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Abstract

We introduce the History-Guided Deep Compartmental Model (HG-DCM), a novel
framework for early-stage pandemic forecasting that synergizes deep learning
with compartmental modeling to harness the strengths of both interpretability and
predictive capacity. HG-DCM employs a Residual Convolutional Neural Network
(RCNN) to learn temporal patterns from historical and current pandemic data while
incorporating epidemiological and demographic metadata to infer interpretable
parameters for a compartmental model to forecast future pandemic growth. Ex-
perimental results on early-stage COVID-19 and Monkeypox forecasting tasks
demonstrate that HG-DCM outperforms both standard compartmental models (e.g.,
DELPHI) and standalone deep neural networks (e.g., GRU) in predictive accuracy
and stability, particularly with limited data. By effectively integrating historical
pandemic insights, HG-DCM offers a scalable approach for interpretable and accu-
rate forecasting, laying the groundwork for future real-time pandemic modeling
applications.

1 Introduction

Pandemics have historically caused catastrophic losses, from the Bubonic Plague in the 14th century
[24] to the smallpox outbreak in the 18th century [11], and most recently, the COVID-19 pandemic
in 2020 [13]. Despite significant advances in medical science, technology, and epidemiology,
COVID-19 alone resulted in millions of deaths worldwide from 2020 to 2023. Accurate early-
stage estimation of pandemic severity remains a crucial topic - Studies suggest that with improved
forecasting and prompt interventions, early pandemic mortality could be reduced by as much as
90% [28, 19]. Yet accurate early-warning prediction is fundamentally challenging, with the lack of
high-quality data being a major challenge. Mispredictions of pandemic severity lead to significant
consequences: Underestimating an outbreak risks overwhelming healthcare systems and delaying
crucial interventions, thereby increasing mortality and transmission rates. Conversely, overestimations
can lead to inefficient use of resources and societal disruptions, including panic buying [15, 3] and
social unrest [1, 29].

A significant number of current pandemic forecasting models are compartmental models, in which
the incidence of each location is fit separately and completely relies on data specific to the current
outbreak. The limited data source of compartmental models leads to unsatisfactory performance
on early pandemic forecasting tasks. Past pandemics can provide significant information on the
likely severity of the current pandemic at the early stage, but compartmental models lack the
ability to integrate past pandemic information into forecasting. The wealth of historical pandemic
data, which, though costly in terms of human lives, remains underutilized and represents a missed
opportunity to enhance predictive accuracy. Therefore, in this study, we present the History-Guided
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Deep Compartmental Model (HG-DCM), which leverages historical data and meta-data to enhance
forecasting accuracy by incorporating insights from previous pandemics and early-stage pandemic
meta-data.

HG-DCM combines a residual convolutional neural network [12] with a novel compartmental model
named DELPHI [19] to create a powerful tool for early pandemic warning. The neural network within
HG-DCM allows cross-learning among different pandemics and different locations when fitting the
DELPHI model, incorporating data from prior pandemics and metadata to improve incidence curve
fitting. This approach preserves the interpretability and epidemiological grounding of the DELPHI
model while leveraging historical data through neural network guidance to improve early-stage
pandemic forecasting accuracy.

We applied HG-DCM to early COVID-19 forecasting across 227 locations globally, demonstrating
that it consistently outperforms the original DELPHI model in early-stage COVID-19 forecasting.
This study provides strong evidence that integrating historical data into compartmental models through
neural networks can significantly enhance the accuracy and stability of early pandemic forecasting.
Furthermore, our comparative analysis reveals that HG-DCM surpasses both state-of-the-art deep
learning-based models and compartmental models in early-case forecasting tasks.

1.1 Literature Review

Compartmental models have been used to forecast the trend of pandemics since the 20th century [2].
Starting with the simplest SIR (Susceptible, Infectious, Removed) model [32], various compartmental
models with different states have shown satisfactory performance in forecasting seasonal pandemics
[33, 17]. One of the core strengths of compartmental models is their high interpretability - each
parameter in a compartmental model usually corresponds to a physical quantity, which provides
valuable insights into the pandemic. However, compartmental models also have limitations. Given
the inevitable noisiness of the data, compartmental models can significantly overfit during the earliest
stage of the pandemic when limited data is available. Furthermore, since compartmental models
are inherently modeled for a pandemic in a certain area, it is also not obvious how to incorporate
information from other pandemics to augment a compartmental model.

