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Abstract

Climate change is expected to exacerbate infectious diseases, yet the climate sensitivity of zoonotic
diseases (driven by spillover from animal reservoirs) is markedly understudied compared to
vector-borne and water-borne infections. To address this gap, we conducted a global systematic
review and quantitative synthesis to identify relationships between climatic indicators (temperature,
precipitation, humidity) and zoonotic disease risk metrics worldwide. We identified 185 studies from
55 countries, describing 547 measures across 51 diseases, with most studies testing linear (n=166)
rather than nonlinear (n=23) relationships. We found evidence of climate sensitivity across diverse
zoonotic diseases (significant non-zero relationships in 64.3% of temperature effects, 49.8% of
precipitation effects, and 48.9% of humidity effects), but with broad variation in direction and
strength. Positive effects of temperature and rainfall on disease risk were more common than negative
effects (39.1% vs. 25.2% and 30.5% vs. 19.2% of all records, respectively). These studies were
predominantly located in areas expected to have substantial increases in annual mean temperature
(>1.5ºC in 93% of studies) and rainfall (>25 mm in 46% of studies) by 2041–2070. Notably, the most
consistent relationship was between temperature and vector-borne zoonoses (50% of Positive effects,
mean Hedge's g = 0.31). Overall, our analyses provide evidence that climate sensitivity is common
across zoonoses, likely leading to substantial yet complex effects of future climate change on zoonotic
burden. Finally, we highlight the need for future studies to use biologically appropriate models,
rigorous space-time controls, consider causal perspectives and address taxonomic and geographic
biases to allow a robust consensus of climate-risk relationships to emerge.
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Significance statement

Understanding how climate change affects zoonotic diseases—those transmitted from animals to
humans—is crucial for public health planning yet remains underexplored. Our global analysis of 185
studies covering 51 zoonotic diseases reveals widespread climate sensitivity among these diseases.
Climatic factors, particularly temperature, are o�en linked to increased disease risk, especially for
vector-borne diseases transmitted by arthropods. With many regions projected to experience
significant warming, climate change may exacerbate zoonotic disease burden. However, few studies
have considered nonlinear effects, and the variation in responses both within and across diseases
indicates complex dynamics that require biologically informed research methods. These findings
underscore the urgent need for improved research approaches to better predict and manage future
disease risks in a changing climate.
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Introduction

The rapid increase in the emergence of zoonotic diseases and diseases of zoonotic origin, such as
Zika, Ebola and COVID-19, presents significant threats to global economies, public health, and social
stability (1). The processes that drive pathogen spillover operate at the nexus of environmental
change, socioeconomic structure, and public health (2). As global changes—including climate change,
urbanisation, and land-use transformation—reshape human-environment interfaces, the risk of novel
patterns of zoonotic disease transmission rises (3–5). Among these drivers, climate change stands out
as a particularly important yet still poorly understood factor (6), necessitating additional research into
how it shapes zoonotic disease burden across various systems.

Despite most recent pandemics being zoonotic in origin, most of the previous research on climate
change as a moderator of pathogen spillover has focused on high burden, vector-borne diseases
(7–10). Moreover, biases in reporting efforts for neglected or emerging zoonoses — particularly in
under-resourced settings — add to the challenge of establishing baseline evidence (11, 12). Addressing
these knowledge gaps is essential for developing realistic projections of how climate change may
impact the global burden of zoonotic diseases (13). A better understanding of these dynamics is also
crucial for developing global longitudinal monitoring programs, informing current research priorities,
and helping identify potential trends in future zoonotic risk (3, 8, 14).

To extrapolate zoonotic disease risk into the future, it is vital to identify trends in the local-scale
climate sensitivity of pathogens. Short-term variation in key climatic factors, such as temperature,
precipitation, and humidity, can alter disease transmission through multiple mechanisms, such as
modified contact rates between hosts, impacts on vector thermal responses, and changes to host
population dynamics (3, 15–20). For example, seasonal changes in temperature and precipitation
drive both vector population sizes and thermal suitability for mosquito-borne disease transmission
(e.g., dengue, malaria, Zika) (9, 21–23). Similarly, rodent population cycles are strongly influenced by
seasonal and multi-year precipitation, consequently impacting the spillover dynamics of zoonotic
pathogens such as hantaviruses, Lassa virus and leptospirosis (2, 24–27).

Given the evidence of climate sensitivity in zoonotic diseases, transmission risk is likely to be impacted
by climate change. Long-term changes to the climate may drive large-scale movement of key hosts
and vectors, modify land-use patterns, and alter basic physiological responses with consequences for
disease susceptibility (3, 18, 28–30). This may both exacerbate and suppress different elements of
transmission, creating potentially complex effects that vary across systems (20). Improving our
knowledge of the response of reservoir hosts to climate variability will help disentangle potential
impacts of climate change on disease risk. While many mosquito-borne diseases are well-studied in
relation to climate variability (22), the climate sensitivity of zoonoses more broadly is poorly defined,
despite representing an important dimension of public health risk.

Recent reviews and analyses have addressed some key questions in this area. Many studies identified
increasing disease risk stemming from climate change (5, 19, 20, 31), yet they reveal mixed findings on
the consistency of these responses, with some showing high degree of context-dependent effects.
Notably, a gap remains in research specifically addressing the sensitivity of diverse zoonotic disease
systems to different climate factors. By synthesising globally distributed empirical studies on various
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climate metrics and disease risk measures, this study aims to uncover broader patterns of climate
sensitivity unique to zoonoses.

Here, we conduct a comprehensive analysis of primary studies that evaluate the empirical
relationships between climatic parameters (i.e., temperature, precipitation, and humidity) and
measures of zoonotic risk (i.e., abundance, seroprevalence, number of cases, and incidence) to assess
the extent of climate sensitivity across zoonotic disease systems. Specifically, our study aims to: (1)
identify which regions and zoonotic diseases are over– or underrepresented in climate sensitivity
research; (2) determine whether any consistent patterns emerge in climate sensitivity across disease
types, regions, types of vectors, and hosts; (3) evaluate if the methods and metrics used in source
studies are appropriate to detect such trends; and (4) assess whether climate sensitivity differs by
transmission pathways.
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Results

Literature search results

The search criteria (Table S1) yielded 13,468 article titles, which were narrowed down through a
four-step screening process (Fig. S1) to 185 (1.3% of total titles) independent, empirical studies that
could be included in the final dataset. These studies, representing 51 diseases (Table S2) from 55
countries, provided 547 statistics quantifying the relationship between climate variables and various
measures of zoonotic disease risk. Temperature was the most commonly studied variable (43%,
n=236), followed by precipitation (40%, n=218), and humidity (17%, n=93). The studies had close to
global coverage, with areas of high sampling in South and East Asia and Europe, and more limited
sampling in Central and North Asia and Eastern Africa (Fig. 1A). Hantaviruses were the most frequently
studied group of pathogens (25.1%, n=49), followed by arboviruses (17.9%, n=35) and Leptospira spp.
(12.3%, n=24) (see Fig. 1B).

