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Abstract

Objective: Systemic lupus erythematosus (SLE) is a complex autoimmune
disease characterized by unpredictable flares. This study aimed to develop a
novel proteomics-based risk prediction model specifically for Asian SLE pop-
ulations to enhance personalized disease management and early intervention.
Methods: A longitudinal cohort study was conducted over 48 weeks, in-
cluding 139 SLE patients monitored every 12 weeks. Patients were classified
into flare (n = 53) and non-flare (n = 86) groups. Baseline plasma sam-
ples underwent data-independent acquisition (DIA) proteomics analysis, and
phenome-wide Mendelian randomization (PheWAS) was performed to evaluate
causal relationships between proteins and clinical predictors. Logistic regres-
sion (LR) and random forest (RF) models were used to integrate proteomic
and clinical data for flare risk prediction.
Results: Five proteins (SAA1, B4GALT5, GIT2, NAA15, and RPIA) were
significantly associated with SLE Disease Activity Index-2K (SLEDAI-2K)
scores and 1-year flare risk, implicating key pathways such as B-cell receptor
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signaling and platelet degranulation. SAA1 demonstrated causal effects on
flare-related clinical markers, including hemoglobin and red blood cell counts.
A combined model integrating clinical and proteomic data achieved the highest
predictive accuracy (AUC = 0.769), surpassing individual models. SAA1 was
highlighted as a priority biomarker for rapid flare discrimination.
Conclusion: The integration of proteomic and clinical data significantly
improves flare prediction in Asian SLE patients. The identification of key
proteins and their causal relationships with flare-related clinical markers
provides valuable insights for proactive SLE management and personalized
therapeutic approaches.

Keywords: Systemic lupus erythematosus, Flare, Causal proteomics,
Phenome-wide mendelian randomization, Longitudinal cohort study

Introduction1

Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disorder2

characterized by the production of multiple autoantibodies and involvement3

of various organ systems. Its clinical course is unpredictable, with patients4

experiencing remissions and flares sudden increases in disease activity that5

pose significant management challenges[1, 2]. Although early disease control6

and adherence to pharmacological interventions are foundational in managing7

SLE, conventional predictive models relying on clinical observations and ge-8

netic markers are limited in capturing the disease’s dynamic and multifactorial9

nature[3, 4].10

The complexity of SLE flares, often arising unpredictably from multi-11

faceted and poorly understood triggers, necessitates a nuanced, data-driven12

predictive approach. Accurate flare prediction requires longitudinal tracking13

of disease activity, identification of modifiable risk factors, and comprehensive14

evaluation of clinical, serological, and molecular markers. Recent studies in15

Asian SLE populations have linked risk factors such as thrombocytopenia,16

hypocomplementemia, elevated neutrophil-to-lymphocyte ratio (NLR), and17

high platelet-to-lymphocyte ratio (PLR) to increased flare risk[5, 6]. Addi-18

tionally, the presence of specific autoantibodies like anti-ribosomal P and19

anti-phospholipid antibodies is associated with heightened flare susceptibil-20

ity in Chinese patients[7]. Non-biological factors, including quality of life,21

psychological stress, and overexertion, also significantly contribute to flare22
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incidence, highlighting the need to consider both biological and psychosocial23

variables in predictive models[8, 9, 10].24

Advancements in genome-wide association studies (GWAS) and PheWAS25

have deepened our understanding of the genetic underpinnings and phenotypic26

expressions of autoimmune diseases. Mendelian randomization (MR) and27

PheWAS methodologies enable exploration of causal relationships between28

genetic variations, proteins, and disease outcomes, offering more robust29

insights than traditional observational studies[11, 12]. Given SLE’s diverse30

nature, a multi-omics approach that integrates proteomic data with genomic31

and clinical information is essential for identifying dynamic biomarkers capable32

of improving flare prediction[13]. In this context, proteomics-based MR holds33

significant promise for discovering novel, druggable protein targets, thereby34

enhancing our ability to classify and stratify patients by flare risk.35

This study aims to address the limitations of current predictive models36

for SLE flares through a comprehensive, integrative approach. We first37

conduct an exhaustive analysis of known clinical predictors to build a robust38

baseline model. Building on this foundation, we incorporate cutting-edge39

plasma proteomics techniques to gain deeper insights into molecular changes40

associated with flare events. We explore causal relationships between identified41

