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Abstract 

Calibration, a critical step in the development of simulation models, involves adjusting unobservable parameters 

to ensure that the outcomes of the model closely align with observed target data. This process is particularly vital 

in cancer simulation models with a natural history component where direct data to inform natural history 

parameters are rarely available. This work reviews the literature of cancer simulation models with a natural history 

component and identifies the calibration approaches used in these models with respect to the following attributes: 

calibration target, goodness-of-fit (GOF) measure, parameter search algorithm, acceptance criteria, and stopping 

rules. After a comprehensive search of the PubMed database from 1981 to June 2023, 68 studies were included 

in the review. Nearly all (n=66) articles specified the calibration targets, and most articles (n=56) specified the 

parameter search algorithms they used, whereas goodness-of-fit metric (n=51) and acceptance criteria/stopping 

rule (n=45) were reported for fewer times. The most frequently used calibration targets were incidence, mortality, 

and prevalence, whose data sources primarily come from cancer registries and observational studies. The most 

used goodness-of-fit measure was weighted mean squared error. Random search has been the predominant method 

for parameter search, followed by grid search and Nelder-mead method. Machine learning-based algorithms, 

despite their fast advancement in the recent decade, has been underutilized in the cancer simulation models. More 

research is needed to compare different parameter search algorithms used for calibration. 
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Key points 

• This work reviewed the literature of cancer simulation models with a natural history component and 

identified the calibration approaches used in these models with respect to the following attributes: 

calibration target, goodness-of-fit (GOF) measure, parameter search algorithm, acceptance criteria, and 

stopping rules.  

• Random search has been the predominant method for parameter search, followed by grid search and 

Nelder-mead method.  

• Machine learning-based algorithms, despite their fast advancement in the recent decade, has been 

underutilized in the cancer simulation models. Furthermore, more research is needed to compare different 

parameter search algorithms used for calibration. 
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1 Introduction 

Computer simulation models have been increasingly used to address cancer control problems. For example, the 

National Cancer Institute (NCI)’s Cancer Intervention Modeling and Surveillance Modeling Network (CISNET) 

simulation models have been used to inform the US Preventive Services Task Force screening recommendations 

for breast cancer ([1-3]), colorectal cancer [4], and lung cancer [5].    

  

A crucial component of cancer simulation models is natural history, which represents the trajectory of cancer in 

an individual over time in the absence of a medical intervention. While a few of the natural history model 

parameters such as prevalence of cancer subtype could be estimated from primary data, most components such as 

the average tumor growth rate and the proportion of the tumors that regress remain unobservable. Consequently, 

in the absence of direct available data to estimate such parameters, models can determine the values of these 

parameters such that the model results match observed outcomes.  

 

The most commonly used method to estimate directly unobservable parameters is calibration, which refers to the 

process of adjusting unobservable parameter values to ensure that the model's outcomes align closely with 

observed target data such as observed incidence and mortality [6]. As contemporary cancer simulation models 

grow in complexity, resulting in a large number of natural history parameters that need to be estimated through 

calibration, and computational demands rise, modelers face the challenge of conducting efficient calibration. This 

requires an optimal compromise between parameter combinations that mirror clinical data and computational time 

and resource demands.  

 

The simplest approach to implement calibration is to conduct a full-scale grid search for the entire parameter space, 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted November 19, 2024. ; https://doi.org/10.1101/2024.11.18.24317357doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.18.24317357


5 

 

which involves discretizing the continuous parameters and running the simulation model for all possible 

combinations of the unobservable input parameters. While this is an easy-to-implement method, it requires major 

computational time due to the complexity of the models and a large number of input parameter combinations that 

need to be evaluated. For example, one study on calibrating an established breast cancer simulation model notes 

that a single replication of the model takes approximately 10 minutes on a stand-alone computer [7]. Considering 

that the study needed to evaluate approximately 400,000 input parameter combinations, the calibration procedure 

could take over 70 days to complete, which may not be computationally feasible. Not surprisingly, due to the need 

for speeding up the calibration in cancer simulation models, there is a growing interest in developing efficient 

strategies to search the parameter space for the calibration. A rich body of literature suggested using metaheuristic 

and structured methods such as grid search, random search, Nelder-Mead algorithm, neural networks, and 

Bayesian optimization for calibration [7-12]. 