Zoonotic risks are generally higher in warm and wet conditions

In general, climate factors influence zoonotic disease risk to some extent, according to the majority of
measures assessed (n = 547; 72% significant at α=0.05, 42% at α=0.01, 22% at α=0.001). Out of the 185
source studies, 137 (74%) reported more than one measure of zoonotic risk with an associated
p-value. Among these 137 studies with secondary reporting, 131 (96%) had at least one measure of
zoonotic disease risk significant at the α=0.05 level, while 103 (75%) reported two or more significant
measures of zoonotic risk at the α=0.05 level.

There were significantly more positive relationships between climatic factors and a measure of risk
(1.7 times more) reported than negative relationships (χ̅² = 21.35, df = 1, 95% CI = 20.82 – 21.89, p =
0.001, from 1000 bootstraps of 80% of the data). The proportions seen within the overall dataset were
robust to dropping most major regions, disease groups, pathogen types, statistical methods, and hosts
from the calculations (Table S3). When dividing the dataset into vectored and non-vectored diseases,
only the subset containing vectored diseases showed significantly more positive relationships (n =
101) than negative relationships (n = 34) (Non-vectored diseases: χ̅² = 4.65, df=1, p= 0.164; Vectored
diseases: χ̅² = 27.06, df=1, p= 0.0002; Table S3). However, non-vectored diseases also exhibited a
substantial number of positive relationships (positive: n = 146; negative: n = 113).

Reported climate-risk relationships are highly variable in size and direction both between and
within different zoonotic disease systems

A�er standardising the measures of disease risk by transforming them into Hedgeʼs g, studies still
reported an effect of climatic factors on zoonotic disease risk more o�en than no effect (56% Non-zero
effect sizes; Fig. 2). However, when splitting the dataset into the three climatic factors separately, only
temperature reported a non-zero effect more o�en than no effect (64.3% Non-zero effect sizes), with
less than half of precipitation (49.8%; n=107) or humidity (48.9%; n=47) observations reporting a
non-zero effect on disease risk.

Overall, temperature appears to be the most consistent in terms of the direction of climate effects on
disease risk (39.1% Positive effects, 35.7% No effects, 25.2% Negative effects). When comparing the
three climatic factors, temperature showed the highest proportion of Positive effects on measures of
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disease risk, with 39.1% (n=90) of effects having a value of Hedgeʼs g greater than 0.2 (Fig. 2), with
precipitation and humidity having more balanced Positive and Negative effects (Precipitation: 30.5%
Positive and 19.2% Negative effects; Humidity: 27.2% Positive and 21.7% Negative effects).
Furthermore, when grouping the effect sizes by disease and climatic factor, we observe a greater
number of Positive effects in certain diseases, such as temperature impacts on West Nile Virus and
Japanese encephalitis risk (Fig. 3A), and precipitation impacts on Japanese encephalitis, Scrub
typhus, and Leptospirosis risk (Fig. 3B).

Vector-borne zoonoses show the strongest andmost consistent evidence for climate-sensitivity

The effect size distributions for vector-borne diseases, diseases vectored by mosquitoes, and diseases
with birds as principal reservoir significantly differed from the overall effect size distribution for
temperature, suggesting a positive influence of temperature on disease risk among these groups
(Anderson-Darling Test; vector borne disease: AD = 2.33; p=0.047; mosquito vectored disease: AD =
3.63; p=0.008; birds as principal reservoir: AD = 3.1; p=0.025). When the subsets were compared to the
full distributions with the subset removed, a few more categories were significantly different:
non-vectored diseases and diseases located in Iran significantly differed from the overall temperature
distribution (Table S4). Importantly, vector-borne zoonotic diseases had significantly more Positive
effects (mean=0.31; sd=0.89; n=92) reported for temperature when compared to solely animal-hosted
diseases (mean=-0.02; sd=1.01; n=138) (Two-sample Kolmogorov-Smirnov test; D=0.26; p = 0.001; Fig.
4, Table S5). While the trends for non-vectored diseases were less pronounced, 32% of temperature
effect sizes for these diseases were Positive (compared to 50% for vector-borne diseases), indicating
that temperature increases may still elevate the risk for a range of non-vectored zoonotic diseases.

The effect size distributions for both precipitation and humidity centred around zero, with no
significant differences observed between the distributions of vectored and non-vectored subsets
(Two-sample Kolmogorov-Smirnov test for precipitation: D=0.09; p = 0.445; and humidity: D=0.23; p =
0.079, Fig. 2 & Fig. 4, Table S5). We note the distribution of effect sizes for precipitation had visually
larger tails for non-vectored diseases compared to vectored diseases (Fig. 4B), but the available data
was too limited to perform robust statistical tests. Moreover, while the majority of observations on the
impacts of humidity on disease risk showed no significant effects, a subset of studies on diseases with
livestock as the principal reservoir and studies in Iran did exhibit significantly different distributions of
effect sizes for humidity (Anderson-Darling Test; Livestock: AD = 2.74; p=0.036; Iran: AD = 3.43; p=0.016;
Fig. 2, Table S6). When the distribution of effect sizes within specific subsets were compared to the full
distributions with the subset removed, diseases with a livestock principal reservoir differed from the
overall precipitation distribution (Table S7).

Future climatological changes at study locations may favour increases in zoonotic transmission risk

We identified that many study sites associated with climate-sensitive diseases (those with Hedgeʼs g >
0.2 or < -0.2) are located in areas where future climatologies consistently predict substantial changes
in temperature (BIO1, mean annual air temperature) or precipitation (BIO12, annual precipitation
amount). These predictions, based on the CHELSA V2.1 CMIP6 dataset, were assessed across three SSP
scenarios (SSP1-RCP2.6, SSP3-RCP7.0, SSP5-RCP8.5) and five GCMs for the period 2041–2070,
compared to baseline conditions (1981–2010). Climate shi�s were categorised using thresholds for
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temperature (1ºC, 1.5ºC, and 2ºC) and precipitation changes (±25 mm, ±50 mm, ±100 mm), identifying
the most congruent range of predictions for each location at each threshold.