plasma proteins and clinical outcomes through phenome-wide Mendelian42

randomization analyses, identifying proteins with a causal impact on flare43

risk. Finally, we leverage advanced machine learning algorithms to integrate44

proteomic and clinical data, constructing a predictive model that offers more45

precise risk stratification for SLE flares. This integrative methodology aims46

to significantly improve early detection of organ damage, guiding timely and47

personalized therapeutic interventions.48

Methods49

Patient Recruitment and Follow-up50

This prospective multicenter study recruited 139 SLE patients between August51

2020 and January 2023. Eligible participants were aged 18-65 and met the 201252

SLICC classification criteria[14]. Patients with active infections, malignancies,53

or other connective tissue diseases were excluded. Disease activity was assessed54

using the SLEDAI-2K at baseline and at 3, 6, and 12 months to identify flare55

events.56

The study was approved by the ethics committee of the Second Affiliated57

Hospital of Zhejiang Chinese Medical University (approval NO.2020-KL-002-58

4
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IH01). Informed consent was obtained from all participants. Additional59

details are in Supplementary Table 1.60

Outcome Measurement61

The primary outcome was the occurrence of an SLE flare within 12 months,62

defined as an increase in SLEDAI-2K score by ≥ 3 points from baseline and63

previous assessments[15]. This widely accepted criterion standardizes flare64

identification.65

Clinical Variables: Definitions and Selection66

Baseline data included: (1) Complement levels (C3, C4); (2) Inflammatory67

markers (NLR, PLR); (3) Medication use (glucocorticoids, immunosuppres-68

sants); (4) Serological markers (anti-ribosomal P antibodies); (5) Disease69

activity (SLEDAI-2K score); and (6) Quality of life (LupusQoL questionnaire).70

LR and RF algorithms identified key clinical predictors by ranking features71

based on predictive importance. All variables were dichotomized (1 or 0) for72

simplicity and clinical relevance, facilitating risk stratification. This approach73

aims to develop a robust predictive model integrating clinical parameters74

with proteomic biomarkers.75

Proteomic Analysis76

DIA data were processed into spectral libraries using SpectraST and analyzed77

with DIA-NN (v1.7.0), ensuring accurate results. Detailed workflows are78

available at https://www.iprox.cn/page/HMV006.html.79

Differential Protein and SLEDAI-2K Correlation Analysis80

Proteins expressed in at least 25% of samples were analyzed. Student’s81

t-test identified plasma proteins differentiating flare and non-flare patients,82

considering proteins with | log2(Fold Change)| ≥ 1 and p < 0.05 as significant.83

Spearman’s correlation assessed relationships between these proteins and84

SLEDAI-2K scores, with significance at p < 0.05.85

Pathway Enrichment Analysis86

We performed pathway enrichment analysis on differentially expressed proteins87

and those correlated with SLEDAI-2K scores. We analyzed Reactome and88

KEGG pathways, considering those significantly enriched at p < 0.05 using89

DAVID (https://david.ncifcrf.gov/).90
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Causal Proteomics Analysis Using PheWAS91

