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 44 

Abstract 45 

COVID-19 patients often exhibit altered immune responses and neuropsychiatric symptoms 46 
during hospitalization. However, the potential interactions with gut microbiome profiles 47 
have not been fully characterized. Here, COVID-19 disease severity was classified as low 48 
(27.4%), moderate (29.8%), and critical (42.8%). Fever (66.1%) and cough (55.6%) were 49 
common symptoms. Additionally, 27.3% reported somatic symptoms, 27.3% experienced 50 
anxiety, 39% had depressive symptoms, and 80.5% reported stress. Gut microbiome 51 
profiling was performed using full-length 16S rRNA gene sequencing. Elevated interleukin-52 
6 levels were observed in the most severe cases, indicating systemic inflammation. Reduced 53 
gut bacterial diversity was more pronounced in women and obese patients and correlated 54 
with higher disease severity. The presence of the genus Mitsuokella was significantly 55 
associated with increased physical, stress, anxiety, and depressive symptoms, and 56 
Granulicatella with critically ill patients. These findings suggest a link between mental 57 
health status, systemic inflammation, and gut dysbiosis in COVID-19 patients, emphasizing 58 
the potential of microbiome-targeted therapies to improve recovery and reduce severe 59 
complications. 60 
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Introduction 94 
 95 

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome 96 
coronavirus 2 (SARS-CoV-2), primarily presents with respiratory symptoms. However, the 97 
infection can also affect neurological(1) and gastrointestinal (GI) systems(2, 3). It is well 98 
established that men are at a higher risk than women of developing severe acute COVID-99 
19(4, 5), as well as individuals over the age of 60 years old(6, 7). Patients hospitalized 100 
during the acute phase of COVID-19 exhibit a high prevalence of mental health issues such 101 
as elevated stress, anxiety, and depression(8-10). These mental health disturbances are more 102 
prevalent in women and can be worsened by factors such as age(11), more severe physical 103 
symptoms, or length of hospital stay(12). Furthermore, the presence of COVID-19 104 
symptoms at the time of admission adds to the psychological burden(13).  105 

SARS-CoV-2 infection increases levels of soluble immune mediators in the bloodstream, 106 
such as inflammation-related cytokines(14). It activates intestinal angiotensin-converting 107 
enzyme 2 (ACE2) receptors(15) and damages the intestinal epithelium, disrupting the gut 108 
barrier(16, 17), as observed in patients with severe COVID-19(18, 19). This inflammatory 109 
response triggers GI and alterations in the gut microbiome(19-21), both of which are 110 
associated with disease severity. 111 

Gut dysbiosis, characterized by a reduction in butyrate-producing, anti-inflammatory 112 
bacteria, and increased pro-inflammatory taxa, disrupts immune regulation, nutrient 113 
metabolism, and structural defenses, contributes to systemic inflammation and impairs host 114 
homeostasis(22). Microbiome imbalances during the acute phase of COVID-19, especially 115 
in hospitalized patients, were linked to increased mortality rates(23). Previous studies have 116 
identified microbial features in the gut and airways of COVID-19 patients during 117 
hospitalization and recovery(21), suggesting that microbial markers could serve as 118 
noninvasive diagnostic tools. Microbiome dysbiosis also affects immune and inflammatory 119 
response regulation and brain function(24). However, the link between microbial alterations 120 
and somatic or neuropsychiatric symptoms in COVID-19 patients and their potential as 121 
predictive tools has yet to be fully elucidated.  122 

In this cross-sectional study, we identified associations between somatic and 123 
neuropsychiatric symptoms, inflammatory profiles, and alterations in gut microbiota 124 
composition in hospitalized COVID-19 patients. By examining these relationships, we aim 125 
to gain insights into the mechanisms underlying COVID-19 pathogenesis and potentially 126 
identify novel therapeutic targets for intervention. 127 

 128 

Results  129 
 130 

Characteristics of the participants. 131 

We enrolled 124 COVID-19 patients, 63 males and 61 females. The mean age was 55.2 132 
(±14.6) years. The average length of hospital stay was 7 days (range, 1 to 21 days), and a 133 
total of 8 (6.5%) patients died during their initial hospital stay. According to the COVID-134 
19 Severity Index, 34 (27.4%) patients were classified as low, 37 (29.8%) as moderate, and 135 
53 (42.8%) as critical COVID-19. Older patients experienced more severe COVID-19 136 
symptoms (p < 0.001), and the prevalence of men increased with the severity of the disease 137 
(p = 0.025). Data are summarized in Table 1.  138 
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Table 1. Demographic and clinical characteristics of the patients classified according to the 139 
COVID-19 Severity Index (n=124). 140 
 141 
Variables All patients 

(n=124) 
 COVID-19 

Severity 
  

Low  
(n=34) 

Moderate 
(n=37) 

Critical 
(n=53) 

p Value 

Age, years, mean ± SD 55.2 ± 14.6 42.3 ± 11.1 55.5 ± 12.8 63.2 ± 11.6 <0.001# 

  <60 years, n (%) 78 (62.9) 34 (100) 24 (64.9) 20 (37.7)  
  ≥60 years, n (%) 46 (37.1) 0 13 (35.1) 33 (62.3)  
Gender, n (%)     0.025$ 
  Male 63 (50.8) 12 (35.3) 17 (45.9) 34 (64.2)  
  Female 61 (49.2) 22 (64.7) 20 (54.1) 19 (35.8)  
Body Mass Index (BMI), 
kg/m2, mean ± SD 

30.7 ± 6.6 28.7 ± 4.7 30.5 ± 6.2 32.2 ± 7.5 0.050# 

  <30 kg/m2 67 (54.0) 24 (70.6) 20 (54.1) 23 (43.4)  
  ≥30 kg/m2 57 (46.0) 10 (29.4) 17 (45.9) 30 (56.6)  
Co-morbidities, n (%) 
  Diabetes mellitus 
  Heart diseases 
  Hypertension 
  Chronic pulmonary 
obstructive disease   

 
4 (3.2) 
5 (4.0) 

38 (30.6) 
8 (6.5) 

 
0 
0 

5 (14.7) 
0 

 
2 (5.4) 

0 
12 (32.4) 
1 (2.7) 

 
2 (3.8) 
5 (9.4) 

21 (39.6) 
7 (13.2) 

 
0.570* 
0.044* 
0.047$ 
0.032* 

Days of hospitalization, 
median (IQR) 

7 (4 – 9) 7 (4 – 8) 6 (4 – 8.5) 7 (4 – 10.5)  0.455& 

Intensive care unit (ICU) 13 (10.5) 0 2 (5.4) 11 (20.8) <0.001* 
Supplemental oxygen, n 
(%) 

58 (46.8) 0 8 (21.6) 50 (94.3) <0.001$ 

Antibiotics, n (%) 25 (20.2) 3 (8.8) 9 (24.3) 13 (24.5) 0.154$ 
Death during 
hospitalization, n (%) 

8 (6.5)  0 1 (2.7) 7 (13.2) 0.032* 

Number of COVID-19 
symptoms 

3 (2 – 4) 3 (2 – 4) 3 (2 – 3) 3 (2 – 4) 0.287& 

Note: Data were presented using absolute values and percentages (%), mean and standard deviation 142 
(SD) or median and interquartile range (IQR). $Chi square test. *Fisher’s exact test (FET). #One-143 
way ANOVA. &Kruskal-Wallis test.  144 

