A W

0 N N D

AW — O ©

E-NENVS I S}

eI BN

5% 3 GESD

medRXxiv preprint doi: https://doi.org/10.1101/2024.11.18.24317428; this version posted November 19, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-NC-ND 4.0 International license .

Gut microbiome dysbiosis and immune activation correlate with somatic and
neuropsychiatric symptoms in COVID-19 patients
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Abstract

COVID-19 patients often exhibit altered immune responses and neuropsychiatric symptoms
during hospitalization. However, the potential interactions with gut microbiome profiles
have not been fully characterized. Here, COVID-19 disease severity was classified as low
(27.4%), moderate (29.8%), and critical (42.8%). Fever (66.1%) and cough (55.6%) were
common symptoms. Additionally, 27.3% reported somatic symptoms, 27.3% experienced
anxiety, 39% had depressive symptoms, and 80.5% reported stress. Gut microbiome
profiling was performed using full-length 16S rRNA gene sequencing. Elevated interleukin-
6 levels were observed in the most severe cases, indicating systemic inflammation. Reduced
gut bacterial diversity was more pronounced in women and obese patients and correlated
with higher disease severity. The presence of the genus Mitsuokella was significantly
associated with increased physical, stress, anxiety, and depressive symptoms, and
Granulicatella with critically ill patients. These findings suggest a link between mental
health status, systemic inflammation, and gut dysbiosis in COVID-19 patients, emphasizing
the potential of microbiome-targeted therapies to improve recovery and reduce severe
complications.
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Introduction

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), primarily presents with respiratory symptoms. However, the
infection can also affect neurological(/) and gastrointestinal (GI) systems(2, 3). It is well
established that men are at a higher risk than women of developing severe acute COVID-
19(4, 5), as well as individuals over the age of 60 years old(6, 7). Patients hospitalized
during the acute phase of COVID-19 exhibit a high prevalence of mental health issues such
as elevated stress, anxiety, and depression(8-10). These mental health disturbances are more
prevalent in women and can be worsened by factors such as age(/ /), more severe physical
symptoms, or length of hospital stay(/2). Furthermore, the presence of COVID-19
symptoms at the time of admission adds to the psychological burden(/3).

SARS-CoV-2 infection increases levels of soluble immune mediators in the bloodstream,
such as inflammation-related cytokines(/4). It activates intestinal angiotensin-converting
enzyme 2 (ACE2) receptors(/5) and damages the intestinal epithelium, disrupting the gut
barrier(/6, 17), as observed in patients with severe COVID-19(/8, 19). This inflammatory
response triggers GI and alterations in the gut microbiome(/9-21), both of which are
associated with disease severity.

Gut dysbiosis, characterized by a reduction in butyrate-producing, anti-inflammatory
bacteria, and increased pro-inflammatory taxa, disrupts immune regulation, nutrient
metabolism, and structural defenses, contributes to systemic inflammation and impairs host
homeostasis(22). Microbiome imbalances during the acute phase of COVID-19, especially
in hospitalized patients, were linked to increased mortality rates(23). Previous studies have
identified microbial features in the gut and airways of COVID-19 patients during
hospitalization and recovery(2/), suggesting that microbial markers could serve as
noninvasive diagnostic tools. Microbiome dysbiosis also affects immune and inflammatory
response regulation and brain function(24). However, the link between microbial alterations
and somatic or neuropsychiatric symptoms in COVID-19 patients and their potential as
predictive tools has yet to be fully elucidated.

In this cross-sectional study, we identified associations between somatic and
neuropsychiatric symptoms, inflammatory profiles, and alterations in gut microbiota
composition in hospitalized COVID-19 patients. By examining these relationships, we aim
to gain insights into the mechanisms underlying COVID-19 pathogenesis and potentially
identify novel therapeutic targets for intervention.

Results
Characteristics of the participants.

We enrolled 124 COVID-19 patients, 63 males and 61 females. The mean age was 55.2
(£14.6) years. The average length of hospital stay was 7 days (range, 1 to 21 days), and a
total of 8 (6.5%) patients died during their initial hospital stay. According to the COVID-
19 Severity Index, 34 (27.4%) patients were classified as low, 37 (29.8%) as moderate, and
53 (42.8%) as critical COVID-19. Older patients experienced more severe COVID-19
symptoms (p <0.001), and the prevalence of men increased with the severity of the disease
(p=0.025). Data are summarized in Table 1.
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39 Table 1. Demographic and clinical characteristics of the patients classified according to the
10 COVID-19 Severity Index (n=124).

H

Variables All patients COVID-19
(n=124) Severity
Low Moderate Critical p Value
(n=34) (n=37) (n=53)
Age, years, mean = SD 552+ 14.6 423+ 11.1 |555+12.8 | 63.2+11.6 | <0.001*
<60 years, n (%) 78 (62.9) 34 (100) 24 (64.9) 20 (37.7)
>60 years, n (%) 46 (37.1) 0 13 (35.1) 33(62.3)
Gender, n (%) 0.025%
Male 63 (50.8) 12 (35.3) 17 (45.9) 34 (64.2)
Female 61 (49.2) 22 (64.7) 20 (54.1) 19 (35.8)
Body Mass Index (BMI), 30.7+ 6.6 28.7+4.7 305+£6.2 | 322475 0.050%
kg/m?, mean £ SD
<30 kg/m’ 67 (54.0) 24 (70.6) 20 (54.1) 23 (43.4)
>30 kg/m? 57 (46.0) 10 (29.4) 17 (45.9) 30 (56.6)
Co-morbidities, n (%)
Diabetes mellitus 4(3.2) 0 2(5.4) 2(3.8) 0.570*
Heart diseases 5(4.0) 0 0 5(09.4) 0.044*
Hypertension 38 (30.6) 5(14.7) 12 (32.4) 21 (39.6) 0.047%
Chronic pulmonary 8 (6.5) 0 1(2.7) 7(13.2) 0.032%*
obstructive disease
Days of hospitalization, 7(4-9) 7(4-38) 6(4-8.5) | 7(4-10.5) | 0.455%
median (IQR)
Intensive care unit (ICU) 13 (10.5) 0 2(54) 11(20.8) | <0.001*
Supplemental oxygen, n 58 (46.8) 0 8 (21.6) 50 (94.3) | <0.001%
(%)
Antibiotics, n (%) 25(20.2) 3 (8.8) 9(24.3) 13 (24.5) 0.154%
Death during 8(6.5) 0 1(2.7) 7(13.2) 0.032*
hospitalization, n (%)
Number of COVID-19 3(2-4) 3(2-4) 3(2-3) 3(2-4) 0.287%
symptoms

2 Note: Data were presented using absolute values and percentages (%), mean and standard deviation
13 (SD) or median and interquartile range (IQR). *Chi square test. *Fisher’s exact test (FET). *One-
4 way ANOVA. ¢Kruskal-Wallis test.

k5

) COVID-19 symptoms, somatic and neuropsychiatric assessments, and inflammatory

V7 profile.