A majority of study sites for which we identified Positive disease risk effects are located in areas
expected to see substantial increase in temperature (100% of studies were in sites predicting >1ºC
increase, 94% above 1.5ºC and 64% above 2ºC; Fig. S6). Negative effect sizes observed a similar
relationship, with most sites also seeing future temperature increases, meaning there was no
association between effect size categories (Positive/Negative) and temperature change (Table S8).

The projected changes in precipitation across sites revealed more variability compared to temperature
shi�s, though again with no clear association between precipitation climate sensitivity categories
(Positive/Negative) and predicted changes in annual precipitation (Table S8). For sites with Positive
precipitation effect sizes, 46% saw an above +25mm increase in annual precipitation, 35% above
+50mm and 22% above 100mm (Fig. S6). Substantial decreases in precipitation were rarely predicted,
meaning few sites with Negative precipitation sensitivity were located in areas expected to see lower
precipitation (5% of study sites showing Negative effects were predicted a 25mm reduction, 0% a
50mm or 100mm reduction; Fig. S6). For both Positive and Negative rainfall effects, many sites are
expected to see intermediate shi�s in precipitation.

Data biases and methodological inconsistencies across studies hinder a clear synthesis of
climate-sensitivity in zoonoses

Several inconsistencies andmethodological limitations were identified within the collated dataset and
source studies. While Hedgeʼs g was able to be calculated for a total of 535 measures (98% of the
extracted measures), the confidence intervals around Hedgeʼs g were able to be calculated for only 253
effect sizes, due to limited reporting of statistics within source studies and a lack of clearly reported
sample sizes, standard errors or confidence intervals.

The dataset analysed contains considerable diversity in both the number of data points per disease
and the statistical methods employed across studies. For example, certain diseases were
well-represented including haemorrhagic fever with renal syndrome (n=28 studies) and leptospirosis
(n=23), while eight diseases (anaplasmosis, bartonellosis, Ebola, MERS, mPox, Q-fever, theileriosis, and
toxoplasmosis) were represented by just one study each. However, even among well represented
diseases, effects were highly variable in both magnitude and direction (regardless of transmission
type), further limiting the identification of clear patterns of climate sensitivity (Fig. 3).

In terms of methodology, the collated dataset represented 82 specific statistical methods used in the
source studies, many of which lacked consistent and detailed reporting of methods used. The vast
majority applied linear regression or time-series modelling approaches, with fewer studies applying
spatially-explicit, nonlinear or explicitly causal inference-based modelling methodologies (Fig. 1). The
heavy reliance on linear regression and time-series models may oversimplify the complexities of
climate-disease relationships. Strikingly, the use of non-linear models was relatively rare, with only
12.1% of studies investigating non-linear relationships between climatic variables and measures of
zoonotic disease risk (Fig. 1F).

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 18, 2024. ; https://doi.org/10.1101/2024.11.18.24317483doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.18.24317483
http://creativecommons.org/licenses/by/4.0/


There was some degree of publication bias inferred from funnel plots showing standard errors against
respective effect sizes (Fig. S3). Eggerʼs regression tests for funnel plot asymmetry showed significant
asymmetry in the overall dataset (z = 2.62, p = 0.009) and precipitation data (z = 2.71, p = 0.007), but
none within humidity and temperature data (Fig. S3, Table S9). Pearsonʼs product-moment correlation
analysis showed no significant correlation between 5-Year Journal Impact Factors and Hedgeʼs g or
reported p-values, even a�er removing outliers among Hedgeʼs g and p-values (Fig. S2). Furthermore,
p-values extracted from the studies were examined to check for potential evidence of “p-hacking”.
Visual inspection of the distribution of p-values surrounding p = 0.05 found limited evidence of
p-hacking, with a small spike in the number of studies with p-values just under p = 0.05 (Fig. S4).
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Discussion

The COVID-19 pandemic has underscored the critical importance of understanding the risk factors that
precipitate animal-borne disease outbreaks. While previous quantitative syntheses have identified
general patterns associated with major drivers of zoonotic disease risk (5, 12), they o�en lack granular
insights into specific climate impacts across various zoonotic diseases, highlighting the need for more
detailed examinations of climateʼs role in zoonotic disease dynamics. Our study provides evidence that
climate sensitivity is widespread across a diverse range of zoonotic disease systems, suggesting that
climate change is likely to further impact these systems in complex ways. However, significant biases
and methodological gaps in current research hinder our ability to predict specific mechanisms,
locations, and magnitudes of these impacts. By identifying the variability and limitations in our
knowledge, we highlight the urgent need for standardised and transdisciplinary approaches to better
predict how, where and through which mechanisms climate change will affect the global burden of
zoonotic diseases.

The clearest result from our analysis is the positive effect of temperature on zoonotic disease risk for
diseases that include arthropod vectors in the transmission cycle. This reflects findings from earlier
studies, which have documented links between climate change and the spread of mosquito– and
tick–borne diseases such as Dengue, Lyme, and West Nile virus into novel regions (13). Moreover, we
found that nearly all study sites with Positive temperature effect sizes are located in regions projected
to experience significant temperature increases exceeding 1.5ºC, with a substantial proportion of sites
also surpassing the 2ºC threshold. This alignment suggests that these regions may face amplified risks
under future climate scenarios.

In contrast, we did not find any consistent evidence that precipitation and humidity exert strong,
uniform effects on zoonotic disease risk. The distribution of effect sizes among precipitation climate
sensitivity data suggests that precipitation may drive large effects in zoonotic disease risk more
frequently, possibly via the provisioning of resources (e.g. masting events affecting rodent populations
and Puumala virus transmission) (32, 33). Notably, many sites with Positive precipitation effect sizes
are projected to experience substantial rainfall increases, suggesting that these regions may see
elevated disease risks in certain contexts. However, without more consistent and representative data
this relationship remains uncertain. The considerable variation in reported effects across different
diseases suggests that the influence of these climatic factors may be highly context-dependent and
could vary with local ecological and socio-economic conditions.

There are numerous biases and limitations across the zoonotic disease literature that hinder our
ability to generalise findings. The analysed studies predominantly focus on rodent-borne diseases,
with bat-associated diseases notably underrepresented despite their key role in recent high-impact
spillover events like Ebola and COVID-19, and the general uptick in epidemiological studies examining
bat-borne diseases since 2003 (11). We identified studies on only 51 diseases, which represents just
~6% of the (at least) 816 known human zoonotic pathogens (34). This taxonomic and geographic bias
highlights the need for a more comprehensive and globally representative approach to studying the
climate sensitivity of zoonotic diseases.
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Methodological limitations further obstruct our understanding. Over half of the studies (57%) did not
report a clear sample size used to calculate reported statistics, making it difficult to assess the
reliability of their results. Although we identified over 50 distinct statistical methods reported, most
studies either did not use the methods, or did not clearly state they used them, that can control for
ubiquitous biases o�en seen in epidemiological data, such as spatial and temporal autocorrelation,
and detection and reporting biases. Therefore, undertaking a formal meta-analysis to estimate an
unbiased summary of the relationships we report is challenging.