 

Despite a drastic increase of interest in calibration from the cancer modeling community in the last decade, no 

study conducted a systematic review of the methods used for calibration in cancer simulation models, which is 

the focus of the present review. To our knowledge, only one previous study conducted a systematic review of the 

calibration methods used in the cancer simulation models and included studies published until 2006 [6]. That 

study did not focus on the optimization and heuristic methods used for the parameter search algorithm, instead, it 

primarily analyzed the studies based on modeled tumor types, metrics used for measuring goodness-of-fit of the 

models, and validation strategies. Compared to that study, we included more recent studies, which is crucial since 

there has been a major increase in the number of studies utilizing calibration methods and the diversity of the 

calibration approaches. In addition, our emphasis in this work is to classify the studies with respect to the 

calibration methods used, which provides insight into the preferred calibration methods by modelers in cancer 
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research.  

 

2 Methods 

2.1 Search Strategy 

We conducted a systematic review on calibration methods employed in cancer simulation models with a natural 

history component. A comprehensive search of the PubMed database from 1981 to June 2023 was performed for 

articles published in English. Our search criteria only considered papers that contain “simulation” and “cancer” 

in title/abstract and “calibration” in the main text. Note that PubMed automatically includes synonymous or related 

keywords. For instance, in the case of ‘cancer’, PubMed also identifies words like ‘neoplasm’ or ‘cancers.’ In 

situations where multiple papers were published based on the same study, only one was included in our review. 

Additional studies were found through manual searches of the studies that cited tutorial papers describing 

simulation calibration and the previous systematic review article. 

 

Our inclusion criteria consisted of articles that developed a cancer simulation model with a natural history 

component and calibrated the natural history component to match specific calibration targets. We excluded 

preprint/nonrefereed articles as well as articles focusing on models of disease other than cancer, with the exception 

of Human Papillomavirus due to its profound association with cervical cancer. We also excluded models devoid 

of a natural history component or those that do not calibrate their parameters. Tutorial articles that describe specific 

calibration methods were also excluded. 

 

2.2 Classification of the Studies and Reporting of the Results 

Our search focused on the following attributes of the calibration articles: calibration target, goodness-of-fit 
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measure, parameter search algorithm, acceptance criterion and stopping rule. We briefly describe them here.   

 

Calibration targets are observed empirical data, such as cancer incidence and mortality rates, that can be directly 

estimated. As the name implies, these targets serve as benchmarks that a model aims to replicate during the 

calibration process. Typical calibration targets include incidence (the rate of new cancer cases within a specific 

period), mortality (the death rate due to cancer), survival (the proportion of patients living for a certain time after 

diagnosis), and stage distribution (the breakdown of cancer cases by cancer stage at diagnosis). These critical data 

are sourced from cancer registries, which collect comprehensive cancer patient information; observational studies, 

which monitor subjects in natural conditions without intervention; and randomized controlled trials, where 

subjects are randomly assigned to experimental or control groups to test the efficacy of treatments.  

Goodness-of-fit (GOF) of a simulation model reflects how well the results of the running the model using an input 

parameter combination align with calibration targets. A straightforward GOF measure involves visual comparison 

where model outputs are manually contrasted with calibration targets to evaluate their fit, which is not ideal due 

to the subjectivity, hence, most models employed quantitative measures. Predominantly used GOF measures are 

mean squared error (MSE), weighted mean squared error, likelihood, and confidence interval envelope. Choosing 

a GOF measure that is compatible with simulation model is crucial for the model’s success. We provide a formal 

description for each GOF metric used in the articles included in our study in Appendix A.  