From another direction, machine learning is widely used in time-series forecasting fields such as
stock prediction [25], weather forecasting [35], tourism [18], etc. However, most machine learning
time-series models are not designed for early-stage pandemic prediction. There are attempts to use
advanced deep learning models for pandemic forecasting [31, 30, 36, 9], but these models have been
limited to modeling a single pandemic within a single region. Furthermore, these models suffer from
the lack of interpretability, which makes the resulting predictions difficult to understand, especially
during the early phase of a pandemic.

Overall, there have been few attempts to combine compartmental and deep learning models [16].
Recently, there has been some research that integrates mobility data into the compartmental model
through deep learning [8] or utilizes deep learning to estimate the time-varying parameter for the
compartmental model [27]. However, these models assume that a significant amount of training data
is available for the current pandemic, which makes it unsuitable for early-stage pandemic forecasting.

2 Methods

2.1 Model Construction

We introduce the History Guided Deep Compartmental Model (HG-DCM), which integrates a deep
neural network with a compartmental model to combine the expressivity of a deep learning model
and the interpretability of a compartmental model. The model architecture is defined as:

θ̂ = f(T,M) (1)

ŷ = h(θ̂). (2)

Here T and M are the time-series and the metadata for the pandemic, which is combined through
a deep learning model f(·) to create predictions θ̂ for the parameters for the compartmental model.
The final predictions ŷ are then calculated by solving an Initial Value Problem (IVP) to map the
predicted parameters to a cumulative incidence curve. The key idea is that different pandemics
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Figure 1: Model Architecture of HG-DCM HG-DCM consists of two parts: deep learning modeling
and compartmental modeling. The deep learning modeling part predicts the compartmental model
parameters, and the compartmental modeling section uses the predicted parameters to construct the
predicted cumulative case curve for the pandemic.

could share a mapping between how the pandemic behaves (T , M ) and the underlying parameters θ,
which is captured by the deep learning model f . A graphical illustration of the model architecture is
showcased in Figure 1. In the following paragraphs, we detail each of the specific structures.

Residual Convolutional Neural Network (RCNN) We employ a ResNet architecture to train on
time-series data from current and past pandemics, where the model f(·) predicts pandemic parameters.
Since the sample unit is a single pandemic, relying solely on historical data would be insufficient
for robust predictions. To address this, we augment historical data using window-shift and masking
techniques. For past pandemics, we artificially generate additional samples by applying a sliding
window to the training data, predicting future parameters for each windowed segment. The window
shifts in 1-day increments up to M times or until no future data remains (Figure 2a). For the current
pandemic, where future data is unavailable, we apply masking augmentation instead (Figure 2b). To
account for variations in case numbers across locations, daily case numbers are log-transformed to
enhance model stability. For time series with weekly reporting frequencies or missing data, linear
interpolation is used. The ResNet input dimension is [L,N,D], where L represents the combined
lengths of the training and forecasting windows, N is the batch size, and D is the number of input
features (e.g., daily cases, daily deaths). Due to limited data availability, only daily case numbers are
used in this study. We also modify the ResNet implementation by removing batch normalization, as
differences in batch statistics between past and current pandemics can lead to unstable predictions.

Fully Connected Layers The learned embeddings of the time-series data are concatenated with
epidemiological metadata (e.g., transmission pathways) and demographic metadata (e.g., healthcare
expenditure). A full table of the metadata is provided in A.1. Meta-data are normalized using
min-max normalization and passed through two fully connected layers before concatenating with the
time series embeddings output from the RCNN. The concatenated embeddings are passed through
fully connected layers to produce parameters for the DELPHI model. To ensure that the produced
parameters lie within physical bounds, we utilize a sigmoid ranging function to normalize the
predicted parameters between 0 and 1.