Additionally, there was a notable lack of biological justification for the models used. Both theoretical
(22) and empirical evidence (23, 27, 35, 36) suggests that relationships between climate and pathogen
transmission are o�en complex and nonlinear, depending on the thermal biology of the vectors and
pathogens involved. Yet, only 12% of the studies investigated these nonlinear effects. For instance,
many vectors have optimal temperature ranges for transmission, and exceeding these optima can
reduce transmission efficiency (22). As the direction and magnitude of climate effects on disease risk
can depend heavily on the specific temperature ranges studied and the local environmental context,
ignoring these nonlinear dynamics may lead to misleading inferences about climate impacts.

Overall, our study underscores the substantial heterogeneity in climate sensitivity across zoonotic
diseases, as evidenced by the wide variation in effect sizes—even within specific pathogens (as
illustrated in Figure 3). This heterogeneity across both vectored and non-vectored diseases
complicates our ability to generalise findings and draw consistent conclusions about the impacts of
climatic factors on zoonotic disease risk. However, it also highlights that climate sensitivity is a
widespread phenomenon affecting a broad spectrum of zoonotic diseases, not just those transmitted
by vectors. It remains unclear whether this variation represents true differences in disease responses
to climate across different contexts or is an artefact of methodological inconsistencies and geographic
sampling biases. This ambiguity highlights a critical gap in our understanding.

Given these challenges, and considering that many climate-sensitive diseases are located in areas
consistently projected to experience significant increases in temperature—and in some cases,
precipitation— there is a pressing need for more systematic and standardised research approaches.
Adopting consistent methodologies that account for nonlinear relationships and control for common
epidemiological biases will be essential. Such approaches would enable us to distinguish genuine
ecological patterns from methodological noise, improving our ability to predict the mechanisms,
locations, and magnitudes of climate change impacts on zoonotic diseases. Enhancing the rigour and
transparency of future studies is crucial for informing effective public health interventions and policy
decisions in the face of a changing climate.
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Methods

Systematic review of literature

We conducted a systematic literature search to identify peer-reviewed quantitative studies addressing
the effect of climatic factors (i.e., temperature, precipitation, and humidity) on components
contributing to overall zoonotic burden. The databases searched included PubMed (to narrowly
capture healthcare related studies) and Google Scholar (to ensure wide coverage of disciplines and
journals), and the search was conducted between 15th - 22nd November 2022. To ensure
thoroughness, a list of 51 generic zoonotic disease names and their synonyms were compiled (see
Table S2). Terms describing zoonotic burden/risk were chosen to encompass all potential stages where
disease risk could be influenced (i.e., hazard, exposure, and vulnerability). Searches were structured by
pairing a specific disease (e.g., Brucellosis) with “Climat*” as subject headings. “Climat* incorporated
alternative keywords such as “Climate change”, “Climatic change”, “Climate sensitive” or “Climate
conditions”. To refine searches, Boolean operators were used to apply additional parameters
(abundance/incidence/seroprevalence/cases) to search queries. Detailed search structures and
example strings of search terms are provided in Table S1.

Inclusion criteria and screening

The inclusion criteria for this study were quantitative field studies directly evaluating correlations
between climatic factors and metrics of zoonotic risk. The climatic parameters were defined as
temperature, precipitation, and humidity. Eligible studies were identified through a 3-step screening
process: first the titles, then the abstracts followed by the full-texts were reviewed for relevance (see
Supplementary File 1). For each search query, the first 50 returned titles were reviewed against the
inclusion criteria. As eight searches were performed for each disease (Supplementary File 1),
reviewing the top 50 titles per search gathered an exhaustive list of titles while reducing literature
screening time. Following the removal of duplicate entries, abstracts were further reviewed for
relevance to the research question. Finally, a full-text review of relevant articles was completed to
extract data on climatic factors and zoonotic burden/risk.

Data extraction and effect size calculations

Statistical values, associated sample sizes, and when available, dispersion values (e.g., standard error,
standard deviation, 95% confidence intervals) were extracted from compiled articles. We also
extracted geographical data including continent, country, locality, longitude and latitude of study
sites. Data presented in text or tables was directly extracted and data from figures was digitised using
WebPlotDigitizer (37). Data quality was assured by confirming interpretations (i.e., increases or
decreases in zoonotic risk) with the studies own assessment of described trends.

For this investigation we defined a standardised measure of effect size using Hedgeʼs g (38).
Observations were converted from presented statistics (i.e., odds ratio, relative risk, regression
coefficient, correlation coefficient, t-, z-, f-, χ2 statistics) to Hedgeʼs g using standard conversion
equations within the {esc} R package (39). The direction of the Hedges g value (i.e. a Positive or
Negative value) determined whether a value represented an increase or decrease in zoonotic risk. To
validate the robustness of conversion techniques, unit testing was performed using {tinytest} (40) and
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{testthat} packages (41) in R. Additionally, linear regressions were performed using the lm function
from the {stats} package to measure the strength of correlations between obtained effect sizes and
original statistical values (see Fig. S5).

Each study was categorised by the disease studied (e.g. Hantaviral diseases, Echinococcoses,
Arenaviral diseases), risk/hazard metric (e.g. host disease incidence, host infection, host abundance),
principal reservoir of the disease (e.g. rodents, mammals, livestock), pathogen type causing the
disease (Virus, Bacteria, Parasite), type of the relationship between climate and disease risk (linear,
non-linear) and modelling method used (e.g. GL(M)M, Correlation, (S)ARIMA) (Table S1, Fig. 1).
Additionally, diseases were categorised based on their mode of transmission into two groups: vectored
and non-vectored diseases.

Statistical evaluation of reported direction statements

We used Pearson's Chi-squared Test for Count Data (from the {stats} R package) to investigate if the
proportions of reported increases and decreases in disease risk were significantly different. We
performed bootstrap resampling with 1000 iterations, sampling 80% of the data with replacement in
each iteration. The 80% resampling was chosen to balance between reducing variance and
maintaining sufficient sample size for reliable estimation. Specifically, we performed Chi-squared tests
on each bootstrap sample for the entire dataset and for the three climate subsets: temperature,
precipitation and humidity.

