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Abstract 

Accurate Alzheimer’s Disease (AD) progression prediction is essential for early intervention. 

The TADPOLE challenge, involving 92 algorithms, used multimodal biomarkers to predict future 

clinical diagnosis, cognition, and ventricular volume. The winning algorithm, FROG, utilized a 

Longitudinal-to-Cross-sectional (L2C) transformation to convert variable longitudinal histories into 

fixed-length feature vectors, which contrasted with most existing approaches that fitted models to 

entire longitudinal histories, e.g., AD Course Map (AD-Map) and minimal recurrent neural networks 

(MinimalRNN). The TADPOLE challenge only utilized the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) dataset. To evaluate FROG’s generalizability, we trained it on the ADNI dataset 

and tested it on three external datasets covering 2,312 participants and 13,200 timepoints. We also 

introduced two FROG variants. One variant, L2C feedforward neural network (L2C-FNN), unified 

all XGBoost models used by the original FROG with an FNN. Across external datasets, L2C-FNN 

and AD-Map were the best for predicting cognition and ventricular volume. For clinical diagnosis 

prediction, L2C-FNN was the best, while AD-Map was the worst. L2C-FNN compared favorably 

with other approaches regardless of the number of observed timepoints, and when predicting from 

0 to 6 years into the future, underscoring its potential for long-term dementia progression prediction. 

Pretrained ADNI models are publicly available: GITHUB_LINK. 

 

 

Keywords: Alzheimer’s disease, longitudinal progression modelling, domain generalization, 

recurrent neural networks, XGBoost, feature engineering 
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1 Introduction 

Alzheimer's disease (AD) is a devastating neurodegenerative disorder (Jack et al., 2018; 

Hampel et al., 2021), which transitions slowly from a preclinical phase to a fully manifested clinical 

syndrome (Villemagne et al., 2013). There is no cure for AD, although medications exist to slow 

down cognitive decline in early AD (Van Dyck et al., 2023). The growing consensus is that early 

intervention is critical for slowing or stopping disease progression (Dubois et al., 2016; Scheltens et 

al., 2016, 2021). Therefore, predicting AD progression is an important clinical task (Zhang et al., 

2017; Venkatraghavan et al., 2019) that can enable early treatment and caregiver planning (de Vugt 

& Verhey, 2013; Rasmussen & Langerman, 2019), decrease clinical trial costs by enriching 

enrollment (Burns et al., 2021; Oxtoby et al., 2022), and decrease costs by prioritizing expensive 

drugs for patients most at risk for dementia (Cummings et al., 2019).  

Most disease progression prediction studies focus on a “static” setup, using cross-sectional 

(baseline) data to predict outcomes at a single future timepoint (Qiu et al., 2020; Hebling Vieira et 

al., 2022), such as whether individuals with mild cognitive impairment will develop dementia within 

3 years (Basaia et al., 2019; El-Sappagh et al., 2021). However, real-world data often involves a 

variable number of observed timepoints, reflecting irregular clinical observations. Therefore, in The 

Alzheimer's Disease Prediction Of Longitudinal Evolution (TADPOLE) challenge (Marinescu et al., 

2019, 2021), multimodal AD biomarkers at one or more timepoints are used to predict cognition, 

ventricular volume and clinical diagnosis of each individual every month into the future. This setup 

presents three challenges: (1) variable number of observed timepoints per participant, (2) predicting 

indefinitely into the future1, and (3) significant missing data since not all biomarkers are available 

at every timepoint.  

To tackle the TADPOLE challenge, dynamical state models, such as linear state space 

models and recurrent neural networks (RNNs), have been proposed (Ghazi et al., 2019; Nguyen et 

al., 2020; Jung et al., 2021; Xu et al., 2022). In these models, an individual’s latent state is 

represented by a vector, thus providing a rich encoding of an individual’s “disease state” beyond a 

single integer (as in the case of discrete state hidden Markov models). At each timepoint, 

observations are used to update the latent state of the individual at that timepoint. The latent state is 

in turn used to predict observations at the next time point. If some (or even all) observations are 

missing at the next time point, the model predictions can be used to fill in the missing data. Therefore, 

predicting missing data and future disease progression are unified into a single prediction task. One 

                                                 

1 Although the goal is to predict indefinitely into the future, evaluation can only rely on the available 

timepoints in the test set. 
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early algorithm in this category was the MinimalRNN model, which achieved second place on the 

TADPOLE leaderboard at the time of publication, behind the FROG algorithm (Nguyen et al., 2020). 

Second, inspired by theoretical models of a sigmoidal evolution of AD biomarkers (Jack et 

al., 2010; Villemagne et al., 2013; Selkoe & Hardy, 2016), approaches have emerged to fit 

parametric sigmoid-like functions to longitudinal biomarkers. Mixed-effects models capture group-

level trends as fixed effects and individual variations as random effects (Iddi et al., 2019; Li, Iddi, 

et al., 2019; Oxtoby, 2023). Jedynak and colleagues used dynamic time-warping to align individual 

biomarker data to a group template represented by sigmoid curves (Jedynak et al., 2012). A Bayesian 

extension incorporated individual-specific latent time shifts (Bilgel et al., 2019). This line of 

research was extended to fit a constrained generalized sigmoidal function (Ghazi et al., 2021). A 

disease course mapping framework integrating Riemannian geometry and mixed-effects modeling 

with time reparameterization, known as AD course map (AD-Map), has demonstrated great promise 

(Koval et al., 2021), outperforming MinimalRNN for predicting cognition (Maheux et al., 2023). 

By contrast, the TADPOLE winner FROG utilized a longitudinal-to-cross-sectional (L2C) 

transformation technique (Nanopoulos et al., 2001; Deng et al., 2013; Barandas et al., 2020) to 

convert participants’ variable visit histories into a cross-sectional format, thus reducing the 

TADPOLE problem into a traditional “static” prediction problem with fixed length input features. 

XGBoost (eXtreme Gradient Boost; Chen & Guestrin, 2016) was then used to predict disease 

progression with the L2C features, training separate models for different forecast windows and target 

variables. FROG was the best for predicting clinical diagnosis and the overall TADPOLE winner. 

However, FROG has only been tested in the ADNI dataset, so it remains unclear how well it 

generalizes to new datasets. Furthermore, as far as we know, the L2C approach is relatively unique 

in the medical imaging community, with most approaches falling into either parametric model fitting 

(e.g., AD-Map) or dynamic state modeling (e.g., MinimalRNN).  

Therefore, in the current study, we evaluated the FROG algorithm by training it on the ADNI 

dataset and evaluating its cross-dataset performance in three external datasets comprising 2312 

participants with 13200 timepoints from the United States, Australia and Singapore. In addition, we 

considered two additional FROG variants. One FROG variant unified all XGBoost models with a 

single feedforward neural network (FNN) model, which we refer to as L2C-FNN. We also compared 

the FROG variants with a representative parametric approach (AD-Map) and a representative 

dynamic state modeling approach (MinimalRNN).   
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2 Methods 

2.1 Problem overview 

The problem setup followed the TADPOLE challenge (Marinescu et al., 2019, 2021). 

Given multimodal biomarkers and diagnostic history (Table 1) at one or more timepoints of an 

individual, we aimed to predict the cognitive state, ventricle volume normalized by intracranial 

volume (ICV), and clinical diagnosis of the individual for every subsequent month beyond the last 

observed timepoint up to 120 months into the future. Cognitive state was measured with the 

Alzheimer's Disease Assessment Scale Cognitive Subdomain (ADAS-Cog13) in the original 

TADPOLE challenge. However, not all the external datasets had ADAS-Cog13, so we switched to 

predicting mini mental state examination (MMSE) in this study.  

We used four datasets: the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, 

the Australian Imaging Biomarkers and Lifestyle Study of Ageing (AIBL) dataset, the Memory, 

Ageing and Cognition Centre (MACC) Harmonization Cohort, and the Open Access Series of 

Imaging Studies (OASIS) dataset. These datasets consisted of longitudinal multimodal data, such as 

T1-weighted structural MRI data, cognitive measurements and clinical diagnosis, as well as baseline 

demographics. The diagnostic categories corresponded to cognitively normal (CN), mild cognitive 

impairment (MCI), as well as dementia with various etiologies (DEM). Data collection was 

approved by the Institutional Review Board (IRB) at each corresponding institution. The analysis in 

the current study is approved by the National University of Singapore IRB. 

 

Baseline features 

Sex (male, female), Genetics (number of APOE-ε4 allele), Marital 

status (married, not married), Education level (number of years of 

education) 

Recurring features 

MRI features 
Hippocampus, Fusiform, Middle 

Temporal, Ventricle, Whole Brain, ICV 

Cognitive features 
MMSE (0-30), CDR GLOBAL (0, 0.5, 1, 

2, 3) 

Diagnostic features Clinical diagnosis (CN, MCI, DEM) 

Demographics Age 

Table 1. Features used in the current study. MMSE: mini mental state examination. CDR: Clinical 

Dementia Rating scale. CN: cognitively normal. MCI: mild cognitive impairment. DEM:Dementia 

with various etiologies. Note that FROG variants use all features. AD-Map was not developed to 

handle categorical variables or covariates, so do not utilize any of the baseline features or clinical 

diagnosis (see Section 2.5 for more details). MinimalRNN was not developed to handle covariates, 

so do not utilize any baseline features and age (see Section 2.4 for more details).   
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2.2 Datasets, preprocessing and participant selection 

2.2.1 Datasets 

The ADNI dataset (Jack et al., 2008; Petersen et al., 2010) is a comprehensive multicenter 

research initiative in the United States with three phases: ADNI1 (2004-2009), ADNI-GO/2 (2010-

2016), and ADNI3 (2017-2023), with a primary focus on advancing the understanding of 

Alzheimer's disease dementia. Each phase incorporates newly enrolled participants and individuals 

transitioning from earlier phases. Notably, there are variations in MRI scanner models and protocols 

across the phases, with ADNI1 primarily employing 1.5T scanners and subsequent phases adopting 

3T scanners (see Table S1 for details). T1 images were downloaded from the USC Laboratory of 

Neuro Imaging's Image and Data Archive (IDA). The ADNIMERGE spreadsheet (the ADNI team, 

2023) containing various phenotypic data (e.g., demographics, clinical diagnoses, cognitive 

measurements) was also downloaded. 

The AIBL study (Fowler et al., 2021) is an Australian flagship initiative that shares a similar 

goal and technical infrastructure with ADNI. MRI scans were acquired using both 1.5T and 3T 

(Avanto, Tim Trio and Verio) scanners (see Table S2 for details). MRI scans and phenotypic data 

were obtained from the USC Laboratory of Neuro Imaging's Image and Data Archive (IDA). 

The MACC Harmonization dataset (Hilal et al., 2020) focuses on a memory clinic population 

in Singapore. T1 images in this dataset were acquired exclusively using 3T (Tim Trio and Prisma) 

scanners (see Table S3 for details). Note that this dataset contained participants with vascular 

dementia and/or Alzheimer’s Disease dementia, which we have grouped together as 

Vascular/Alzheimer’s disease dementia (DEM). The mixed pathology allowed us to evaluate the 

generalizability of these models beyond AD dementia. However, for completeness, we will also 

report results for only AD dementia.  

The OASIS dataset (LaMontagne et al., 2019) serves as a multimodal resource for studying 

normal aging and cognitive decline. It consists of four releases: OASIS-1 (cross-sectional) and 

OASIS-2 (longitudinal) as smaller-scale studies, OASIS-3 as the primary large dataset that includes 

OASIS-1 and OASIS-2 subjects, and OASIS-4, which encompasses a separate clinical cohort. For 

this study, we utilized OASIS-3 data. Note that this dataset included both AD and non-AD dementia, 

which we have grouped together as DEM (similar to MACC). However, for completeness, we will 

also report results for only AD dementia. The imaging data in OASIS were acquired using both 1.5T 

and 3T scanners (see Table S4 for details). MRI scans and phenotypic data were downloaded from 

the XNAT Central (Herrick et al., 2016). 
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2.2.2 Preprocessing 

All T1 images were de-obliqued and reoriented to the RPI orientation. Subsequently, we 

used the FreeSurfer 6.0 recon-all pipeline (Fischl et al., 2002; Desikan et al., 2006) to derive the 

volumes of various regions of interest (ROIs). Following the FROG algorithm, we derived five brain 

ROI volumetric features associated with AD-dementia, namely Hippocampal volume, Fusiform 

volume, Middle Temporal (MidTemp) volume, Ventricle volume, and Whole Brain volume (see 

Table S5 for details). We also incorporated intracranial volume (ICV) as an additional feature and 

standardized the five brain ROI features with respect to ICV (Table 1).  