Compartmental Modeling We utilize DELPHI [19] as the compartmental model for prediction in
this framework. DELPHI is a compartmental epidemiological model that extends the widely used
SEIR model to account for under-detection, societal response, and epidemiological trends including
changes in mortality rates. The model is governed by a system of ordinary differential equations
(ODEs) across 11 states: susceptible (S), exposed (E), infectious (I), undetected cases who will
recover (UR) or die (UD), hospitalized cases who will recover (HR) or die (HD), quarantined cases
who will recover (QR) or die (QD), recovered (R) and dead (D). The transition rates between the
11 states are defined with 12 parameters, which we predict as θ̂ in the HG-DCM framework. To
generate the final incidence curve, the estimated parameters are passed through torchODE, a parallel
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Figure 2: Data Augmentation Methods (a) Window shift data augmentation for past pandemics
time series data (b) Masking data augmentation for current pandemic time series data

Initial Value Problem (IVP) Solver, to output the predicted cumulative case curve. We used Tsit5
with atol = 1× 10−8, rtol = 1× 10−4 from the torchode package [20] as the ODE solver. We refer
the readers to [19] for details on the DELPHI model and its performance.

Objective Function The objective function of HG-DCM is to minimize the loss between the
predicted incidence curve and the actual incidence curve of past and current pandemics. The
loss of past pandemics includes both the loss of the length-t training window and the length-v
forecasting window (Eqn. 3). The current pandemic loss contains only the training window due to
the inaccessibility of the forecasting window in practice (Eqn. 4). Both losses of the past and current
pandemics are calculated through a sum of mean absolute error (MAE) and mean absolute percentage
error (MAPE) weighted by α to balance the effect of the population. The overall loss is calculated by
a mean weighted by β to balance between past pandemic losses and the current pandemic loss (Eqn.
5). The weight determines the amount of information inherited from past pandemics in predicting the
current pandemic. Concretely, the formula for the loss function can be written as:

LP =
1

nP (t+ v)

nP∑
i=0

t+v∑
j=0

(|Cij − Ĉij |+ α|Cij − Ĉij

Cij
|) (3)

LC =
1

nCt

nC∑
i=0

t∑
j=0

(|Cij − Ĉij |+ α|Cij − Ĉij

Cij
|) (4)

L = LP + βLC (5)

where np/nc is the number of samples in the past/current pandemic data, and Cij/Ĉij is the ac-
tual/predicted cumulative cases of the ith pandemic at the jth time point.

3 Experiments

3.1 Experimental Setup

3.1.1 Data

We were unable to find a publicly available database that contained pandemic data from the past.
Therefore, we constructed a pandemic dataset, which contains case and death (if available) time
series data, pandemic meta-data, and country meta-data for major pandemic outbreaks and seasonal
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pandemics that have occurred worldwide since 1990. Only pandemics with significant (more than
100) and frequent (daily or weekly) reported incidences are included in the dataset. The dataset
includes country-level and domain-level data on the following outbreaks: the 2020 COVID-19
pandemic [6, 5], the 2014 Ebola pandemic [10], the 2003 SARS pandemic [14, 34], the Peru (2000 -
2010) and Puerto Rico (1990 - 2008) Dengue Fever outbreak [21], the 2022 Worldwide Monkeypox
outbreak[23], and world-wide seasonal influenza outbreaks (2009-2023) [26, 7].

The time series dataset contains daily or weekly reported cases for each pandemic. The start date
of pandemics differs for each location and is set by the first day when the cumulative case number
exceeds 100. Epidemiological meta-data with uncertainties that were available at the early stage of the
pandemic for each location are collected. The geological meta-data includes 13 country development
indicators from the World Bank data [37] for each location in the dataset. The list of meta-data is
available in A.1

3.1.2 Setup and Comparison Methods

Comparison Methods We evaluate the model performances on early-stage forecasting tasks, where
HG-DCM is used to forecast the cumulative case curve of 12 weeks based on 2/4/6/8 weeks of daily
case data. Due to the lack of death data in pandemics prior to COVID-19, only case numbers are
used to fit and evaluate the models in the experiments. Locations with no new daily cases reported
during the training window are removed from the dataset. The mean and median MAE of the
forecasting window between the predicted incidence and the true incidence are used to evaluate
model performance. HG-DCM is compared to state-of-the-art compartmental models DELPHI [19]
and deep neural network models Gated Recurrent Units (GRU) [4] on the early-stage pandemic
forecasting tasks.