I8 Patients (n=43, 34.7%) experienced at least 3 of the 16 assessed COVID-19 symptoms at
9 baseline. Fever (n=82, 66.1%) and cough (n=69, 55.6%) were the most common symptoms.
50 A significant association was found between COVID-19 severity and the presence of
i1 dyspnea (p<0.001). The distribution of symptoms at the time of hospital admission,
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categorized by COVID-19 severity, is represented in Fig. 1a. Among the 77 patients who
completed the instruments, 21 (27.3%) were classified as having severe somatic symptoms
as intense and persistent pain, chronic fatigue, headaches, muscle, and joint pain or sleep
disturbances. In terms of neuropsychiatric symptoms, 21 (27.3%) exhibited symptoms of
anxiety, and 30 (39%) reported depressive symptoms. Regarding perceived stress, 15
patients (19.5%) reported rarely or never feeling stressed, 36 patients (46.7%) experienced
stress occasionally, and 26 patients (33.8%) reported often or usually feeling stressed.
Scores for PHQ-15 (Fig. 1b), PSS (Fig. 1¢), HADS-A (Fig. 1d), and HADS-D (Fig. 1e)
showed no significant differences across COVID-19 Severity Index groups, nor did they
vary significantly with age or BMI (Table 2). Additionally, there were no significant
differences in the prevalence of somatic, stress, or depressive symptoms between male and
female patients. However, anxiety symptoms were more prevalent among women, who also
scored higher on the HADS-A (Table 2). The prevalence of fever was higher among those
with severe (PHQ >15) somatic symptoms (*(1)=4.586; p=0.032). There were significant
correlations between PHQ-15 and PSS (Fig. 1f), HADS-A (Fig. 1g), and HADS-D (Fig.
1h). An association was found between stress, anxiety, and depressive symptoms scores.
Higher stress levels were correlated with more extended hospital stays (rs=0.227; p=0.047).

The levels of the inflammatory mediators — interleukin (IL) (IL-6, IL-12, IL-10), IL-1
receptor antagonist (IL-1ra), interferon-gamma (IFN-y), and interferon-gamma-inducible
protein 10 (IP-10) were higher with increased severity of SARS-CoV-2 infection (Fig. 1i-
n). On the other hand, platelet-derived growth factor BB (PDGF-BB), regulated on
activation, normal T cell expressed and secreted (RANTES), and interleukin-2 (IL-2) were
lower in critically ill patients (Fig. 10-q). There were no differences in the other measured
inflammatory mediators (Supplementary Fig. 1). The scores obtained in the PHQ-15 were
associated with interleukin-7 (IL-7), interleukin-13 (IL-13), eotaxin, and PDGF-BB levels.
PSS and IL-13 were correlated. Anxiety scores were correlated with IL-12. The scores
obtained in the HADS-D were associated with IL-1ra and IL-2. The heatmap displays the
statistically significant correlations (Fig. 1r).

Additionally, the number of neutrophils in circulation increased in moderate and critical
patients compared to those with low COVID-19 severity, whereas circulating lymphocytes
decreased. An increase in the NLR and PLR accompanied these changes. CRP, D-dimer,
fibrinogen, ferritin, and LDH were elevated with COVID-19 severity. Albumin
concentration decreased in moderately severe and critically ill patients (Supplementary
Fig. 2).
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Fig. 1. COVID-19 symptom prevalence, somatic and neuropsychiatric assessments in
hhospitalized COVID-19 patients. (a) The prevalence of COVID-19 symptoms during
hospitalization is categorized into low, moderate, and critical severity groups. The most
common symptoms were fever (66%), cough (56%), and dyspnea (29%) which was more
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prevalent in the critical group (p<0.001). The chi-square or Fisher’s exact test was used to
analyze contingency tables. Median and interquartile range of the clinical outcomes results
of the patients classified according to the COVID-19 Severity Index (n=77). (b) Somatic
symptoms (PHQ-15, Patient Health Questionnaire-15), (¢) perception of stress (PSS,
Perceived Stress Scale), (d) anxiety, and (e) depression (HADS-D, Hospital Anxiety and
Depression Scale) scores were the same across the three groups categorized by COVID-19
severity (low, moderate, and critical). Pairwise comparisons between severity groups
followed the Kruskal-Wallis test. Spearman’s Rank Correlation Coefficient showed a
positive correlation between PHQ-15 scores and (f) PSS scores (1:=0.347, p=0.002), (g)
HADS-A scores (1:=0.475, p<0.001) and (h) HADS-D scores (1:=0.252, p=0.027). These
results indicate that higher somatic symptom burden is associated with increased perceived
stress, anxiety, and depressive symptoms in hospitalized COVID-19 patients. The
concentrations (pg/ml) of (i) IL-6, (j) IL-12, and (k) IL-1ra were higher in the critical group
compared to the low group. For (I) IFN-y and (m) IL-10, the critical group showed higher
levels compared to the low and moderate groups. The levels of (n) IP-10 were higher in the
critical and moderate groups compared to the low group. Conversely, the levels of (o)
PDGF-BB, and (p) RANTES decreased from the low group to the critical group. For (q)
IL-2, the critical group showed lower levels than the low and moderate groups. Pairwise
comparisons between the severity groups followed the Kruskal-Wallis test. The lines and p-
values on the Fig.s indicate significant differences between these groups. Linear regression
was used to compare variables with and without adjustment for age, gender, and BMI. Age
influenced IFN-y serum concentration. Both age and BMI affected the differences in IL-12
and RANTES levels. For the rest of the cytokines (IL-1ra, IL-2, IL-6, IL-10, IP-10, PDGF-
BB), the factor responsible for the differences in concentrations was the severity of COVID-
19. (r) Heatmap illustrating the correlations between various cytokine levels in serum
concentration (% coefficient of variation) and somatic and neuropsychiatric symptoms
scores in hospitalized COVID-19 patients, with significant correlations marked with
asterisks (*p<0.05, **p<0.01, ***p<0.001). Red shades represent positive correlations,
whereas blue shades represent negative correlations. The Kruskal-Wallis test was followed
by pairwise comparisons between severity groups with correction for multiple testing. IL,
Interleukin; IL-1ra, Interleukin-1 receptor antagonist; IFN-y, Interferon-gamma; IP-10,
Interferon-gamma-inducible protein 10; PDGF-BB, Platelet-Derived Growth Factor BB;
RANTES, Regulated on Activation, Normal T Cell Expressed and Secreted.
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Table 2. Somatic and neuropsychiatric symptoms of the participants (n=77).