 

Parameter search algorithms refer to the methods to identify parameter combinations that are sufficiently close 

to the calibration targets. The degree of closeness between parameter combinations and calibration targets is 

measured by the GOF measure, serving as an error function in the parameter search algorithms. This problem can 

be conceptualized as finding the parameter combination that minimizes the GOF measure across the parameter 
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space, a topic that has been comprehensively studied. Additionally, the parameter space is typically expansive and 

non-convex due to the nonlinear nature of the simulation model or constraints on its parameters, rendering it 

challenging to find a global optimum using an algorithm with a reasonable runtime. Despite this, a selection of 

alternative heuristic algorithms can be utilized to find parameter combinations that reasonably approximate the 

calibration targets within an acceptable runtime. We describe each parameter search algorithm used in the articles 

included in our study in Appendix B. 

 

Acceptance criteria refer to the standards set by the modelers to determine if predictions made by the model using 

a particular input parameter combination align sufficiently well with the calibration targets. These criteria are 

typically measured using the GOF metrics. On the other hand, stopping rules refer to the thresholds or conditions 

that, once met, lead modelers to terminate the calibration process. Common stopping rules include identifying an 

adequate number of parameters that fulfill the acceptance criteria or reaching a pre-specified number of 

iterations/time during calibration. 

 

3 Results 

3.1 Search results 

Our search resulted in 253 unique articles. Of these, 56 met the inclusion criteria, while the remainder were 

excluded for the reasons mentioned previously. An examination of the references within these articles led us to 

identify 12 additional articles that satisfied our criteria, bringing the total to 68 articles. 

 

Prior to 2006, very few articles met our inclusion criteria. A notable uptick in articles that fit our criteria began 

after 2006, peaking at 8 articles per year in 2019 (Figure 1). Breast, colorectal, and cervical were the predominant 
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cancer types represented with these simulation models, with 13 (19.1%), 13 (19.1%), and 11 (16.2%) articles 

respectively, as shown in Table 3. This contrasts with the less common cancer types, such as skin or thyroid 

cancers, which were each modeled in only a single article. 

 

In our literature review, 66 (97.1%) of the 68 articles mentioned their calibration targets. Among these, one article 

did not specify the data source for targets, and three articles did not specify the target type. The most commonly 

used calibration data source is the cancer registry, which was used by 43 (63.2%) articles (Table 1), notably the 

United States National Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER) program. This is 

followed by observational studies, which include a variety of subcategories, including cohort studies, retrospective 

studies, and national surveys [13-15]. Thirteen (19.1%) articles utilized data from randomized controlled trials. 

The most frequently used target types are incidence, mortality, and prevalence, respectively (Table 2). Only 19 

(28.0%) of the 68 articles used a single type of calibration target type. 

 

Of the 68 articles, the weighted MSE was the most employed GOF metric (Table 4). Specifically, 7 (10.3%) 

articles utilized chi-squared error as their weight, and 10 (14.7%) articles incorporated other types of weights. 

Following the weighted MSE, the MSE without weights was the second most popular metric, being used in 15 

(22.1%) articles. Likelihood was the third most frequent GOF metric, with 10 (14.7%) articles using it. 17 (25%) 

of the articles do not specify their choice of GOF metrics.  

 

Most articles we found in the literature search describes their parameter search algorithms. Of the 68 included 

articles, random search emerged as the most favored parameter search algorithm, being referenced in 16 (23.5%) 

articles. Note that the specific usage of the random search method is occasionally inferred rather than explicitly 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted November 19, 2024. ; https://doi.org/10.1101/2024.11.18.24317357doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.18.24317357


10 

 

stated. For example, Hammer et al. (2019) [16] describes their parameter search algorithm as “the simulation was 

run 10,000 times, with each run using a number randomly drawn from the range of possible growth rates.” Such 

descriptions hint at the possible use of random search, but also raise questions about the exact methodology 

applied since other more complicated algorithms such as simulated annealing also randomly draw the number 

from plausible range. It is possible that some models might be leveraging more nuanced algorithms but might not 

be detailing them adequately in their documentation.  