HG-DCM Setup Four HG-DCM models are trained using the 2/4/6/8-week training window
respectively and predict for 12 weeks. Each HG-DCM is trained separately using the Adam optimizer
with a stable learning rate of 1× 10−5. Given the large variation of case numbers among different
locations, we use a single-batch training approach, where all samples are passed to the model in one
batch. The single-batch approach accelerates the converging by avoiding the turbulent loss curve
caused by large variations in incidence numbers among different locations. Dropout or weight decay
are not used when training the model. The models used in the comparison are trained for 25k epochs.

GRU Setup We also train a five-layer GRU model for each training window using the same set of
past pandemic data as the HG-DCM. We utilize a learning rate of 1× 10−3 as optimized through a
grid search. No dropout or weight decay is used.

DELPHI Setup For fitting DELPHI models, the cumulative case curves are fitted separately for
each location and each training window. Dual annealing (DA) [38] is used as the optimizer for
parameter search. The same default parameter ranges as training HG-DCM are used to fit the
DELPHI curve.

3.2 Results

Early-Stage COVID-19 Forecasting To assess the effectiveness of integrating deep learning
modules into compartmental models, we compare the HG-DCM and DELPHI model in forecasting
COVID-19 incidence curves over 12 weeks under different training models. As expected, both models
showed improved accuracy with longer training periods. HG-DCM consistently achieved a lower
mean MAE across all forecasting tasks (Table 1). Notably, when 8 weeks of data were available, HG-
DCM’s 12-week forecasting accuracy was comparable to DELPHI’s in terms of median absolute error
(p > 0.05). However, with training periods of 6 weeks or less, HG-DCM significantly outperformed
DELPHI in median absolute error (p < 0.05).For instance, with 6 weeks of training data, HG-DCM
is able to reduce median MAE by 21.8% compared to DELPHI, and this improvement increases to
50.1% and 58.7% for 4 and 2-week training windows, respectively. These results underscore the
value of integrating historical pandemic information for early-stage pandemic forecasting.

The higher average MAE of the DELPHI model results from overfitting trends within the training
window, often leading to overshooting in the cumulative case curve. For example, in the 4-week
training task for Switzerland, DELPHI overfitted to the early data, causing a significant overshoot
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Table 1: Model Performance on Covid-19 Early Forecasting. Bold indicates the best performing
models (within statistical significance p < 0.05) for each data availability length.

2 Weeks 4 Weeks 6 weeks 8 Weeks
Mean MAE

GRU 18464.4 20832.7 24113.0 27163.7
DELPHI 611394.9 311157.0 101547.2 21492.6
HG-DCM 18081.6 9941.8 9302.7 5451.6

Median MAE
GRU 4134.5 4459.3 5360.1 5610.3
DELPHI 9258.3 4216.6 1852.0 701.5
HG-DCM 3824.1 2103.1 1449.3 920.3

Switzerland 
4 Weeks Prediction on 12 Weeks

Australia
4 Weeks Prediction on 12 Weeks

a b

Figure 3: Forecasting Example (a) Sample of a location (Switzerland) where HG-DCM outperforms
DELPHI. (b) Sample of a location (Australia) where DELPHI outperforms HG-DCM.

in the 12-week forecast (Figure 3a). By leveraging historical pandemic data, HG-DCM mitigates
overfitting and generates forecasts that align more closely with real-world trends.

To quantify overshooting, we analyzed the distribution of mean absolute errors across locations
(Figure 4). DELPHI’s forecasts exhibit long right-hand tails across all training scenarios, reflecting
large disparities between predicted and actual curves. In contrast, HG-DCM produces narrower
MAE distributions, demonstrating its robustness against extreme forecasting errors. By incorporating
guidance from historical pandemics and leveraging information across current locations, HG-DCM
effectively reduces overshoot and provides more stable predictions.