 145 

COVID-19 symptoms, somatic and neuropsychiatric assessments, and inflammatory 146 
profile. 147 

Patients (n=43, 34.7%) experienced at least 3 of the 16 assessed COVID-19 symptoms at 148 
baseline. Fever (n=82, 66.1%) and cough (n=69, 55.6%) were the most common symptoms. 149 
A significant association was found between COVID-19 severity and the presence of 150 
dyspnea (p<0.001). The distribution of symptoms at the time of hospital admission, 151 
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categorized by COVID-19 severity, is represented in Fig. 1a. Among the 77 patients who 152 
completed the instruments, 21 (27.3%) were classified as having severe somatic symptoms 153 
as intense and persistent pain, chronic fatigue, headaches, muscle, and joint pain or sleep 154 
disturbances. In terms of neuropsychiatric symptoms, 21 (27.3%) exhibited symptoms of 155 
anxiety, and 30 (39%) reported depressive symptoms. Regarding perceived stress, 15 156 
patients (19.5%) reported rarely or never feeling stressed, 36 patients (46.7%) experienced 157 
stress occasionally, and 26 patients (33.8%) reported often or usually feeling stressed. 158 
Scores for PHQ-15 (Fig. 1b), PSS (Fig. 1c), HADS-A (Fig. 1d), and HADS-D (Fig. 1e) 159 
showed no significant differences across COVID-19 Severity Index groups, nor did they 160 
vary significantly with age or BMI (Table 2). Additionally, there were no significant 161 
differences in the prevalence of somatic, stress, or depressive symptoms between male and 162 
female patients. However, anxiety symptoms were more prevalent among women, who also 163 
scored higher on the HADS-A (Table 2). The prevalence of fever was higher among those 164 
with severe (PHQ ≥15) somatic symptoms (χ2(1)=4.586; p=0.032). There were significant 165 
correlations between PHQ-15 and PSS (Fig. 1f), HADS-A (Fig. 1g), and HADS-D (Fig. 166 
1h). An association was found between stress, anxiety, and depressive symptoms scores. 167 
Higher stress levels were correlated with more extended hospital stays (rs=0.227; p=0.047).  168 

The levels of the inflammatory mediators – interleukin (IL) (IL-6, IL-12, IL-10), IL-1 169 
receptor antagonist (IL-1ra), interferon-gamma (IFN-γ), and interferon-gamma-inducible 170 
protein 10 (IP-10) were higher with increased severity of SARS-CoV-2 infection (Fig. 1i-171 
n). On the other hand, platelet-derived growth factor BB (PDGF-BB), regulated on 172 
activation, normal T cell expressed and secreted (RANTES), and interleukin-2 (IL-2) were 173 
lower in critically ill patients (Fig. 1o-q). There were no differences in the other measured 174 
inflammatory mediators (Supplementary Fig. 1). The scores obtained in the PHQ-15 were 175 
associated with interleukin-7 (IL-7), interleukin-13 (IL-13), eotaxin, and PDGF-BB levels. 176 
PSS and IL-13 were correlated. Anxiety scores were correlated with IL-12. The scores 177 
obtained in the HADS-D were associated with IL-1ra and IL-2. The heatmap displays the 178 
statistically significant correlations (Fig. 1r).  179 

Additionally, the number of neutrophils in circulation increased in moderate and critical 180 
patients compared to those with low COVID-19 severity, whereas circulating lymphocytes 181 
decreased. An increase in the NLR and PLR accompanied these changes. CRP, D-dimer, 182 
fibrinogen, ferritin, and LDH were elevated with COVID-19 severity. Albumin 183 
concentration decreased in moderately severe and critically ill patients (Supplementary 184 
Fig. 2). 185 

 186 
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 187 

Fig. 1. COVID-19 symptom prevalence, somatic and neuropsychiatric assessments in 188 
hhospitalized COVID-19 patients. (a) The prevalence of COVID-19 symptoms during 189 
hospitalization is categorized into low, moderate, and critical severity groups. The most 190 
common symptoms were fever (66%), cough (56%), and dyspnea (29%) which was more 191 
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prevalent in the critical group (p<0.001). The chi-square or Fisher’s exact test was used to 192 
analyze contingency tables.  Median and interquartile range of the clinical outcomes results 193 
of the patients classified according to the COVID-19 Severity Index (n=77). (b) Somatic 194 
symptoms (PHQ-15, Patient Health Questionnaire-15), (c) perception of stress (PSS, 195 
Perceived Stress Scale), (d) anxiety, and (e) depression (HADS-D, Hospital Anxiety and 196 
Depression Scale) scores were the same across the three groups categorized by COVID-19 197 
severity (low, moderate, and critical). Pairwise comparisons between severity groups 198 
followed the Kruskal-Wallis test. Spearman’s Rank Correlation Coefficient showed a 199 
positive correlation between PHQ-15 scores and (f) PSS scores (rs=0.347, p=0.002), (g) 200 
HADS-A scores (rs=0.475, p<0.001) and (h) HADS-D scores (rs=0.252, p=0.027). These 201 
results indicate that higher somatic symptom burden is associated with increased perceived 202 
stress, anxiety, and depressive symptoms in hospitalized COVID-19 patients. The 203 
concentrations (pg/ml) of (i) IL-6, (j) IL-12, and (k) IL-1ra were higher in the critical group 204 
compared to the low group. For (l) IFN-γ and (m) IL-10, the critical group showed higher 205 
levels compared to the low and moderate groups. The levels of (n) IP-10 were higher in the 206 
critical and moderate groups compared to the low group. Conversely, the levels of (o) 207 
PDGF-BB, and (p) RANTES decreased from the low group to the critical group. For (q) 208 
IL-2, the critical group showed lower levels than the low and moderate groups. Pairwise 209 
comparisons between the severity groups followed the Kruskal-Wallis test. The lines and p-210 
values on the Fig.s indicate significant differences between these groups. Linear regression 211 
was used to compare variables with and without adjustment for age, gender, and BMI. Age 212 
influenced IFN-γ serum concentration. Both age and BMI affected the differences in IL-12 213 
and RANTES levels. For the rest of the cytokines (IL-1ra, IL-2, IL-6, IL-10, IP-10, PDGF-214 
BB), the factor responsible for the differences in concentrations was the severity of COVID-215 
19. (r) Heatmap illustrating the correlations between various cytokine levels in serum 216 
concentration (% coefficient of variation) and somatic and neuropsychiatric symptoms 217 
scores in hospitalized COVID-19 patients, with significant correlations marked with 218 
asterisks (*p<0.05, **p<0.01, ***p<0.001). Red shades represent positive correlations, 219 
whereas blue shades represent negative correlations. The Kruskal-Wallis test was followed 220 
by pairwise comparisons between severity groups with correction for multiple testing. IL, 221 
Interleukin; IL-1ra, Interleukin-1 receptor antagonist; IFN-γ, Interferon-gamma; IP-10, 222 
Interferon-gamma-inducible protein 10; PDGF-BB, Platelet-Derived Growth Factor BB; 223 
RANTES, Regulated on Activation, Normal T Cell Expressed and Secreted. 224 
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Table 2. Somatic and neuropsychiatric symptoms of the participants (n=77). 225 