Variables PHQ-15 PSS HADS-A HADS-D
Median p Median p Median p Median p
(IQR) Value (IQR) Value (IQR) Value (IQR) Value
Gender
Female 10(7— 0393 23(14- 0332 6(3.5- 0.014 703 - 0.216
14.5) 31.5) 13) 10.25)
Male 8(6.25 - 19 (15 - 42— 5(1.25-
15) 27.5) 6.75) 9.75)
Age
<60years  9.5(5.75 0.369 20.5(14— 0398 5(3-8) 0.487 63— 0.751
—-15) 28.25) 10)
>60 years 8(8— 22 (16 - 63— 52-
16) 31) 14) 12)
BMI
<30 kg/m? 8(5- 0222 22(14- 0919 5@3-7) 0.536 63— 0.707
14) 28) 10)
>30 kg/m? 10 (7.75 19.5 (16 — 6(3-9) 552-
—-16) 29.25) 10)
COVID-19
severity
Low 95(5—- 0864 27(145- 0.172 5B3- 0496 703 - 0.431
14.25) 31.25) 8.25) 10)
Moderate 9.5(7- 18.5 (14 - 553- 6(2.5-
13.75) 26.75) 13) 10.5)
Critical 8(7—- 19 (15 - 52-7) 4(1-9)
16) 26)

Note: Comparison of scores on instruments assessing somatic symptoms, stress, anxiety, and
depressive symptoms according to gender, age, BMI, and COVID-19 severity. Abbreviations:
BMI, Body Mass Index; HADS-A, Hospital Anxiety and Depression Scale-Anxiety;, HADS-D,
Hospital Anxiety and Depression Scale-Depression; 1QR, interquartile range; PHQ-15, Patient
Health Questionnaire-15; PSS, Perception of stress. Mann-Whitney U test or Kruskal-Wallis test

was followed by pairwise comparisons between groups.

Impact of COVID-19 severity on gut microbiome composition: associations with BMI,

gender, and age.

The analysis of alpha diversity (Shannon index) (Fig. 2a) revealed a significant reduction
in gut microbiota diversity in critically ill COVID-19 patients compared to those with low
disease severity (p<0.05). Regarding species richness (Chaol index) (Fig. 2b), critically ill
patients showed significantly lower richness compared to those with low (p<0.01) and
moderate (p<0.05) disease severity. Beta diversity analyses (MDS plots) demonstrated that
BMI significantly correlated the gut microbiota composition in patients classified as having
low COVID-19 severity (Fig. 2¢-e), with a distinct separation between patients with BMI
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>30 and those with BMI under 30. Gender-based analysis (Fig. 2f-h) significantly correlated
microbiota composition only in critically ill patients (Fig. 2h). Similarly, age was
significantly associated with microbiota composition in the critically ill group, with patients
>60 years showing distinct microbial profiles compared to those under 60 years (Fig. 2k).
Bar plots of microbial relative abundance at the family (Fig. 21) and genus levels (Fig. 2m)
demonstrated considerable shifts in microbial composition across severity groups.
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Fig. 2. Alpha and beta diversity of gut microbiome in hospitalized COVID-19 patients.
(a) Shannon index, which measures species richness and evenness, indicating lower
diversity in the critical group compared to the low group (p=0.0129) (b) Chaol richness
estimator indicates significantly lower species counts in the critical group compared to the
low group (p=0.0073) and the moderate group (p=0.0197) (*p<0.05 and **p<0.01). (c-e)
Beta diversity analysis was performed using Aitchison Principal Coordinates Analysis
(PCoA) for Body-mass-index (BMI) categories (<30 vs. >30 kg/m?), showing distinct
clustering in the low group (p=0.034). (f-h) PCoA plots for gender (female vs. male) show
distinct clustering in the critical severity group (p=0.009), suggesting gender-based
differences in microbiome composition are more pronounced in this group. (i-k) PCoA plots
for age categories (<60 vs. >60 years) show a more distinct clustering in the critical group
(p=0.006), indicating age-related differences in microbiome composition. The statistical
significance of these groupings was assessed using permutational multivariate analysis of
variance (Permanova) within the vegan R package, with Pr(>F) and R? values confirming
the observed differences in microbial community composition. The relative abundance of
various gut microbiota showing the top 15 taxa at family level (1) and genus level (m) in
hospitalized COVID-19 patients across different severity groups.

Differential gut microbial signatures across COVID-19 severity.

Analysis of the Composition of Microbiomes with Bias Correction 2 (ANCOMBC?2) can
potentially uncover biomarkers or therapeutic targets by providing a list of bacteria with
significant changes in abundances. The heatmap (Fig. 3a) shows the centered log-ratio
abundance of gut microbial species across patients with low, moderate, and critical COVID-
19 severity. A clear shift in microbial composition was observed as disease severity
increased, with certain species becoming more abundant in critically ill patients while others
decreased. The graphs within Fig. 3b and Fig. 3¢ show log fold changes of specific bacterial
species between low to moderate and low to critical severity groups, respectively. Notably,
species such as Streptococcus periodonticum and Clostridium perfringens were
significantly enriched in patients with lower disease severity (q<0.001 and q<0.01) (Fig. 3b
and Fig. 3c¢). In comparison, Klebsiella pneumonia and Prevotella loescheii were highly
abundant in critically ill patients (q<0.001 and g<0.01) (Fig. 3c).
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Fig. 3. Heatmap and differential abundance of specific gut microbiota taxa in
hospitalized COVID-19 patients across different severity groups. (a) Heatmap of the
centered-log transformed abundance of significantly altered taxa showing intra-group
variation among patients with the same COVID-19 severity, highlighting distinct microbial
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profiles associated with each group. The color intensity represents the transformed
abundance, with darker shades of red indicating higher abundance. (b) Comparison between
low and moderate-severity groups reveals significant increases in taxa such as
Desulfonispora thiosulfatigenes and Streptococcus vestibularis in moderate group. It
decreases in taxa such as Streptococcus periodonticum, Phocaeicola plebius, and
Clostridium perfringens in moderate group. (¢) Comparison between low and critical
severity groups shows significant increases in taxa such as Klebsiella pneumoniae,
Prevotella loeschii, and Breznakia pachnodae with corresponding decreases in
Ruminiclostridium  cellulolyticum,  Streptococcus  periodonticum, and  Suterella
wadsworthensis in critical group; identified using ANCOMBC?2. The analysis revealed
differentially abundant species with statistical significance levels indicated as *q<0.05,
*#q<0.01, and ***q<0.001.