Furthermore, HG-DCM demonstrates enhanced stability in early-stage pandemic forecasting. Early
pandemic data often suffer from inconsistencies due to limited testing, reporting delays, and in-
complete case recording. By leveraging epidemiological knowledge from historical pandemics,
integrating current pandemic data across locations, and utilizing geospatial meta-data, HG-DCM is
better equipped to mitigate the effects of noise. This ensures more reliable and stable estimations,
which are critical for timely public health interventions.

HG-DCM also consistently outperforms GRU across the 4-week, 6-week, and 8-week early fore-
casting tasks (p < 0.05), demonstrating significant reductions in median MAE by 83.6%, 73.0%,
and 52.8%, respectively. This trend highlights that HG-DCM’s gain does not purely come from the
expressivity of a deep learning model - the ability to combine deep learning with an interpretable
compartmental model allows HG-DCM to produce significantly better and more physical predictions
than a pure deep learning model. We also observe that as training window length increases, the
mean and median MAE of GRU increases. We hypothesize this is due to the scale difference among
forecasting windows. When the training window is 2 weeks, the forecasting window is from 2
weeks to 12 weeks. For 8 weeks, the forecasting window is from 8 weeks to 12 weeks, which has a
significantly higher mean incidence number than that of 2 weeks. The higher mean incidence number
in larger training window tasks covers the effect of lowering MAE caused by additional information
gained by GRU from extra training window between 2 weeks to 8 weeks, resulting in an increase in
mean and median MAE as the training window increases.
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2 Weeks 4 Weeks

6 Weeks 8 Weeks

a b

c d

Figure 4: Forecasting Window MAE Distribution Forecasting window mean absolute error dis-
tribution for DELPHI and HG-DCM on COVID-19 12 Weeks Early Forecasting Tasks using (a) 2
weeks, (b) 4 weeks, (c) 6 weeks, and (d) 8 weeks of available data.

Through these experiments, we demonstrated that the HG-DCM provides more accurate and stable
forecasting compared to DELPHI at the early stage of the pandemic and the purely deep learning based
GRU model. The observation of HG-DCM outperforming DELPHI more on short training windows
and GRU more on long training windows shows the importance of integrating epidemiological
knowledge from the compartmental model and past pandemic information from deep learning models
on early-stage pandemic forecasting tasks.

Parameter Inference One of the key advantages of employing HG-DCM over traditional deep
neural networks for pandemic forecasting is its interpretable parameterization. Unlike black-box
models, the epidemiologically meaningful parameters predicted by HG-DCM can be extracted before
being passed to the Initial Value Problem (IVP) solver, which offers actionable insights.

To illustrate this advantage, we analyzed the parameters inferred by HG-DCM compared to the
traditional DELPHI model in an early-stage COVID-19 forecasting task using four weeks of data
(Figure 5). The DELPHI model’s parameters exhibited a wide distribution, often leading to unstable
forecasts and an overshooting problem. This instability arises because DELPHI fits models indepen-
dently for each location, amplifying sensitivity to minor noise in the data. In contrast, HG-DCM
leverages historical pandemic data and geospatial meta-data, ensuring more robust and consistent
parameter estimation.

Statistical analysis using the Mann-Whitney U Test [22] confirmed significant differences in key
parameters, including the infection rate (α), median day of action (tmed), and rate of action (rs), with
p-values < 0.05. Specifically, HG-DCM predicted a lower infection rate and median day of action,
while exhibiting a higher rate of action, reflecting its ability to adapt to evolving pandemic dynamics.
Consistency in the rate of death (rdth) between models further reinforces the reliability of HG-DCM’s
parameter estimates. This divergence highlights the complementary strengths of both approaches:
DELPHI’s sensitivity to local variation and HG-DCM’s resilience to noise. Together, these insights
can facilitate a more nuanced understanding of pandemic behavior. The complete parameter analyses
for all 12 DELPHI parameters can be found in Appendix A.2.

Model Ablation Study To understand the contribution of HG-DCM’s design components, we
conducted an ablation study by training a Truncated Deep Compartmental Model (T-DCM) that
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* * *

Figure 5: Comparison of fitted parameters in DELPHI and HG-DCM models. The bar graphs
show the mean and standard deviation of selected predicted parameters for HG-DCM and DELPHI.
The p-values from the Mann-Whitney U test are reported, with p-values < 0.05 indicating statistically
significant differences.

excluded historical pandemic data and meta-data. The T-DCM was trained on datasets with 2/4/6/8
weeks of observations and evaluated on a 12-week forecasting task.