Variables PHQ-15 PSS HADS-A HADS-D 
Median 
(IQR) 

p 
Value 

Median 
(IQR) 

p 
Value 

Median 
(IQR) 

p 
Value 

Median 
(IQR) 

p 
Value 

Gender         
  Female  10 (7 – 

14.5) 
0.393 23 (14 – 

31.5) 
0.332 6 (3.5 – 

13) 
0.014 7 (3 – 

10.25) 
0.216 

  Male  8 (6.25 – 
15) 

19 (15 – 
27.5) 

4 (2 – 
6.75) 

5 (1.25 – 
9.75) 

Age         
  <60 years 9.5 (5.75 

– 15) 
0.369 20.5 (14 – 

28.25) 
0.398 5 (3 – 8)  0.487 6 (3 – 

10) 
0.751 

  ≥60 years 8 (8 – 
16) 

22 (16 – 
31) 

6 (3 – 
14) 

5 (2 – 
12) 

BMI         
  <30 kg/m2 8 (5 – 

14) 
0.222 22 (14 – 

28) 
0.919 5 (3 – 7) 0.536 6 (3 – 

10) 
0.707 

  ≥30 kg/m2 10 (7.75 
– 16) 

19.5 (16 – 
29.25) 

6 (3 – 9)  5.5 (2 – 
10) 

COVID-19 
severity 

        

  Low 9.5 (5 – 
14.25) 

0.864 27 (14.5 – 
31.25) 

0.172 5 (3 – 
8.25) 

0.496 7 (3 – 
10) 

0.431 

  Moderate 9.5 (7 – 
13.75) 

18.5 (14 – 
26.75) 

5.5 (3 – 
13) 

6 (2.5 – 
10.5) 

  Critical 8 (7 – 
16) 

19 (15 – 
26) 

5 (2 – 7) 4 (1 – 8) 

Note: Comparison of scores on instruments assessing somatic symptoms, stress, anxiety, and 
depressive symptoms according to gender, age, BMI, and COVID-19 severity. Abbreviations: 
BMI, Body Mass Index; HADS-A, Hospital Anxiety and Depression Scale-Anxiety; HADS-D, 
Hospital Anxiety and Depression Scale-Depression; IQR, interquartile range; PHQ-15, Patient 
Health Questionnaire-15; PSS, Perception of stress. Mann-Whitney U test or Kruskal-Wallis test 
was followed by pairwise comparisons between groups. 
 

 227 

Impact of COVID-19 severity on gut microbiome composition: associations with BMI, 228 
gender, and age. 229 

The analysis of alpha diversity (Shannon index) (Fig. 2a) revealed a significant reduction 230 
in gut microbiota diversity in critically ill COVID-19 patients compared to those with low 231 
disease severity (p<0.05). Regarding species richness (Chao1 index) (Fig. 2b), critically ill 232 
patients showed significantly lower richness compared to those with low (p<0.01) and 233 
moderate (p<0.05) disease severity. Beta diversity analyses (MDS plots) demonstrated that 234 
BMI significantly correlated the gut microbiota composition in patients classified as having 235 
low COVID-19 severity (Fig. 2c-e), with a distinct separation between patients with BMI 236 
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≥30 and those with BMI under 30. Gender-based analysis (Fig. 2f-h) significantly correlated 237 
microbiota composition only in critically ill patients (Fig. 2h). Similarly, age was 238 
significantly associated with microbiota composition in the critically ill group, with patients 239 
≥60 years showing distinct microbial profiles compared to those under 60 years (Fig. 2k). 240 
Bar plots of microbial relative abundance at the family (Fig. 2l) and genus levels (Fig. 2m) 241 
demonstrated considerable shifts in microbial composition across severity groups. 242 
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Fig. 2. Alpha and beta diversity of gut microbiome in hospitalized COVID-19 patients. 244 
(a) Shannon index, which measures species richness and evenness, indicating lower 245 
diversity in the critical group compared to the low group (p=0.0129) (b) Chao1 richness 246 
estimator indicates significantly lower species counts in the critical group compared to the 247 
low group (p=0.0073) and the moderate group (p=0.0197) (*p<0.05 and **p<0.01). (c-e) 248 
Beta diversity analysis was performed using Aitchison Principal Coordinates Analysis 249 
(PCoA) for Body-mass-index (BMI) categories (<30 vs. ≥30 kg/m2), showing distinct 250 
clustering in the low group (p=0.034). (f-h) PCoA plots for gender (female vs. male) show 251 
distinct clustering in the critical severity group (p=0.009), suggesting gender-based 252 
differences in microbiome composition are more pronounced in this group. (i-k) PCoA plots 253 
for age categories (<60 vs. ≥60 years) show a more distinct clustering in the critical group 254 
(p=0.006), indicating age-related differences in microbiome composition. The statistical 255 
significance of these groupings was assessed using permutational multivariate analysis of 256 
variance (Permanova) within the vegan R package, with Pr(>F) and R2 values confirming 257 
the observed differences in microbial community composition. The relative abundance of 258 
various gut microbiota showing the top 15 taxa at family level (l) and genus level (m) in 259 
hospitalized COVID-19 patients across different severity groups. 260 

Differential gut microbial signatures across COVID-19 severity. 261 

Analysis of the Composition of Microbiomes with Bias Correction 2 (ANCOMBC2) can 262 
potentially uncover biomarkers or therapeutic targets by providing a list of bacteria with 263 
significant changes in abundances. The heatmap (Fig. 3a) shows the centered log-ratio 264 
abundance of gut microbial species across patients with low, moderate, and critical COVID-265 
19 severity. A clear shift in microbial composition was observed as disease severity 266 
increased, with certain species becoming more abundant in critically ill patients while others 267 
decreased. The graphs within Fig. 3b and Fig. 3c show log fold changes of specific bacterial 268 
species between low to moderate and low to critical severity groups, respectively. Notably, 269 
species such as Streptococcus periodonticum and Clostridium perfringens were 270 
significantly enriched in patients with lower disease severity (q<0.001 and q<0.01) (Fig. 3b 271 
and Fig. 3c). In comparison, Klebsiella pneumonia and Prevotella loescheii were highly 272 
abundant in critically ill patients (q<0.001 and q<0.01) (Fig. 3c).  273 
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 274 

Fig. 3. Heatmap and differential abundance of specific gut microbiota taxa in 275 
hospitalized COVID-19 patients across different severity groups. (a) Heatmap of the 276 
centered-log transformed abundance of significantly altered taxa showing intra-group 277 
variation among patients with the same COVID-19 severity, highlighting distinct microbial 278 
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profiles associated with each group. The color intensity represents the transformed 279 
abundance, with darker shades of red indicating higher abundance. (b) Comparison between 280 
low and moderate-severity groups reveals significant increases in taxa such as 281 
Desulfonispora thiosulfatigenes and Streptococcus vestibularis in moderate group. It 282 
decreases in taxa such as Streptococcus periodonticum, Phocaeicola plebius, and 283 
Clostridium perfringens in moderate group. (c) Comparison between low and critical 284 
severity groups shows significant increases in taxa such as Klebsiella pneumoniae, 285 
Prevotella loeschii, and Breznakia pachnodae with corresponding decreases in 286 
Ruminiclostridium cellulolyticum, Streptococcus periodonticum, and Suterella 287 
wadsworthensis in critical group; identified using ANCOMBC2. The analysis revealed 288 
differentially abundant species with statistical significance levels indicated as *q<0.05, 289 
**q<0.01, and ***q<0.001. 290 