The generated brain ROI features were then merged with downloaded phenotypic data (e.g., 

demographics, clinical diagnoses, cognitive measurements). Notably, non-MRI phenotypes (e.g., 

clinical diagnoses and cognitive measurements) and MRI scans might not have been performed on 

the same day. Following the ADNIMERGE convention, if the non-MRI and MRI dates were within 

6 months of each other, then the non-MRI and MRI phenotypes were merged into one timepoint 

corresponding to the non-MRI date.   

We systematically eliminated empty or duplicate entries, along with those displaying outliers 

or errors. Certain datasets used inconsistent coding for missing values, such as NaN or special 

integers (e.g., -1, -4, 999). To ensure consistency, we replaced all special integers with NaN. 

Consequently, we obtained a clean longitudinal data table where each row represents one timepoint 

of a participant, containing MRI features and/or cognitive features and/or diagnostic features (Table 

1).  

 

2.2.3 Participant selection and characteristics 

Our objective was to predict the longitudinal progression of dementia, so across all four 

datasets, we only included participants with recurring features (Table 1) at two or more timepoints. 

We note that under this criterion, the recurring features did not need to all occur in the same 

timepoints. For example, a participant with only MRI features in timepoint 1 and only cognitive 

features in timepoint 2 was considered acceptable. 

With the above selection criterion, the final ADNI dataset comprised 2111 participants with 

a total of 15791 timepoints, including 9668 timepoints with MRI features. In the case of AIBL, the 

final dataset comprised 402 participants with a total of 1220 timepoints, including 940 timepoints 

with MRI features. In the case of MACC, the final dataset comprised 650 participants with a total 

of 3067 timepoints, including 1453 timepoints with MRI features. In the case of OASIS, the final 

dataset comprised 1260 participants with a total of 8913 timepoints, including 2519 timepoints with 

MRI scans. 
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The demographics, disease severity and number of timepoints vary significantly between 

ADNI and the three external datasets (Table 2). Actual distributions are plotted in Figures S1 and 

S2. Compared with ADNI, the AIBL participants were younger and had higher MMSE scores. There 

were also proportionally more female and CN participants in the AIBL dataset than the ADNI 

dataset. Compared with ADNI, the MACC participants had lower MMSE scores. Furthermore, there 

were proportionally more female and participants with DEM diagnosis in MACC than ADNI. 

Finally, compared with ADNI, the OASIS participants were younger and had higher MMSE scores. 

There were also proportionally more female and CN participants in the OASIS dataset than the 

ADNI dataset.  

Furthermore, both the AIBL and MACC datasets typically have fewer than 7 timepoints 

collected within a span of 7 years. In contrast, some participants in the ADNI and OASIS datasets 

have up to 20 to 30 timepoints, covering a tracking period of over 15 years. The percentage of 

timepoints with missing data was also highly different across the datasets (Table 2).  
 

ADNI  
(N = 2111) 

AIBL  
(N = 402) 

MACC  
(N = 650) 

OASIS  
(N = 1260) 

 mean ± std mean ± std p mean ± std p mean ± std p 

Baseline age (y) 73.3 ± 7.2 72.4 ± 6.7 2.9e-2 72.7 ± 7.9 7.8e-2 69.0 ± 9.0 1.0e-4 

Baseline MMSE  27.4 ± 2.6 28.0 ± 2.8 1.0e-4  21.6 ± 6.0 1.0e-4 28.3 ± 2.5 1.0e-4 

Sex (M/F) 1135 / 976  
(54% / 46%) 

157 / 176  
(39% / 44%) 2.9e-2 286 / 364  

(44% / 56%) 1.6e-5 560 / 700  
(44% / 56%) 2.0e-7 

Baseline diagnosis 

(CN/MCI/DEM) 
745 / 995 / 371 
(35%/47%/18%) 

319 / 48 / 35 
(79%/12%/9%) 8.4e-60 131 / 272 / 247 

(20%/42%/38%) 2.7e-29 741 / 27 / 187 
(59%/2%/15%)  7.6e-138 

Baseline DEM 
(AD/Other dementias) - - - 194 / 53 

(79% / 21%) - 53 / 134 
(28% / 72%) - 

Cognitively Normal (CN)  

    Baseline Age (y) 73.0 ± 6.2 72.1 ± 6.4 2.5e-2 68.4 ± 7.5 1.0e-4 68.3 ± 8.4 1.0e-4 

    Sex (M/F) 333 / 412  
(45% / 55%) 

125 / 148  
(39% / 46%) 8.1e-1 58 / 73  

(44% / 56%) 1.0 319 / 422  
(43% / 57%) 5.6e-1 

Mild Cognitive Impairment (MCI) 

    Baseline age (y) 73.0 ± 7.5 75.2 ± 6.5 4.2e-2 72.9 ± 7.6 9.2e-1 71.8 ± 6.2 4.3e-1 

    Sex (M/F) 592 / 403  
(59% / 41%) 

22 / 14  
(46% / 29%) 9.8e-1 130 / 142  

(48% / 52%) 7.1e-4 15 / 12  
(56% / 44%) 8.3e-1 

Dementia (DEM) 

    Baseline age (y) 74.6 ± 7.8 71.8 ± 8.8 5.2e-2 74.7 ± 7.7 8.4e-1 74.2 ± 7.3 6.1e-1 

    Sex (M/F) 210 / 161  
(57% / 43%) 

10 / 14  
(29% / 40%) 2.2e-1 98 / 149  

(40% / 60%) 5.3e-5 96 / 91  
(51% / 49%) 2.8e-1 

Number of visits 7.5 ± 4.5 3.0 ± 1.3 1.0e-4 4.7 ± 1.4 1.0e-4 7.1 ± 4.7 1.7e-2 
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Follow-up duration (y) 4.5 ± 3.4 3.3 ± 2.0 1.0e-4 3.9 ± 1.5 1.0e-4 7.8 ± 5.6 1.0e-4 
 
Percentage of timepoints with missing data for recurring features 

  CDR Global 28.6% 0.5% 2.7e-101 1.6% 5.8e-224 5.1% 0.0 

  MMSE 30.1% 0.4% 1.4e-109 1.7% 7.6e-240 16.6% 2.3e-122 

  MRI features 38.8% 23.0% 5.9e-28 52.6% 4.6e-46 71.8% 0.0 

  Diagnosis 30.2% 0.4% 5.8e-110 1.2% 1.7e-249 19.2% 5.3e-80 

Table 2. Participant characteristics in the four datasets. Statistical tests were performed to compare 

ADNI and each external dataset. For continuous variables (e.g., age and MMSE), a permutation test 

was used. For discrete variables (e.g., sex and diagnosis), the chi square test was used. Bolded p 

values indicate statistical significance after correcting for multiple comparisons with false discovery 

rate (FDR) q < 0.05. Note that not all OASIS participants have clinical diagnosis at baseline, so the 

percentages of participants with baseline diagnosis do not add up to 100%.  

 

 

2.3 Training, validation and test procedure 

We compared five different models: MinimalRNN, AD-Map, original FROG (L2C-XGBw), 

FROG variant 1 (L2C-XGBnw) and FROG variant 2 (L2C-FNN). We trained different models using 

ADNI and evaluated their performance within the ADNI dataset (within-dataset evaluation) and in 

AIBL, MACC and OASIS datasets (cross-dataset evaluation). More specifically, we randomly 

divided the ADNI participants into 20 groups. As all participants contributed data collected at 

multiple timepoints, care was taken to ensure that all timepoints for any given participant were 

exclusively assigned to a single group, precluding any division across multiple groups. 

To train a given model, 18 groups were used for training, while 1 group was used as a 

validation set to tune the hyperparameters. The remaining group was used as test set to evaluate the 

within-cohort performance of the model. To ensure stability of results (Kong et al., 2019; Li, Kong, 

et al., 2019; Varoquaux, 2018), this procedure was repeated 20 times with a different group being 

the test set (e.g., group 5) and the group next to it being the validation set (e.g., group 6). Therefore, 

we ended up with 20 sets of trained models together with 20 sets of within-cohort evaluation results. 

The 20 sets of trained models were applied to all participants in AIBL, MACC, and OASIS for cross-

cohort evaluation (Figure 1).  

Following TADPOLE convention, for participants in the ADNI validation and test sets, as 

well as all participants in AIBL, MACC, and OASIS, the first half of each participant's timepoints 

were used to predict the second half of the same participant's timepoints. For example, if a participant 

had 10 timepoints, then the first 5 timepoints were used as input (observed) timepoints, and we 

sought to predict the second 5 timepoints (unobserved). On the other hand, the entire longitudinal 

time series of training participants were used during training to increase data efficiency. 
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The Optuna library (Akiba et al., 2019) was utilized to find the best hyperparameters by 

maximizing model performance on the validation set. We note that this optimization was performed 

independently for each training/validation/test split of the dataset. The hyperparameter search spaces 

for each algorithm are described in their respective method sections. 

 

Figure 1. Training and testing procedure. All models were trained on the ADNI dataset and 

subsequently applied to three unseen test datasets to assess generalizability. ADNI participants were 

randomly divided into training, validation, and test sets (ratio of 18:1:1) for hyperparameter tuning 

and within-cohort evaluation. This procedure was repeated 20 times to ensure result stability. Care 

was taken to ensure non-overlapping test sets, covering the entirety of the ADNI dataset across the 

20 data splits. Trained models were then evaluated on participants from the three unseen test datasets 

(AIBL, MACC, and OASIS) for cross-cohort evaluation. 

 

 

2.4 MinimalRNN 

MinimalRNN is a recurrent neural network (RNN) with less parameters than LSTM (Long 

short-term memory) to mitigate overfitting. In our previous study (Nguyen et al., 2020), we found 

that MinimalRNN performed better than the more complex LSTM, as well as a simpler linear state 

space model in the TADPOLE challenge. As such, the MinimalRNN struck the perfect complexity 

balance, yielding the best prediction performance among the RNN models we tested.  

In RNNs, the same computational unit is repeated at each time step, where the output at the 

current step becomes the input at the next step. Therefore, the longitudinal data of a participant is 

analyzed sequentially, where the input features at a particular timepoint is used to update the internal 

“disease” state of the participant. This internal state is then used to predict the input features at the 

next time point.  

For our experiments, we utilized the publicly available code from 

https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/predict_phenotypes/Nguyen

2020_RNNAD. However, we replaced the HORD hyperparameter search algorithm (Eriksson et al., 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 19, 2024. ; https://doi.org/10.1101/2024.11.18.24317513doi: medRxiv preprint 

https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/predict_phenotypes/Nguyen2020_RNNAD
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/predict_phenotypes/Nguyen2020_RNNAD
https://doi.org/10.1101/2024.11.18.24317513
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

 

2019; Ilievski et al., 2017) employed in our previous study (Nguyen et al., 2020) with Optuna (Akiba 

et al., 2019) because of its ease of use.  

Table 3 summarizes the hyperparameters optimized by Optuna and their corresponding 

search range. Consistent with the original study (Nguyen et al., 2020), MinimalRNN only utilized 

the recurring MRI features, cognitive features and clinical diagnosis (Table 1), but not any baseline 

features (sex, education, marital status and number of APOE-ε4) and age. Our previous experiments 

(not shown) found that these additional information did not improve prediction performance.  

Hyper-parameter Range 

Input dropout rate 0-0.5 

Recurrent dropout rate 0-0.5 

L2 weight regularization 10-7-10-5 

Learning rate 10-5-10-2 

# hidden layers 1-3 

Size of hidden state 128-512 

Table 3. Hyper-parameters and corresponding search ranges for MinimalRNN estimated from the 

validation sets using Optuna. 

 

2.5 AD Course Map (AD-Map) 

AD-Map is a parametric Bayesian non-linear mixed-effects model designed to predict 

cognition and brain atrophy. It was shown to outperform MinimalRNN (Maheux et al., 2023). AD-

Map assumes that each biomarker follows a logistic curve, with different biomarkers exhibiting 

distinct progression rates and ages at inflexion point. The model adjusts these curves for each 

individual by learning individual-specific shifts in disease onset, progression rates, and the 

timing/ordering of biomarker progression. As a result, the model predicts an individual-specific set 

of logistic curves, which show the value of each biomarker at any age of the participant. 