Table 2 shows that T-DCM consistently underperformed HG-DCM across all training window lengths.
Notably, HG-DCM achieved significant improvements in both mean and median MAE, with the gap
widening as training data length decreased. This result underscores the importance of incorporating
historical context and structured meta-data for reliable forecasting in the early stages of pandemics.

Table 2: Model performance comparison between HG-DCM and T-DCM.

2 Weeks 4 Weeks 6 Weeks 8 Weeks
Mean MAE T-DCM 18,092.1 11,730.5 11,982.2 8,148.7

HG-DCM 18,081.6 9,941.8 9,302.7 5,451.6
Median MAE T-DCM 3,840.1 2,450.9 2,381.8 1,343.9

HG-DCM 3,824.1 2,103.1 1,449.3 920.3

Early-Stage Monkeypox Forecasting To demonstrate HG-DCM’s generalizability to future pan-
demics, we evaluated its performance during the early-stage forecasting of the Monkeypox (Mpox)
outbreak in Europe and the Americas in 2022 [23]. Using the same methodology as the COVID-19
task, we leveraged historical pandemic data prior to 2022 as guidance.

Table 3 compares HG-DCM’s performance against DELPHI and GRU baselines. HG-DCM achieved
the lowest mean MAE across 2-, 4-, and 6-week training windows and the lowest median MAE in
most cases, outperforming DELPHI and GRU with statistical significance. These results validate HG-
DCM’s ability to adapt to novel pandemics by incorporating historical knowledge while maintaining
robustness to noise and data scarcity.

Table 3: Model Performance on Mpox Forecasting. Bold indicates the best performing models
(within statistical significance p < 0.05) for each data availability length.

2 Weeks 4 Weeks 6 weeks 8 Weeks
Mean MAE

GRU 1871.1 5440.0 1776.4 2031.6
DELPHI 477973.6 393554.2 69451.1 4181.1
HG-DCM 1516.7 1370.6 1430.3 5441.4

Median MAE
GRU 1806.8 5170.1 723.5 852.7
DELPHI 1974.3 579.3 325.2 146.7
HG-DCM 1541.2 643.9 265.4 130.6
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3.3 Discussion

In this work, we proposed HG-DCM, a hybrid architecture that bridges compartmental models
with deep neural networks for early-stage pandemic forecasting. This framework synergizes the
interpretability and domain-grounded rigor of compartmental models with the representational
power of deep learning. Specifically, HG-DCM leverages the structured epidemiological insights of
compartmental models to ensure plausible predictions while harnessing neural networks to integrate
auxiliary information from historical, geographical, and meta-pandemic data. This integration
effectively mitigates the pitfalls of overfitting and instability, which often plague individual modeling
approaches, particularly during the early phases of a pandemic when data is sparse and noisy.

Our results demonstrate that HG-DCM outperforms both standalone compartmental models and
purely deep learning-based models on early forecasting tasks. By offering a more robust and accurate
early-stage estimation of pandemic trends, HG-DCM addresses critical challenges in public health
response, such as resource allocation and policy planning. In particular, its ability to produce
stable, noise-robust predictions reduces erratic shifts in trend forecasts, enabling more confident
decision-making and minimizing the risks of resource misallocation caused by extreme over- or
underestimation.

A key strength of HG-DCM is its interpretability, which remains a cornerstone for pandemic fore-
casting applications. While deep learning methods often function as opaque black boxes, HG-DCM
retains the parameter-driven transparency of traditional compartmental models, with fitted parameters
offering actionable epidemiological insights. For instance, in our implementation with the DELPHI
compartmental model, the extracted parameters maintain clinical relevance, providing healthcare
providers with early and interpretable guidance on the potential trajectory of a pandemic. This
interpretability is invaluable for building trust with stakeholders and ensuring actionable insights.