Association of gut microbiota with somatic symptoms, stress, anxiety, and depressive
symptoms in COVID-19 patients.

Principal Coordinates Analysis (PCoA) was performed to investigate associations between
somatic and neuropsychiatric symptoms and gut microbiome composition in patients with
COVID-19 (Fig. 4a-1). A statistically significant association was found between
somatization, as measured by the PHQ-15, and microbiome composition within the
moderate severity group (p=0.04, R?>=0.029; Fig. 4b). This finding suggests that individuals
with higher somatic symptom scores may exhibit distinct microbial profiles compared to
those with lower scores. Similarly, perceived stress showed a non-significant trend with the
microbiome in the moderate group (p=0.05, R>=0.084; Fig. 4e), indicating that experiencing
stress regularly could influence microbial community composition. The relatively higher R?
value for PSS suggested that perceived stress explained a notable portion of the observed
variance in microbial composition compared to other mental health factors. In contrast,
scores from the HADS-A and HADS-D tests did not display significant associations with
microbiome composition across all severity groups (p>0.05; Figs. 4g—5l1). These results
suggest that, in this sample, general measures of anxiety and depressive symptoms may not
significantly contribute to variations in gut microbial structure.
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Fig. 4. Ordination analyses of gut microbiota composition, somatic and

neuropsychiatric symptoms across COVID-19 severity levels. (a-c) Aitchison distance
principal coordinate analysis plots explore the relationships between COVID-19 severity,
gut microbiota composition, somatic symptoms (PHQ-15) (d-f), and neuropsychiatric
symptoms, including stress (PSS) (a-l), anxiety (HADS-A) (g-i), depressive symptoms
(HADS-D) (j-1). The distributions indicate varying degrees of correlation between gut
microbiota diversity and mental health indicators, with Permanova (>F) and R? values
specified for each plot.

A secondary differential abundance analysis revealed microbial shifts correlated with scores
on the PHQ-15, PSS, HADS-A, and HADS-D assessments. Patients with higher PHQ-15
scores showed a significant increase in the abundance of species such as Enterococcus
citroniae (q<0.001), Phascolarctobacterium succinatutens and Acidaminococcus intestine
(g<0.01), and Enterococcus faecalis (q<0.05), while known beneficial bacteria like
Lactobacillus rugosae were significantly depleted (q<0.05) (Fig. 5a). Higher PSS scores
were associated with an overrepresentation of Enterocloster asparagiformis (q<0.001), and
Blautia stercoris (q<0.05). At the same time, species Blautia hansenii, Salmonella enterica,
and Prevotella stercorea (q<0.05) were significantly decreased (Fig. Sb). HADS-A scores
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were linked to an increase in Dialister succinatiphilus (¢<0.05) and Streptococcus sp. A12
(q<0.01), among others, showed a notable reduction in species such as Lactobacillus
salivarius (q<0.001) and Bacteroides caccae (q<0.01) (Fig. 5¢). Higher HADS-D were
correlated with elevated levels of Butyricimonas virosa (q<0.05), and Eubacterium
xylanophilum (q<0.01). In contrast, species Bacteroides caccae (q<0.01) and
Ruminiclostridium cellulolyticum (q<0.05) were significantly diminished (Fig. 5d).
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Fig. 5. Differential abundance analysis between gut microbiota, somatic and
neuropsychiatric symptoms in hospitalized COVID-19 patients. Log fold changes in
abundance of various bacterial taxa associated with four different assessments: (a) PHQ-15
(somatic symptoms), (b) PSS (perceived stress), (¢) HADS-A (anxiety), and (d) HADS-D
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(depressive symptoms). The analysis used ANCOMBC2 to identify differentially abundant
microbes between high- and low-test scores. Bars represent log fold changes in microbial
abundance, with red bars indicating an increase and blue bars indicating a decrease in
abundance associated with higher test scores. Error bars represent standard errors calculated
using ANCOMBC2. Asterisks (*q<0.05, **q<0.01, and ***q<0.001) denote statistical
significance levels, with more asterisks indicating higher significance. Only the top
differentially abundant taxa are shown for each scale (LFC >1).

Distinct gut microbial correlations with somatic symptoms, stress, anxiety, and depressive
symptoms in COVID-19 patients.

The heatmap presents the Spearman correlation coefficients of CLR-transformed
abundances between various bacterial species and four assessments: PHQ-15, PSS, HADS-
A, and HADS-D (Fig. 6). Several microbial species showed significant correlations with
these symptoms, with only associations where p<0.05 displayed numerically to highlight
statistically significant relationships. For instance, Christensenella minuta (p<0.01),
Anaeromassilibacillus  senegalensis, Lachnospiraceae  bacterium GAM79, and
Christensenella massiliensis (p<0.05) were negatively associated with somatic symptoms
(PHQ-15), showing a significant reduction. Conversely, Mitsuokella jalaludinii, Prevotella
copri, and Phocaeicola plebeius were positively associated with increased PHQ-15 scores
(p<0.05). Notably, Mitsuokella jalaludinii showed significant positive correlations with all
assessments (p<0.05)), indicating a potential association between its increased abundance
and higher symptom burden. Additionally, Phocaeicola vulgatus correlates with PSS and
HADS-D (p<0.05). Bacteroides stercoris correlates with HADS-D (p<0.05).
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Fig. 6. Heatmap of correlations between gut microbiota species, somatic and
neuropsychiatric symptoms. Heatmap illustrating the Spearman's correlation coefficients
between the centered log-ratio (CLR) transformed abundances of gut microbial species and
scores from four assessments: PHQ-15 (somatic symptoms), PSS (perceived stress), HADS-
A (anxiety), and HADS-D (depression). The color scale represents the strength and direction
of correlations, with red indicating positive correlations and blue indicating negative
correlations. The intensity of the color corresponds to the magnitude of the correlation, as
shown in the legend on the right (ranging from -0.25 to 0.25). P-values are less than 0.05
displayed on corresponding cells, indicating statistical significance. Blank cells represent
correlations that did not meet the significance threshold. Bacterial species are listed on the
y-axis, while the mental health scales are shown on the x-axis. This visualization allows for
identifying specific microbial species that may have consistent or unique associations with
different aspects of mental health as measured by these indicators. Notable correlations
include positive associations between Mitsuokella jalaludinii and all measurements, and
negative associations between several species (e.g., Christensenella massiliensis,
Lachnospiraceae bacterium GAM79) and PHQ-15 scores.
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Multivariate analysis and network visualization of gut microbial associations with
somatic and neuropsychiatric symptoms in COVID-19 patients.