Association of gut microbiota with somatic symptoms, stress, anxiety, and depressive 291 
symptoms in COVID-19 patients. 292 

Principal Coordinates Analysis (PCoA) was performed to investigate associations between 293 
somatic and neuropsychiatric symptoms and gut microbiome composition in patients with 294 
COVID-19 (Fig. 4a-l). A statistically significant association was found between 295 
somatization, as measured by the PHQ-15, and microbiome composition within the 296 
moderate severity group (p=0.04, R²=0.029; Fig. 4b). This finding suggests that individuals 297 
with higher somatic symptom scores may exhibit distinct microbial profiles compared to 298 
those with lower scores. Similarly, perceived stress showed a non-significant trend with the 299 
microbiome in the moderate group (p=0.05, R²=0.084; Fig. 4e), indicating that experiencing 300 
stress regularly could influence microbial community composition. The relatively higher R² 301 
value for PSS suggested that perceived stress explained a notable portion of the observed 302 
variance in microbial composition compared to other mental health factors. In contrast, 303 
scores from the HADS-A and HADS-D tests did not display significant associations with 304 
microbiome composition across all severity groups (p>0.05; Figs. 4g–5l). These results 305 
suggest that, in this sample, general measures of anxiety and depressive symptoms may not 306 
significantly contribute to variations in gut microbial structure. 307 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 19, 2024. ; https://doi.org/10.1101/2024.11.18.24317428doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.18.24317428
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

 308 

Fig. 4. Ordination analyses of gut microbiota composition, somatic and 309 
neuropsychiatric symptoms across COVID-19 severity levels. (a-c) Aitchison distance 310 
principal coordinate analysis plots explore the relationships between COVID-19 severity, 311 
gut microbiota composition, somatic symptoms (PHQ-15) (d-f), and neuropsychiatric 312 
symptoms, including stress (PSS) (a-l), anxiety (HADS-A) (g-i), depressive symptoms 313 
(HADS-D) (j-l). The distributions indicate varying degrees of correlation between gut 314 
microbiota diversity and mental health indicators, with Permanova (>F) and R² values 315 
specified for each plot.  316 

A secondary differential abundance analysis revealed microbial shifts correlated with scores 317 
on the PHQ-15, PSS, HADS-A, and HADS-D assessments. Patients with higher PHQ-15 318 
scores showed a significant increase in the abundance of species such as Enterococcus 319 
citroniae (q<0.001), Phascolarctobacterium  succinatutens and Acidaminococcus intestine 320 
(q<0.01), and Enterococcus faecalis (q<0.05), while known beneficial bacteria like 321 
Lactobacillus rugosae were significantly depleted (q<0.05) (Fig. 5a). Higher PSS scores 322 
were associated with an overrepresentation of  Enterocloster asparagiformis (q<0.001), and 323 
Blautia stercoris (q<0.05). At the same time, species Blautia hansenii, Salmonella enterica, 324 
and Prevotella stercorea (q<0.05) were significantly decreased (Fig. 5b). HADS-A scores 325 
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were linked to an increase in Dialister succinatiphilus (q<0.05) and Streptococcus sp. A12 326 
(q<0.01), among others, showed a notable reduction in species such as Lactobacillus 327 
salivarius (q<0.001) and Bacteroides caccae (q<0.01) (Fig. 5c). Higher HADS-D were 328 
correlated with elevated levels of Butyricimonas virosa (q<0.05), and Eubacterium 329 
xylanophilum (q<0.01). In contrast, species Bacteroides caccae (q<0.01) and 330 
Ruminiclostridium cellulolyticum (q<0.05) were significantly diminished (Fig. 5d).  331 
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 332 

Fig. 5. Differential abundance analysis between gut microbiota, somatic and 333 
neuropsychiatric symptoms in hospitalized COVID-19 patients. Log fold changes in 334 
abundance of various bacterial taxa associated with four different assessments: (a) PHQ-15 335 
(somatic symptoms), (b) PSS (perceived stress), (c) HADS-A (anxiety), and (d) HADS-D 336 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 19, 2024. ; https://doi.org/10.1101/2024.11.18.24317428doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.18.24317428
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

(depressive symptoms). The analysis used ANCOMBC2 to identify differentially abundant 337 
microbes between high- and low-test scores. Bars represent log fold changes in microbial 338 
abundance, with red bars indicating an increase and blue bars indicating a decrease in 339 
abundance associated with higher test scores. Error bars represent standard errors calculated 340 
using ANCOMBC2. Asterisks (*q<0.05, **q<0.01, and ***q<0.001) denote statistical 341 
significance levels, with more asterisks indicating higher significance. Only the top 342 
differentially abundant taxa are shown for each scale (LFC ³1).  343 

Distinct gut microbial correlations with somatic symptoms, stress, anxiety, and depressive 344 
symptoms in COVID-19 patients. 345 

The heatmap presents the Spearman correlation coefficients of CLR-transformed 346 
abundances between various bacterial species and four assessments: PHQ-15, PSS, HADS-347 
A, and HADS-D (Fig. 6). Several microbial species showed significant correlations with 348 
these symptoms, with only associations where p<0.05 displayed numerically to highlight 349 
statistically significant relationships. For instance, Christensenella minuta (p<0.01), 350 
Anaeromassilibacillus senegalensis, Lachnospiraceae bacterium GAM79, and 351 
Christensenella massiliensis (p<0.05) were negatively associated with somatic symptoms 352 
(PHQ-15), showing a significant reduction. Conversely, Mitsuokella jalaludinii, Prevotella 353 
copri, and Phocaeicola plebeius were positively associated with increased PHQ-15 scores 354 
(p<0.05). Notably, Mitsuokella jalaludinii showed significant positive correlations with all 355 
assessments (p<0.05)), indicating a potential association between its increased abundance 356 
and higher symptom burden. Additionally, Phocaeicola vulgatus correlates with PSS and 357 
HADS-D (p<0.05). Bacteroides stercoris correlates with HADS-D (p<0.05).  358 
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 359 