Beyond its strong predictive performance and interpretability, HG-DCM exhibits significant architec-
tural flexibility. In our experiments, we employed a ResNet-based module for temporal representation
learning and the DELPHI model for cumulative case curve estimation, selected based on empirical
evaluations. However, the modular design of HG-DCM allows for seamless integration of more
advanced compartmental models or neural network architectures as they emerge. This adaptability
positions HG-DCM as a forward-compatible framework capable of evolving alongside advances in
epidemiology and machine learning.

In summary, HG-DCM provides a practical, interpretable, and extensible solution for early-stage
pandemic forecasting. By demonstrating the utility of combining epidemiological and deep learning
methodologies, our work highlights the potential of hybrid approaches to address complex forecasting
challenges in the face of limited data and high uncertainty. Future research may explore augmenting
HG-DCM with additional data modalities, enhancing its generalizability to a broader spectrum of
infectious diseases, and extending its application to real-time adaptive forecasting.

4 Limitation

While HG-DCM demonstrates strong performance in early-stage pandemic forecasting, it is not
without limitations. One notable challenge lies in handling the high variability of incidence rates
across different geographical regions. This variability renders conventional normalization techniques,
such as batch normalization, unsuitable for the stable estimation of model parameters. Empirical
experiments revealed that incorporating batch normalization resulted in unstable predictions, while
layer normalization caused critical information loss, impeding model convergence. As a result, no
normalization technique was employed in HG-DCM, which, while stabilizing predictions, increased
the overall training time due to slower convergence.

Another limitation relates to the availability and quality of historical pandemic data. The COVID-
19 pandemic provided the first instance of high-resolution, daily time series data, which proved
instrumental in enabling robust model training and evaluation. In contrast, earlier pandemics, such
as Ebola, SARS, and Dengue Fever, often lack comparable data granularity. These datasets are
frequently reported in weekly aggregates, requiring interpolation to align with HG-DCM’s daily
prediction framework. Linear interpolation, while a practical workaround, introduces approximation
errors, particularly during the critical early stages of a pandemic when precise trend estimation is
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most needed. This limitation highlights the dependency of HG-DCM on the quality and resolution of
input data, which directly impacts its forecasting accuracy.

Furthermore, while the COVID-19 pandemic raised awareness of the importance of robust pandemic
data collection, the availability of high-quality, real-time data remains inconsistent across regions
and diseases. Recent outbreaks, such as Monkeypox in 2022, demonstrate progress in this area, with
improved public access to daily incidence and mortality data. However, disparities in data quality
and completeness persist globally, posing ongoing challenges for comprehensive model training.

Despite these constraints, HG-DCM’s modular and flexible design ensures its applicability to evolving
data landscapes. As the availability and fidelity of historical pandemic datasets improve, future
iterations of HG-DCM can leverage these advancements to further enhance its capabilities. Addressing
the aforementioned limitations will be critical for developing more generalizable and efficient
forecasting frameworks for infectious disease outbreaks.

5 Conclusion

In this work, we introduced HG-DCM, a novel deep compartmental architecture designed to enhance
early-stage pandemic forecasting. Our approach integrates historical pandemic data and metadata
through a deep learning framework coupled with a compartmental modeling component that generates
interpretable forecasts. We demonstrated that HG-DCM outperforms both traditional compartmental
models and standalone deep learning models in early-stage forecasting tasks.

These results highlight the promise of deep compartmental models for pandemic forecasting and
underscore the value of incorporating historical pandemic data. Future work could focus on integrating
additional data sources, such as mobility patterns, policy interventions, or other metadata, to further
improve forecasting accuracy. Moreover, adapting HG-DCM for real-time applications represents
an exciting avenue for research. We believe this work establishes a foundation for leveraging past
pandemics through deep learning to inform future forecasting efforts.
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A Appendix

A.1 Meta-Data

To incorporate epidemiological and geographical information into early-stage pandemic forecasting,
we collected 7 epidemiological and 13 geographical metadata for each location and pandemic. Data
unavailable during the early stages were marked as missing in the dataset. A detailed list of the
metadata collected is provided in Table A.1.