For our experiments, we used the Leaspy software (https://gitlab.com/icm-

institute/aramislab/leaspy) and optimized hyperparameters (Table 4) via Optuna (Akiba et al., 2019). 

We note that intracranial volume (ICV) was not included as a feature since AD-Map requires time-

dependent features, and ICV shows minimal change with time (Courchesne et al., 2000; Jenkins et 

al., 2000). However, we remind the reader that the other MRI volumetric features were normalized 

with respect to ICV, consistent with other algorithms.  

Hyper-parameter Range 

Source dimension 1-5 

# iterations (1-10) * 500 
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Table 4. Hyper-parameters and corresponding search ranges for AD-Map estimated from the 

validation sets using Optuna. 

 

Consistent with the original study (Maheux et al., 2023), we did not include clinical 

diagnosis as a biomarker. Instead, to predict clinical diagnosis, we converted the predicted CDR 

score into probabilities for CN, MCI, and DEM using standard cut-off points (O’Bryant et al., 2010; 

Tariot et al., 2024): CDR 0 was mapped to CN, CDR 0.5 was mapped to MCI, and CDR 1, 2, and 3 

were mapped to DEM. For predicted CDR scores between 0 and 0.5, we used linear interpolation, 

so for instance, a CDR score of 0.1 resulted in 80% probability for CN, and 20% probability for 

MCI, and 0% probability for DEM. For scores between 0.5 and 1, we again used linear interpolation, 

so for instance, a CDR score of 0.6 resulted in 0% probability for CN, and 80% probability for MCI, 

and 20% probability for DEM. CDR scores of 1 or higher are fully assigned to DEM.  

We also explored including clinical diagnosis directly into AD-Map by treating it as a score 

(CN = 0, MCI = 1, DEM = 2). This approach improved clinical diagnosis prediction, but led to very 

poor MMSE and ventricular volume prediction. Therefore, consistent with the original study 

(Maheux et al., 2023), we did not include clinical diagnosis as a feature in the AD-Map algorithm. 

Furthermore, the AD-Map package does not take in any baseline features (sex, education, marital 

status and number of APOE-ε4), so in summary, the AD-Map only used recurring MRI features 

(excluding ICV), cognitive features and age. 

 

2.6 Original FROG: Longitudinal-to-Cross-sectional XGBoost with Windows (L2C-XGBw) 

2.6.1 Longitudinal-to-Cross-sectional (L2C) transformation 

The TADPOLE problem set up is challenging for standard machine learning algorithms (e.g., 

support vector machine) because of the variable length of observed timepoints. The winner of the 

TADPOLE challenge FROG used a feature engineering technique (Nanopoulos et al., 2001; Deng 

et al., 2013; Barandas et al., 2020) that transformed the longitudinal visit history of participants into 

a cross-sectional format, which we will refer to L2C (Longitudinal-to-Cross-sectional) 

transformation.  

More specifically, suppose for a given participant, we observed data at 𝑚 timepoints 𝑡1, 𝑡2, 

𝑡3, 𝑡4, ..., 𝑡𝑚, and we would like to predict clinical diagnosis (or MMSE or ventricular volume) at a 

future timepoint 𝑡𝑓. Note that these timepoints might not be equally spaced in time. To convert the 

variable length input features, FROG proposed the following L2C transformation, in which each 

continuous input modality (i.e., MMSE, CDR_GLOBAL, six anatomical ROI volumes) is converted 

into seven features (Table 5) and clinical diagnosis is converted into eight features (Table 6), 

resulting in 8 x 7 + 8 = 64 features. These 64 features were augmented by age at future timepoint 𝑡𝑓, 
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baseline sex, baseline education level, baseline marital status, APOE status and number of months 

between future timepoint 𝑡𝑓 and the first (baseline) visit. In total, there were 64 + 6 = 70 features. 

Please refer to Supplementary Table S6 for the complete set of L2C features used by FROG. 

 

L2C feature names Meaning 

mr_fname most recent measurement for feature 

time_since_mr_fname time since the most recent measurement 

mr_change_fname most recent change rate 

low_fname lowest historical measurement 

time_since_low_fname time since lowest historical measurement 

high_fname highest historical measurement 

time_since_high_fname time since highest historical measurement 

Table 5. L2C feature names and their corresponding meaning for continuous input modalities. 

 

L2C feature names Meaning 

mr_dx most recent non-missing diagnosis 

time_since_mr_dx time since the most recent non-missing diagnosis 

best_dx best historical diagnosis 

time_since_best_dx time since best historical diagnosis 

worst_dx worst historical diagnosis 

time_since_worst_dx time since worst historical diagnosis 

milder 1 if a milder diagnosis occurred in history 

time_since_milder time since the milder diagnosis and 999 if no milder diagnosis 

Table 6. L2C feature names and their corresponding meaning for clinical diagnosis. 

 

2.6.2 Data augmentation 

In addition to the L2C transformation, FROG proposed the following data augmentation 

strategy during training. Suppose we observed data at 𝑚  timepoints 𝑡1 , 𝑡2 , 𝑡3 , 𝑡4 , ..., 𝑡𝑚  for a 

particular training participant. FROG then generated  𝑚 − 1 training samples by using 𝑡1 to predict 

𝑡2, or 𝑡3 or 𝑡4 or 𝑡5 etc. FROG also generated another 𝑚 − 2 training samples by using 𝑡1 and 𝑡2 to 

predict 𝑡3  or 𝑡4  or 𝑡5  etc. In total, given 𝑚 timepoints, FROG generated 𝑚 ∗ (𝑚 − 1)/2 training 

samples.  
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2.6.3 L2C eXtreme Gradient Boost with separate windows (L2C-XGBw) 

The L2C transformation converted variable length input features into fixed length input 

features (Section 2.6.1), while the data augmentation procedure generated more training samples 

(Section 2.6.2). The original FROG team used eXtreme Gradient Boost (XGBoost; Chen & Guestrin, 

2016) to predict the target variables from the L2C features. Gradient boosting is a model ensemble 

of individual decision trees that are trained sequentially such that a new tree improves the error of 

the previous tree ensemble. XGBoost is an optimized distributed gradient boosting library. The 

original FROG submission used the XGBoost R library, while we reimplemented the FROG 

algorithm in python. We performed 5 repetitions of train/validation/test split in the ADNI dataset to 

ensure our python implementation yields numerically the same results as the R code.    

Furthermore, consistent with the original FROG submission to the TADPOLE challenge, we 

trained separate XGBoost models for each target variable (clinical diagnosis, MMSE, ventricle 

volume). Following the original FROG submission, we also trained separate models based on 

specific forecast interval ranges, with the assumption that certain models may excel in short-term 

predictions while others in long-term forecasts. The forecast interval ranges (i.e., forecast windows) 

for each target variable (measured in months) adhere to the FROG team's settings (Table 7). Hence, 

we referred to this algorithm as L2C eXtreme Gradient Boost with separate windows (L2C-XGBw). 

 

Target variables Forecast Windows (months) 

MMSE 0-9, 9-15, 15-27, 27-39, >54 

Clinical diagnosis 0-8, 8-15, 15-27, 27-39, 39-60, >60 

Ventricle volume 0-9, 9-15, 15-30, >30 

Table 7. L2C-XGBw (FROG) trained a separate XGBoost model for each forecast window and each 

target variable. 

 

Three important hyperparameters were tuned in the ADNI validation sets using Optuna 

(Akiba et al., 2019). The three hyperparameters and search ranges are detailed in Table 8. We note 

that there is no extra feature normalization or missing data imputation since the XGBoost package 

handles such issues internally.  

 

Hyper-parameter Range 

Max depth 3-8 

Subsample rate 0.4-1 

Learning rate (𝜼) 0.01-0.2 
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Table 8. Hyper-parameters and corresponding search ranges for L2C-XGBw estimated from the 

validation sets using Optuna. 

 

2.7 FROG variant 1: L2C eXtreme Gradient Boost with no window (L2C-XGBnw) 

L2C-XGBw (FROG) involved training a separate XGBoost model for each forecast window. 

This is not ideal because the forecast windows are themselves hyperparameters, which might be 

hard to pick for new target variables. We hypothesized that the multiple forecast windows might not 

be necessary because L2C features like "time since baseline" and "time since most recent 

measurement" already encode the necessary temporal information for the model. Therefore, we 

considered a variant of FROG, where a single XGBoost model was trained for all future timepoints, 

as opposed to a separate model for each time window. We refer to this baseline as L2C eXtreme 

Gradient Boost with no window (L2C-XGBnw). All other implementation details remain consistent 

with those of L2C-XGBw. 

 

2.8 FROG variant 2: L2C Fully-Connected Feedward Neural Network (L2C-FNN) 

L2C-XGBnw trained a separate XGBoost model for each target variable. Previous studies 

have suggested that predicting multiple target variables can potentially improve prediction 

performance. By learning shared representations to capture common patterns among related tasks, 

these shared representations might enhance data efficiency, accelerate learning, and mitigate 

overfitting issues (Rahim et al., 2017; Crawshaw, 2020). 

A natural choice to incorporate multi-task learning is to replace XGBoost with a fully 

connected feedforward neural network (FNN) model, with the output layer predicting all target 

variables jointly. Adding new target variables only increases the dimension of the output layer, 

which eliminates the need for separate models and simplifies the coding and hyperparameter tuning. 

Similar to L2C-XGBnw, we will train a single FNN model to predict all future timepoints, instead 

of the original FROG implementation which trained a separate XGBoost model for each forecast 

window. We will refer to this model as the L2C Fully-Connected Feedward Neural Network (L2C-

FNN). 
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Figure 2. Architecture of the L2C Fully Connected Feedforward Neural Network (L2C-FNN). 

FNN incorporates leaky rectified linear units (LeakyReLU) between layers. The input layer 

comprises multimodal L2C features, among which "time since baseline" denotes the duration from 

the baseline visit to the timepoint we want to predict, aiding in longitudinal prediction. The final 

layer simultaneously outputs clinical diagnosis probabilities (calculated with a soft-max function), 

MMSE score, and ventricle volume for multi-task learning. 

 

Figure 2 illustrates the L2C-FNN architecture. LeakyReLU (Maas, 2013) was chosen as the 

activation function, and dropout (Srivastava et al., 2014) was applied after each activation function 

to enhance model generalizability. The FNN output is a 5-dimensional vector: the first three 

elements represent the individual's probabilities of being diagnosed as CN, MCI, or DEM at a future 

timepoint, computed using a SoftMax function, while the fourth and fifth elements correspond to 

MMSE and ventricle volume predictions. 

Input features are similar to L2C-XGBw (FROG), with additional preprocessing steps. Due 

to FNN sensitivity to input scale and missing data compared to tree-based models such as XGBoost, 

we performed Gauss Rank normalization, a special form of quantile normalization (Zhao et al., 

2020), with a Gaussian reference distribution. The transformation was performed using the Scikit-

learn quantile transform function (Pedregosa et al., 2011). Discrete features, such as APOE, sex, and 

most recent diagnosis (mr_dx) were encoded using one-hot encoding. To handle missing data, an 

"unknown" class was introduced for all discrete features, and missing values were assigned to this 

class. Numeric feature imputation involved replacing missing values with the median of the training 

set before Gauss Rank transformation. During inference, the learned Gauss Rank transformations 

and statistics from the training set were used to impute and transform validation and test data. 

Notably, the "time since milder clinical diagnosis" feature was removed due to its high proportion 
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of NaN values (91.57%) which primarily stems from two causes: either because there is no milder 

clinical diagnosis in the patient's history or the clinical diagnosis data is missing. Overall, this yields 

a 101-dimensional input vector for L2C-FNN (see Supplementary Table S7 for details). 

The loss function is computed by comparing the predictions with the ground truth. Similar 

to MinimalRNN, cross-entropy loss was used for clinical diagnosis prediction, while mean absolute 

error (MAE) loss was employed for MMSE and ventricle volume prediction (based on the Gauss 

Rank values). Because MAE was based on Gauss Rank values, the three losses were of similar 

magnitude, and so the three losses were added together with equal weighting. Changing the relative 

weights of the three terms could potentially influence the model performance. However, this would 

increase the number of hyperparameters, so we did not experiment with different weights in this 

study. 

Finally, stochastic gradient descent (SGD) with momentum (Qian, 1999; Sutskever et al., 

2013) was chosen as the optimizer, with Optuna utilized to search for optimal hyperparameters. 