Fig. 6. Heatmap of correlations between gut microbiota species, somatic and 360 
neuropsychiatric symptoms. Heatmap illustrating the Spearman's correlation coefficients 361 
between the centered log-ratio (CLR) transformed abundances of gut microbial species and 362 
scores from four assessments: PHQ-15 (somatic symptoms), PSS (perceived stress), HADS-363 
A (anxiety), and HADS-D (depression). The color scale represents the strength and direction 364 
of correlations, with red indicating positive correlations and blue indicating negative 365 
correlations. The intensity of the color corresponds to the magnitude of the correlation, as 366 
shown in the legend on the right (ranging from -0.25 to 0.25). P-values are less than 0.05 367 
displayed on corresponding cells, indicating statistical significance. Blank cells represent 368 
correlations that did not meet the significance threshold. Bacterial species are listed on the 369 
y-axis, while the mental health scales are shown on the x-axis. This visualization allows for 370 
identifying specific microbial species that may have consistent or unique associations with 371 
different aspects of mental health as measured by these indicators. Notable correlations 372 
include positive associations between Mitsuokella jalaludinii and all measurements, and 373 
negative associations between several species (e.g., Christensenella massiliensis, 374 
Lachnospiraceae bacterium GAM79) and PHQ-15 scores.  375 

 376 
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Multivariate analysis and network visualization of gut microbial associations with 377 
somatic and neuropsychiatric symptoms in COVID-19 patients. 378 

To further explore the relationship among somatic and neuropsychiatric symptoms, 379 
COVID-19 severity, and gut microbiome composition, a redundancy analysis (RDA) was 380 
conducted. This analysis visualized the distribution of microbial species with COVID-19 381 
severity (low, moderate, critical) and all assessments (PHQ-15, PSS, HADS-A, HADS-D). 382 
The RDA plot (Fig. 7a) shows the relationship between gut microbial species and PHQ-15, 383 
PSS, HADS-A, and HADS-D scores across different COVID-19 severity groups. The RDA 384 
axes account for 4.9% and 1.4% of the variation, respectively. Notably, the species 385 
Mitsuokella jalaludinii was positioned within the mental health indicator constraints of the 386 
plot, suggesting potential associations with specific assessed symptoms or COVID-19 387 
severity outcomes. Distinct relationships were observed, with species such as Phocaeicola 388 
vulgatus, Bacteroides stercoris, and Prevotella copri being positively associated with 389 
elevated somatic scores, particularly in patients with critical disease. 390 

 391 

Fig. 7. Associations between gut microbiota, somatic and neuropsychiatric symptoms 392 
in hospitalized COVID-19 patients. (a) Redundancy Analysis (RDA) plot showing the 393 
association between gut microbiome composition, somatic and neuropsychiatric symptoms, 394 
and COVID-19 severity. The x-axis represents RDA1 (4.9% of variation), and the y-axis 395 
represents RDA2 (1.4%). Each point represents an individual patient, color-coded by 396 
COVID-19 severity. Green arrows indicate the direction and strength of association with 397 
PHQ-15, PSS, HADS-A, and HADS-D. Labeled bacterial species show their associations 398 
with these factors. Density plots on the top and right margins show the distribution of 399 
samples along each axis. (b) Venn diagram of the resulting driver taxa from each COVID-400 
19 severity group using the BakDrive interaction analysis followed by the BakDrive driver 401 
analysis. Genera that are bolded correspond to taxa that are above the total relative 402 
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abundance threshold of 5%. (c) SpiecEasi, sparse and low-rank decomposition network 403 
analysis of gut microbiome species, illustrates the co-occurrence patterns of gut bacterial 404 
species associated with mental health indicators. Nodes represent bacterial species with a 405 
p<0.05 with any mental health index, while edges represent significant correlations between 406 
species. Node colors represent Spearman’s correlation between the microbe and the scores 407 
of the assessments. Together, these visualizations provide insights into the complex 408 
relationships between gut microbiome composition, mental health status, and COVID-19 409 
severity, suggesting potential microbial signatures associated with different symptoms in 410 
the context of COVID-19 infection. 411 

Conversely, species Christensenella minuta, Anaeromassilibacillus senegalensis, and 412 
Lachnospiraceae bacterium GAM79 negatively correlated with somatic symptoms, 413 
suggesting a potential protective effect. To investigate which microbial taxa might drive the 414 
severity of COVID-19  in gut microbiomes, we used Bakdrive(25). Bakdrive is a microbial 415 
community modeling tool designed to identify driver bacteria that play a pivotal role in 416 
influencing the structure and function of the microbiome in health or disease. Specifically, 417 
by utilizing metabolic models and network analysis, Bakdrive aims to pinpoint taxa that 418 
play crucial roles in disease mechanisms or ecological interactions. Using this tool, we can 419 
highlight the bacterial species that were likely driving interactions within gut microbiomes 420 
across low, moderate, and critical severity groups. Specific taxa exhibited varying 421 
prevalence across different levels of COVID-19 severity (Supplementary Table 3). For 422 
example, Granulicatella was predominantly present in critically ill patients, while 423 
Succinivibrio was more common among those with moderate disease severity. Some driver 424 
taxa were shared between severity groups. Notably, Faecalibacterium was present across 425 
all severity levels, and Enterococcus appeared only in patients with low and moderate 426 
severity. These findings reflect distinct variations in driver taxa composition associated with 427 
disease severity scores (Fig. 7b). 428 

The network diagram generated using SpiecEasi (Sparse InversE Covariance estimation for 429 
Ecological Association Inference) illustrated the associations between specific microbial 430 
species and various symptoms assessed, highlighting Spearman correlations with p-values 431 
<0.05 related to mental health indicators (Fig. 7c). This network highlights the intricate 432 
interactions among bacterial species, with nodes color-coded to reflect their associations 433 
with PHQ-15, PSS, HADS-A, and HADS-D scores. The structure reveals positive and 434 
negative associations between species, computed using the sparse and low-rank 435 
decomposition method. This approach minimizes the impact of latent variables, allowing 436 
for a more precise representation of the complex balance within the gut microbiome with 437 
mental health and COVID-19 severity. Microbial species such as Mitsuokella jalaludinii 438 
and Phocaeicola vulgatus strongly correlated with PSS and HADS-D. Conversely, species 439 
Christensenella minuta, Anaeromassilibacillus senegalensis, and Lachnospiraceae 440 
bacterium GAM79 were inversely associated with PHQ-15. Key species Ruminococcus 441 
lactaris, Megasphaera indica, and Bacteroides stercoris occupy central positions within the 442 
network, indicating their potential significance in the gut-brain axis and their possible role 443 
in influencing mental health status.  444 
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Discussion  445 

This proof-of-concept study highlights links between somatic and neuropsychiatric 446 
symptoms, inflammatory responses, and gut microbiome dysbiosis in hospitalized COVID-447 
19 patients. The results provide essential insights into the intricate interactions between 448 
COVID-19 severity and specific microbial species, demonstrating that different microbes 449 
are associated with varying levels of disease severity and neuropsychiatric co-morbidities. 450 

In this study, most patients experienced at least three COVID-19 symptoms, with dyspnea 451 
significantly associated with increased disease severity. Consistent with previous research, 452 
older age, and male gender were linked to more severe manifestations of COVID-19, 453 
reaffirming age as a significant risk factor for severe outcomes(4, 5). Somatic symptoms, 454 
stress, anxiety, and depressive symptoms were common across all severity levels. This 455 
aligns with other studies reporting a high prevalence of physical symptoms and mental 456 
health issues among hospitalized COVID-19 patients during the same period(10, 11, 26, 457 
27). Notably, a higher proportion of women reported anxiety and had higher scores on the 458 
HADS-A scale compared to men. Individuals with higher stress levels also experienced 459 
more extended hospital stays. These findings are consistent with studies identifying women 460 
as a vulnerable group for mental health issues, including perceived stress(26) and 461 
anxiety(27).  462 

