both Pluvinage et al. and our team involved non-human cells,(5,7) meaning that
230	proper glycosylation of the protein was not replicated. There is evidence that
231	autoantibody seropositivity can depend on post-translational modifications like
232	glycosylation.(20) Therefore, further investigation into how post-translational
233	modifications, particularly glycosylation, affect the pathogenesis of anti-CD320
234	autoantibody-associated conditions is warranted.

Collectively, the research by Pluvinage *et al.* has made significant strides in understanding the role of anti-CD320 autoantibodies in VB12 deficiency, particularly within the CNS.(7) Their findings, in line with our own research,(5) highlight the potential of these autoantibodies in contributing to a spectrum of autoimmune conditions. Both studies suggest "anti-CD320-associated syndrome" as a novel disease

240	concept.	This idea	provides	new	insights	into	the	patho	genesis	of	autoimmune	disorder	S
-----	----------	-----------	----------	-----	----------	------	-----	-------	---------	----	------------	----------	---

- in humans and highlights the potential of high-dose B12 supplementation as a novel,
- 242 pathophysiology-oriented treatment with high safety and efficacy. The selectivity of the
- 243 targeted tissues and the molecular mechanisms linking the autoantibodies to
- 244 pathogenesis should be further investigated in depth.
- 245

It is made available under a CC-BY 4.0 International license .

246 **References**

247	1.	Guillevin L, Hagen EC, Hoffman GS, Jayne DR, Kallenberg CGM, Lamprecht P.
248		2012 Revised International Chapel Hill Consensus Conference Nomenclature of
249		Vasculitides. Arthritis Rheum. 2013;65(1):1–11.
250	2.	Nakamura T, Kanazawa N, Ikeda T, Yamamoto Y, Nakabayashi K, Ozaki S, et al.
251		Cutaneous polyarteritis nodosa: revisiting its definition and diagnostic criteria.
252		Arch Dermatol Res. 2009;301(1):117–21.
253	3.	Papachristodoulou E, Kakoullis L, Tiniakou E, Parperis K. Therapeutic options
254		for cutaneous polyarteritis nodosa: a systematic review. Rheumatology (Oxford).
255		2021 Sep;60(9):4039–47.
256	4.	Matsuda KM, Yoshizaki A, Kotani H, Kuzumi A, Fukayama M, Ebata S, et al.
257		Development of a prediction model of treatment response in patients with
258		cutaneous arteritis : Insights from a cohort of 33 patients. J Dermatol.
259		2021;48:1021–6.
260	5.	Matsuda KM, Kotani H, Yamaguchi K, Okumura T, Fukuda E. Significance of
261		anti-transcobalamin receptor antibodies in cutaneous arteritis revealed by
262		proteome-wide autoantibody screening. J Autoimmun.
263		2023;135(January):102995.

264	6.	Alam A, Woo JS, Schmitz J, Prinz B, Root K, Chen F, et al. Structural basis of
265		transcobalamin recognition by human CD320 receptor. Nat Commun.
266		2016;7(May):1–9.
267	7.	Pluvinage J V., Ngo T, Fouassier C, McDonagh M, Holmes BB, Bartley CM, et
268		al. Transcobalamin receptor antibodies in autoimmune vitamin B12 central
269		deficiency. Sci Transl Med. 2024;16(753).
270	8.	Kuzumi A, Yoshizaki A, Matsuda K, Nagai K, Sato S. Coexistence of systemic
271		sclerosis and cryopyrin-associated periodic syndrome. J Dermatol. 2024 Jun;
272	9.	Hasegawa A, Matsuda KM, Kotani H, Kuzumi A, Yoshizaki-Ogawa A,
273		Yoshizaki A, et al. A case of anti-CD320 antibody-positive cutaneous arteritis
274		accompanied by multiple cranial nerve symptoms. Rheumatology (Oxford).
275		2024 Sep;
276	10.	Matsuda KM, Kawase Y, Iwadoh K, Kurano M, Yatomi Y, Okamoto K, et al.
277		Proteome-wide autoantibody screening and holistic autoantigenomic analysis
278		unveil COVID-19 signature of autoantibody landscape. medRxiv. 2024 Jan
279		1;2024.06.07.24308592.
280	11.	Matsuda KM, Kotani H, Yamaguchi K, Ono C, Okumura T, Ogawa K, et al.
281		Autoantibodies to nuclear valosin-containing protein-like protein: systemic

282		sclerosis-specific antibodies revealed by in vitro human proteome. Rheumatology
283		(Oxford). 2024 Jan;
284	12.	Kotani H, Matsuda KM, Yamaguchi K, Ono C, Ogawa K, Kobayashi Y, et al.
285		Diversity and epitope spreading of anti-RNA polymerase antibodies in
286		systemic sclerosis: a potential biomarker for skin and lung involvement. Arthritis
287		Rheumatol. 2024; in press.
288	13.	Sawasaki T, Ogasawara T, Morishita R, Endo Y. A cell-free protein synthesis
289		system for high-throughput proteomics. Proc Natl Acad Sci U S A.
290		2002;99(23):14652–7.
291	14.	The Tabula Sapiens Consortium. The Tabula Sapiens: A multiple-organ,
292		single-cell transcriptomic atlas of humans. Science (80-). 2022;376:eabl4896.
293	15.	Kaji R, Imai T, Iwasaki Y, Okamoto K, Nakagawa M, Ohashi Y, et al.
294		Ultra-high-dose methylcobalamin in amyotrophic lateral sclerosis: A long-term
295		phase II/III randomised controlled study. J Neurol Neurosurg Psychiatry.
296		2019;90(4):451–7.
297	16.	Khan MAN, Ghani U, Surani S, Aftab A. Vitamin B12 Deficiency, a Rare Cause
298		of Isolated Thrombocytopenia in Adults. Vol. 15, Cureus. United States; 2023. p.
299		e44162.