Table 9 shows all the hyperparameters considered and their corresponding search range. The 

ExponentialLR scheduler was employed to regulate learning rate behavior. 

 

Hyper-parameter Range 

Dropout rate 0-0.5 

LeakyReLU slope 0.01-0.1 

L2 weight regularization 10-7-10-4 

SGD momentum 0-0.9 

Learning rate 10-5-10-1 

ExponentialLR gamma 0.1-0.9 

Num of hidden layers 2-5 

Size of hidden state 128-512 

Table 9. Hyper-parameters and corresponding search ranges for L2C-FNN estimated from the 

validation sets using Optuna. 

 

2.9 Further analyses 

We performed two additional analyses to study the effectiveness of all five models 

(MinimalRNN, AD-Map and the three FROG variants).  

 

2.9.1 Impact of the number of observed timepoints on cross-cohort prediction accuracy 

For a disease progression model to be effective in early detection of AD-dementia risk, it 

should ideally perform well with a small number of input timepoints. We evaluated the performance 
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of all four models on external test datasets using only 1, 2, 3, or 4 input timepoints. This contrasts 

with the main benchmarking analysis (Section 3.4), where half the total number of timepoints (for 

each participant) were used to predict the remaining timepoints. 

For the OASIS dataset, test subjects with fewer than 4 input timepoints were discarded so 

that the same test subjects were evaluated across the four conditions (i.e., 1, 2, 3, or 4 input 

timepoints). In contrast, the maximum number of input timepoints for each subject is less than 4 in 

the AIBL and MACC datasets (2 for AIBL and 3 for MACC). Consequently, we discarded test 

subjects with fewer than 2 input timepoints for AIBL and fewer than 3 input timepoints for MACC. 

Because we excluded some test subjects, the results of this analysis are not directly comparable to 

those of the main benchmarking analysis (Section 3.4). 

 

2.9.2 Breakdown of cross-cohort prediction in yearly intervals 

We extended our investigation of cross-cohort prediction performance by breaking down the 

prediction results into yearly intervals up to 6 years into the future. Each participant's future 

timepoints were categorized into yearly intervals based on the duration between the last input 

timepoint and the target future timepoint for prediction. For instance, considering a participant with 

10 timepoints, if the last input timepoint (5th timepoint) was at month 60 and the 6th timepoint was 

at month 70, the prediction at the 6th timepoint would be classified as 1 year into the future due to 

the 10-month duration. 

We anticipated that all tested algorithms would experience a decline in performance as the 

prediction horizon extended further into the future. Nevertheless, for effective early detection of 

AD-dementia, a robust algorithm was expected to maintain relatively high performance even in later 

years, ensuring clinical utility. 

 

2.10 Deep neural network implementation 

MinimalRNN and L2C-FNN were implemented using PyTorch (Paszke et al., 2019) and 

computed on NVIDIA RTX 3090 GPUs with CUDA 11.0.  

 

2.11 Performance evaluation and statistical tests 

In the preceding sections, we utilized a 20-fold cross-validation procedure to train the five 

models (MinimalRNN. AD-Map and three FROG variants) on data from ADNI, predicting clinical 

diagnosis, MMSE score, and ventricle volume. Our evaluation aims to assess the performance of 

these algorithms within the ADNI dataset (within-dataset evaluation) and across external test 

datasets (cross-dataset evaluation), with a specific focus on evaluating their generalizability. This 

section provides a detailed description of the statistical evaluation procedure. 
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Diagnosis classification accuracy was evaluated using the multiclass area under the operating 

curve (mAUC; Hand & Till, 2001) following the TADPOLE challenge. The mAUC was computed 

as the average of three two-class AUC (DEM vs not DEM, MCI vs. not MCI, and CN vs not CN). 

For mAUC, higher values indicate better performance. The mAUC is a group-level metric whereby 

the predictions were first pooled over all test participants across their entire forecast horizon into a 

vector of length # total future timepoints, before calculating the mAUC, resulting one value per test 

set.  

MMSE and ventricles prediction accuracy was evaluated using mean absolute error (MAE). 

Lower MAE indicates better performance. The MAE were averaged across all forecast timepoints 

within each participant, resulting in a vector of length #test_participant values per test set. 

For within-cohort evaluation, because of the 20-fold cross-validation, there were 20 mAUC 

values, 20 MAE values for MMSE and 20 MAE values for ventricle volumes. Although the test sets 

do not overlap, the participants used for training do overlap across the test sets. Therefore, the 

prediction metrics were not independent across the 20 test sets. To account for the non-independence, 

we utilized the corrected resampled t-test (Bouckaert & Frank, 2004) to assess performance 

differences between algorithms. Separate tests were performed for mAUC, MMSE and ventricle 

volume.  

For cross-cohort evaluation, the final performance was computed by averaging the 

performance metrics across 20 trained models of each algorithm. To assess performance differences 

between algorithms, since each participant in the external datasets were independent, we performed 

paired sample t-test (Cohen, 1988) for MMSE MAE and ventricle volume MAE, as well as a 

permutation test (Good, 2000) for group-level metrics (mAUC). Supplementary Figures S3 and S4 

illustrate the t-test and permutation test respectively. 

Multiple comparisons were corrected with a false discovery rate (FDR) of q < 0.05 

(Benjamini & Hochberg, 1995) for both within and cross-cohort evaluations. 
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3 Results 

3.1 FROG variants perform the best for within-cohort clinical diagnosis prediction 

Figure 3 illustrates the performance of MinimalRNN, AD-Map and three FROG variants 

(L2C-XGBw, L2C-XGBnw and L2C-FNN) for within-cohort (ADNI) clinical diagnosis, MMSE 

and ventricle volume prediction. All models exhibited similar performance for predicting MMSE 

and ventricle volume. However, for predicting future clinical diagnosis, the three FROG variants 

were better than MinimalRNN, which was in turn better than AD-Map. 
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Figure 3. Within-cohort (ADNI) prediction performance (a) Left: Boxplots represent variability 

across 20 test sets for clinical diagnosis prediction measured using mAUC. Right: Statistical 

difference between all models. “***” indicates p < 0.00001 and statistical significance after multiple 

comparison correction (FDR q < 0.05). “**” indicates p < 0.001 and statistical significance after 

multiple comparison correction (FDR q < 0.05).  “n.s.” indicates no statistical significance (p ≥ 0.05) 

or did not survive FDR correction. (b) Same as (a) but for MMSE prediction error (MAE). (c) Same 

as (a) but for ventricle volume prediction error (MAE). 

 

3.2 AD-Map and L2C-FNN performed the best for cross-cohort MMSE prediction 

Figure 4 illustrates the prediction error of MinimalRNN, AD-Map and three FROG variants 

(L2C-XGBw, L2C-XGBnw and L2C-FNN) for cross-cohort MMSE prediction in three external 

datasets (AIBL, MACC, and OASIS). In the AIBL dataset, L2C-FNN was the best, followed by 

AD-Map and MinimalRNN. In the MACC dataset, AD-Map was the best followed by L2C-FNN. 

In the OASIS dataset, L2C-FNN was the best, followed closely by AD-Map. Overall, in this analysis, 

L2C-FNN and AD-Map were the best. Similar conclusions were obtained if we only considered AD 

dementia, with non-AD dementia set to NaN (Figure S5). 
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Figure 4. Cross-cohort MMSE prediction error (MAE) on three external test datasets. (a) 

Boxplots display the variability across 20 trained models (from ADNI) for MMSE prediction 

assessed using MAE. The x-axis denotes the test dataset used for evaluation. (b) Statistical 

significance in the prediction error between all models. Each row shows the statistical difference 

between a model and all other models. For example, the first row of each 5 x 5 table corresponds to 

the statistical difference between MinimalRNN and the other models – green indicates that 

MinimalRNN performs better, while red indicates that MinimalRNN performs worse. Therefore, 

the colors are always flipped between red and green across the diagonal. “*” indicates p < 0.05 and 

statistical significance after multiple comparisons correction (FDR q < 0.05). “**” indicates p < 

0.001 and statistical significance after multiple comparisons correction (FDR q < 0.05). “***” 

indicates p < 0.00001 and statistical significance after multiple comparisons correction (FDR q < 

0.05). “n.s.” indicates no statistical significance (p ≥ 0.05) or did not survive FDR correction.  

 

3.3 L2C-FNN, L2C-XGBnw & AD-Map performed the best for cross-cohort ventricle 

volume prediction 

Figure 5 illustrates the prediction error of MinimalRNN, AD-Map and three FROG variants 

(L2C-XGBw, L2C-XGBnw and L2C-FNN) for cross-cohort ventricle volume prediction in three 

external datasets (AIBL, MACC, and OASIS). In the AIBL dataset, all approaches had similar 

performance, although L2C-XGBnw was the best, followed closely by L2C-FNN. In the MACC 

dataset, L2C-FNN was the best, followed by AD-Map. In the OASIS dataset, AD-Map performed 

the best, followed by L2C-XGBnw. Overall, in this analysis, L2C-FNN, L2C-XGBnw and AD-Map 

performed the best. The original FROG algorithm (L2C-XGBw) and MinimalRNN performed the 

worst. Similar conclusions were obtained if we only considered AD dementia, with non-AD 

dementia set to NaN (Figure S6). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 19, 2024. ; https://doi.org/10.1101/2024.11.18.24317513doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.18.24317513
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 19, 2024. ; https://doi.org/10.1101/2024.11.18.24317513doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.18.24317513
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 

 

Figure 5. Cross-cohort ventricle volume prediction error (MAE) on three external test datasets. 

(a) Boxplots display the variability across 20 trained models (from ADNI) for ventricle volume 

prediction assessed using MAE. The x-axis denotes the test dataset used for evaluation. (b) Statistical 

significance in the prediction error between all models. Each row shows the statistical difference 

between a model and all other models. For example, the first row of each 5 x 5 table corresponds to 

the statistical difference between MinimalRNN and other models – green indicates that 

MinimalRNN performs better, while red indicates that MinimalRNN performs worse. Therefore, 

the colors are always flipped between red and green across the diagonal. “*” indicates p < 0.05 and 

statistical significance after multiple comparisons correction (FDR q < 0.05). “**” indicates p < 

0.001 and statistical significance after multiple comparisons correction (FDR q < 0.05). “***” 

indicates p < 0.00001 and statistical significance after multiple comparisons correction (FDR q < 

0.05). “n.s.” indicates no statistical significance (p ≥ 0.05) or did not survive FDR correction.  

 

3.4 L2C-FNN outperformed other models for cross-cohort diagnosis prediction 

Figure 6 illustrates the prediction accuracy of MinimalRNN, AD-Map and three FROG 

variants (L2C-XGBw, L2C-XGBnw and L2C-FNN) for cross-cohort clinical diagnosis prediction 

in three external datasets (AIBL, MACC, and OASIS). In the AIBL dataset, L2C-FNN was 

numerically the best, but there was no statistical difference among the FROG variants and 

MinimalRNN. However, AD-Map was statistically worse than the three FROG variants. In the 

MACC dataset, the three FROG variants performed similarly well and were all statistically better 

than MinimalRNN, which was in turn better than AD-Map. Finally, in the OASIS dataset, L2C-

FNN was the best, while the original FROG algorithm (L2C-XGBw) was the worst. Overall, in this 

analysis, L2C-FNN performed the best. Similar conclusions were obtained if we only considered 

AD dementia, with non-AD dementia set to NaN (Figure S7). 
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Figure 6. Cross-cohort clinical diagnosis prediction accuracy (mAUC) on three external test 

datasets. (a) Boxplots display the variability across 20 trained models (from ADNI) for clinical 

diagnosis prediction assessed using mAUC. The x-axis denotes the test dataset used for evaluation. 

(b) Statistical significance in the prediction error between all models. Each row shows the statistical 

difference between a model and all other models. For example, the first row of each 5 x 5 table 

corresponds to the statistical difference between MinimalRNN and other models – green indicates 

that MinimalRNN performs better, while red indicates that MinimalRNN performs worse. Therefore, 

the colors are always flipped between red and green across the diagonal. “*” indicates p < 0.05 and 

statistical significance after multiple comparisons correction (FDR q < 0.05). “**” indicates p < 

0.001 and statistical significance after multiple comparisons correction (FDR q < 0.05). “***” 

indicates p < 0.00001 and statistical significance after multiple comparisons correction (FDR q < 

0.05). “n.s.” indicates no statistical significance (p ≥ 0.05) or did not survive FDR correction.  