Our results align with existing literature regarding alterations in blood cells and markers 463 
among critically ill patients, such as reduced lymphocytes, elevated neutrophils, increased 464 
CRP, D-dimer, and ferritin levels, and comorbidities like hypertension and heart diseases 465 
(28). These findings underscore the significant role of systemic inflammation and pro-466 
thrombotic responses in exacerbating COVID-19 severity(29-31). SARS-CoV-2 infection 467 
triggers immunopathological reactions characterized by intense cytokine production, known 468 
as the cytokine storm(32). Elevated levels of IL-6, as observed in our study, are frequently 469 
reported, especially in individuals over 60 years old with comorbidities, and are recognized 470 
as markers of disease severity storm(32). Elevated IL-6 is associated with increased 471 
production of acute-phase proteins like CRP and other inflammatory cytokines(29-31). In 472 
line with other findings, IL-1ra, IL-10, and IFN-γ were significantly elevated in patients 473 
with severe COVID-19(30). The increase in IL-10 and IL-1ra may reflect a compensatory 474 
anti-inflammatory response to elevated pro-inflammatory cytokines, attempting to mitigate 475 
the harmful effects of the cytokine storm(33). However, this response appears ineffective, 476 
as elevated IL-10 levels are associated with poor clinical outcomes and reduced survival 477 
rates(33, 34). Additionally, we observed decreased levels of IL-2 in critically ill patients, 478 
which may represent a response aimed at preventing viral spread during the early phase of 479 
the disease(35). 480 

An inverse relationship was observed between disease severity and the abundance of 481 
beneficial bacteria. Alpha diversity and species richness were significantly reduced in 482 
critically ill patients, reinforcing previous findings of microbiome dysbiosis in severe 483 
COVID-19 cases(36). This diversity reduction aligns with findings linking diminished gut 484 
microbial diversity to poor symptoms and heightened inflammatory responses(37). 485 
Consistent with this, beta diversity analyses revealed distinct microbial profiles influenced 486 
by factors such as BMI, gender, and age, as reported by other studies (38), highlighting the 487 
impact of these demographic factors on the gut microbiome during COVID-19 infection. 488 
Severely ill patients exhibited a decline in beneficial bacterial taxa, including 489 
Christensenella minuta and Lachnospiraceae, which are known to support gut health, and 490 
their reduction suggests a weakening of the intestine's protective functions. This could lead 491 
to dysbiosis, a decrease in short-chain fatty acids (SCFA), crucial for maintaining intestinal 492 
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integrity and regulating immune responses, ultimately contributing to poorer mental health 493 
outcomes in severely ill patients. Another study during the same period found that severely 494 
symptomatic SARS-CoV-2 patients had significantly lower bacterial diversity and reduced 495 
abundances of beneficial bacteria, such as Bifidobacterium, Faecalibacterium, and 496 
Roseburium while showing an increase in Bacteroides compared to controls(39). Several 497 
bacterial taxa associated with SARS-CoV-2 infection were identified, notably elevated 498 
levels of Granulicatella and Rothia mucilaginosa found in both the oral and gut 499 
microbiomes(40). Consistent with our findings, Granulicatella was exclusively 500 
predominant in critical patients. 501 

An increase in opportunistic pathogens, like Klebsiella pneumoniae and Parabacteroides 502 
distasonis, can intensify inflammation, raise infection risks, and potentially worsen a 503 
patient’s overall health (41). For instance, Klebsiella pneumoniae was commonly associated 504 
with critically ill patients and linked to severe conditions like pneumonia and sepsis(41). 505 
Certain pathogens have also been associated with specific symptoms in long-term COVID-506 
19; for example, Clostridium innocuum has been suggested to play a role in neuropsychiatric 507 
symptoms(42). Many gut microbiome taxa associated with known comorbidities, such as 508 
Veillonella dispar, Veillonella parvula, and Streptococcus gordonii, are typically found 509 
within the oral cavity. Their presence in the gut aligns with several other studies showing a 510 
link between disease severity and oral taxa within the gut microbiome(43). Bacterial genera 511 
such as Eubacterium, Agathobacter, Subdoligranulum, Ruminococcus, and Veillonella 512 
show notable shifts in abundance.  513 

Interestingly, we observed that specific microbial species were associated with somatic 514 
symptoms, perceived stress, anxiety, and depressive symptoms, offering insights into the 515 
complex microbial dynamics, the gut-brain axis, and mental health indicators in COVID-516 
19. The gut microbiome influences neuropsychiatric symptoms through microbial 517 
metabolites like SCFA, which regulate immune cells and neurotransmitter production, and 518 
through the gut-brain axis(44). Imbalances in gut microbes can lead to increased 519 
inflammation and disrupted communication, contributing to conditions like anxiety, 520 
depressive symptoms, and cognitive decline(44, 45). Furthermore, the gut microbiome has 521 
been suggested to be a key modulator of psychological health during and after COVID-19 522 
infection (37, 45).  523 

Differential abundance analyses showed that several microbial species were significantly 524 
associated with psychological measures, including somatic symptoms, perceived stress, 525 
anxiety, and depressive symptoms. The clustering of species like Phocaeicola vulgatus, 526 
Bacteroides stercoris, Ruminococcus lactaris, Megasphaera indica, and Mitsuokella 527 
jalaludinii around elevated somatic or neuropsychiatric scores suggests that these microbes 528 
may play a vital role in the gut-brain axis during COVID-19.  Mitsuokella jalaludinii was 529 
positively correlated with all assessments, suggesting its role in worsening mental 530 
health(46). In contrast, species like Christensenella minuta and Anaeromassilibacillus 531 
senegalensis were negatively associated with PHQ-15. These findings align with growing 532 
evidence that links gut dysbiosis to mood disorders and stress-related conditions.  533 

Limitations of this study include its cross-sectional design, which prevents establishing 534 
causality between gut microbiome alterations and neuropsychiatric symptoms. Potential 535 
confounding factors such as pre-existing mental health conditions or medication use were 536 
not controlled for, and a lack of a healthy control group limits the ability to compare findings 537 
to non-COVID-19 individuals. Additionally, a larger sample size may be required to 538 
generalize the results to all hospitalized COVID-19 patients. Finally, fecal microbial load 539 
may represent a major confounder (47).  540 
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Recovery from SARS-CoV-2 infection has been linked to greater psychosocial resilience 541 
(27), while individuals with higher levels of mental distress during the acute phase are more 542 
vulnerable to long-term effects (48). Hospitalized patients who experienced severe COVID-543 
19 face a greater risk of developing Long COVID compared to those with mild cases(49). 544 
Our meta-analysis, published in 2021, found that 8 out of 10 individuals with SARS-CoV-545 
2 infections exhibited symptoms of Long COVID(50). However, recent epidemiological 546 
data offer a more conservative estimate, Long COVID risk at three months post-infection is 547 
now reported at 6.2%(49, 51). It is very important to consider parameters with strong 548 
discriminatory power to stratify patient risk and classify the severity of COVID-19(52). 549 
Randomized controlled trials are necessary to assess the effectiveness of microbiome-550 
targeted therapies, such as probiotics and dietary interventions. Mechanistic studies should 551 
investigate how microbiome changes influence systemic inflammation during the acute 552 
phase of COVID-19 and how these interactions may predict the onset and progression of 553 
neuropsychiatric symptoms. This research may help guide the development of clinical 554 
guidelines and patient monitoring strategies for incorporating microbiome-based 555 
interventions into COVID-19 treatment. 556 