To ensure robustness, we repeated the procedure by sequentially removing records from one major
group at a time (e.g. separately removing records from each of the top three diseases) from the
analysis, to identify which categories significantly affected the proportions of increases to decreases in
disease risk. The groups removed in this process and the percentage of the analysed dataset these
groups represent included: Hantaviral diseases (24.5%), Arboviral diseases (22.5%), Leptospirosis
(11.4%) (top three diseases); China (33.7%), Iran (8.7%), USA (6.4%) (top three countries); rodents
(39.1%), mammals - multispecies (21.8%), livestock (16.8%) (top three principle reservoirs); viruses
(56.4%), bacteria (37.9%), parasites (5.7%) (top three pathogen types); Pearson correlation (12.1%),
Spearman rank correlation (11.1%), negative binomial regression (3.5%) (top three statistical
methods).

Analysis of standardised effect sizes

We categorised effect sizes into three groups based on the value of Hedgeʼs g: Positive effect (g > 0.2),
No effect (-0.2 < g < 0.2) and Negative effect (g < -0.2). These thresholds were chosen based on Cohenʼs
conventions for small effect sizes (42), where values of 0.2 represent a small effect. Additionally, we
analysed the association between the reported direction of the climate impacts on disease risk
(Increase/Decrease/No change) and the effect size categories based on our Hedgeʼs g calculations
(Negative effect/No effect/Positive effect). To robustly estimate the significance of this association, we
performed a bootstrap analysis with 1000 samples. Each bootstrap sample consisted of 80% of the
original data, sampled with replacement. We applied Fisherʼs exact test to each bootstrap sample to
determine the p-value for the association between the two variables.
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To assess whether climate effects on measures of disease risk are uniform across different subsets of
the data (specific transmission types, reservoirs, pathogens, vectors, countries and diseases), we
compared the effect size distribution for each subset to the full effect size distribution for each climate
factor (temperature, precipitation, and humidity). We performed a two-sample permutation-based
Anderson-Darling test with 1000 replicates between the subset effect size distribution and the full
distribution to test whether they are likely to be from the same distribution. The Anderson-Darling test
was chosen because it can be used as a powerful non-parametric test that is sensitive to differences in
both the location and shape of distributions, especially in the tails. As one distribution is a subset of
the other, we also performed the test removing the subset from the full distribution.

We additionally compared the effect size distributions for vectored and non-vectored diseases using
Kolmogorov-Smirnov test to investigate whether the climate factors show the same effect between
these groups.

Analysis of projected climatology data across study sites

To assess the co-occurrence of climate-sensitive diseases with areas expected to experience significant
shi�s in climatic conditions with future climate change, we extracted modelled climate shi�s for study
sites locations that reported Positive (Hedgeʼs g > 0.2) or Negative (Hedgeʼs g < -0.2) climate sensitivity
effects.

To determine expected climate shi�s, we used bioclimatic data from the CHELSA V2.1 CMIP6 dataset
(43, 44), focusing on two climate variables: BIO1 (mean annual air temperature) and BIO12 (annual
precipitation amount). These variables were extracted for both the baseline period (1981–2010) and a
future time window (2041–2070) under three Shared Socioeconomic Pathways (SSP1-RCP2.6,
SSP3-RCP7.0, SSP5-RCP8.5). We selected five GCMs (Global Climate Models) (GFDL-ESM4,
IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0, UKESM1-0-LL) to capture variability across model
predictions and to ensure a robust comparison across different climate scenarios.

For each spatial point corresponding to a study location, we extracted baseline and future BIO1 and
BIO12 values from the climate rasters. This allowed us to compute the expected change in temperature
(ºC) and precipitation (mm) between the baseline and future projections. The differences were
calculated for each combination of SSP and GCM, yielding 15 projected differences for each site to
account for the variability and uncertainty inherent in climate projections and emission scenarios.

To capture the magnitude of climate shi�s at each location, we categorised the temperature and
precipitation differences based on a set of three temperature and three precipitation thresholds. For
temperature, for each spatial point, we identified the proportion of SSP x GCM combinations
predicting increases greater or less than 1°C, 1.5°C, and 2°C. Similarly, for precipitation, we calculated
the proportion of SSP x GCM combinations predicting increases or decreases beyond ±25 mm, ±50
mm, ±100 mm, and the proportions of combinations falling in the intermediate range (e.g. proportion
of predictions > + 25mm, between - 25mm to + 25mm and < -25mm). Then, for each of the three
temperature and precipitation thresholds we summarised the modal categories of climate change for
each location across the 15 SSP x GCM combinations, as there was generally strong agreement about
the direction andmagnitude of expected shi�s.
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Transformation of continuous climate data into a set of discrete categories of temperature and
precipitation changes allowed us to assess whether some locations with Positive (Hedgeʼs g > 0.2) or
Negative (Hedgeʼs g < -0.2) climate sensitivity effects are associated with a certain magnitude or
direction of climate change. We constructed six contingency tables (for three temperature and three
precipitation thresholds, see Fig. S6) and compared the association between disease climate
sensitivity effects (Positive/Negative Hedgeʼs g) and the magnitude of predicted climate changes.
Depending on the structure of the contingency table, either Pearson's Chi-squared Test for Count Data
(if all cells in the contingency table had 5 or more counts) or Fisher's Exact Test for Count Data was
applied to evaluate the association between these sensitivity categories and climate change
magnitudes. We performed the tests on 1000 bootstrap replicates for each contingency table, and
calculated mean p-values, test statistics, 95% confidence intervals and also the percentage of
iterations with a significant (p < 0.05) test result.

Publication bias assessment

To assess publication bias, we investigated the correlation between the 5-Year Impact Factors of
journals included in our study and their respective Hedgeʼs g and p-values. We selected Pearson's
product-moment correlation test (from {stats} package) to evaluate the correlations. Additionally, we
applied the Interquartile Range (IQR) method to detect the outliers within the Hedgeʼs g and p-value
data. Outliers were defined as values that fell more than 1.5 times the IQR below the first quartile or
above the third quartile. The Identified outliers included 66 of Hedgeʼs g values and 30 of p-values. To
examine whether these outliers influenced the direction or significance of the correlations, we
performed Pearson's product-moment correlation tests twice: before and a�er removing the outliers
(Fig. S2).

Furthermore, we prepared funnel plots visualising the distribution of effect sizes against their standard
errors, where such calculations were possible. The funnel plots were created for the overall dataset,
and for the three climate factors (temperature, precipitation and humidity). To each plot, we applied
Eggerʼs regression test from the {metafor} package (45) to check for significant asymmetry, indicating
potential publication bias. Egger's test assesses whether there is a linear relationship between the
effect sizes and their standard errors; a significant result suggests asymmetry in the funnel plot, which
may be due to publication bias. To further investigate potential “p-hacking,” we visually inspected the
distribution of p-values reported in the studies, focusing on the values surrounding p = 0.05.