 

3.5 Further analyses 

3.5.1 L2C-FNN compared favorably to other models across varying input timepoints 

Figures 7 to 9 show the cross-dataset prediction performance of MinimalRNN, AD-Map and 

three FROG variants (L2C-XGBw, L2C-XGBnw and L2C-FNN) with varying number of input time 

points. Due to the constraints of the datasets, the maximum number of input timepoints for each 

participant is only 2 for AIBL and 3 for MACC. Therefore, results for AIBL with 3 and 4 timepoints 

and for MACC with 4 timepoints are marked as “N.A.”  

Table 10 shows the results of statistical tests comparing L2C-FNN and other approaches.  

Overall, L2C-FNN consistently matched or outperformed other approaches across all datasets and 

different number of observed timepoints, with only two exceptions (Table 10). The first exception 

was that AD-Map was statistically better than L2C-FNN when predicting ventricle volume with 1 

input timepoint in the MACC dataset (Table 10). The second exception was that L2C-XGBnw was 

statistically better than L2C-FNN when predicting ventricle volume with 1 input timepoint in the 

OASIS dataset (Table 10). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 19, 2024. ; https://doi.org/10.1101/2024.11.18.24317513doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.18.24317513
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 

 

 
Table 10. Statistical significance between L2C-FNN and other approaches for cross-cohort MMSE, 

ventricle volume, and clinical diagnosis prediction performance, using different numbers of input 

timepoints (after training with all timepoints in ADNI). “*” indicates p < 0.05 and significance after 

multiple comparisons correction (FDR q < 0.05). “**” indicates p < 0.001 and significance after 

multiple comparisons correction (FDR q < 0.05). “***” indicates p < 0.00001 and significance after 

multiple comparisons correction (FDR q < 0.05). “ns” indicates no significance (p ≥ 0.05) or did not 

survive FDR correction. “Cross” indicates data was not available for evaluation. Green indicates 

that L2C-FNN was statistically better than other approaches compared, while red indicates that it 

was statistically worse. 
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Figure 7. Cross-cohort MMSE prediction performance using different numbers of input 

timepoints (after training with all timepoints in ADNI). L2C-FNN compared favorably with 

respect to other approaches across three external test datasets. Results of statistical tests between 

L2C-FNN and other approaches are reported in Table 10. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 19, 2024. ; https://doi.org/10.1101/2024.11.18.24317513doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.18.24317513
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 

 

 

Figure 8. Cross-cohort ventricle volume prediction performance using different numbers of 

input timepoints (after training with all timepoints in ADNI): L2C-FNN compared favorably 

with respect to other approaches across three external test datasets, except L2C-XGBnw on OASIS 
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using 1 input timepoint. Results of statistical tests between L2C-FNN and other approaches are 

reported in Table 10. 

 

Figure 9. Cross-cohort clinical diagnosis prediction performance using different numbers of 

input timepoints (after training with all timepoints in ADNI): L2C-FNN significantly 
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outperformed almost all other approaches across three external test datasets using different number 

of input timepoints. Results of statistical tests between L2C-FNN and other approaches are reported 

in Table 10.  

 

 

3.5.2 L2C-FNN compared favorably with other methods for all yearly intervals  

Figures 10 to 12 show the yearly breakdown in prediction performance from Figures 4 to 6, 

extending up to 6 years into the future. As anticipated, the prediction accuracy for all algorithms 

declines as the prediction horizon increases. Table 11 shows the results of statistical tests comparing 

L2C-FNN with other approaches. L2C-FNN consistently matched or outperformed other methods 

from year 1 to year 6 across all datasets with two exceptions (Table 11). The exception was that AD-

Map was statistically better than L2C-FNN when predicting MMSE in year 0-1 and year 1-2 in the 

MACC dataset.  

 

 AIBL MACC OASIS 

MMSE 0-1 1-2 2-3 3-4 4-5 5-6 0-1 1-2 2-3 3-4 4-5 5-6 0-1 1-2 2-3 3-4 4-5 5-6 
L2C-FNN vs 
MinimalRNN ns ns ns ns ns ns ns ** *** ** ns ns ** * ** ** ** *** 

L2C-FNN vs 
AD-Map ns ns ns ns * ns *** ** ns ns ns ns ns ns ns ns ns ns 

L2C-FNN vs 
L2C-XGBw * *** ns ns * ns ns ns ns ** ns ns *** *** ** *** *** *** 

L2C-FNN vs 
L2C-XGBnw ns *** * ns ** ns * *** * ** ns ns *** ** ** * ** *** 

Ventricle 0-1 1-2 2-3 3-4 4-5 5-6 0-1 1-2 2-3 3-4 4-5 5-6 0-1 1-2 2-3 3-4 4-5 5-6 
L2C-FNN vs 
MinimalRNN ns ns * ns *** ns ** ** ** ** * ns * ns ns * ns ** 

L2C-FNN vs 
AD-Map ns ns ns ns * ns ns ns ns * ns ns ns ns ns ns ns ns 

L2C-FNN vs 
L2C-XGBw ns ** ns ns ns ns *** *** *** *** * ns ns ns * ns ns ** 

L2C-FNN vs 
L2C-XGBnw * ns ns ns ns ns ns *** ** *** * ns ns ns ns ns ns ns 

Diagnosis 0-1 1-2 2-3 3-4 4-5 5-6 0-1 1-2 2-3 3-4 4-5 5-6 0-1 1-2 2-3 3-4 4-5 5-6 
L2C-FNN vs 
MinimalRNN ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns 

L2C-FNN vs 
AD-Map ns ** ns ns ns ns ** ** ** ** ns ns ns ns ** ns ns ns 

L2C-FNN vs 
L2C-XGBw ns ns ** ns ns ns ns ns ns ns ns ns ns ns * ** ns ** 

L2C-FNN vs 
L2C-XGBnw ns ns * ns ns ns ns ns ns ns ns ns ** ns ns ns ns * 
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Table 11. Statistical significance between L2C-FNN and other approaches for cross-cohort MMSE, 

ventricle volume, and clinical diagnosis prediction performance (Figure 4-6) broken down into 

yearly intervals up to 6 years into the future. “*” indicates p < 0.05 and significance after multiple 

comparisons correction (FDR q < 0.05). “**” indicates p < 0.001 and significance after multiple 

comparisons correction (FDR q < 0.05). “***” indicates p < 0.00001 and significance after multiple 

comparisons correction (FDR q < 0.05). “ns” indicates no significance (p ≥ 0.05) or did not survive 

FDR correction. Green indicates L2C-FNN was statistically better than other approaches compared, 

while red indicated that it was statistically worse. 
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Figure 10. Cross-cohort MMSE prediction performance (Figure 4) broken down into yearly 

intervals up to 6 years into the future. Note that the last observed time point is at month 0, so year 

0-1 means that the prediction was for a future observation at 0 < month ≤ 12, year 1-2 means that 

the prediction was for a future observation at 12 < month ≤ 24, etc. All algorithms became worse 

further into the future. L2C-FNN was comparable to or better than all models across all years in 

three external test datasets except AD-Map in MACC for years 0-1 and 1-2. 
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Figure 11. Cross-cohort ventricle volume prediction performance (Figure 5) broken down into 

yearly intervals up to 6 years into the future. Note that the last observed time point is at month 0, 

so year 0-1 means that the prediction was for a future observation at 0 < month ≤ 12, year 1-2 means 

that the prediction was for a future observation at 12 < month ≤ 24, etc. All algorithms became worse 

further into the future. L2C-FNN was comparable to or better than all models across all years in 

three external test datasets. 
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Figure 12. Cross-cohort clinical diagnosis prediction performance (Figure 6) broken down into 

yearly intervals up to 6 years into the future. Note that the last observed time point is at month 0, 

so year 0-1 means that the prediction was for a future observation at 0 < month ≤ 12, year 1-2 means 

that the prediction was for a future observation at 12 < month ≤ 24, etc. All algorithms became worse 

further into the future. L2C-FNN was comparable to or better than all models across all years in 

three external test datasets. 
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4 Discussion 

In this study, we evaluated the winning algorithm of the TADPOLE challenge FROG, two 

FROG variants, MinimalRNN and AD-Map in the ADNI dataset, as well as three external datasets. 

In the ADNI dataset, all three FROG variants performed similarly well and outperformed 

MinimalRNN and AD-Map for clinical diagnosis. The excellent performance of FROG in clinical 

diagnosis was consistent with the outcome of the TADPOLE challenge, where FROG was ranked 

1st in clinical diagnosis prediction (Marinescu et al., 2021). In the three external datasets, the FROG 

variant L2C-FNN compared favorably with the other two FROG variants, MinimalRNN and AD-

map.  

An inherent challenge in the TADPOLE problem set up is the pervasive missing data in each 

participant. Missing data occurs when participants fail to show up or fail to complete certain tests or 

scans during visits. In most longitudinal datasets, not all data is collected at all timepoints by design. 

For example, one visit might only involve MRI scans, while another visit might only involve detailed 

neuropsychological exams. Therefore, the implication is that in every participant, there is missing 

data at almost every observed time point.  

State-based models, such as MinimalRNN, require specialized techniques to handle the 

missing data. By contrast, the L2C feature transformation significantly reduces the ratio of missing 

data. As a result, the input to models, comprising L2C features, contains substantially fewer missing 

data. This advantage of L2C transformation might explain the advantage of FROG variants over 

MinimalRNN. Another theoretical disadvantage of MinimalRNN is that each future prediction is 

based on previous predictions, which might lead to error accumulation (Fan et al., 2019). This error 

accumulation becomes particularly pronounced in longer-term predictions. This might be another 

reason why FROG variants outperformed MinimalRNN. 

The original FROG algorithm (L2C-XGBw) constructs separate XGBoost models for each 

target variable and different forecast windows, resulting in a total of 15 models. However, the 

optimal window ranges might vary significantly between datasets. Furthermore, dividing training 

samples into different bins based on the forecast interval range reduces the available training samples 

in each bin. We hypothesized that eliminating forecast window stratification and enabling the model 

to implicitly leverage temporal information within L2C features (e.g., time since baseline, time since 

most recent measurements) could enhance model generalizability. To test this hypothesis, we trained 

a single FNN for all training samples with varying forecast intervals. Experimentally, L2C-FNN 

outperformed L2C-XGBw in nearly every prediction task (i.e., clinical diagnosis, MMSE, ventricle 

volume) across all external datasets.  
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Another feature of L2C-FNN is the use of multi-task learning, such that a single FNN is used 

to predict all three target variables (ventricle volume, cognition, clinical diagnosis) simultaneously. 

Multi-task learning leverages shared representations to capture common patterns among related 

tasks, which might enhance data efficiency, accelerate learning, and mitigate overfitting (Crawshaw, 

2020). The FROG variant (L2C-XGBnw) helped to dissociate the effects of multi-task learning and 

the elimination of forecast window stratification by training a separate XGBoost model for each 

target variable. L2C-FNN again outperformed L2C-XGBnw in nearly every prediction task (i.e., 

clinical diagnosis, MMSE, ventricle volume) across all external datasets. Therefore, these results 

suggest the potential advantage of multi-task learning.  

In our evaluation, AD-Map was highly competitive in terms of predicting MMSE and 

ventricle volume, but performed poorly for clinical diagnosis. Because AD-Map utilized a sigmoid-

like parameterization, it might predict continuous variables (e.g., MMSE and ventricle volume) 

better than categorical variables (e.g., clinical diagnosis). Consistent with the original study (Maheux 

et al., 2023), we did not directly model clinical diagnosis in the AD-Map algorithm. We have also 

experimented with including clinical diagnosis in the AD-Map model, which improved clinical 

diagnosis prediction, but resulted in much worse MMSE and ventricle prediction (not shown).  

A limitation of the current study is that the models are trained from a single dataset (ADNI). 

We expect that models trained from multiple datasets might lead to better generalization to new 

populations and scanners (Dou et al., 2019; Liu et al., 2020; Chen et al., 2024). Therefore, a potential 

future work is to collate multiple datasets and train a single L2C-FNN model for future usage. 

Another limitation is that the current study only considered biomarkers that existed in all four 

datasets, so blood and PET biomarkers were excluded. Blood and PET biomarkers have been shown 

to be important markers of AD dementia (Nordberg et al., 2010; Mattsson et al., 2017; Chételat et 

al., 2020; Chong et al., 2021), therefore future studies could likely benefit from the incorporation of 

these additional biomarkers.  