Table A.1: Meta data table for training HG-DCM The meta-data table including the epidemiologi-
cal metadata and geological metadata used in training HG-DCM

Epidemiological Meta Data Geological Meta Data
Basic Reproduction Rate (R0) Population
Transmission Pathways Net lending/borrowing
Mortality Rate Current Health Expenditure per capita
Average Hospitalization Length Population Density
Hospitalization Rate GNI per capita
Latent Period GDP per capita
Incubation Period Physician per 1,000 people

Urban Population Living in Slums
GDP
External Health Expenditure per capita
Air Transport
Government Effectiveness
Domestic General Government Health Expen-
diture per Capita

A.2 COVID-19 Early-Stage Forecasting Parameter Analysis

To better interpret the predictions, we analyzed the parameters inferred from HG-DCM compared
to DELPHI in an early-stage COVID-19 forecasting task using four weeks of data. Among the 12
parameters, predicted infection rate (α), median day of action (days), rate of action (r_s), Initial
Infection (k2), Median day of jump (t_jump), rate of case resurgence (std_normal), and k3 are
significantly different between DELPHI and HG-DCM. HG-DCM model tends to predict a lower
α, days, t_jump, and std_normal, whereas predicting a higher r_s, k2, and k3. The divergent
prediction set of parameters from two different forecasting methods provides a more comprehensive
understanding of the pandemic. Additionally, DELPHI and HG-DCM produced consistent predictions
for the rate of death (r_dth), initial mortality rate (p_dth), rate of mortality decay (r_dthdecay),
Initial Exposure (k1), and magnitude of the jump (jump), reinforcing the validity of the inferred
parameters (Figure A.1).

A.3 Forecasting Window MAE Distribution of Early-Stage Monkeypox Forecasting

To visualize the performance of HG-DCM and DELPHI in early-stage Monkeypox forecasting, we
plot the distribution of Mean Absolute Error (MAE) values for the predictions. For the 2-, 4-, and
6-week forecasting tasks, HG-DCM predictions exhibit a narrower MAE distribution compared to
DELPHI, aligning with similar observations from early-stage COVID-19 forecasting tasks. The
overlapping prediction distributions of HG-DCM and DELPHI for the 8-week forecasting task
suggest that HG-DCM can achieve comparable performance to DELPHI when sufficient information
is available for current pandemic forecasting (Figure A.2).

A.4 HG-DCM Outputs More Stable Forecasting than DELPHI

In the early stages of the pandemic, even minor fluctuations in a single data point can significantly
impact the trend when fitting traditional compartmental models. For example, DELPHI’s forecast
for the cumulative COVID-19 case curve in the United States varied substantially depending on
whether it used 4, 6, or 8 weeks of data (Figure A.3). Specifically, the overshootings observed
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Figure A.1: Comparison of fitted parameters in traditional DELPHI model and HG-DCM The
8 bar graphs show the mean and standard deviation of the remaining 8 predicted parameters from two
different approaches that are not shown in the main text. Mann-Whitney U test is used to calculate
the p-value of the two groups. Pairs with p-values < 0.05 are considered significantly different.

2 Weeks 4 Weeks

6 Weeks 8 Weeks

a b

c d

Figure A.2: Forecasting Window MAE Distribution of Mpox Early Forecasting Tasks MAE
distribution of DELPHI and HG-DCM on 12-Week Early-Stage Monkeypox Forecasting Tasks using
(a) 2 weeks, (b) 4 weeks, (c) 6 weeks, and (d) 8 weeks of available data.
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with 4- and 8-week training window prediction tasks are largely attributable to isolated increases in
daily case counts at the end of these periods, likely due to data noise. DELPHI overfits the noise
in the data and produces an overshooting curve for the 12-week forecasting. In contrast, HG-DCM
produced consistent prediction curves across the 4-, 6-, and 8-week training windows, demonstrating
its robustness against data noise.

4 Weeks Prediction on 12 Weeks

6 Weeks Prediction on 12 Weeks 8 Weeks Prediction on 12 Weeks

2 Weeks Prediction on 12 Weeks

a b

c d

Figure A.3: 12-Week Forecasting of United States Incidence Curves by HG-DCM and DELPHI
The 12-week forecasting produced by HG-DCM and DELPHI using (a) 2 weeks, (b) 4 weeks, (c) 6
weeks, and (d) 8 weeks of available data for the United States.
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