Analysis environment

All parts of the analysis were conducted using R version 4.3.1. The full dataset and R code used to
perform the analyses and create the figures is available at:
https://github.com/BioDivHealth/climate_meta.
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Figures and Tables

Figure 1: Meta-analysis database of climatic driver effects on zoonotic disease transmission.Map
shows the full database of extracted climate effects (n=547 effects, 185 studies) summarised
geographically, with point colour representing climatic driver, and location representing the specified
lat-lon or nearest named locality of the study. Studies without locality information were geolocated to
the country centroid. Inset barplot shows the number of studies reporting effects of temperature,
precipitation or humidity on zoonotic diseases. Subplots show the database broken down by key
variables: disease or broad disease grouping; the risk or hazard metric being tested in the study; the
principal reservoir host(s) of the studyʼs focal disease; the broad pathogen type; whether the study
reported linear or nonlinear inferred effects; and the broad type of modelling method used. Method
abbreviations: GL(M)M, generalised linear (mixed effects) model; (S)ARIMA, (seasonal) autoregressive
integrated moving average model; DLNM, distributed-lag nonlinear model; GAM, generalised additive
model; ST, spatiotemporal statistical model; Causal, an explicitly causal inference-basedmodel; Other,
descriptive or basic frequentist statistics (e.g. Chi-square test).
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Figure 2. Direction of climate effects across key disease variables. Each column represents the
climate driver studied, with the x-axis indicating the proportion of study measures falling into effect
categories from a Negative effect (blue) to No effect (cream) to a Positive effect (red). The rows
separate the data into the key variables identified in Figure 1: the main transmission mode (vectored
via a biting vector from reservoir host to human, or non-vectored, with no involvement of a vector
between reservoir host and human); the broad pathogen type; for the vector-borne diseases, the
broad animal group of the vector; and the principal reservoir host(s) of the studyʼs focal disease.
Groupings were included if the category had greater than 15 effect size measures. The number of
measures included in each grouping is indicated next to the bars. Distributions that were significantly
different from the full dataset are marked with asterisks above the sample size (* = p < 0.05; ** p <
0.01).
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Figure 3. Comparison of effect size distribution across specific diseases. (A) Density plots showing
the distribution of Hedges g values calculated from studies measuring disease risk in response to three
climate variables: temperature, precipitation, and humidity (bottom row). The bluish plots represent
vectored diseases (West Nile Virus, Tick-borne encephalitis, Japanese encephalitis and Scrub typhus)
and the reddish density plots represent non-vectored diseases (Leptospirosis, Brucellosis and HFRS –
Haemorrhagic fever with renal syndrome), for which more than ten data points were available under
each climate variable. Extreme values (Hedges g values less than -2.5 or greater than 2.5) were
excluded from the plot. (B) A scatterplot displaying the effect size values contributing to the
distributions; each point represents the effect size calculated from a study, and points are ordered on
the y-axis from lowest to highest values. Lines show the 95% confidence intervals around the values
where the data permitted such calculations.

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 18, 2024. ; https://doi.org/10.1101/2024.11.18.24317483doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.18.24317483
http://creativecommons.org/licenses/by/4.0/


Figure 4. Comparison of effect size distribution between vectored and non-vectored diseases.
(A) Density plots showing the distribution of Hedges g values calculated from studies measuring
vector-borne and non vector-borne zoonotic disease risk in response to three climate variables:
temperature, precipitation, and humidity (bottom row). The blue density plot represents vectored
disease and the red density plot represents non-vectored disease. Extreme values (Hedges g values
less than -2.5 or greater than 2.5) were excluded from the plot. (B) A scatterplot displaying the effect
size values contributing to the distributions; each point represents the effect size calculated from a
study, and points are ordered on the y-axis from lowest to highest values. Lines show the 95%
confidence intervals around the values where the data permitted such calculations
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Supplementary Figures

Figure S1. Flow chart visualising the process of literature search, literature screening and statistical
evaluation of extracted data. N values correspond to the number of scientific articles and k values
correspond to the number of observations extracted.
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Figure S2. Hedgeʼs g effect sizes (A,C) and reported p-values (B,D) plotted against 5-year Impact
Factors of journals in which corresponding studies were published. Results of Pearson's
product-moment correlation test (correlation coefficient and p-value) are annotated in the upper right
corner of each subplot. Subplots A and B are based on full dataset and subplots C and D were made
following removal of outliers among Hedgeʼs g and p-value data using IQRmethod.
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Figure S3. Funnel plots of standard errors against corresponding Hedgeʼs g values. Plot Amade for
the overall dataset, plots B, C and D made for Temperature, Precipitation and Humidity data
respectively. Vertical dotted line represents the mean effect size within each plot. Shaded area
represents 95% confidence region constructed for each plot.
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Figure S4. Distribution of p-values in study sample. Themain plot shows the overall distribution of
p-values from all studies for which numeric p-values were provided. X-axis represents the p-values,
and Y-axis represents the count of p-values falling within a specific bin. The inset plot shows the
distribution of p-values where 0.03 < p < 0.07. Red vertical lines signify p-value = 0.05.
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Figure S5. Relationships between extracted statistical measures and corresponding Hedgeʼs g
values. The plots show the relationship between different statistical measures (e.g., Odds Ratio,
Correlation Coefficient, F-statistic) sourced from studies and the calculated effect sizes (Hedgeʼs g).
Dark green points indicate individual observations and red points highlight outliers. Outliers were
determined based on residuals from a linear regression model, where points with residuals greater
than two standard deviations from the mean were marked as outliers. The light green line represents
the linear fit for eachmeasure.
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Figure S6. Contingency tables showing the association between disease climate sensitivity effect
sizes (Hedgeʼs g) and predicted changes in temperature and precipitation across study locations,
based on future climate projections from the CHELSA V2.1 CMIP6 dataset. The top row represents
temperature thresholds of 1ºC, 1.5ºC, and 2ºC, while the bottom row represents precipitation
thresholds of ±25mm, ±50mm, and ±100mm. Positive (Hedgeʼs g > 0.2) and Negative (Hedgeʼs g < -0.2)
climate sensitivity effect sizes are shown in relation to predicted climate change categories. The
numbers in each tile represent the count of locations where the most frequent (modal) category of
climate change, determined from 15 projections (comprising five Global Climate Models and three
Shared Socioeconomic Pathways), was associated with the respective sensitivity effect size.
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Supplementary Tables:

Table S1. Table of the inclusion criteria, definitions and search structures used to identify
relevant articles during systematic review. “DISEASE NAME” refers to the specific disease
targeted by each search.