 

5 Conclusion 

In this study, we evaluated three FROG variants, MinimalRNN and AD-Map in predicting 

future dementia progression in the ADNI dataset and three external datasets. We found that a FROG 

variant (L2C-FNN) performed the best in the three external datasets. L2C-FNN maintained better 

prediction performance regardless of the number of observed timepoints in a participant. L2C-FNN 

also consistently matched or outperformed other approaches from year 1 to year 6 across all external 

datasets, underscoring its potential for reliable long-term prediction in dementia progression.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 19, 2024. ; https://doi.org/10.1101/2024.11.18.24317513doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.18.24317513
http://creativecommons.org/licenses/by-nc-nd/4.0/


39 

 

6 Acknowledgment 

We would like to thank Christina Rabe, and Paul Manser from Team FROG for sharing their 

code with us, which significantly facilitated the current study. This research is supported by the NUS 

Yong Loo Lin School of Medicine (NUHSRO/2020/124/TMR/LOA), the Singapore National 

Medical Research Council (NMRC) LCG (OFLCG19May-0035), NMRC CTG-IIT (CTGIIT23jan-

0001), NMRC STaR (STaR20nov-0003), NMRC OF-IRG (OFIRG24jan-0030), Singapore Ministry 

of Health (MOH) Centre Grant (CG21APR1009), the Temasek Foundation (TF2223-IMH-01), and 

the United States National Institutes of Health (R01MH120080 & R01MH133334). Our 

computational work was partially performed on resources of the National Supercomputing Centre, 

Singapore (https://www.nscc.sg). Any opinions, findings and conclusions or recommendations 

expressed in this material are those of the authors and do not reflect the views of the Singapore 

NMRC, MOH, Temasek Foundation or USA NIH.  

Data collection and sharing for this project was funded by the Alzheimer's Disease 

Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD 

ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the 

National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and 

through generous contributions from the following: AbbVie, Alzheimer's Association; Alzheimer's 

Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb 

Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; 

EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE 

Healthcare; IXICO Ltd.;Janssen Alzheimer Immunotherapy Research & Development, LLC.; 

Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck 

& Co., Inc.;Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis 

Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical 

Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing 

funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the 

Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the 

Northern California Institute for Research and Education, and the study is coordinated by the 

Alzheimer's Therapeutic Research Institute at the University of Southern California. ADNI data are 

disseminated by the Laboratory for Neuro Imaging at the University of Southern California. 

Data were provided in part by OASIS-3: Longitudinal Multimodal Neuroimaging: Principal 

Investigators: T. Benzinger, D. Marcus, J. Morris; NIH P30 AG066444, P50 AG00561, P30 

NS09857781, P01 AG026276, P01 AG003991, R01 AG043434, UL1 TR000448, R01 EB009352. 

AV-45 doses were provided by Avid Radiopharmaceuticals, a wholly owned subsidiary of Eli Lilly. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 19, 2024. ; https://doi.org/10.1101/2024.11.18.24317513doi: medRxiv preprint 

https://ida.loni.usc.edu/collaboration/access/www.fnih.org
https://doi.org/10.1101/2024.11.18.24317513
http://creativecommons.org/licenses/by-nc-nd/4.0/


40 

 

7 Data availability statement 

The ADNI and the AIBL datasets can be accessed via the Image & Data Archive 

(https://ida.loni.usc.edu/). The MACC dataset can be obtained via a data-transfer agreement with 

the MACC (http://www.macc.sg/). The OASIS dataset can be requested from (https://www.oasis-

brains.org/). 

 

8 Code availability statement 

Code for all five models can be found here (GITHUB_LINK). Two co-authors (L.A. and N.W.) 

reviewed the code before merging it into the GitHub repository to reduce the chance of coding errors. 

 

9 Author contribution statement 

C.Z.: Conceptualization; Data curation; Formal analysis; Investigation; Methodology; 

Project administration; Software; Visualization; Writing – original draft; Writing – review & editing. 

L.A.: Software; Validation; Visualization; Writing – review & editing. N.W.: Software; Validation; 

Visualization; Writing – review & editing. K.N.: Investigation; Software; Data curation; 

Visualization; Writing – review and editing. C.O.: Visualization; Writing – review and editing. P.C.: 

Visualization; Writing – review & editing. C.C.: Resource; Writing – review & editing. J.H.Z.: 

Resource; Writing – review & editing. K.L.: Methodology; Software; Writing – review & editing. 

B.T.T.Y.: Conceptualization; Formal analysis; Funding acquisition; Investigation; Methodology; 

Resource; Supervision; Visualization; Writing – original draft; Writing – review & editing. 

 

10 Declaration of competing interest 

The authors declare that they have no known competing financial interests or personal 

relationships that could have appeared to influence the work reported in this paper. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 19, 2024. ; https://doi.org/10.1101/2024.11.18.24317513doi: medRxiv preprint 

https://ida.loni.usc.edu/
http://www.macc.sg/
https://www.oasis-brains.org/
https://www.oasis-brains.org/
https://doi.org/10.1101/2024.11.18.24317513
http://creativecommons.org/licenses/by-nc-nd/4.0/


41 

 

11 References 

Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Optuna: A Next-generation 

Hyperparameter Optimization Framework. Proceedings of the 25th ACM SIGKDD 

International Conference on Knowledge Discovery & Data Mining, 2623–2631. 

https://doi.org/10.1145/3292500.3330701 

Altman, D. G., Vergouwe, Y., Royston, P., & Moons, K. G. M. (2009). Prognosis and prognostic 

research: Validating a prognostic model. BMJ, 338, b605. https://doi.org/10.1136/bmj.b605 

Barandas, M., Folgado, D., Fernandes, L., Santos, S., Abreu, M., Bota, P., Liu, H., Schultz, T., & 

Gamboa, H. (2020). TSFEL: Time Series Feature Extraction Library. SoftwareX, 11, 100456. 

https://doi.org/10.1016/j.softx.2020.100456 

Basaia, S., Agosta, F., Wagner, L., Canu, E., Magnani, G., Santangelo, R., & Filippi, M. (2019). 

Automated classification of Alzheimer’s disease and mild cognitive impairment using a 

single MRI and deep neural networks. NeuroImage: Clinical, 21, 101645. 

https://doi.org/10.1016/j.nicl.2018.101645 

Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and 

Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society: Series B 

(Methodological), 57(1), 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x 

Bilgel, M., Jedynak, B. M., & Initiative, A. D. N. (2019). Predicting time to dementia using a 

quantitative template of disease progression. Alzheimer’s & Dementia: Diagnosis, 

Assessment & Disease Monitoring, 11(1), 205–215. 

https://doi.org/10.1016/j.dadm.2019.01.005 

Bouckaert, R. R., & Frank, E. (2004). Evaluating the Replicability of Significance Tests for 

Comparing Learning Algorithms (H. Dai, R. Srikant, & C. Zhang, Eds.; Vol. 3056, pp. 3–

12). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-24775-3_3 

Burns, D. K., Alexander, R. C., Welsh-Bohmer, K. A., Culp, M., Chiang, C., O’Neil, J., Evans, R. 

M., Harrigan, P., Plassman, B. L., Burke, J. R., Wu, J., Lutz, M. W., Haneline, S., Schwarz, 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 19, 2024. ; https://doi.org/10.1101/2024.11.18.24317513doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.18.24317513
http://creativecommons.org/licenses/by-nc-nd/4.0/


42 

 

A. J., Schneider, L. S., Yaffe, K., Saunders, A. M., Ratti, E., Aarsland, D., … Zimmerman, 

C. (2021). Safety and efficacy of pioglitazone for the delay of cognitive impairment in people 

at risk of Alzheimer’s disease (TOMMORROW): A prognostic biomarker study and a phase 

3, randomised, double-blind, placebo-controlled trial. The Lancet Neurology, 20(7), 537–

547. https://doi.org/10.1016/S1474-4422(21)00043-0 

Chekroud, A. M., Hawrilenko, M., Loho, H., Bondar, J., Gueorguieva, R., Hasan, A., Kambeitz, J., 

Corlett, P. R., Koutsouleris, N., Krumholz, H. M., Krystal, J. H., & Paulus, M. (2024). 

Illusory generalizability of clinical prediction models. Science, 383(6679), 164–167. 

https://doi.org/10.1126/science.adg8538 

Chen, P., An, L., Wulan, N., Zhang, C., Zhang, S., Ooi, L. Q. R., Kong, R., Chen, J., Wu, J., Chopra, 

S., Bzdok, D., Eickhoff, S. B., Holmes, A. J., & Yeo, B. T. T. (2024). Multilayer meta-

matching: Translating phenotypic prediction models from multiple datasets to small data. 

Imaging Neuroscience, 2, 1–22. https://doi.org/10.1162/imag_a_00233 

Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Proceedings of the 

22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 

785–794. https://doi.org/10.1145/2939672.2939785 

Chételat, G., Arbizu, J., Barthel, H., Garibotto, V., Law, I., Morbelli, S., Giessen, E. van de, Agosta, 

F., Barkhof, F., Brooks, D. J., Carrillo, M. C., Dubois, B., Fjell, A. M., Frisoni, G. B., 

Hansson, O., Herholz, K., Hutton, B. F., Jack, C. R., Lammertsma, A. A., … Drzezga, A. 

(2020). Amyloid-PET and 18F-FDG-PET in the diagnostic investigation of Alzheimer’s 

disease and other dementias. The Lancet Neurology, 19(11), 951–962. 

https://doi.org/10.1016/S1474-4422(20)30314-8 

Chong, J. R., Ashton, N. J., Karikari, T. K., Tanaka, T., Saridin, F. N., Reilhac, A., Robins, E. G., 

Nai, Y.-H., Vrooman, H., Hilal, S., Zetterberg, H., Blennow, K., Lai, M. K. P., & Chen, C. 

P. (2021). Plasma P-tau181 to Aβ42 ratio is associated with brain amyloid burden and 

hippocampal atrophy in an Asian cohort of Alzheimer’s disease patients with concomitant 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 19, 2024. ; https://doi.org/10.1101/2024.11.18.24317513doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.18.24317513
http://creativecommons.org/licenses/by-nc-nd/4.0/


43 

 

cerebrovascular disease. Alzheimer’s & Dementia, 17(10), 1649–1662. 

https://doi.org/10.1002/alz.12332 

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Routledge. 

https://doi.org/10.4324/9780203771587 

Courchesne, E., Chisum, H. J., Townsend, J., Cowles, A., Covington, J., Egaas, B., Harwood, M., 

Hinds, S., & Press, G. A. (2000). Normal Brain Development and Aging: Quantitative 

Analysis at in Vivo MR Imaging in Healthy Volunteers. Radiology, 216(3), 672–682. 

https://doi.org/10.1148/radiology.216.3.r00au37672 

Crawshaw, M. (2020). Multi-Task Learning with Deep Neural Networks: A Survey. ArXiv. 

https://www.semanticscholar.org/paper/Multi-Task-Learning-with-Deep-Neural-

Networks%3A-A-Crawshaw/74f23063ca77f5b1caa3770a5957ae5fc565843e 

Cummings, J., Feldman, H. H., & Scheltens, P. (2019). The “rights” of precision drug development 

for Alzheimer’s disease. Alzheimer’s Research & Therapy, 11(1), 76. 

https://doi.org/10.1186/s13195-019-0529-5 

de Vugt, M. E., & Verhey, F. R. J. (2013). The impact of early dementia diagnosis and intervention 

on informal caregivers. Progress in Neurobiology, 110, 54–62. 

https://doi.org/10.1016/j.pneurobio.2013.04.005 

Deng, H., Runger, G., Tuv, E., & Vladimir, M. (2013). A time series forest for classification and 

feature extraction. Information Sciences, 239, 142–153. 

https://doi.org/10.1016/j.ins.2013.02.030 

Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., Buckner, R. L., 

Dale, A. M., Maguire, R. P., Hyman, B. T., Albert, M. S., & Killiany, R. J. (2006). An 

automated labeling system for subdividing the human cerebral cortex on MRI scans into 

gyral based regions of interest. NeuroImage, 31(3), 968–980. 

https://doi.org/10.1016/j.neuroimage.2006.01.021 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 19, 2024. ; https://doi.org/10.1101/2024.11.18.24317513doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.18.24317513
http://creativecommons.org/licenses/by-nc-nd/4.0/


44 

 

Dou, Q., Castro, D. C., Kamnitsas, K., & Glocker, B. (2019). Domain generalization via model-

agnostic learning of semantic features. In Proceedings of the 33rd International Conference 

on Neural Information Processing Systems (pp. 6450–6461). Curran Associates Inc. 