Genetic instruments for identified pQTLs were obtained from 2,958 Han92

Chinese participants[16]. Outcome data for SLE phenotypes were sourced93

from BioBank Japan (n = 179,000) and supplemented by UK Biobank and94

FinnGen data (ntotal = 628,000)[17]. The GWAS dataset included predictors95

like chronic glomerulonephritis, blood cell counts, and medication use. We96

selected pQTLs with p < 5× 10−8, independence (R2 < 0.001 with clumping97

distance > 10,000 kb), and F statistic > 10 to ensure robust instruments.98

The primary method was inverse-variance weighted Mendelian Random-99

ization. To address potential violations, we performed sensitivity analyses100

using MR-Egger regression, weighted median, and mode-based estimators.101

Heterogeneity was assessed with Cochran’s Q test, and leave-one-out analyses102

evaluated SNP influence on causal estimates. This approach allowed us to103

explore causal relationships between serum amyloid A1 (SAA1) pQTLs and104

SLE flare risk.105

Machine Learning-Based Biomarker Selection106

We developed predictive models for SLE flares using LR and RF algorithms.107

Three models were created: (1) Clinical models using validated risk param-108

eters; (2) Protein models using identified biomarkers; and (3) Combined109

models integrating clinical and proteomic data. Datasets were split into110

training (85%) and testing (15%) sets. Model performance was evaluated111

using Receiver Operating Characteristic curves and calibration curves to112

assess discriminative ability and reliability.113

Statistical Analysis114

Statistical analyses were conducted using R (v4.3.2) and GraphPad Prism115

8. Clinical data are presented as medians with interquartile ranges. Group116

comparisons used Student’s t-test. Correlation analyses and linear regression117

assessed variable relationships. PheWAS analyses employed the TwoSampleMR118

R package. Predictive models used LR. Model accuracy was assessed using119

ROC curves and Area Under the Curve metrics via the pROC R package.120

Results121

Clinical Data Characteristics and Flare Outcome122

As shown in Fig.1, 139 SLE patients were monitored over 48 weeks and123

classified into flare (n = 53) and non-flare (n = 86) groups; 38% experienced124
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at least one flare. The flare group had a high female predominance (94%),125

aligning with SLE’s gender disparity. Approximately 47% of flare patients126

were positive for anti-dsDNA antibodies. Significantly, the flare group had a127

higher prevalence of rRNP antibodies than the non-flare group (p = 0.019),128

suggesting their potential role in predicting flares.129

Significant differences in erythrocyte sedimentation rate (ERY, p = 0.008),130

platelet count (PLT, p = 0.023), and platelet-to-lymphocyte ratio (PLR,131

p = 0.035) were observed, highlighting their potential as flare risk markers.132

Medication use showed no significant difference in prednisone use (p = 0.284).133

Hydroxychloroquine use was slightly lower in the flare group (by 11%), though134

not statistically significant (p = 0.617), warranting further investigation into135

its protective effects. No significant differences in organ involvement were136

observed (p > 0.05). Baseline characteristics are detailed in Table1.137

Importance Ranking of Clinical Predictors138

We identified key clinical risk factors for SLE flares using univariate LR139

and RF based on 39 baseline features from 139 patients. In the LR model140

(Fig.2A), top predictors were: (1) 24-hour urinary total protein (UTP), (2)141

urinary erythrocyte count (ERY), (3) platelet count (PLT), (4) platelet-to-142

lymphocyte ratio (PLR), and (5) anti-ribonucleoprotein (rRNP) antibodies.143

The RF model (Fig.2B) yielded a similar ranking, with NLR as the fifth144

predictor.145

Identification of Differentially Expressed Biomarkers Associated with Flare146

Proteomic analysis identified 102 significantly differentially expressed proteins147

(73 upregulated, 23 downregulated) associated with flares (Fig.3A), based on148

proteins detected in over 25% of samples. A heatmap (Fig.3B) illustrates these149

findings. Pathway enrichment analysis using Reactome revealed involvement150

in key pathways: (1) B-cell receptor (BCR) downstream signaling, (2) response151

to elevated platelet cytosolic Ca2+, and (3) platelet degranulation (Fig.3C),152

offering insights into molecular mechanisms underlying flares.153

Proteins Significantly Associated with SLEDAI-2K154

We identified plasma proteins significantly associated with SLEDAI-2K155

scores. KEGG pathway analysis indicated their involvement in neurode-156

generation, lipid metabolism, atherosclerosis, and neurotrophin signaling157

(Fig.3D). Protein-protein interaction analysis using STRING (Fig.3E) showed158
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functional relationships among these proteins. Among 13 proteins cor-159