Criteria Details

Databases used Google Scholar, PubMed

Inclusion criteria Studies highlighting an explicit relationship between zoonotic risk and climatic factors
at an implicit place/region.

Climate change
definition

Mentions climate or meteorological variables either as an umbrella or specific term
(e.g., temperature or spring temperature). Change defined as any alteration (either
observed or projected) to climatic parameters.

Zoonotic risk
definition

Any contributory component of zoonotic (i.e., explicitly animal-borne) burden or risk.
Primarily reservoir/pathogen abundance, seroprevalence, number of cases or incidence
rates

Dates of literature
search 15th November - 22nd November 2022

Languages English

Search structure Search subject headings Coupled terms

S1 ("DISEASE NAME" AND "Climat*") AND "Abundance"

S2 ("DISEASE NAME" AND "Climat*") AND “Seroprevalence*"

S3 ("DISEASE NAME" AND "Climat*") AND "Cases" OR "Incidence"

S4 ("DISEASE NAME" AND "Climat*")
AND "Abundance" OR "Seroprevalence"

OR "Cases" OR "Incidence"

Example string of
search terms

((Japanese encephalitis) AND (Climat*))

AND ((Cases) OR (Incidence) OR (Abundance) OR (Seroprevalence))
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Table S2. Names of zoonotic diseases used in literature search. Each name replaced the “DISEASE
NAME” field in the string of search terms presented in Table S1. In some cases, additional synonyms of
the disease names were used, these can be found in Supplementary File 1, along with complete search
structures.

Disease name

Alveolar echinococcosis Japanese encephalitis Flinders island spotted fever

Leptospirosis Crimean-Congo hemorrhagic fever Japanese spotted fever

Monkeypox Penicilliosis American tick-bite fever

Ohio valley disease Boutonneuse fever Sealpox

Brucellosis Scrub typhus Lymphocytic choriomeningitis

Leprosy Psittacosis Giardiasis

Hemorrhagic fever Rickettsiosis Zoonotic tuberculosis

Rabies Rocky mountain spotted fever Ri� valley fever

Lassa fever Menangle virus Fascioliasis

Nephropathia epidemica Venezuelan hemorrhagic fever Anthrax

Hantaviral Disease Bolivian hemorrhagic fever Zoonotic Influenza

Hantavirus Pulmonary Syndrome Mediterranean spotted fever Plague

Nipah virus African tick-bite fever Argentine Hemorrhagic fever

Hendra virus Tacaribe virus Cowpox

Paracoccidioidomycosis Raccoon roundworm infection Marburg virus

Ebola Siberian tick typhus Encephalitis

Severe Acute Respiratory Syndrome Queensland tick typhus Venezuelan equine encephalitis

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 18, 2024. ; https://doi.org/10.1101/2024.11.18.24317483doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.18.24317483
http://creativecommons.org/licenses/by/4.0/


Table S3. Results of Pearson's Chi-squared Test for Count Data conducted on the data describing
reported direction (increase vs decrease) of the impacts of all climate effects on disease risk for
the overall dataset. The chi-squared goodness-of-fit tests assessed whether the observed frequencies
of reported increases and decreases in disease risk significantly differed from the expected frequencies
under the null hypothesis (i.e., no difference in the likelihood of increases and decreases). First row
shows results of chi-square tests using the full dataset. Subsequent rows report the results of tests in
which major diseases, countries, reservoirs, pathogen types, statistical methods and transmission
types were removed from the analyses one-at-a-time. Significant results suggest an uneven proportion
of increases to decreases of disease risk reported. Chi-square tests were run on 1000 bootstraps of 80%
of the data. * = p < 0.05; ** = p < 0.01.

Group removed
Chi-square
statistic

Lower CI Upper CI P-value
Significance

Level

No groups dropped - 21.35 20.82 21.89 0.001 **

Disease removed

Hantaviral diseases 18.97 18.46 19.47 0.003 **

Arboviral diseases 9.85 9.49 10.22 0.033 *

Leptospirosis 16.98 16.49 17.48 0.005 **

Country removed

China 14.36 13.92 14.79 0.009 **

Iran 20.84 20.32 21.36 0.001 **

USA 20.62 20.12 21.13 0.001 **

Principle reservoir
removed

Rodents 15.04 14.57 15.51 0.006 **

Mammals (multispecies) 11.84 11.43 12.25 0.019 *

Livestock 33.00 32.31 33.69 0.000 **

Pathogen type
removed

Virus 10.03 9.67 10.38 0.026 *

Bacteria 15.30 14.84 15.77 0.007 **

Parasite 18.37 17.88 18.86 0.002 **

Statistical method
removed

Spearman rank correlation 14.81 14.35 15.27 0.008 **

Pearson correlation 17.03 16.52 17.54 0.005 **

Negative binomial
regression

20.21 19.67 20.75 0.002 **

Transmission type
removed

Non vectored 27.06 26.50 27.63 0.000 **

Vectored 4.65 4.40 4.89 0.164 >0.05
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Table S4. Results of Permutation-based Anderson-Darling test of homogeneity evaluating
whether the distribution of effect sizes within specific groups (e.g., transmission types, principal
reservoirs, pathogen types, or vector types) significantly differs from the overall distribution of
effect sizes for temperature. The table compares the effect size distributions within a given group to
the full temperature dataset (“Without group removed”) and to the full temperature dataset with that
specific group excluded (“With group removed”). p-values and AD statistics are provided for both
comparisons, with asterisks indicating significance levels (* = p < 0.05; ** = p < 0.01).

Subsets of the dataset analysed Without group removed With group removed

Category Group p-value AD statistic p-value AD statistic

Transmission
type

Vectored 0.047 * 2.33 0.003 ** 5.56

Non-vectored 0.212 1.43 0.002 ** 5.56

Principal
reservoir

Rodents 0.298 1.12 0.053 2.38

Mammals (multispecies) 0.256 1.23 0.056 2.30

Livestock 0.126 1.62 0.091 2.19

Birds 0.025 * 3.10 0.005 ** 4.25

Pathogen
Virus 0.998 0.18 0.580 0.69

Bacteria 0.988 0.18 0.849 0.40

Vector

Mosquito 0.008 ** 3.63 0.004 ** 5.04

Tick 0.145 1.60 0.059 2.19

Mite 0.274 1.14 0.223 1.36

Country
Iran 0.092 2.27 0.034 * 2.72

USA 0.548 0.71 0.478 0.80
China 0.569 0.71 0.283 1.15

Disease

Haemorrhagic fever with
renal syndrome

0.555 0.67 0.435 0.81

Brucellosis 0.271 1.21 0.16 1.48
Scrub typhus 0.297 1.14 0.238 1.36
Leptospirosis 0.34 1.04 0.218 1.33
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Table S5. Results of the Exact two-sample Kolmogorov-Smirnov Tests comparing the distribution
of Effect Sizes (Hedgeʼs g) between Vectored and Non-vectored diseases for different
environmental conditions. The table included the test statistics and corresponding p-values for
differences in effect size distributions between vectored and non-vectored transmission types under
three environmental conditions: Temperature, Precipitation, and Humidity. A significant p-value
suggests a difference between the distributions of the two groups. The test statistic represents the
maximum difference between the empirical cumulative distribution functions (ECDFs) of the two
groups.