Dubois, B., Hampel, H., Feldman, H. H., Scheltens, P., Aisen, P., Andrieu, S., Bakardjian, H., Benali, 

H., Bertram, L., Blennow, K., Broich, K., Cavedo, E., Crutch, S., Dartigues, J.-F., 

Duyckaerts, C., Epelbaum, S., Frisoni, G. B., Gauthier, S., Genthon, R., … Jack, C. R. (2016). 

Preclinical Alzheimer’s disease: Definition, natural history, and diagnostic criteria. 

Alzheimer’s & Dementia : The Journal of the Alzheimer’s Association, 12(3), 292–323. 

https://doi.org/10.1016/j.jalz.2016.02.002 

El-Sappagh, S., Alonso, J. M., Islam, S. M. R., Sultan, A. M., & Kwak, K. S. (2021). A multilayer 

multimodal detection and prediction model based on explainable artificial intelligence for 

Alzheimer’s disease. Scientific Reports, 11(1), 2660. https://doi.org/10.1038/s41598-021-

82098-3 

Eriksson, D., Bindel, D., & Shoemaker, C. A. (2019). pySOT and POAP: An event-driven 

asynchronous framework for surrogate optimization (arXiv:1908.00420). arXiv. 

https://doi.org/10.48550/arXiv.1908.00420 

Fan, C., Wang, J., Gang, W., & Li, S. (2019). Assessment of deep recurrent neural network-based 

strategies for short-term building energy predictions. Applied Energy, 236, 700–710. 

https://doi.org/10.1016/j.apenergy.2018.12.004 

Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der Kouwe, A., 

Killiany, R., Kennedy, D., Klaveness, S., Montillo, A., Makris, N., Rosen, B., & Dale, A. M. 

(2002). Whole brain segmentation: Automated labeling of neuroanatomical structures in the 

human brain. Neuron, 33(3), 341–355. https://doi.org/10.1016/s0896-6273(02)00569-x  

Fowler, C., Rainey-Smith, S. R., Bird, S., Bomke, J., Bourgeat, P., Brown, B. M., Burnham, S. C., 

Bush, A. I., Chadunow, C., Collins, S., Doecke, J., Doré, V., Ellis, K. A., Evered, L., 

Fazlollahi, A., Fripp, J., Gardener, S. L., Gibson, S., Grenfell, R., … the AIBL investigators. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 19, 2024. ; https://doi.org/10.1101/2024.11.18.24317513doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.18.24317513
http://creativecommons.org/licenses/by-nc-nd/4.0/


45 

 

(2021). Fifteen Years of the Australian Imaging, Biomarkers and Lifestyle (AIBL) Study: 

Progress and Observations from 2,359 Older Adults Spanning the Spectrum from Cognitive 

Normality to Alzheimer’s Disease. Journal of Alzheimer’s Disease Reports, 5(1), 443–468. 

https://doi.org/10.3233/ADR-210005 

Ghazi, M., Nielsen, M., Pai, A., Cardoso, M. J., Modat, M., Ourselin, S., & Sørensen, L. (2019). 

Training recurrent neural networks robust to incomplete data: Application to Alzheimer’s 

disease progression modeling. Medical Image Analysis, 53, 39–46. 

https://doi.org/10.1016/j.media.2019.01.004 

Ghazi, M., Nielsen, M., Pai, A., Modat, M., Jorge Cardoso, M., Ourselin, S., & Sørensen, L. (2021). 

Robust parametric modeling of Alzheimer’s disease progression. NeuroImage, 225, 117460. 

https://doi.org/10.1016/j.neuroimage.2020.117460 

Good, P. (2000). Testing Hypotheses. In P. Good (Ed.), Permutation Tests: A Practical Guide to 

Resampling Methods for Testing Hypotheses (pp. 31–53). Springer. 

https://doi.org/10.1007/978-1-4757-3235-1_3 

Hampel, H., Hardy, J., Blennow, K., Chen, C., Perry, G., Kim, S. H., Villemagne, V. L., Aisen, P., 

Vendruscolo, M., Iwatsubo, T., Masters, C. L., Cho, M., Lannfelt, L., Cummings, J. L., & 

Vergallo, A. (2021). The Amyloid-β Pathway in Alzheimer’s Disease. Molecular Psychiatry, 

26(10), 5481–5503. https://doi.org/10.1038/s41380-021-01249-0 

Hand, D. J., & Till, R. J. (2001). A Simple Generalisation of the Area Under the ROC Curve for 

Multiple Class Classification Problems. Machine Learning, 45(2), 171–186. 

https://doi.org/10.1023/A:1010920819831 

Hebling Vieira, B., Liem, F., Dadi, K., Engemann, D. A., Gramfort, A., Bellec, P., Craddock, R. C., 

Damoiseaux, J. S., Steele, C. J., Yarkoni, T., Langer, N., Margulies, D. S., & Varoquaux, G. 

(2022). Predicting future cognitive decline from non-brain and multimodal brain imaging 

data in healthy and pathological aging. Neurobiology of Aging, 118, 55–65. 

https://doi.org/10.1016/j.neurobiolaging.2022.06.008 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 19, 2024. ; https://doi.org/10.1101/2024.11.18.24317513doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.18.24317513
http://creativecommons.org/licenses/by-nc-nd/4.0/


46 

 

Herrick, R., Horton, W., Olsen, T., McKay, M., Archie, K. A., & Marcus, D. S. (2016). XNAT 

Central: Open Sourcing Imaging Research Data. NeuroImage, 124(Pt B), 1093–1096. 

https://doi.org/10.1016/j.neuroimage.2015.06.076 

Hilal, S., Tan, C. S., van Veluw, S. J., Xu, X., Vrooman, H., Tan, B. Y., Venketasubramanian, N., 

Biessels, G. J., & Chen, C. (2020). Cortical cerebral microinfarcts predict cognitive decline 

in memory clinic patients. Journal of Cerebral Blood Flow and Metabolism: Official Journal 

of the International Society of Cerebral Blood Flow and Metabolism, 40(1), 44–53. 

https://doi.org/10.1177/0271678X19835565 

Iddi, S., Li, D., Aisen, P. S., Rafii, M. S., Thompson, W. K., Donohue, M. C., & for the Alzheimer’s 

Disease Neuroimaging Initiative. (2019). Predicting the course of Alzheimer’s progression. 

Brain Informatics, 6(1), 6. https://doi.org/10.1186/s40708-019-0099-0 

Ilievski, I., Akhtar, T., Feng, J., & Shoemaker, C. (2017). Efficient Hyperparameter Optimization 

for Deep Learning Algorithms Using Deterministic RBF Surrogates. Proceedings of the 

AAAI Conference on Artificial Intelligence, 31(1), Article 1. 

https://doi.org/10.1609/aaai.v31i1.10647 

Jack, C. R., Bennett, D. A., Blennow, K., Carrillo, M. C., Dunn, B., Haeberlein, S. B., Holtzman, D. 

M., Jagust, W., Jessen, F., Karlawish, J., Liu, E., Molinuevo, J. L., Montine, T., Phelps, C., 

Rankin, K. P., Rowe, C. C., Scheltens, P., Siemers, E., Snyder, H. M., … Contributors. 

(2018). NIA-AA Research Framework: Toward a biological definition of Alzheimer’s 

disease. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 14(4), 535–

562. https://doi.org/10.1016/j.jalz.2018.02.018 

Jack, C. R., Bernstein, M. A., Fox, N. C., Thompson, P., Alexander, G., Harvey, D., Borowski, B., 

Britson, P. J., L Whitwell, J., Ward, C., Dale, A. M., Felmlee, J. P., Gunter, J. L., Hill, D. L. 

G., Killiany, R., Schuff, N., Fox-Bosetti, S., Lin, C., Studholme, C., … Weiner, M. W. (2008). 

The Alzheimer’s Disease Neuroimaging Initiative (ADNI): MRI methods. Journal of 

Magnetic Resonance Imaging: JMRI, 27(4), 685–691. https://doi.org/10.1002/jmri.21049 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 19, 2024. ; https://doi.org/10.1101/2024.11.18.24317513doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.18.24317513
http://creativecommons.org/licenses/by-nc-nd/4.0/


47 

 

Jack, C. R., Knopman, D. S., Jagust, W. J., Shaw, L. M., Aisen, P. S., Weiner, M. W., Petersen, R. 

C., & Trojanowski, J. Q. (2010). Hypothetical model of dynamic biomarkers of the 

Alzheimer’s pathological cascade. The Lancet Neurology, 9(1), 119–128. 

https://doi.org/10.1016/S1474-4422(09)70299-6 

Jedynak, B. M., Lang, A., Liu, B., Katz, E., Zhang, Y., Wyman, B. T., Raunig, D., Jedynak, C. P., 

Caffo, B., & Prince, J. L. (2012). A computational neurodegenerative disease progression 

score: Method and results with the Alzheimer’s disease neuroimaging initiative cohort. 

NeuroImage, 63(3), 1478–1486. https://doi.org/10.1016/j.neuroimage.2012.07.059 

Jenkins, R., Fox, N. C., Rossor, A. M., Harvey, R. J., & Rossor, M. N. (2000). Intracranial volume 

and Alzheimer disease: Evidence against the cerebral reserve hypothesis. Archives of 

Neurology, 57(2), 220–224. https://doi.org/10.1001/archneur.57.2.220 

Jung, W., Jun, E., & Suk, H.-I. (2021). Deep recurrent model for individualized prediction of 

Alzheimer’s disease progression. NeuroImage, 237, 118143. 

https://doi.org/10.1016/j.neuroimage.2021.118143 

Kong, R., Li, J., Orban, C., Sabuncu, M. R., Liu, H., Schaefer, A., Sun, N., Zuo, X.-N., Holmes, A. 

J., Eickhoff, S. B., & Yeo, B. T. T. (2019). Spatial Topography of Individual-Specific 

Cortical Networks Predicts Human Cognition, Personality, and Emotion. Cerebral Cortex 

(New York, N.Y.: 1991), 29(6), 2533–2551. https://doi.org/10.1093/cercor/bhy123 

Koval, I., Bône, A., Louis, M., Lartigue, T., Bottani, S., Marcoux, A., Samper-González, J., Burgos, 

N., Charlier, B., Bertrand, A., Epelbaum, S., Colliot, O., Allassonnière, S., & Durrleman, S. 

(2021). AD Course Map charts Alzheimer’s disease progression. Scientific Reports, 11(1), 

Article 1. https://doi.org/10.1038/s41598-021-87434-1 

LaMontagne, Tammie LS. Benzinger, John C. Morris, Sarah Keefe, Russ Hornbeck, Chengjie Xiong, 

Elizabeth Grant, Jason Hassenstab, Krista Moulder, Andrei G. Vlassenko, Marcus E. Raichle, 

Carlos Cruchaga, & Daniel Marcus. (2019). OASIS-3: Longitudinal Neuroimaging, Clinical, 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 19, 2024. ; https://doi.org/10.1101/2024.11.18.24317513doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.18.24317513
http://creativecommons.org/licenses/by-nc-nd/4.0/


48 

 

and Cognitive Dataset for Normal Aging and Alzheimer Disease. medRxiv, 

2019.12.13.19014902. https://doi.org/10.1101/2019.12.13.19014902 

Li, D., Iddi, S., Thompson, W. K., Donohue, M. C., & Alzheimer’s Disease Neuroimaging Initiative. 

(2019). Bayesian latent time joint mixed effect models for multicohort longitudinal data. 