To further explore the relationship among somatic and neuropsychiatric symptoms,
COVID-19 severity, and gut microbiome composition, a redundancy analysis (RDA) was
conducted. This analysis visualized the distribution of microbial species with COVID-19
severity (low, moderate, critical) and all assessments (PHQ-15, PSS, HADS-A, HADS-D).
The RDA plot (Fig. 7a) shows the relationship between gut microbial species and PHQ-15,
PSS, HADS-A, and HADS-D scores across different COVID-19 severity groups. The RDA
axes account for 4.9% and 1.4% of the variation, respectively. Notably, the species
Mitsuokella jalaludinii was positioned within the mental health indicator constraints of the
plot, suggesting potential associations with specific assessed symptoms or COVID-19
severity outcomes. Distinct relationships were observed, with species such as Phocaeicola
vulgatus, Bacteroides stercoris, and Prevotella copri being positively associated with
elevated somatic scores, particularly in patients with critical disease.

Cc

Pseudoflavonifractor

Ruminococcus

senegalensis
° lactaris
[ ]

Severity piris
ruminantium A
Low ® ®

o
1

® Moderate . ptococcus ® @ indica

=i @ @ oralis
® Mitsuokella
Critical . ® Ruminococcus ©® @ jalaludinii
Lacrimls’ora gordonii g elsdenii
amygdalina A
Ei vergiel ®
T masslll:lsls [ prevotella®  /Bacteroides i
CI';;istensel;ella . @ulgatus Longibaculum
imonensis
o, Catabacter Prevotella i
RDAT1 [4.9%)] Moderate .hongkongensls Copri Sibe hoglms )
Christensenella ) massiliensis
minuta Christensenella o
p ille-P3954 (J
Howardella ) timonensis Dialister

RDA2 [1.4%]

|
o
1

Vampirovibrio
chlgrellavorus

A4
e

Dialister ~ sp. KGMB06250

Caproiciproducens

Akkermansia = ureily ygm clg'sel;:‘;i;lelm Victivalls ()
24 = Lachnospiraceae A:;:g;lzt’::"r}fsus () Phocaeicola
Paraprevotella bacterium GAM79 Negl.ect " [} @ coprocola
=1 A timonensis Lachnospiraceae bacterium
Coprococcus ([ ] P K ’ KGMB03038

: un % magna m,g[,,/s @ ruminis

" k massiliensis Spogbacrer Lutispora
Anaerostipes Esct ia termitidis .B — thermophila

hathewayi hansenii

D Pe L sy
massiliensis .mger Megasphaera
Emergencia hexanoica @

Peplococcgs timonensis -
simiae ® o ®
i Holdemanella
Phocaeicol; @
;g’es:i ?  Dialister biformis
invisus

Critical

Fig. 7. Associations between gut microbiota, somatic and neuropsychiatric symptoms
in hospitalized COVID-19 patients. (a) Redundancy Analysis (RDA) plot showing the
association between gut microbiome composition, somatic and neuropsychiatric symptoms,
and COVID-19 severity. The x-axis represents RDA1 (4.9% of variation), and the y-axis
represents RDA2 (1.4%). Each point represents an individual patient, color-coded by
COVID-19 severity. Green arrows indicate the direction and strength of association with
PHQ-15, PSS, HADS-A, and HADS-D. Labeled bacterial species show their associations
with these factors. Density plots on the top and right margins show the distribution of
samples along each axis. (b) Venn diagram of the resulting driver taxa from each COVID-
19 severity group using the BakDrive interaction analysis followed by the BakDrive driver
analysis. Genera that are bolded correspond to taxa that are above the total relative
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abundance threshold of 5%. (¢) SpiecEasi, sparse and low-rank decomposition network
analysis of gut microbiome species, illustrates the co-occurrence patterns of gut bacterial
species associated with mental health indicators. Nodes represent bacterial species with a
p<0.05 with any mental health index, while edges represent significant correlations between
species. Node colors represent Spearman’s correlation between the microbe and the scores
of the assessments. Together, these visualizations provide insights into the complex
relationships between gut microbiome composition, mental health status, and COVID-19
severity, suggesting potential microbial signatures associated with different symptoms in
the context of COVID-19 infection.

Conversely, species Christensenella minuta, Anaeromassilibacillus senegalensis, and
Lachnospiraceae bacterium GAM79 negatively correlated with somatic symptoms,
suggesting a potential protective effect. To investigate which microbial taxa might drive the
severity of COVID-19 in gut microbiomes, we used Bakdrive(25). Bakdrive is a microbial
community modeling tool designed to identify driver bacteria that play a pivotal role in
influencing the structure and function of the microbiome in health or disease. Specifically,
by utilizing metabolic models and network analysis, Bakdrive aims to pinpoint taxa that
play crucial roles in disease mechanisms or ecological interactions. Using this tool, we can
highlight the bacterial species that were likely driving interactions within gut microbiomes
across low, moderate, and critical severity groups. Specific taxa exhibited varying
prevalence across different levels of COVID-19 severity (Supplementary Table 3). For
example, Granulicatella was predominantly present in critically ill patients, while
Succinivibrio was more common among those with moderate disease severity. Some driver
taxa were shared between severity groups. Notably, Faecalibacterium was present across
all severity levels, and Enterococcus appeared only in patients with low and moderate
severity. These findings reflect distinct variations in driver taxa composition associated with
disease severity scores (Fig. 7b).

The network diagram generated using SpiecEasi (Sparse InversE Covariance estimation for
Ecological Association Inference) illustrated the associations between specific microbial
species and various symptoms assessed, highlighting Spearman correlations with p-values
<0.05 related to mental health indicators (Fig. 7¢). This network highlights the intricate
interactions among bacterial species, with nodes color-coded to reflect their associations
with PHQ-15, PSS, HADS-A, and HADS-D scores. The structure reveals positive and
negative associations between species, computed using the sparse and low-rank
decomposition method. This approach minimizes the impact of latent variables, allowing
for a more precise representation of the complex balance within the gut microbiome with
mental health and COVID-19 severity. Microbial species such as Mitsuokella jalaludinii
and Phocaeicola vulgatus strongly correlated with PSS and HADS-D. Conversely, species
Christensenella minuta, Anaeromassilibacillus senegalensis, and Lachnospiraceae
bacterium GAM79 were inversely associated with PHQ-15. Key species Ruminococcus
lactaris, Megasphaera indica, and Bacteroides stercoris occupy central positions within the
network, indicating their potential significance in the gut-brain axis and their possible role
in influencing mental health status.
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Discussion

This proof-of-concept study highlights links between somatic and neuropsychiatric
symptoms, inflammatory responses, and gut microbiome dysbiosis in hospitalized COVID-
19 patients. The results provide essential insights into the intricate interactions between
COVID-19 severity and specific microbial species, demonstrating that different microbes
are associated with varying levels of disease severity and neuropsychiatric co-morbidities.