Variable p-value D^+ Test statistic

Temperature 0.001 ** 0.26

Precipitation 0.445 0.09

Humidity 0.079 0.23
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Table S6. Results of Permutation-based Anderson-Darling test of homogeneity evaluating
whether the distribution of effect sizes within specific groups (e.g., transmission types,
principal reservoirs, pathogen types, or vector types) significantly differs from the overall
distribution of effect sizes for humidity. The table compares the effect size distributions within a
given group to the full humidity dataset (“Without group removed”) and to the full humidity dataset
with that specific group excluded (“With group removed”). p-values and AD statistics are provided for
both comparisons, with asterisks indicating significance levels (* = p < 0.05; ** = p < 0.01).

Subsets of the dataset analysed Without group removed With group removed

Category Group p-value AD statistic p-value AD statistic

Transmission type
Vectored 0.898 0.35 0.427 0.88

Non-vectored 0.977 0.24 0.442 0.88

Principal reservoir

Rodents 0.796 0.44 0.432 0.88

Mammals (multispecies) 0.4 0.89 0.127 1.64

Livestock 0.036 * 2.74 0.002 ** 4.75

Birds 0.731 0.52 0.651 0.59

Pathogen
Virus 0.964 0.26 0.662 0.61

Bacteria 0.966 0.24 0.433 0.83

Vector

Mosquito 0.444 0.92 0.273 1.20

Tick 0.586 0.67 0.403 0.86

Mite 0.754 0.50 0.605 0.68

Country

China 0.248 1.25 0.051 2.48

Iran 0.016 * 3.43 0.002 ** 5.02

India 0.958 0.28 0.923 0.32

Disease

Haemorrhagic fever with
renal syndrome

0.234 1.20 0.138 1.62

Brucellosis 0.078 2.20 0.015 * 3.32

Scrub typhus 0.742 0.50 0.589 0.68

Leptospirosis 0.762 0.50 0.551 0.70
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Table S7. Results of Permutation-based Anderson-Darling test of homogeneity evaluating
whether the distribution of effect sizes within specific groups (e.g., transmission types,
principal reservoirs, pathogen types, or vector types) significantly differs from the overall
distribution of effect sizes for precipitation. The table compares the effect size distributions within
a given group to the full precipitation dataset (“Without group removed”) and to the full precipitation
dataset with that specific group excluded (“With group removed”). p-values and AD statistics are
provided for both comparisons, with asterisks indicating significance levels (* = p < 0.05; ** = p < 0.01).

Subsets of the dataset analysed Without group removed With group removed

Category Group p-value AD statistic p-value AD statistic

Transmission
type

Vectored 0.755 0.48 0.368 1.00

Non-vectored 0.981 0.22 0.358 1.00

Principal
reservoir

Rodents 0.814 0.41 0.334 1.04

Mammals (multispecies) 1 0.10 0.999 0.17

Livestock 0.077 2.17 0.018 * 3.02

Birds 0.237 1.27 0.125 1.72

Pathogen
Virus 0.568 0.69 0.096 2.03

Bacteria 0.723 0.54 0.207 1.40

Vector

Mosquito 0.455 0.83 0.345 1.11

Tick 0.392 0.94 0.315 1.09

Mite 0.477 0.85 0.385 1.00

Country
China

0.776 0.47 0.438 0.88

Iran
0.242 1.25 0.157 1.59

Argentina
0.241 1.27 0.222 1.32

Disease

Haemorrhagic fever with
renal syndrome

0.494 0.80 0.374 0.96

Brucellosis 0.174 1.61 0.098 2.03

Scrub typhus 0.454 0.85 0.35 1.00

Leptospirosis 0.095 1.98 0.027 * 2.83
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Table S8. Results of Pearsonʼs Chi-squared Tests for Count Data and Fisherʼs Exact Tests for Count
Data conducted on the data describing associations between climate sensitivity (Positive/Negative
Hedgeʼs g) and projected changes in temperature and precipitation across study sites. The tests
were performed at three temperature thresholds (+1ºC, +1.5ºC, +2ºC) and three precipitation thresholds
(±25 mm, ±50 mm, ±100 mm) using predictions from three SSP scenarios and five GCMs for the period
2041–2070 compared to baseline conditions (1981–2010). The p-values, 95% confidence intervals
around p-values, and test statistics are reported. Tests were run on 1000 bootstrap samples and the
percentage of tests with p-value under 0.05 is reported.

Variable Threshold Test p-value
p-value
95% CI

Percentage of
p-values < 0.05

Test statistic

Temperature

+1ºC Chi-Square 0.06 0.05 – 0.07 78% 7.58

+1.5ºC Fisher's Exact 0.43 0.40 – 0.45 17% –

+2ºC Chi-Square 0.59 0.57 – 0.61 3% 0.76

Precipitation

± 25mm Fisher's Exact 0.34 0.32 – 0.36 17% –

± 50mm Fisher's Exact 0.22 0.21 – 0.23 20% –

± 100mm Fisher's Exact 0.19 0.17 – 0.20 43% –
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Table S9. Results of the Eggerʼs regression tests on funnel plot asymmetry. This table presents
the results of Egger's regression tests (regtest {metafor}) for funnel plot asymmetry, based on effect
sizes and standard errors across the overall dataset and three climatic subsets: temperature,
precipitation, and humidity. The z-value tests the null hypothesis of no funnel plot asymmetry, and
the p-value indicates statistical significance. Significant p-values (p < 0.05) suggest publication bias.

Data Intercept Z_value P_value

Overall dataset -0.054 2.622 0.009

Temperature -0.077 1.225 0.221

Precipitation -0.061 2.710 0.007

Humidity 0.073 0.050 0.960
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Supplementary Files

Supplementary File 1. Excel Worksheet containing sheets with: full dataset, metadata, studies
included in the dataset, log of literature search.
https://github.com/BioDivHealth/climate_meta/blob/main/data/SI_FILES/Supplementary_File_1.xlsx
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