Statistical Methods in Medical Research, 28(3), 835–845. 

https://doi.org/10.1177/0962280217737566 

Li, J., Kong, R., Liégeois, R., Orban, C., Tan, Y., Sun, N., Holmes, A. J., Sabuncu, M. R., Ge, T., & 

Yeo, B. T. T. (2019). Global signal regression strengthens association between resting-state 

functional connectivity and behavior. NeuroImage, 196, 126–141. 

https://doi.org/10.1016/j.neuroimage.2019.04.016 

Liu, Q., Dou, Q., Yu, L., & Heng, P. A. (2020). MS-Net: Multi-Site Network for Improving Prostate 

Segmentation With Heterogeneous MRI Data. IEEE Transactions on Medical Imaging, 

39(9), 2713–2724. https://doi.org/10.1109/TMI.2020.2974574 

Maas, A. L. (2013). Rectifier Nonlinearities Improve Neural Network Acoustic Models. 

https://www.semanticscholar.org/paper/Rectifier-Nonlinearities-Improve-Neural-Network-

Maas/367f2c63a6f6a10b3b64b8729d601e69337ee3cc 

Maheux, E., Koval, I., Ortholand, J., Birkenbihl, C., Archetti, D., Bouteloup, V., Epelbaum, S., 

Dufouil, C., Hofmann-Apitius, M., & Durrleman, S. (2023). Forecasting individual 

progression trajectories in Alzheimer’s disease. Nature Communications, 14(1), 761. 

https://doi.org/10.1038/s41467-022-35712-5 

Marinescu, R. V., Oxtoby, N. P., Young, A. L., Bron, E. E., Toga, A. W., Weiner, M. W., Barkhof, 

F., Fox, N. C., Eshaghi, A., Toni, T., Salaterski, M., Lunina, V., Ansart, M., Durrleman, S., 

Lu, P., Iddi, S., Li, D., Thompson, W. K., Donohue, M. C., … The Alzheimer’s Disease 

Neuroimaging Initiative. (2021). The Alzheimer’s Disease Prediction Of Longitudinal 

Evolution (TADPOLE) Challenge: Results after 1 Year Follow-up. Machine Learning for 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 19, 2024. ; https://doi.org/10.1101/2024.11.18.24317513doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.18.24317513
http://creativecommons.org/licenses/by-nc-nd/4.0/


49 

 

Biomedical Imaging, 1(December 2021 issue), 1–60. https://doi.org/10.59275/j.melba.2021-

2dcc 

Marinescu, R. V., Oxtoby, N. P., Young, A. L., Bron, E. E., Toga, A. W., Weiner, M. W., Barkhof, 

F., Fox, N. C., Golland, P., Klein, S., & Alexander, D. C. (2019). TADPOLE Challenge: 

Accurate Alzheimer’s disease prediction through crowdsourced forecasting of future data. 

PRedictive Intelligence in MEdicine. PRIME (Workshop), 11843, 1–10. 

https://doi.org/10.1007/978-3-030-32281-6_1 

Mattsson, N., Andreasson, U., Zetterberg, H., Blennow, K., & for the Alzheimer’s Disease 

Neuroimaging Initiative. (2017). Association of Plasma Neurofilament Light With 

Neurodegeneration in Patients With Alzheimer Disease. JAMA Neurology, 74(5), 557–566. 

https://doi.org/10.1001/jamaneurol.2016.6117 

Nanopoulos, A., Alcock, R., & Manolopoulos, Y. (2001). Feature-based classification of time-series 

data. In Information processing and technology (pp. 49–61). Nova Science Publishers, Inc. 

Nguyen, M., He, T., An, L., Alexander, D. C., Feng, J., & Yeo, B. T. T. (2020). Predicting 

Alzheimer’s disease progression using deep recurrent neural networks. NeuroImage, 222, 

117203. https://doi.org/10.1016/j.neuroimage.2020.117203 

Nordberg, A., Rinne, J. O., Kadir, A., & Långström, B. (2010). The use of PET in Alzheimer disease. 

Nature Reviews Neurology, 6(2), 78–87. https://doi.org/10.1038/nrneurol.2009.217 

O’Bryant, S. E., Lacritz, L. H., Hall, J., Waring, S. C., Chan, W., Khodr, Z. G., Massman, P. J., 

Hobson, V., & Cullum, C. M. (2010). Validation of the New Interpretive Guidelines for the 

Clinical Dementia Rating Scale Sum of Boxes Score in the National Alzheimer’s 

Coordinating Center Database. Archives of Neurology, 67(6), 746–749. 

https://doi.org/10.1001/archneurol.2010.115 

Oxtoby, N. P. (2023). Data-Driven Disease Progression Modeling. In O. Colliot (Ed.), Machine 

Learning for Brain Disorders. Humana. http://www.ncbi.nlm.nih.gov/books/NBK597485/ 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 19, 2024. ; https://doi.org/10.1101/2024.11.18.24317513doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.18.24317513
http://creativecommons.org/licenses/by-nc-nd/4.0/


50 

 

Oxtoby, N. P., Shand, C., Cash, D. M., Alexander, D. C., & Barkhof, F. (2022). Targeted Screening 

for Alzheimer’s Disease Clinical Trials Using Data-Driven Disease Progression Models. 

Frontiers in Artificial Intelligence, 5, 660581. https://doi.org/10.3389/frai.2022.660581 

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, 

N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., 

Chilamkurthy, S., Steiner, B., Fang, L., … Chintala, S. (2019). PyTorch: An Imperative Style, 

High-Performance Deep Learning Library. Advances in Neural Information Processing 

Systems, 32. 

https://papers.nips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-

Abstract.html 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., 

Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., 

Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine Learning in Python. 

Journal of Machine Learning Research, 12(85), 2825–2830. 

Petersen, R. C., Aisen, P. S., Beckett, L. A., Donohue, M. C., Gamst, A. C., Harvey, D. J., Jack, C. 

R., Jagust, W. J., Shaw, L. M., Toga, A. W., Trojanowski, J. Q., & Weiner, M. W. (2010). 

Alzheimer’s Disease Neuroimaging Initiative (ADNI): Clinical characterization. Neurology, 

74(3), 201–209. https://doi.org/10.1212/WNL.0b013e3181cb3e25 

Qian, N. (1999). On the momentum term in gradient descent learning algorithms. Neural Networks, 

12(1), 145–151. https://doi.org/10.1016/S0893-6080(98)00116-6 

Qiu, S., Joshi, P. S., Miller, M. I., Xue, C., Zhou, X., Karjadi, C., Chang, G. H., Joshi, A. S., Dwyer, 

B., Zhu, S., Kaku, M., Zhou, Y., Alderazi, Y. J., Swaminathan, A., Kedar, S., Saint-Hilaire, 

M.-H., Auerbach, S. H., Yuan, J., Sartor, E. A., … Kolachalama, V. B. (2020). Development 

and validation of an interpretable deep learning framework for Alzheimer’s disease 

classification. Brain, 143(6), 1920–1933. https://doi.org/10.1093/brain/awaa137 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 19, 2024. ; https://doi.org/10.1101/2024.11.18.24317513doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.18.24317513
http://creativecommons.org/licenses/by-nc-nd/4.0/


51 

 

Rahim, M., Thirion, B., Bzdok, D., Buvat, I., & Varoquaux, G. (2017). Joint prediction of multiple 

scores captures better individual traits from brain images. NeuroImage, 158, 145–154. 

https://doi.org/10.1016/j.neuroimage.2017.06.072 

Rasmussen, J., & Langerman, H. (2019). Alzheimer’s Disease—Why We Need Early Diagnosis. 

Degenerative Neurological and Neuromuscular Disease, 9, 123–130. 

https://doi.org/10.2147/DNND.S228939 

Scheltens, P., Blennow, K., Breteler, M. M. B., Strooper, B. de, Frisoni, G. B., Salloway, S., & Flier, 

W. M. V. der. (2016). Alzheimer’s disease. The Lancet, 388(10043), 505–517. 

https://doi.org/10.1016/S0140-6736(15)01124-1 

Scheltens, P., De Strooper, B., Kivipelto, M., Holstege, H., Chételat, G., Teunissen, C. E., 

Cummings, J., & van der Flier, W. M. (2021). Alzheimer’s disease. Lancet (London, 

England), 397(10284), 1577–1590. https://doi.org/10.1016/S0140-6736(20)32205-4 

Selkoe, D. J., & Hardy, J. (2016). The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO 

Molecular Medicine, 8(6), 595–608. https://doi.org/10.15252/emmm.201606210 

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A 

Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning 

Research, 15(56), 1929–1958. 

Steyerberg, E. W. (2019). Validation of Prediction Models. In E. W. Steyerberg (Ed.), Clinical 

Prediction Models: A Practical Approach to Development, Validation, and Updating (pp. 

329–344). Springer International Publishing. https://doi.org/10.1007/978-3-030-16399-

0_17 

Sutskever, I., Martens, J., Dahl, G., & Hinton, G. (2013). On the importance of initialization and 

momentum in deep learning. Proceedings of the 30th International Conference on Machine 

Learning, 1139–1147. https://proceedings.mlr.press/v28/sutskever13.html 

Tariot, P. N., Boada, M., Lanctôt, K. L., Hahn-Pedersen, J., Dabbous, F., Udayachalerm, S., Raket, 

L. L., Halchenko, Y., Michalak, W., Weidner, W., & Cummings, J. (2024). Relationships of 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 19, 2024. ; https://doi.org/10.1101/2024.11.18.24317513doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.18.24317513
http://creativecommons.org/licenses/by-nc-nd/4.0/


52 

 

change in Clinical Dementia Rating (CDR) on patient outcomes and probability of 

progression: Observational analysis. Alzheimer’s Research & Therapy, 16(1), 36. 

https://doi.org/10.1186/s13195-024-01399-7 

the ADNI team. (2023). ADNIMERGE: Alzheimer’s Disease Neuroimaging Initiative (0.0.1) [R 

package]. https://adni.bitbucket.io/index.html 

Van Dyck, C. H., Swanson, C. J., Aisen, P., Bateman, R. J., Chen, C., Gee, M., Kanekiyo, M., Li, 

D., Reyderman, L., Cohen, S., Froelich, L., Katayama, S., Sabbagh, M., Vellas, B., Watson, 

D., Dhadda, S., Irizarry, M., Kramer, L. D., & Iwatsubo, T. (2023). Lecanemab in Early 

Alzheimer’s Disease. The New England Journal of Medicine, 388(1), 9–21. 

https://doi.org/10.1056/NEJMoa2212948 

Varoquaux, G. (2018). Cross-validation failure: Small sample sizes lead to large error bars. 

NeuroImage, 180, 68–77. https://doi.org/10.1016/j.neuroimage.2017.06.061 

Venkatraghavan, V., Bron, E. E., Niessen, W. J., & Klein, S. (2019). Disease progression timeline 

estimation for Alzheimer’s disease using discriminative event based modeling. NeuroImage, 

186, 518–532. https://doi.org/10.1016/j.neuroimage.2018.11.024 

Villemagne, V. L., Burnham, S., Bourgeat, P., Brown, B., Ellis, K. A., Salvado, O., Szoeke, C., 

Macaulay, S. L., Martins, R., Maruff, P., Ames, D., Rowe, C. C., Masters, C. L., & Australian 

Imaging Biomarkers and Lifestyle (AIBL) Research Group. (2013). Amyloid β deposition, 

neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: A prospective 

cohort study. The Lancet. Neurology, 12(4), 357–367. https://doi.org/10.1016/S1474-

4422(13)70044-9 

Wang, C., Li, Y., Tsuboshita, Y., Sakurai, T., Goto, T., Yamaguchi, H., Yamashita, Y., Sekiguchi, 

A., & Tachimori, H. (2022). A high-generalizability machine learning framework for 

predicting the progression of Alzheimer’s disease using limited data. Npj Digital Medicine, 

5(1), Article 1. https://doi.org/10.1038/s41746-022-00577-x 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 19, 2024. ; https://doi.org/10.1101/2024.11.18.24317513doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.18.24317513
http://creativecommons.org/licenses/by-nc-nd/4.0/


53 

 

Xu, L., Wu, H., He, C., Wang, J., Zhang, C., Nie, F., & Chen, L. (2022). Multi-modal sequence 

learning for Alzheimer’s disease progression prediction with incomplete variable-length 

longitudinal data. Medical Image Analysis, 82, 102643. 

https://doi.org/10.1016/j.media.2022.102643 

Zhang, R., Simon, G., & Yu, F. (2017). Advancing Alzheimer’s Research: A Review of Big Data 

Promises. International Journal of Medical Informatics, 106, 48–56. 

https://doi.org/10.1016/j.ijmedinf.2017.07.002 

Zhao, Y., Wong, L., & Goh, W. W. B. (2020). How to do quantile normalization correctly for gene 

expression data analyses. Scientific Reports, 10(1), Article 1. 

https://doi.org/10.1038/s41598-020-72664-6 

Zhou, K., Liu, Z., Qiao, Y., Xiang, T., & Loy, C. C. (2022). Domain Generalization: A Survey. 

IEEE Transactions on Pattern Analysis and Machine Intelligence, 1–20. 

https://doi.org/10.1109/TPAMI.2022.3195549 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 19, 2024. ; https://doi.org/10.1101/2024.11.18.24317513doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.18.24317513
http://creativecommons.org/licenses/by-nc-nd/4.0/