 

Following random search in popularity are the grid search and Nelder-mead methods, each being adopted in 9 

(13.2%) and 8 (11.8%) articles respectively. Interestingly, despite the rising interest in machine learning (ML) for 

analyzing large datasets, as is typical with simulation models, only five articles utilized ML-based strategies. 

Furthermore, 12 (17.6%) articles did not specify their calibration algorithm, often leaving other calibration details 

ambiguous as well.  

 

In our search, 21 (30.8%) articles reported to have terminated the calibration process after evaluating a designated 

number of combinations. These articles then selected the top-performing combinations without explicitly stating 

their acceptance criteria. A total of 14 (20.6%) articles clearly specified both acceptance criteria and stopping rule. 

Six and three articles only specify stopping rule and acceptance criteria, respectively. A total of 23 (33.8%) articles 

did not provide any information on acceptance criteria or stopping rule.  

 

4 Discussion 

Calibration of natural history parameters in cancer simulation models is typically the most time-consuming 

component of building a model, making a careful selection of efficient parameter search algorithms necessary. In 
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addition, the choice of suitable GOF metrics, acceptance criteria, and stopping rule with the algorithm is also 

crucial for calibration. Our review aims to summarize the strategies adopted by modelers in selecting these 

essential components, providing insights into current practices and potential improvements in simulation model 

calibration. 

 

MSE, in both weighted and unweighted forms, is the most commonly used GOF measure, and it is considered as 

the default method in many implementations. However, prior to finalizing the choice of a GOF measure for a 

model, it is important to conduct a thorough comparison among various GOF measures. This is crucial because 

each measure has its unique strengths and limitations, and its performance varies in different scenario. For instance, 

MSE is sensitive to outliers, leading to a heavy penalty for larger errors. Secondly, MSE may not allow the 

capturing the temporal trends in observed outcomes such as incidence, which may be significant for accurate 

representation. For example, a recent thyroid cancer simulation model reported that successful replication of 

thyroid cancer epidemiology in the US requires modeling the drastic increase in thyroid cancer incidence between 

1990s and 2010s, and the use of MSE may not allow choosing parameters combinations to reflect this temporal 

trend [17]. 

 

Given the advancement of machine learning algorithms in the recent decade, it is surprising that only a small 

number of studies, specifically five articles in our review, have utilized machine learning-based algorithms. This 

observation suggests a potential underutilization of these powerful tools in the field. Modelers and researchers 

should be aware that machine learning is highly accessible. In-depth expertise in machine learning is no longer a 

prerequisite for implementation, thanks to the proliferation of user-friendly libraries and frameworks. These 

resources efficiently manage the intricate aspects of algorithmic processing, so the users only need to know coding 
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to implement such algorithms. However, users still need machine learning knowledge to pick the suitable 

algorithms specific to the model. 

 

We identified only one prior systematic review that conducted systematic reviews of calibration process [6]. This 

review, however, is limited to articles published before 2006 and does not concentrate on parameter search 

algorithms. Only a small proportion of the articles they included have clearly documented their search algorithm 

during calibration process, therefore the comparison of our present study’s findings to that article is not possible.  

 

Our review also highlighted the need for reporting of the calibration methods in simulation modeling papers. 

Many of the studies included in this review lack a comprehensive description of their calibration process, including 

how they selected the GOF metric and parameter search algorithm, as well as the absence of acceptance criteria 

and stopping rules. To enhance transparency and understanding, we advise authors to include a detailed account 

of the calibration procedure in the main body of the text or in a supplement. This addition would significantly help 

readers in understanding the full extent and robustness of the calibration process.  

 

In addition to providing a detailed account of the calibration procedure, we strongly encourage modelers to 

consider the possibility of making their source code publicly available, given that the nature of their project 

permits it. Future researchers who are interested in the model can gain deeper understanding of the model and can 

potentially build upon the current model. 