In this study, most patients experienced at least three COVID-19 symptoms, with dyspnea
significantly associated with increased disease severity. Consistent with previous research,
older age, and male gender were linked to more severe manifestations of COVID-19,
reaffirming age as a significant risk factor for severe outcomes(4, 5). Somatic symptoms,
stress, anxiety, and depressive symptoms were common across all severity levels. This
aligns with other studies reporting a high prevalence of physical symptoms and mental
health issues among hospitalized COVID-19 patients during the same period(/0, 11, 26,
27). Notably, a higher proportion of women reported anxiety and had higher scores on the
HADS-A scale compared to men. Individuals with higher stress levels also experienced
more extended hospital stays. These findings are consistent with studies identifying women
as a vulnerable group for mental health issues, including perceived stress(26) and
anxiety(27).

Our results align with existing literature regarding alterations in blood cells and markers
among critically ill patients, such as reduced lymphocytes, elevated neutrophils, increased
CRP, D-dimer, and ferritin levels, and comorbidities like hypertension and heart diseases
(28). These findings underscore the significant role of systemic inflammation and pro-
thrombotic responses in exacerbating COVID-19 severity(29-37). SARS-CoV-2 infection
triggers immunopathological reactions characterized by intense cytokine production, known
as the cytokine storm(32). Elevated levels of IL-6, as observed in our study, are frequently
reported, especially in individuals over 60 years old with comorbidities, and are recognized
as markers of disease severity storm(32). Elevated IL-6 is associated with increased
production of acute-phase proteins like CRP and other inflammatory cytokines(29-31). In
line with other findings, IL-1ra, IL-10, and IFN-y were significantly elevated in patients
with severe COVID-19(30). The increase in IL-10 and IL-1ra may reflect a compensatory
anti-inflammatory response to elevated pro-inflammatory cytokines, attempting to mitigate
the harmful effects of the cytokine storm(33). However, this response appears ineffective,
as elevated IL-10 levels are associated with poor clinical outcomes and reduced survival
rates(33, 34). Additionally, we observed decreased levels of IL-2 in critically ill patients,
which may represent a response aimed at preventing viral spread during the early phase of
the disease(335).

An inverse relationship was observed between disease severity and the abundance of
beneficial bacteria. Alpha diversity and species richness were significantly reduced in
critically ill patients, reinforcing previous findings of microbiome dysbiosis in severe
COVID-19 cases(36). This diversity reduction aligns with findings linking diminished gut
microbial diversity to poor symptoms and heightened inflammatory responses(37).
Consistent with this, beta diversity analyses revealed distinct microbial profiles influenced
by factors such as BMI, gender, and age, as reported by other studies (38), highlighting the
impact of these demographic factors on the gut microbiome during COVID-19 infection.
Severely ill patients exhibited a decline in beneficial bacterial taxa, including
Christensenella minuta and Lachnospiraceae, which are known to support gut health, and
their reduction suggests a weakening of the intestine's protective functions. This could lead
to dysbiosis, a decrease in short-chain fatty acids (SCFA), crucial for maintaining intestinal
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integrity and regulating immune responses, ultimately contributing to poorer mental health
outcomes in severely ill patients. Another study during the same period found that severely
symptomatic SARS-CoV-2 patients had significantly lower bacterial diversity and reduced
abundances of beneficial bacteria, such as Bifidobacterium, Faecalibacterium, and
Roseburium while showing an increase in Bacteroides compared to controls(39). Several
bacterial taxa associated with SARS-CoV-2 infection were identified, notably elevated
levels of Granulicatella and Rothia mucilaginosa found in both the oral and gut
microbiomes(40). Consistent with our findings, Granulicatella was exclusively
predominant in critical patients.

An increase in opportunistic pathogens, like Klebsiella pneumoniae and Parabacteroides
distasonis, can intensify inflammation, raise infection risks, and potentially worsen a
patient’s overall health (4/). For instance, Klebsiella pneumoniae was commonly associated
with critically ill patients and linked to severe conditions like pneumonia and sepsis(4/).
Certain pathogens have also been associated with specific symptoms in long-term COVID-
19; for example, Clostridium innocuum has been suggested to play a role in neuropsychiatric
symptoms(42). Many gut microbiome taxa associated with known comorbidities, such as
Veillonella dispar, Veillonella parvula, and Streptococcus gordonii, are typically found
within the oral cavity. Their presence in the gut aligns with several other studies showing a
link between disease severity and oral taxa within the gut microbiome(43). Bacterial genera
such as Eubacterium, Agathobacter, Subdoligranulum, Ruminococcus, and Veillonella
show notable shifts in abundance.

Interestingly, we observed that specific microbial species were associated with somatic
symptoms, perceived stress, anxiety, and depressive symptoms, offering insights into the
complex microbial dynamics, the gut-brain axis, and mental health indicators in COVID-
19. The gut microbiome influences neuropsychiatric symptoms through microbial
metabolites like SCFA, which regulate immune cells and neurotransmitter production, and
through the gut-brain axis(44). Imbalances in gut microbes can lead to increased
inflammation and disrupted communication, contributing to conditions like anxiety,
depressive symptoms, and cognitive decline(44, 45). Furthermore, the gut microbiome has
been suggested to be a key modulator of psychological health during and after COVID-19
infection (37, 45).

Differential abundance analyses showed that several microbial species were significantly
associated with psychological measures, including somatic symptoms, perceived stress,
anxiety, and depressive symptoms. The clustering of species like Phocaeicola vulgatus,
Bacteroides stercoris, Ruminococcus lactaris, Megasphaera indica, and Mitsuokella
Jjalaludinii around elevated somatic or neuropsychiatric scores suggests that these microbes
may play a vital role in the gut-brain axis during COVID-19. Mitsuokella jalaludinii was
positively correlated with all assessments, suggesting its role in worsening mental
health(46). In contrast, species like Christensenella minuta and Anaeromassilibacillus
senegalensis were negatively associated with PHQ-15. These findings align with growing
evidence that links gut dysbiosis to mood disorders and stress-related conditions.