relating with SLEDAI-2K, five were significantly upregulated and posi-160

tively associated with worse outcomes: (1) Serum Amyloid A-1 (SAA1),161

(2) β-1,4-galactosyltransferase 5 (B4GALT5), (3) Ribose 5-phosphate Iso-162

merase A (RPIA), (4) GTPase-activating Protein 2 (GIT2), and (5) N-163

alpha-acetyltransferase 15 (NAA15). Correlation analysis (Fig.3F) showed164

significant positive associations between SAA1 and B4GALT5, RPIA, and165

NAA15, suggesting potential functional relationships in SLE activity and166

flare risk.167

Causal Effects of Flare-Associated Proteins on SLE and Risk Factors168

Using PheWAS, we investigated causal mechanisms between plasma proteins169

and SLE flares, focusing on pQTLs for SAA1. We examined 220 SLE-related170

outcomes using data from BioBank Japan. Six SNPs associated with SAA1171

levels were identified as instrumental variables. Inverse-variance weighted172

(IVW) analysis revealed significant causal effects of SAA1 on four flare-related173

outcomes (OR = 1.071, 95% CI: 1.004 - 1.143, p = 0.040), hemoglobin (OR=174

0.971, 95% CI: 0.947 - 0.996, p = 0.023), red blood cell count (OR = 0.971,175

95% CI: 0.947 - 0.996, p = 0.021), hematocrit (OR =0.967, 95% CI: 0.937176

- 0.997, p = 0.031) (Fig.4A-D, Table 2). All of them exhibited absence of177

heterogeneity by IVW (Cochran’s Q = 0.419; Cochran’s Q = 0.263; Cochran’s178

Q = 0.291 ; Cochran’s Q =0.104, respectively) and MR-Egger (Cochran’s179

Q= 0.334; Cochran’s Q = 0.169; Cochran’s Q = 0.195; Cochran’s Q =0.068,180

respectively), horizontal pleiotropy by MR-Egger (intercept = -0.015, p=181

0.585; intercept = -0.001, p = 0.891; intercept = -0.003, p = 0.808; intercept182

= -0.005, p = 0.694, respectively). The leave-one-out method suggested that183

the MR analysis results were reliable (Fig.5A-D).184

Construction and Internal Validation of Flare Risk Prediction Models185

We developed predictive models for SLE flare risk by dividing patients into186

training and test sets. Using LR and random forest algorithms, and following187

TRIPOD guidelines[18], we selected six key clinical variables: UTP, ERY,188

PLT, PLR, anti-rRNP antibodies, and NLR.189

Three models were developed: a clinical model, a protein-based model190

using five key proteins (SAA1, B4GALT5, GIT2, NAA15, RPIA), and a191

combined model integrating clinical and proteomic variables. ROC curve192

analysis showed the protein-based model had superior predictive accuracy193

(AUC = 0.744, 95% CI: 0.646 - 0.842) compared to the clinical model (AUC =194
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0.643, 95%CI: 0.541 - 0.745). The combined model achieved the highest AUC195

(AUC = 0.769, 95% CI : 0.678 - 0.860), indicating the benefit of integrating196

clinical and proteomic data.197

Calibration analysis demonstrated good predictive performance for all198

models (Fig.6A-C). The protein-based model showed particular strength199

in AUC and Mean Absolute Error (MAE), suggesting its suitability for200

independent flare prediction. The combined model may be more appropriate201

in complex clinical scenarios requiring multiple variables for accurate risk202

assessment.203

Discussion204

This is the first study to develop an SLE flare prediction model based on205

proteomic analysis in an East Asian population. We identified novel molecular206

pathways and biomarkers associated with SLE flares, offering valuable insights207

for improved risk stratification and personalized management.208

Pathway enrichment analysis showed significant involvement of B cell209

receptor signaling, elevated platelet cytosolic Ca2+ responses, and platelet210

degranulation in SLE flare pathogenesis. KEGG analysis revealed enrichment211

of neurodegeneration, lipid metabolism, atherosclerosis, and neurotrophin212

signaling pathways among proteins linked to disease activity. These find-213

ings highlight the complex interplay between immune activation, vascular214

responses, and systemic inflammation in SLE flares, particularly affecting215

hematological, cardiovascular, and neurological systems in this East Asian216

cohort.217

We identified five key proteins, SAA1, B4GALT5, GIT2, NAA15, and218

RPIA, strongly associated with increased SLE flare risk over 48 weeks, in-219

dependent of conventional risk factors. Our analysis demonstrated a causal220

effect of elevated SAA1 levels on flare risk factors, underscoring its critical221

role in disease progression.222

Integrating these proteomic biomarkers with clinical indicators significantly223

enhanced our model’s predictive accuracy. These results confirm the prognos-224

tic potential of causal proteomics in SLE flare risk stratification, paving the225

way for personalized therapies and earlier interventions for high-risk patients.226