 

4.1 Future Research Directions for Calibration of Simulation Models 

The strong need for computationally efficient simulation calibration methods and growing interest from the cancer 
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research community on simulation calibration provide an opportunity for future research. There is a noticeable 

lack of articles that perform a comparative analysis of multiple parameter search algorithms used for calibration. 

This omission results in ambiguity regarding the selection of the most suitable parameter algorithms. A more 

thorough comparison in future studies could provide valuable insights into the efficacy and applicability of 

different algorithms. A comparison would also make the calibration process more robust. Furthermore, 

considering the significant advancements in machine learning, its current application in the field appears 

underutilized. We encourage more studies to explore the incorporation of machine learning-based algorithms, 

especially given the ease of implementation afforded by contemporary libraries. The integration of these advanced 

techniques could lead to more refined and efficient modeling approaches. 

 

4.2 Limitations 

Our study has several limitations. First, while numerous parameter search algorithms are categorized under 

random search, making it the most commonly used algorithm, this classification may be misleading due to a lack 

of detailed information. In cases where only the use of randomness is mentioned without further details, the 

classification may not accurately reflect the actual algorithm used in the model.  Secondly, it is possible that 

some authors utilized multiple parameter search algorithms in their papers but only reported the most successful 

one in the paper and omitted the details for others. Similarly, studies may have used a combination of search 

algorithms.  

 

5 Conclusion 

This study summarizes the calibration methods used by cancer simulation models. We found that the most 

common used parameter search algorithm is random search and the most commonly used GOF metric is MSE. 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted November 19, 2024. ; https://doi.org/10.1101/2024.11.18.24317357doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.18.24317357


14 

 

Given the recent advancement of machine learning techniques, we found fewer than expected number of models 

adopting this method. The findings also signal a critical need for enhanced transparency and standardization in 

reporting calibration processes. Detailed documentation of the calibration methods is essential for replicability 

and further methodological advancements. 
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TABLES AND FIGURES 

 

Table 1. Data source types for the calibration targets used in the cancer simulation models 

Data source type Number 

of studies 

Reference 

Cancer registry 42 [8], [10], [18], [12], [19], [20], [21], [22], [23], [24], [25], [14], 

[13], [26], [7], [27], [11], [28], [29], [30], [31], [32], [33], [34], 

[35], [36], [37], [38], [39], [40], [41], [42], [43], [44], [45], 

[46], [47], [48], [49], [50], [51], [52] 

Observational 

study 

24 [9], [8], [10], [18], [12], [24], [14], [13], [26], [53], [54], [29], 

[55], [35], [36], [56], [57], [40], [41], [58],  [59], [48], [60], 

[61] 

Randomized 

controlled trial 

13 [62], [16], [63], [64], [65], [66], [34], [56], [67], [68], [46], 

[59], [69] 

Other 1 [70] 

Unspecified 3 [71], [72], [73] 
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Table 2. Calibration targets used in the cancer simulation models 

Calibration 

target 

Number 

of studies 

Reference 

Incidence 36 [62], [9], [12], [63], [64], [20], [22], [25], [13], [71], [7], [27], 

[11], [54], [30], [32], [55], [34], [35], [36], [37], [38], [39], 

[67], [40], [41], [43], [44], [45], [46], [58], [47], [48], [60], 

[49], [52] 

Mortality 18 [9], [12], [63], [19], [20], [23], [14], [27], [28], [33], [36], [37], 

[40], [41], [42], [68], [45], [60] 

Prevalence 18 [18], [12], [24], [14], [26], [71], [53], [11], [29], [31], [55], 

[34], [35], [67], [41], [42], [48], [69] 

Survival 8 [21], [25], [13], [65], [66], [37], [56], [48] 

Stage distribution 5 [64], [30], [36], [38], [42] 

Other 4 [70], [57], [59], [61] 

Unspecified 5 [8], [72], [73], [50], [51] 
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Table 3. Cancer types represented in the cancer simulation models 