Limitations of this study include its cross-sectional design, which prevents establishing
causality between gut microbiome alterations and neuropsychiatric symptoms. Potential
confounding factors such as pre-existing mental health conditions or medication use were
not controlled for, and a lack of a healthy control group limits the ability to compare findings
to non-COVID-19 individuals. Additionally, a larger sample size may be required to
generalize the results to all hospitalized COVID-19 patients. Finally, fecal microbial load
may represent a major confounder (47).
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Recovery from SARS-CoV-2 infection has been linked to greater psychosocial resilience
(27), while individuals with higher levels of mental distress during the acute phase are more
vulnerable to long-term effects (48). Hospitalized patients who experienced severe COVID-
19 face a greater risk of developing Long COVID compared to those with mild cases(49).
Our meta-analysis, published in 2021, found that 8 out of 10 individuals with SARS-CoV-
2 infections exhibited symptoms of Long COVID(50). However, recent epidemiological
data offer a more conservative estimate, Long COVID risk at three months post-infection is
now reported at 6.2%(49, 51). It is very important to consider parameters with strong
discriminatory power to stratify patient risk and classify the severity of COVID-19(52).
Randomized controlled trials are necessary to assess the effectiveness of microbiome-
targeted therapies, such as probiotics and dietary interventions. Mechanistic studies should
investigate how microbiome changes influence systemic inflammation during the acute
phase of COVID-19 and how these interactions may predict the onset and progression of
neuropsychiatric symptoms. This research may help guide the development of clinical
guidelines and patient monitoring strategies for incorporating microbiome-based
interventions into COVID-19 treatment.

In conclusion, our study provides data in support of the hypothesis that immune responses
and the gut-brain axis may be playing a role in regulating somatic and neuropsychiatric
symptoms during acute COVID-19. Probiotics, prebiotics, and dietary modifications, such
as increasing fiber or omega-3 intake to restore microbial balance, could reduce the severity
of symptoms. Additionally, microbiome-targeted therapies or pharmaceutical approaches
that modulate gut health offer promising avenues to improve recovery and mitigate the risk
of severe complications in COVID-19 patients. Further research is needed to explore
whether modulating the gut microbiota could alleviate neurological symptoms during the
infection phase and impact the development of Long COVID.

Materials and Methods

Study Design

This cross-sectional study was based on an exploratory analysis of baseline data from
hospitalized COVID-19 patients who participated in a randomized clinical trial
investigating the effects of a dietary supplement containing tannins(53). The study protocol
has been detailed in a prior report(54). The study was approved by the Ethics Committee of
the Hospital de Clinicas José de San Martin (1046-20) in accordance with the guidelines of
the Argentine Ministry of Health and the hospital's treatment protocols. The demographics
and clinical characteristics of the participants are presented in Table 1, and the methodology
is outlined in Fig. 9. This study was performed between 1 March 2020 and 31 October 2021.
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Fig. 9. Overview of data collection and analysis for hospitalized COVID-19 patients.
This comprehensive data collection framework aims to provide a holistic understanding of
the COVID-19 symptoms and somatic, neuropsychiatric, and microbiological aspects of
COVID-19 in hospitalized patients. (a) Clinical and Demographic Data. COVID patients
(n=124) are categorized into three severity groups based on a scoring index: low (0-2),
moderate (3-7), and critical (>8). This score is based on age, gender, heart failure, chronic
obstructive pulmonary disease (COPD), diabetes mellitus, heart rate, respiratory rate,
systolic blood pressure, temperature, oxygen saturation, including in patients with COPD,
D-dimer levels, lymphocyte and platelet counts, dyspnea, chest X-ray alterations, and the
need for supplemental oxygen. (b) Somatic and Neuropsychiatric Assessments: Patient
Health Questionnaire-15 (PHQ-15) is used to assess somatic symptoms, including stomach
pain, back pain, pain in arms, legs, and joints, menstrual cramps, headaches, chest pain,
dizziness, fainting spells, heart palpitations, shortness of breath, pain during sexual
intercourse, constipation, nausea, indigestion, fatigue, and trouble sleeping. Additional
neuropsychiatric assessments include the Perceived Stress Scale (PSS), Hospital Anxiety
and Depression Scale-Anxiety (HADS-A), and Hospital Anxiety and Depression Scale-
Depression (HADS-D). (c) Laboratory Tests. Various serological assays are conducted to
analyze hematological, coagulation, and biochemical parameters, and serum inflammatory
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cytokines. (d) Microbiome Analysis. Stool samples are collected for microbiome analysis.
Full-length 16S sequencing is performed using Oxford Nanopore Technologies, followed
by microbial composition analysis using Emu. Data analysis uses tools such as phyloseq,
ANCOMBC2, and SpiecEasi to understand the microbial landscape and its association with
disease severity and patient outcomes.

COVID-19 severity classification

Using the COVID-19 severity index, patients were classified into low, moderate, or critical
disease severity(55). This index incorporates the following multiple variables: age, gender,
comorbidities, dyspnea, chest X-ray abnormalities, and the requirement for supplemental
oxygen (Fig.9). The X-ray was performed at the time of hospital admission. Here, we
considered scores of 0-2 to indicate low severity, 3—7 as moderate, and 8 or higher as critical
severity of COVID-19 adapted from Huespe et al. (56) (Supplementary Table 1).

Somatic and neuropsychiatric symptoms

Somatic symptoms were assessed using the Patient Health Questionnaire-15 (PHQ-15),
while the perception of stress was evaluated with the Perceived Stress Scale (PSS). Anxiety
and depressive symptoms were measured using the Hospital Anxiety and Depression Scale
(HADS), with all somatic and neuropsychiatric symptoms being self-reported. Only 77
patients could complete the instruments, which was influenced by the severity of the clinical
condition and transfer to the intensive care unit at the time of hospital admission. The PHQ-
15 consists of 15 items that assess the severity of somatic symptoms over the previous
week(57) (Fig. 9). Each symptom is scored as 0 ("not bothered at all"), 1 (“bothered a
little”), or 2 ("bothered a lot"). The PHQ-15 score ranges from 0 to 30, (0-28 in men) with
cutoff points at >5 for low, >10 for moderate, and >15 for high somatic symptom
severity(57). Scores of 15 or higher are indicative of severe somatic symptoms. The PSS(58)
is a self-report measure that assesses the perception of stress over the previous month. The
version of the PSS used was the 14-item version, which includes seven positive and seven
negative items that assess feelings of chaos, lack of control, and overall stress without being
tied to specific events. Each item is rated on a 5-point scale from 0 ("never") to 4 ("very
often"), with higher scores indicating more significant stress. The categories are rarely or
never (less than 14 points); occasionally (14-28 points); often (29-42 points); and usually
(42-56 points). The HADS(59) is a self-report rating scale of 14 items designed to measure
anxiety and depression (7 items for each subscale). Each item is scored from 0 ("absence")
to 3 ("extreme presence"). Each subscale has a total score ranging from 0 to 21, with scores
of 0—7 indicating "normal," 8—10 "mild," 11-14 "moderate," and 15-21 "severe" symptoms.