Previous studies support Serum Amyloid A1 (SAA1) as a key biomarker227

for assessing SLE flare risk, reinforcing its predictive utility. SAA1-associated228

pQTLs have been causally linked to hematological parameters and depressive229

9
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disorders in multi-GWAS PheWAS[19], enhancing our understanding of pro-230

teins in the psychological aspects of SLE flares[20]. As an acute-phase protein,231

SAA1 is markedly upregulated during inflammation, contributing to organ232

dysfunction[21]. Our study showed that elevated SAA1 levels causally influ-233

ence hematological involvement and antirheumatic medication use, consistent234

with prior findings[22].235

Elevated SAA1 levels correlate with SLEDAI-2K scores and nervous sys-236

tem involvement severity[23]. SAA1 is linked to the Th17 cell differentiation237

pathway, amplifying inflammatory responses[24]. Given its pivotal role in mod-238

ulating inflammatory mediators and immune cells in SLE pathophysiology[25],239

investigating SAA1 can advance our understanding of flare mechanisms.240

Identified as an early immunological diagnostic biomarker with high sensi-241

tivity and specificity for SLE[26], SAA1 may serve as a valuable biomarker for242

identifying high-risk patients based on our East Asian PheWAS results. These243

findings suggest potential therapeutic targets for personalized treatments.244

However, since infections also trigger flares and SAA1 is associated with white245

blood cell count and NLR, further research is needed to distinguish SLE flares246

from infection-related events[27].247

β-1,4-Galactosyltransferase V (B4GALT5) is crucial in carbohydrate248

metabolism, specifically in lactosylceramide synthesis [28]. Unexpectedly,249

our logistic regression showed a strong positive correlation between B4GALT5250

expression and SLE flares, making it a significant protein associated with251

flare risk. Given B4GALT5’s role in antiviral immunity, overexpression leads252

to upregulation of inflammatory cytokines and glycosylated surface proteins253

involved in antigen presentation, cell adhesion, and migration[29].254

However, we did not establish a causal relationship between B4GALT5 and255

SLE, possibly due to the low prevalence of B4GALT5 variants in the East Asian256

population studied. This underscores the need for diverse population studies257

to evaluate B4GALT5’s role in SLE pathogenesis and its predictive value. The258

unexpected correlation suggests a complex interplay between glycosylation259

processes, immune responses, and SLE activity. Further investigation is needed260

to elucidate how B4GALT5 might influence flare risk, given its functions261

in carbohydrate metabolism and immune regulation. These findings open262

avenues for understanding the glycosylation-immune axis in SLE and potential263

therapeutic interventions.264

GIT2 and NAA15 emerged as potential contributors to SLE flares. GIT2265

is a scaffold protein regulating aging processes affecting multiple tissues266

and linked to neurodegeneration and cardiovascular disorders[30]. NAA15267

10
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is a susceptibility gene for neurodevelopmental disorders[31], implicated in268

congenital cardiac anomalies, plaque stability in atherosclerosis, and seizure269

pathophysiology[32, 33]. Although no direct evidence links GIT2 and NAA15270

to SLE, their identification suggests novel pathways in SLE pathogenesis.271

Further research is needed to elucidate their specific roles in SLE flares,272

particularly considering disease duration and age, which merit attention in273

risk prediction models.274

SLE progression involves distinct risk factors at different disease stages.275

Early organ damage is driven by active disease (reflected in SLEDAI-2K), while276

later damage results from long-term medication effects, especially prolonged277

glucocorticoid use and withdrawal[34, 35, 36]. We identified key clinical278

risk factors for flares, including hematological and renal involvement and279

medication use, aligning with traditional findings. Risk factors may shift280

during disease progression, with early damage from disease activity and later281

damage from drug side effects, notably glucocorticoid therapy.282

Traditional correlation studies offer insights but do not establish causality.283