In conclusion, our study provides data in support of the hypothesis that immune responses 557 
and the gut-brain axis may be playing a role in regulating somatic and neuropsychiatric 558 
symptoms during acute COVID-19. Probiotics, prebiotics, and dietary modifications, such 559 
as increasing fiber or omega-3 intake to restore microbial balance, could reduce the severity 560 
of symptoms. Additionally, microbiome-targeted therapies or pharmaceutical approaches 561 
that modulate gut health offer promising avenues to improve recovery and mitigate the risk 562 
of severe complications in COVID-19 patients. Further research is needed to explore 563 
whether modulating the gut microbiota could alleviate neurological symptoms during the 564 
infection phase and impact the development of Long COVID. 565 
 566 

 567 

Materials and Methods 568 
 569 

Study Design 570 

This cross-sectional study was based on an exploratory analysis of baseline data from 571 
hospitalized COVID-19 patients who participated in a randomized clinical trial 572 
investigating the effects of a dietary supplement containing tannins(53). The study protocol 573 
has been detailed in a prior report(54). The study was approved by the Ethics Committee of 574 
the Hospital de Clínicas José de San Martín (1046-20) in accordance with the guidelines of 575 
the Argentine Ministry of Health and the hospital's treatment protocols. The demographics 576 
and clinical characteristics of the participants are presented in Table 1, and the methodology 577 
is outlined in Fig. 9. This study was performed between 1 March 2020 and 31 October 2021.  578 

 579 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 19, 2024. ; https://doi.org/10.1101/2024.11.18.24317428doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.18.24317428
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

 580 

 581 

Fig. 9. Overview of data collection and analysis for hospitalized COVID-19 patients. 582 
This comprehensive data collection framework aims to provide a holistic understanding of 583 
the COVID-19 symptoms and somatic, neuropsychiatric, and microbiological aspects of 584 
COVID-19 in hospitalized patients. (a) Clinical and Demographic Data. COVID patients 585 
(n=124) are categorized into three severity groups based on a scoring index: low (0-2), 586 
moderate (3-7), and critical (>8). This score is based on age, gender, heart failure, chronic 587 
obstructive pulmonary disease (COPD), diabetes mellitus, heart rate, respiratory rate, 588 
systolic blood pressure, temperature, oxygen saturation, including in patients with COPD, 589 
D-dimer levels, lymphocyte and platelet counts, dyspnea, chest X-ray alterations, and the 590 
need for supplemental oxygen. (b) Somatic and Neuropsychiatric Assessments: Patient 591 
Health Questionnaire-15 (PHQ-15) is used to assess somatic symptoms, including stomach 592 
pain, back pain, pain in arms, legs, and joints, menstrual cramps, headaches, chest pain, 593 
dizziness, fainting spells, heart palpitations, shortness of breath, pain during sexual 594 
intercourse, constipation, nausea, indigestion, fatigue, and trouble sleeping. Additional 595 
neuropsychiatric assessments include the Perceived Stress Scale (PSS), Hospital Anxiety 596 
and Depression Scale-Anxiety (HADS-A), and Hospital Anxiety and Depression Scale-597 
Depression (HADS-D). (c) Laboratory Tests. Various serological assays are conducted to 598 
analyze hematological, coagulation, and biochemical parameters, and serum inflammatory 599 
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cytokines. (d) Microbiome Analysis. Stool samples are collected for microbiome analysis. 600 
Full-length 16S sequencing is performed using Oxford Nanopore Technologies, followed 601 
by microbial composition analysis using Emu. Data analysis uses tools such as phyloseq, 602 
ANCOMBC2, and SpiecEasi to understand the microbial landscape and its association with 603 
disease severity and patient outcomes. 604 

 605 

COVID-19 severity classification 606 

Using the COVID-19 severity index, patients were classified into low, moderate, or critical 607 
disease severity(55). This index incorporates the following multiple variables: age, gender, 608 
comorbidities, dyspnea, chest X-ray abnormalities, and the requirement for supplemental 609 
oxygen (Fig.9). The X-ray was performed at the time of hospital admission. Here, we 610 
considered scores of 0–2 to indicate low severity, 3–7 as moderate, and 8 or higher as critical 611 
severity of COVID-19 adapted from Huespe et al. (56) (Supplementary Table 1).  612 

 613 

Somatic and neuropsychiatric symptoms 614 

Somatic symptoms were assessed using the Patient Health Questionnaire-15 (PHQ-15), 615 
while the perception of stress was evaluated with the Perceived Stress Scale (PSS). Anxiety 616 
and depressive symptoms were measured using the Hospital Anxiety and Depression Scale 617 
(HADS), with all somatic and neuropsychiatric symptoms being self-reported. Only 77 618 
patients could complete the instruments, which was influenced by the severity of the clinical 619 
condition and transfer to the intensive care unit at the time of hospital admission. The PHQ-620 
15 consists of 15 items that assess the severity of somatic symptoms over the previous 621 
week(57) (Fig. 9). Each symptom is scored as 0 ("not bothered at all"), 1 (“bothered a 622 
little”), or 2 ("bothered a lot"). The PHQ-15 score ranges from 0 to 30, (0-28 in men) with 623 
cutoff points at ≥5 for low, ≥10 for moderate, and ≥15 for high somatic symptom 624 
severity(57). Scores of 15 or higher are indicative of severe somatic symptoms. The PSS(58) 625 
is a self-report measure that assesses the perception of stress over the previous month. The 626 
version of the PSS used was the 14-item version, which includes seven positive and seven 627 
negative items that assess feelings of chaos, lack of control, and overall stress without being 628 
tied to specific events. Each item is rated on a 5-point scale from 0 ("never") to 4 ("very 629 
often"), with higher scores indicating more significant stress. The categories are rarely or 630 
never (less than 14 points); occasionally (14-28 points); often (29-42 points); and usually 631 
(42-56 points). The HADS(59) is a self-report rating scale of 14 items designed to measure 632 
anxiety and depression (7 items for each subscale). Each item is scored from 0 ("absence") 633 
to 3 ("extreme presence"). Each subscale has a total score ranging from 0 to 21, with scores 634 
of 0–7 indicating "normal," 8–10 "mild," 11–14 "moderate," and 15–21 "severe" symptoms.  635 