Blood biomarkers

Blood samples were collected by venipuncture within 48 hours of hospital admission and
placed in vacutainer tubes with a clot activator. Serum was obtained by centrifugation at
3,000x g for 15 minutes at 4°C. Circulating cytokine levels were evaluated using the Bio-
Plex Pro™ Human Cytokine Standard 27-Plex Kit (Bio-Rad), following the manufacturer's
instructions. This assay measures 27 different molecules: 1L-2, IL-4, IL-5, IL-6, IL-7, IL-8,
IL-9, IL-10, IL-12, IL-13, IL-15, IL-17, IL-1B, IL-1ra, TNF-a, IFN-y, IP-10, MCP-1, MIP-
la, MIP-1B, eotaxin, FGF, G-CSF, GM-CSF, VEGF, and PDGF-BB. Serum levels of the
inflammatory mediators were reported as median fluorescence intensity (MFI). Counts of
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leukocytes, neutrophils, lymphocytes, and platelets were measured. The neutrophil-to-
lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) were subsequently
calculated. Coagulation parameters assessed included prothrombin time, activated partial
thromboplastin time (aPTT), D-dimer, and fibrinogen levels. Inflammatory markers,
specifically C-reactive protein (CRP) and ferritin were evaluated to analyze inflammatory
status. Additionally, biochemical analyses were conducted to determine the concentrations
of albumin, creatine kinase (CK), and lactate dehydrogenase (LDH).

Nanopore 168 rRNA library preparation and sequencing

Stool samples were collected using pb-eNAT preservation tubes (COPAN®, Italy),
aliquoted, and stored at —80 °C until analysis. DNA was extracted from 100 mg of
homogenized fecal samples employing the MagMAX™ Microbiome Ultra Nucleic Acid
Isolation Kit, following the manufacturer’s protocol. Subsequently, 16S rRNA amplicon
libraries were prepared using the 16S Barcoding Kit 1-24 (SQK-16S024) from Oxford
Nanopore Technologies (ONT), Oxford, UK. For PCR amplification and barcoding, 18 ng
of extracted DNA was combined with LongAmp Hot Start Taq 2X Master Mix (New
England Biolabs, Ipswich, MA) according to the manufacturer’s instructions. The thermal
cycling protocol consisted of an initial denaturation at 95 °C for 20 seconds, followed by 35
cycles of 95 °C for 20 seconds, 55 °C for 30 seconds, and 65 °C for 2 minutes, concluding
with a final extension at 65 °C for 5 minutes. The resulting barcoded amplicons were
purified using AMPure XP beads (Beckman Coulter, Brea, CA). After purification, the
amplicons were quantified with a Qubit fluorometer (Life Technologies, Carlsbad, CA) and
pooled in an equimolar ratio to achieve 100 ng in 10 puL. The pooled library was then loaded
into an R9.4.1 flow cell and sequenced on the MinlON platform (Oxford Nanopore
Technologies, Oxford, UK) using MINKNOW software version 19.12.5 for data
acquisition.

Bioinformatic Analysis

Full-length 16S sequences were converted to pod5 format and called using Dorado v0.5.0
with the dna 19.4.1 e8 sup@v3.6 model. The resulting BAM files were demultiplexed and
converted to fastq files using the Dorado demux command(60). Fastq files for each sample
were then concatenated using SeqKit scat v2.7.0, processed with the Emu taxonomic
taxonomic classification software v3.4.5, and aggregated into an Operational Taxonomic
Unit (OTU) output table(67). The OTU and taxonomy tables were integrated with metadata
to create a phyloseq v1.48.0 object(62). A phylogenetic tree was created using the Emu
taxdump to_tree.py script to generate a reference tree based on the Emu database. Using a
custom Python script (https://github.com/villapollab/covid biome) and a mapping file
specific to the dataset, leaves that matched within the reference tree were retained and
converted to their corresponding OTU identifiers in the phyloseq object. The phylogenetic
tree was merged with the phyloseq object using the ape v5.8 read.tree function, enabling
phylogenetic calculations within phyloseq(63). Subsequent analyses included alpha
diversity, beta diversity, and abundance and correlation heatmaps, performed using
MicroViz v0.12.4(64). Network correlations were obtained using SpiecEasi version
1.1.3(65). All data analyses following Emu classification were executed using Python v3.12
and R v4.3.3(66, 67).

Differential Abundance and Driver Species Analysis
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To obtain a comprehensive understanding of potential bacterial driver species within the gut
microbial communities of COVID-19 patients of differing severity, we employed Bakdrive
v1.0.4(25) and ANCOMBC2 v2.6.0(68). Bakdrive is a microbial community modeling tool
designed to identify driver bacteria—bacteria that play a pivotal role in influencing the
structure and function of the microbiome in health or disease. Specifically, by utilizing
metabolic models and network analysis, Bakdrive attempts to pinpoint taxa that may be
critical in disease mechanisms or ecological interactions. ANCOMBC2 (Analysis of
Composition of Microbiomes with Bias Correction 2) is a differential abundance analysis
tool designed to address the compositional nature of microbiome data and corrects for
biases, enabling accurate identification of taxa that are differentially abundant between
sample groups. A detailed notebook of the bioinformatic analysis can be found at
https://villapollab.github.io/covid_biome/.

Statistical Analysis

Categorical variables were presented as frequencies and percentages. To analyze
contingency tables for variables such as gender, mortality, antibiotic use, supplemental
oxygen, and COVID-19 symptoms, the Chi-square (y?) test or Fisher’s exact test (FET) was
employed. The normality of the distribution of numerical variables was assessed with a
Kolmogorov-Smirnov test. Depending on their distribution, numerical variables were
presented as median and interquartile range (IQR) or mean and standard deviation (SD). For
comparisons between two groups, the Independent Samples t-test was used for normally
distributed variables, while the Mann-Whitney U test was applied for non-normally
distributed variables (e.g., PSS, HADS-A, HADS-D between groups with and without
severe somatic symptoms). One-way ANOVA was utilized to examine differences in
parametric variables such as age and BMI across COVID-19 severity categories (low,
moderate, and critical), followed by Tukey's Honest Significant Difference (HSD) post hoc
test. For non-parametric variables, including days of hospitalization, number of COVID-19
symptoms, PHQ-15, PSS, HADS-A, and HADS-D, the Kruskal-Wallis test was performed.
This was followed by pairwise comparisons between severity groups with correction for
multiple testing. Linear regression analysis compared cytokine levels with and without
adjustment for age, gender, and BMI. Associations between clinical outcomes and
inflammatory mediators or gut microbiota were assessed using Spearman’s rank correlation
coefficients (e.g., correlations between PHQ-15, PSS, HADS-A, and HADS-D). All
statistical analyses were performed using IBM SPSS Statistics for Windows, version 25
(IBM Corp., Armonk, NY, USA). A p-value of <0.05 was considered statistically
significant.
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