We employed proteomic Mendelian randomization to develop robust flare284

prediction models. By integrating correlational methods with advanced285

machine learning and causal analyses, we aimed to enhance prediction accuracy.286

Identifying proteomic biomarkers with direct causal effects provides deeper287

insights into SLE flare mechanisms, highlighting potential causal pathways288

and therapeutic targets for future interventions.289

This study has several limitations. The small sample size and focus on290

an East Asian population may limit statistical power and generalizability to291

broader populations. The 12-month follow-up may be insufficient to capture292

long-term fluctuations in SLE disease activity. Moreover, reliance on advanced293

proteomics techniques, while valuable, may hinder clinical accessibility and294

routine implementation. Although our PheWAS analysis revealed associations295

between genetic protein levels and SLE, establishing definitive causality296

remains challenging due to the complexities of SLE and potential violations297

of Mendelian randomization assumptions. Therefore, these results should be298

interpreted with caution. Future research should prioritize external validation299

of our predictive model in diverse cohorts, adhering to the TRIPOD guidelines.300

Studies with larger, heterogeneous populations and extended follow-up periods301

are essential to address current limitations. Developing methodologies that302

account for time-varying exposures and non-linear associations will enhance303

model robustness and accuracy. Further investigation is needed to verify304

causal relationships between identified proteins and SLE risk, improving305
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clinical applicability. Additionally, comprehensive proteomic analyses across306

multiple organs are necessary to assess organ-specific protein effects, providing307

deeper insights into early flare mechanisms.308

Conclusion309

This study demonstrates the potential of integrating causal proteomics with310

clinical risk factors to improve SLE flare prediction. Our findings provide311

significant advancements in understanding the molecular mechanisms under-312

lying SLE flares and offer a foundation for more precise and personalized313

approaches to SLE management. The identified proteomic signatures and314

causal pathways represent promising avenues for future therapeutic interven-315

tions and risk stratification strategies, with the potential to enhance patient316

care and outcomes in SLE.317
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SLE: systemic lupus erythematosus;319

PheWAS: phenome-wide mendelian randomization;320

GWAS: genome-wide association studies;321

MR: mendelian randomization;322

DIA: data-independent acquisition;323

LR: logistic regression;324

RF: random forest;325

UTP: 24-hour urinary total protein;326

ERY: urinary erythrocyte count;327

PLT: platelet count;328

NLR: neutrophil-to-lymphocyte ratio;329

PLR: platelet-to-lymphocyte ratio;330

rRNP: anti-ribosomal P antibodies;331

LupusQoL: lupus quality of life;332

SLEDAI-2K: Systemic Lupus Erythematosus Disease Activity Index 2000;333

BCR: B-cell receptor;334

SLICC: systemic lupus international collaborating clinics;335

KEGG: Kyoto Encyclopedia of Genes and Genomes;336

SAA1: serum amyloid A1;337

B4GALT5: β − 1,4-galactosyltransferase 5;338

RPIA: Ribose 5-phosphate isomerase A;339

GIT2: GTPase-activating protein 2;340
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NAA15: N-alpha-acetyltransferase 15;341

IVW: inverse-variance weighted;342

TRIPOD: transparent reporting of a multivariable prediction model for individual prognosis343

or diagnosis.344
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Table 1: Clinical and demographic characteristics of SLE flare.
Number of patients Total (n = 139) Primary outcome: 1-year flare