Cancer type Number 

of studies 

Reference 

Breast 13 [63], [19], [20], [22], [65], [7], [27], [38], [39], [73], [40], [44], [45] 

Colorectal 13 [8], [18], [24], [26], [71], [66], [30], [37], [70], [57], [74], [59], [48] 

Cervical 11 [10], [12], [53], [54], [31], [35], [67], [72], [58], [69], [50] 

Lung 9 [62], [16], [14], [36], [46], [60], [51], [52], [61] 

Prostate 7 [64], [25], [34], [56], [68], [75], [49] 

Multiple 4 [23], [13], [28], [33] 

Esophageal 3 [11], [55], [47] 

Pancreatic 2 [41], [42] 

Soft tissue 1 [9] 

Urologic 1 [21] 

Anal 1 [29] 

Thyroid 1 [32] 

Skin 1 [43] 

Bladder 1 [15] 
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Table 4. Goodness-of-fitness measures used in the cancer simulation models 

Goodness-of-fitness 

measure 

Total 

number 

Reference 

Sum of square 15 [16], [18], [20], [21], [23], [24], [66], [28], [33], [36], [44], 

[68], [74], [60], [61] 

Likelihood 10 [10], [71], [53], [29], [31],  [35], [40], [41], [42], [58] 

Weighted sum of 

square 

10 [12], [13], [26], [30], [56], [39], [67], [45], [46], [15] 

Chi square (weighted 

sum) 

7 [63], [64], [11], [32], [55], [38], [47] 

Envelope method 3 [19], [7], [27] 

Other 7 [26], [65], [34], [72], [43], [51], [52] 

Unspecified 17 [62], [9], [8], [22], [25], [14], [54], [37], [70], [57], [73], 

[75], [59], [48], [69], [49], [50] 
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Table 5. Parameter search algorithms used in the cancer simulation models 

Search 

algorithm 

Number of 

studies 

Reference 

Random search 16 [10], [18], [19], [71], [27], [53], [29], [31], [35], [56], [40], [43], 

[58], [15], [69], [16] 

Grid search 9 [9], [63], [20], [13], [66], [38], [67], [68], [74] 

Nelder-mead 8 [12], [64], [25], [30], [39], [47], [51], [52] 

Bayesian 7 [8], [19], [22], [23], [24], [71], [72] 

Simulated 

annealing 

7 [11], [28], [32], [33], [36], [41], [44] 

Genetic 

algorithm 

3 [26], [55], [36] 

Other machine 

learning 

3 [26], [7], [70] 

Neural 

network 

2 [21], [71] 

Visual, trial-

and-error 

2 [62], [65] 

Other 4 [34], [42], [48], [60] 

Unspecified 12 [14], [54], [37], [57], [73], [45], [46], [75], [59], [49], [50], [61] 
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Table 6. Acceptance criteria and stopping rule used in the cancer simulation models 

Acceptance 

criteria/stopping rule 

Number 

of studies 

Reference 

Neither acceptance 

criteria not stopping 

rule is used 

21 [16], [64], [22], [7], [27], [11], [28], [29], [30], [31],  

[33], [38], [39], [41], [42], [43], [68], [58], [74], [47], 

[61] 

Both acceptance 

criteria and stopping 

rule were used 

14 [9], [10], [23], [24], [26], [53], [66], [32], [55], [35], [36], 

[67], [72], [40] 

Only stopping rule 

was used  

6 [18], [12], [71], [65], [37], [69] 

Only acceptable 

criteria was used  

3 [19], [21], [44] 

Unspecified 23 [62], [8], [63], [20], [25], [14], [13], [54], [34], [56], [70], 

[57], [73], [45], [46], [75], [59], [69], [60], [49], [50], 

[51], [52] 
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Figure 1. PRISMA flow diagram for search strategy 
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Figure 2. Number of cancer simulation models that utilized calibration by the year of 

publication 
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