000 17. Dimini C. Duna 1010 C. Chilon 7. Manara K. I Ombanni D. Dimono C. Ci	300	17.	Briani C.	Dalla Torre C	Citton V	. Manara R.	Pompanin S	. Binotto G. et	t al.
--	-----	-----	-----------	---------------	----------	-------------	------------	-----------------	-------

- 301 Cobalamin deficiency: clinical picture and radiological findings. Nutrients. 2013
- 302 Nov;5(11):4521–39.
- 303 18. Matsuda KM, Koguchi A, Toyama T, Sakuishi K, Kobayashi M, Miura S, et al.
- 304 Concurrence of polyarteritis nodosa and multiple sclerosis. J Eur Acad
- 305 Dermatology Venereol. 2020;34(4):e188–91.
- 306 19. E. V. Quadros, Sai P., P. S. Rothenberg. Characterization of the Human Placental
- 307 Membrane Receptor for Transcobalamin II-Cobalamin. Arch Biochem Biophys.
- **308 1994;308(1):192–9.**
- 309 20. Corzana F, Asín A, Eguskiza A, De Tomi E, Martín-Carnicero A,
- 310 Martínez-Moral MP, et al. Detection of Tumor-Associated Autoantibodies in the
- 311 Sera of Pancreatic Cancer Patients Using Engineered MUC1 Glycopeptide
- Nanoparticle Probes. Angew Chemie Int Ed. 2024 Sep 9;63(37):e202407131.
- 313
- 314

It is made available under a CC-BY 4.0 International license .

315 Acknowledgements

316	We thank Ms. Maiko Enomoto and her colleagues for their secretarial work.
317	We appreciate K. Yamaguchi, T. Okumura, C. Ono, and N. Goshima from ProteoBridge
318	Corporation for preparing the WPAs. We acknowledge R. Uchino, Y. Murakami, and H.
319	Matsunaka from TOKIWA Pharmaceuticals Co. Ltd. for providing technical assistance
320	with autoantibody measurement. We also thank E. Fukuda and A. Kuno from National
321	Institute of Advanced Industrial Science and Technology for their valuable advice on
322	protein glycosylation.

It is made available under a CC-BY 4.0 International license .

323 Author Contributions

329

324	KM Matsuda primarily engaged in autoantibody measurement, collecting
325	serum samples and clinical data, data analysis, visualization, and writing the first draft
326	of the manuscript. H Kotani oversaw epitope mapping. S Sato conceptualized and
327	supervised the study. A Yoshizaki conceptualized and supervised this study and was
328	involved in revising the manuscript.

It is made available under a CC-BY 4.0 International license .

330 **Conflict-of-interest statement**

331	A Yoshizaki belongs to the Social Cooperation Program, Department of
332	Clinical Cannabinoid Research, The University of Tokyo Graduate School of Medicine,
333	Tokyo, Japan, supported by Japan Cosmetic Association and Japan Federation of
334	Medium and Small Enterprise Organizations. The remaining authors declare that the
335	research was conducted in the absence of any commercial or financial relationships that
336	could be construed as a potential conflict of interest.
337	

It is made available under a CC-BY 4.0 International license .

338 Figure legends

339 **Figure 1.**

- 340 (A) Truncated forms of CD320 prepared for epitope mapping in detail. The amino acid
- 341 sequence of identified major epitopes (magenta) is shown below. The epitope was rich
- in potential O-linked (aqua) or N- linked (red) glycosylation sites
- 343 (B) Heat map illustrating signal strength from each spot upon wet protein arrays
- 344 displaying truncated forms of CD320 treated with serum samples and
- 345 fluorescence-conjugated secondary antibody. Each column represents a different human
- 346 subject. AU: arbitrary unit.
- 347 (C) Hematological features of CA patients by serum anti-CD320 seropositivity. WBC:
- white blood cell, RBC: red blood cell, Hgb: hemoglobin, Hct: hematocrit, Plt: platelet,
- Neu: neutrophil, Lym: lymphocyte, Mono: monocyte, Eo: eosinophil, Baso: basophil. P
- 350 values are calculated by Mann-Whitney's U test.
- 351 (D) Expression levels of CD320 at single-cell resolution in human endothelial cells
- 352 from the Tabula Sapiens. Cell type and tissue annotations are also shown.
- 353 (E) Serum levels of anti-CD320 Abs in various conditions as reported in UT-ABCD.
- 354

Hgb

[] []

8

P = 0.577

anti-CD320

P = 0.0571

anti-CD320

Mono

600

[hhr]

00 400

304

CD320_3

CD320_4

CD320_5-

CD320_6

WBC

15000

6000

Neu [/µL]

5068

Neu

₽ = 0.69

anti-CD320

P = 0.878

anti-CD320

RBC

[104//nL]

[JHL]

P = 0.757

anti-CD320

₽ = 0.48

anti-CD320

Lym

С

GST-FLAG-Linker+Thr169-Tyr229 GST-FLAG-Linker+Thr¹⁶⁹-Glu¹⁸⁸ GST-FLAG-Linker+Thr179-Thr198 GST-FLAG-Linker+Ser189-Val208 GST-FLAG-Linker+Met199-Ser218 GST-FLAG-Linker+Pro209-Thr229

SSc

Plt

[104/htt]

₩ 30

P = 0.0112

anti-CD320

= 0.74

anti-CD320

Baso

130

71

Baso [/µL]

Het

2

Ĩ

[htt]

P = 0.979

anti-CD320

P = 0.321

anti-CD320

Eo

[AU]

0

D

31691 of 31691 cells

CD320