Non-flare (n = 86) Flare (n = 53) P
Sex, n (%) 130 (94%) 80 (93%) 50 (94%) 1
Age, Median (Q1, Q3) 36 (28.5, 48.5) 34 (31, 42.75) 40 (28, 51) 0.357
Course, Median (Q1, Q3) 6 (3, 12) 6 (3, 12) 6 (3, 11) 0.617
SLE DAI, Median (Q1, Q3) 6 (3, 8) 6 (3, 8) 6 (4, 12) 0.337
dsDNA, n (%) 66 (47%) 41 (48%) 25 (47%) 1
Sm, n (%) 35 (25%) 19 (22%) 16 (30%) 0.386
SSA, n (%) 62 (45%) 37 (43%) 25 (47%) 0.763
Ro52, n (%) 52 (37%) 28 (33%) 24 (45%) 0.185
SSB, n (%) 22 (16%) 12 (14%) 10 (19%) 0.595
rRNP, n (%) 38 (27%) 17 (20%) 21 (40%) 0.019
Scl70, n (%) 1 (1%) 0 (0%) 1 (2%) 0.381
AHA, n (%) 27 (19%) 17 (20%) 10 (19%) 1
AnuA, n (%) 39 (28%) 24 (28%) 15 (28%) 1
CENP, n (%) 2 (1%) 0 (0%) 2 (4%) 0.144
AMA M2, n (%) 2 (1%) 1 (1%) 1 (2%) 1
U10RNP, n (%) 25 (18%) 15 (17%) 10 (19%) 1
pro, n (%) 48 (34%) 27 (31%) 21 (40%) 0.492
ERY, Median (M25, M75) 3 (0, 13) 2.4 (0, 10.6) 5.5 (1, 20) 0.008
LEU, Median (M25, M75) 6 (2, 24.8) 6 (1, 24.45) 8 (2.3, 26) 0.333
UTP, Median (M25, M75) 102.45 (102.45, 180) 102.45 (102.45, 102.45) 180 (180, 180) < 0.001
WBC, Median (M25, M75) 5.2 (4.3, 6.86) 5.2 (4.27, 6.9) 5.1 (4.4, 6.4) 0.873
NEUT, Median (M25, M75) 3.43 (2.46, 4.82) 3.46 (2.5, 4.78) 3.33 (2.28, 4.88) 0.714
LYM, Median (M25, M75) 1.36 (1.04, 1.97) 1.33 (1.03, 1.88) 1.43 (1.04, 2.23) 0.534
PLT, Median (M25, M75) 208 (157, 248.5) 217 (172.5, 258.75) 175.5 (138, 225) 0.023
PLR, Median (M25, M75) 145.37 (102.39, 190.67) 156.1 (111.63, 200.63) 134.18 (83.08, 179.71) 0.035
NLR, Median (M25, M75) 2.36 (1.62, 3.51) 2.37 (1.79, 3.48) 2.25 (1.51, 3.54) 0.411
C3, Median (M25, M75) 0.76 (0.66, 0.9) 0.74 (0.66, 0.9) 0.78 (0.67, 0.93) 0.606
C4, Median (M25, M75) 0.15 (0.11, 0.2) 0.15 (0.11, 0.2) 0.15 (0.1, 0.2) 0.776
lupusQoL, Median (M25, M75) 114 (101, 121) 114 (103.25, 120.75) 110 (97, 122) 0.529
Prednisone, Median (M25, M75) 10 (5, 15) 7.5 (5, 15) 10 (5, 15) 0.284
Hydroxychloroquine, n (%) 86 (62%) 57 (66%) 47 (55%) 0.617
Immunosuppressant, n (%) 90 (65%) 57 (66%) 33 (62%) 0.765
Noninvolved, n (%) 31 (22%) 17 (20%) 14 (26%) 0.481
Multisystem, n (%) 40 (29%) 27 (31%) 13 (25%) 0.499
Hematologic, n (%) 22 (16%) 15 (17%) 7 (13%) 0.671
Neuropsychiatric, n (%) 7 (5%) 3 (3%) 4 (8%) 0.427
Mucocutaneous, n (%) 62 (45%) 36 (42%) 26 (49%) 0.514
Renal, n (%) 57 (41%) 39 (45%) 18 (34%) 0.251

Table 2: Mendelian Randomization Results - Causal Effects Between pQTLs and SLE
Flare Risk (IVW Approach)
Outcome N SNP β Standard Error p OR (95% CI)
Hemoglobin 6 -0.029 0.013 0.023 0.971 (0.947, 0.996)
Hematocrit 6 -0.034 0.016 0.031 0.967 (0.937, 0.997)
Red blood cell count 6 -0.029 0.013 0.021 0.971 (0.947, 0.996)
Anti-inflammatory medication 6 0.069 0.033 0.040 1.071 (1.004, 1.143)
Note: Source by Zheng Lab.
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345