 636 

Blood biomarkers  637 

Blood samples were collected by venipuncture within 48 hours of hospital admission and 638 
placed in vacutainer tubes with a clot activator. Serum was obtained by centrifugation at 639 
3,000× g for 15 minutes at 4°C. Circulating cytokine levels were evaluated using the Bio-640 
Plex Pro™ Human Cytokine Standard 27-Plex Kit (Bio-Rad), following the manufacturer's 641 
instructions. This assay measures 27 different molecules: IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, 642 
IL-9, IL-10, IL-12, IL-13, IL-15, IL-17, IL-1β, IL-1ra, TNF-α, IFN-γ, IP-10, MCP-1, MIP-643 
1α, MIP-1β, eotaxin, FGF, G-CSF, GM-CSF, VEGF, and PDGF-BB. Serum levels of the 644 
inflammatory mediators were reported as median fluorescence intensity (MFI). Counts of 645 
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leukocytes, neutrophils, lymphocytes, and platelets were measured. The neutrophil-to-646 
lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) were subsequently 647 
calculated. Coagulation parameters assessed included prothrombin time, activated partial 648 
thromboplastin time (aPTT), D-dimer, and fibrinogen levels. Inflammatory markers, 649 
specifically C-reactive protein (CRP) and ferritin were evaluated to analyze inflammatory 650 
status. Additionally, biochemical analyses were conducted to determine the concentrations 651 
of albumin, creatine kinase (CK), and lactate dehydrogenase (LDH). 652 

 653 

Nanopore 16S rRNA library preparation and sequencing 654 

Stool samples were collected using μb-eNAT preservation tubes (COPAN®, Italy), 655 
aliquoted, and stored at −80 °C until analysis. DNA was extracted from 100 mg of 656 
homogenized fecal samples employing the MagMAX™ Microbiome Ultra Nucleic Acid 657 
Isolation Kit, following the manufacturer’s protocol. Subsequently, 16S rRNA amplicon 658 
libraries were prepared using the 16S Barcoding Kit 1–24 (SQK-16S024) from Oxford 659 
Nanopore Technologies (ONT), Oxford, UK. For PCR amplification and barcoding, 18 ng 660 
of extracted DNA was combined with LongAmp Hot Start Taq 2X Master Mix (New 661 
England Biolabs, Ipswich, MA) according to the manufacturer’s instructions. The thermal 662 
cycling protocol consisted of an initial denaturation at 95 °C for 20 seconds, followed by 35 663 
cycles of 95 °C for 20 seconds, 55 °C for 30 seconds, and 65 °C for 2 minutes, concluding 664 
with a final extension at 65 °C for 5 minutes. The resulting barcoded amplicons were 665 
purified using AMPure XP beads (Beckman Coulter, Brea, CA). After purification, the 666 
amplicons were quantified with a Qubit fluorometer (Life Technologies, Carlsbad, CA) and 667 
pooled in an equimolar ratio to achieve 100 ng in 10 µL. The pooled library was then loaded 668 
into an R9.4.1 flow cell and sequenced on the MinION platform (Oxford Nanopore 669 
Technologies, Oxford, UK) using MINKNOW software version 19.12.5 for data 670 
acquisition. 671 

 672 

Bioinformatic Analysis 673 

Full-length 16S sequences were converted to pod5 format and called using Dorado v0.5.0 674 
with the dna_r9.4.1_e8_sup@v3.6 model. The resulting BAM files were demultiplexed and 675 
converted to fastq files using the Dorado demux command(60). Fastq files for each sample 676 
were then concatenated using SeqKit scat v2.7.0, processed with the Emu taxonomic 677 
taxonomic classification software v3.4.5, and aggregated into an Operational Taxonomic 678 
Unit (OTU) output table(61). The OTU and taxonomy tables were integrated with metadata 679 
to create a phyloseq v1.48.0 object(62). A phylogenetic tree was created using the Emu 680 
taxdump_to_tree.py script to generate a reference tree based on the Emu database. Using a 681 
custom Python script (https://github.com/villapollab/covid_biome) and a mapping file 682 
specific to the dataset, leaves that matched within the reference tree were retained and 683 
converted to their corresponding OTU identifiers in the phyloseq object. The phylogenetic 684 
tree was merged with the phyloseq object using the ape v5.8 read.tree function, enabling 685 
phylogenetic calculations within phyloseq(63). Subsequent analyses included alpha 686 
diversity, beta diversity, and abundance and correlation heatmaps, performed using 687 
MicroViz v0.12.4(64). Network correlations were obtained using SpiecEasi version 688 
1.1.3(65). All data analyses following Emu classification were executed using Python v3.12 689 
and R v4.3.3(66, 67).  690 

 691 

Differential Abundance and Driver Species Analysis 692 
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To obtain a comprehensive understanding of potential bacterial driver species within the gut 693 
microbial communities of COVID-19 patients of differing severity, we employed Bakdrive 694 
v1.0.4(25) and ANCOMBC2 v2.6.0(68). Bakdrive is a microbial community modeling tool 695 
designed to identify driver bacteria—bacteria that play a pivotal role in influencing the 696 
structure and function of the microbiome in health or disease. Specifically, by utilizing 697 
metabolic models and network analysis, Bakdrive attempts to pinpoint taxa that may be 698 
critical in disease mechanisms or ecological interactions. ANCOMBC2 (Analysis of 699 
Composition of Microbiomes with Bias Correction 2) is a differential abundance analysis 700 
tool designed to address the compositional nature of microbiome data and corrects for 701 
biases, enabling accurate identification of taxa that are differentially abundant between 702 
sample groups. A detailed notebook of the bioinformatic analysis can be found at 703 
https://villapollab.github.io/covid_biome/. 704 

 705 

Statistical Analysis 706 

Categorical variables were presented as frequencies and percentages. To analyze 707 
contingency tables for variables such as gender, mortality, antibiotic use, supplemental 708 
oxygen, and COVID-19 symptoms, the Chi-square (χ²) test or Fisher’s exact test (FET) was 709 
employed. The normality of the distribution of numerical variables was assessed with a 710 
Kolmogorov-Smirnov test. Depending on their distribution, numerical variables were 711 
presented as median and interquartile range (IQR) or mean and standard deviation (SD). For 712 
comparisons between two groups, the Independent Samples t-test was used for normally 713 
distributed variables, while the Mann-Whitney U test was applied for non-normally 714 
distributed variables (e.g., PSS, HADS-A, HADS-D between groups with and without 715 
severe somatic symptoms). One-way ANOVA was utilized to examine differences in 716 
parametric variables such as age and BMI across COVID-19 severity categories (low, 717 
moderate, and critical), followed by Tukey's Honest Significant Difference (HSD) post hoc 718 
test. For non-parametric variables, including days of hospitalization, number of COVID-19 719 
symptoms, PHQ-15, PSS, HADS-A, and HADS-D, the Kruskal-Wallis test was performed. 720 
This was followed by pairwise comparisons between severity groups with correction for 721 
multiple testing. Linear regression analysis compared cytokine levels with and without 722 
adjustment for age, gender, and BMI. Associations between clinical outcomes and 723 
inflammatory mediators or gut microbiota were assessed using Spearman’s rank correlation 724 
coefficients (e.g., correlations between PHQ-15, PSS, HADS-A, and HADS-D). All 725 
statistical analyses were performed using IBM SPSS Statistics for Windows, version 25 726 
(IBM Corp., Armonk, NY, USA). A p-value of <0.05 was considered statistically 727 
significant. 728 

 729 
  730 
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