Figure 1: Study design and patient follow-up schema. Schematic representation of the
recruitment process, inclusion and exclusion criteria, and longitudinal assessment timeline
for SLE patients over the 48-week study period.
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Figure 2: Comparative analysis of clinical variable importance in predicting SLE flares.
(A) Ranking of clinical variables based on LR coefficients. (B) Relative importance of
clinical variables determined by the RF algorithm, measured by the mean decrease in Gini
impurity.
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Figure 3: Multi-dimensional proteomic profiling of SLE flares. (A) Volcano plot illus-
trating the distribution and statistical significance of 102 differentially expressed proteins
between flare and non-flare groups (‘the absolute value of the base-2 logarithm of the
fold change’ ≥ 1, p < 0.05). (B) Hierarchical clustering heatmap displaying normalized
plasma protein expression levels, with a color gradient (blue to red) representing relative
protein abundance. (C) Reactome pathway enrichment analysis of flare-associated proteins,
with statistical significance indicated by -log10(p-value). (D) KEGG pathway analysis of
proteins correlated with SLEDAI-2K scores. (E) STRING-based protein-protein interac-
tion network of SLEDAI-2K-associated proteins, where node size reflects the degree of
interaction. (F) Correlation matrix showing the relationships between upregulated proteins
positively associated with SLEDAI-2K scores.
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Figure 4: Mendelian randomization analysis of SAA1’s causal effects on SLE flare risk factors.
Forest plots from random-effects inverse-variance weighted (IVW) analyses depicting the
genetic causal relationships between SAA1 and (A) anti-inflammatory and antirheumatic
medication use, (B) hemoglobin levels, (C) red blood cell count, and (D) hematocrit. Odds
ratios and 95% confidence intervals are shown.
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Figure 5: Sensitivity analysis of Mendelian randomization results using the leave-one-out
method. (A) Anti-inflammatory and antirheumatic medication use. (B) Hemoglobin levels.
(C) Red blood cell count. (D) Hematocrit. This analysis evaluates the robustness of
the causal relationships between SAA1 and four key outcomes: anti-inflammatory and
antirheumatic medication use, hemoglobin levels, red blood cell count, and hematocrit.
Each subplot (A-D) represents one of these outcomes, with individual points showing the
Mendelian randomization estimate after excluding one SNP from the analysis, while the
vertical line indicates the estimate using all SNPs. This approach helps identify potential
outlier SNPs that may disproportionately influence the overall results.
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Figure 6: Comparative performance evaluation of SLE flare risk prediction models. (A-C)
Receiver Operating Characteristic (ROC) curves (left) and calibration plots (right) for (A)
clinical, (B) proteomic, and (C) combined prediction models. ROC curves display sensitivity
versus 1-specificity, with Area Under the Curve (AUC) values indicated. Calibration plots
show predicted versus observed probabilities, generated using 1,000 bootstrap resamples.
Hosmer-Lemeshow goodness-of-fit test P-values are provided to evaluate model calibration.

20

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 18, 2024. ; https://doi.org/10.1101/2024.11.17.24317460doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.17.24317460
http://creativecommons.org/licenses/by-nd/4.0/


Supplementary Tables346

1. Name of multi-center hospitals347

Table S1. Name of multi-center hospitals
The Second Affiliated Hospital of Zhejiang Chinese Medical University
Guang’anmen Hospital China Academy of Chinese Medical Sciences
Chinese People’s Liberation Army General Hospital
The First Affiliated Hospital of Guangzhou University of Chinese
Medicine
Shenzhen Futian Hospital for Rheumatic Diseases
The First Affiliated Hospital of Henan University of CM
First Teaching Hospital of Tianjin University of Traditional Chinese
Medicine
The First School of Clinical Medicine Yunnan University of Chinese
Medicine
Department of Rheumatology Second Affiliated Hospital of Zhejiang
University
The Affiliated Hospital of Medical School Ningbo University
The Second Affiliated Hospital of Jiaxing University
Department of Rheumatology Huzhou Hospital of Traditional Chinese
Medicine Affiliated to Zhejiang Chinese Medical University
Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing TCM
Hospital Affiliated to Zhejiang Chinese Medical University
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